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Abstract

We present a hybrid optical-electrical analog deep learning (DL)
accelerator, the first work to use incoherent optical signals for
DL workloads. Incoherent optical designs are more attractive than
coherent ones as the former can be more easily realized in prac-
tice. However, a significant challenge in analog DL accelerators,
where multiply-accumulate operations are dominant, is that there
is no known solution to perform accumulation using incoherent
optical signals. We overcome this challenge by devising a hybrid
approach: accumulation is done in the electrical domain, while
multiplication is performed in the optical domain. The key technol-
ogy enabler of our design is the transistor laser, which performs
electrical-to-optical and optical-to-electrical conversions efficiently
to tightly integrate electrical and optical devices into compact cir-
cuits. As such, our design fully realizes the ultra high-speed and
high-energy-efficiency advantages of analog and optical computing.
Our evaluation results using the MNIST benchmark show that our
design achieves 2214X and 65X improvements in latency and en-
ergy, respectively, compared to a state-of-the-art memristor-based
analog design.
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1 Introduction

Deep learning (DL) accelerators are widely deployed in various
application domains, and are expected to become more prominent.
A number of emerging technologies (e.g., RRAM, FeFET) have been
exploited to implement DL accelerators. Among them, optical DL
accelerators implemented using coherent optical signals have at-
tracted significant interest due to the following properties [14]: (1)
matrix multiplication consumes no power; (2) the latency of optical
compute/communication is very low; and (3) non-linear optical
devices can be used to implement activation functions at low cost.

However, in practice it is challenging to compute with coherent
optical signals due to their sensitivity to phase: even a slight shift in
the optical phase (as a result of process and temperature variations)
will affect the way splitters/combiners/modulators and other optical
devices work, resulting in poor computation accuracy. For example,
in a recent coherent optical DL accelerator [14], only 50% accuracy
is achieved for a simple network with 2 layers, 4 inputs, and 4
outputs due to phase errors (vs. ~ 76% without any phase error).

In this work, we focus on computing using incoherent optical
signals, which does not require the phases to be aligned, thereby
avoiding the major limitation of computing using coherent opti-
cal signals. Moreover, all the advantages of a coherent optical DL
accelerator still apply, including low latency/energy and low-cost
implementation of non-linear activation functions. However, cur-
rently there is no known solution to perform accumulation using
incoherent optical signals.

To this end, we introduce a novel hybrid optical-electrical ap-
proach to implement multiply-accumulate (MAC) operations, the
core compute primitive in all DL workloads, where accumulation
is performed in the electrical domain, while multiplication is per-
formed in the optical domain. Since addition/subtraction can be
performed efficiently by simply joining two wires with currents
flowing in the same/opposite directions in the electrical domain,
this hybrid approach allows different operations to be performed
in the domain that is best-suited for the corresponding operation.


https://doi.org/10.1145/3453688.3461531
https://doi.org/10.1145/3453688.3461531
https://doi.org/10.1145/3453688.3461531

Session 6A: Poster Session |

In our design, the conversions between electrical and optical
domains - i.e., EtoO/OtoE conversions — must be performed in an
ultra-efficient manner. Otherwise, the cost of EtoO/OtoE conver-
sions can outweigh the benefits of the hybrid approach. Fortunately,
an emerging technology called Transistor Laser (TL) [9, 16] exists
for this exact purpose, which enables electrical and optical devices
to be tightly integrated with ultra-high speed. As a result, our hy-
brid approach obtains the major advantages of optical and analog
computing by paying only small costs for EtoO/OtoE conversions.

We apply our hybrid DL accelerator design approach to a 4-
layer multilayer perceptron network for classifying the widely-
used MNIST dataset as a proof-of-concept. We accurately model
the latency, power, and area of our design using detailed device
parameters and HSPICE simulations. Our results show that the
latency and energy of our accelerator are 2.91 ns and 47.52 n],
respectively. Compared to a state-of-the-art memristor-based ac-
celerator running the same workload, our design provides a 2214x
improvement in latency, and a 65X improvement in total energy.
Such dramatic improvements are obtained since it is practical to
build relatively large MAC compute units (e.g., compared to mem-
ristor crossbars) with high speed, which significantly reduces the
need to store/re-fetch intermediate results to/from memories — an
inefficient step that is typically required in other designs. We also
show that the impact of noises/variations on the accuracy of our
design is minimal (< 0.25%).

The major contributions of this paper are the following. (1) We
motivate and introduce the first hybrid optical-electrical analog
DL accelerator using incoherent optical signals. (2) We present the
detailed design of the hybrid accelerator. (3) We perform thorough
evaluation to demonstrate that our idea is highly efficient.

2 Technology Background and Related Work

In this section, we discuss the background and related work on the
key components of our hybrid design approach.

2.1 UsingIncoherent Optical Signals to Perform MAC
Operations

In existing optical DL accelerator designs [4, 6, 8, 14], a common
approach to perform matrix multiplication is to send coherent opti-
cal signals through a network of Mach-Zehnder interferometers
(MZIs), which consumes no power. However, as discussed in Sec. 1,
the accuracy is extremely poor, which renders these designs infeasi-
ble in practice. Moreover, the MZIs are large and can adversely affect
the latency, area, and scalability of these DL accelerator designs.
Thus, we focus on incoherent optical signals instead.

To compute using incoherent optical signals, there exist low-cost
optical devices — such as passive splitters which consume no power
[1] and silicon nitride ring resonators with ultra-low (0.05 nW)
leakage power [15] — that can be exploited to effectively perform
multiplication operations. However, using incoherent optical sig-
nals for accumulation presents two significant challenges. First,
subtraction operations are tricky because negative values cannot
be represented using optical intensities (this is true for coherent
optical signals as well). Second, for addition, simply combining
two streams of incoherent optical signals does not work (unlike
coherent optical signals), because combiners, which are the reverse
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Figure 1: The transistor laser (TL). (a) Schematic. (b) SEM top
view of a fabricated device prototype.

of splitters, are passive reciprocal devices that work with the am-
plitude and phase of the electric field. Suppose a passive combiner
could add two arbitrary incoherent optical signals, then the same
device operating in reverse would be able to correctly split the
power back. However, without a specific phase relationship of the
signals, this is not possible given the lack of uniqueness of this
inverse problem. We also explored combining optical signals of
different wavelengths into a single waveguide. The fundamental
problem is that we need many (e.g., hundreds of) wavelengths for
a typical DL workload, which requires large optical devices (on
the order of 300 um), and therefore, incurs prohibitive area and
delay overhead. In short, currently there is no practical solution to
perform add/subtract operations using incoherent optical signals.

In contrast, addition and subtraction can be performed efficiently
in the electrical domain by simply joining two wires with currents
flowing in the same or opposite directions. This motivates us to
devise a hybrid MAC unit, where multiplication/accumulation op-
erations are performed in the respective optical/electrical domain
that is best suited for each type of operations.

2.2 Using Transistor Lasers to Perform Efficient
OtoE/EtoO Conversions

To support hybrid MAC operations, OtoE and EtoO converters
are essential. Recent advances in optical technology have led to
ultra-fast and low-cost converters — the transistor lasers (TLs).

ATL (depicted in Fig. 1) is an InGaP/GaAs heterojunction bipolar
transistor (HBT) with the addition of quantum-wells for photon
generation and optical cavity for optical output. When an electrical
current is applied to the base, and if the collector-emitter voltage is
higher than a threshold, a proportional optical output is generated
and the TL performs EtoO conversion. When an optical input hits
the base-collector junction, a photocurrent is generated and the TL
functions as a photodetector (PD) to perform OtoE conversion.

Previous generations of TLs have been fabricated on GaAs sub-
strates with minimal changes to the existing HBT flows [7, 16].
Detailed simulation and analysis results for the next generation
of TLs are provided in Table 1. For EtoO conversions, TL’s modu-
lation rate is significantly higher than other lasers (e.g., VCSELSs)
because its spontaneous recombination lifetime is orders of magni-
tude lower [16], and the latency is only 1.93 ps. However, the power
consumption is 2.5 mW. Therefore, we take careful consideration of
the EtoO conversion power in our design so that the overall energy
is minimized. For OtoE conversions, TLs are similar to PIN PDs
[16], with a small latency of 1.93 ps and low power consumption
of 3.7 uW. However, if TLs are already used for EtoO conversions,
using them for OtoE conversions as well will reduce manufacturing
complexity since the device structures are uniform.

Given TL’s ultra-efficient EtoO/OtoE conversion capabilities, our
hybrid optical-electrical approach is viable and promising.
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Table 1: TL parameters [10]

latency=1.93 ps; data rate/frequency=60Gbps;
wavelength=980 nm; voltage=2 V; junction
capacitance=1 {F (with inline waveguides).
power=2.5 mW; EtoO efficiency=0.4;

max optical output power=1 mW.
power=3.665 uW; responsivity=0.4 A/W;
sensitivity=0.2uW.

Device
parameters

EtoO conversion
parameters

OtoE conversion
parameters

3 Design of a Hybrid DL Accelerator

In this section, we present the details of our hybrid optical-electrical
analog DL accelerator design.

3.1 Hybrid MAC Operations

A MAC operation consists of both multiplication and accumula-
tion operations. To perform multiplication using incoherent optical
signals, different intensity values of an optical signal (as measured
in optical power) can be used to represent the value of a multipli-
cand. If the multiplier’s value is < 1, then a passive splitter [1] or a
ultra-low-power ring resonator [15] can be used to perform multi-
plication by splitting an optical signal into two separate streams
with a pre-specified split ratio. For example, if the multiplier is
0.3, then a split ratio of 30%:70% yields an output that is 0.3 the
multiplicand. On the other hand, if the multiplier’s value is > 1, a
tunable optical amplifier is required, which consumes high power.
Fortunately, for a DL workload, a multiplier corresponds to a weight
value, and the weight values are already < 1 in many representative
DL workloads. If this is not the case, we can always retrain a neural
network to make all weight values < 1. Thus, multiplication can be
performed in the optical domain with no or negligible power cost.
Moreover, the split ratio of a ring resonator or a splitter (built using
phase-change materials [11]) can be tuned, which means that we
can program the weight values in our design to run different DL
workloads. Note that, applying splitters/ring resonators for optical
computing is a new contribution of our work.

Regarding accumulation, as elaborated in Sec. 2.1, addition and
subtraction present significant challenges when incoherent opti-
cal signals are used, but can be achieved in the electrical domain
by simply joining two wires. Therefore, MAC operations can be
most efficiently executed when multiplication is performed in the
optical domain and accumulation is performed in the electrical
domain. In our hybrid MAC implementation, electrical inputs are
first converted to optical signals using TLs, and then transmitted
via waveguides to splitters/ring resonators, which perform the mul-
tiplication operations. Each {input, weight} product is converted
back to the electrical domain using a PD (or a TL configured for
OtoE conversion) to participate in accumulation.

In our design, the accumulation of all {input, weight} products
are performed entirely in the electrical domain to minimize cross-
domain conversions, which in turn minimizes power consumption
and complexity. We have explored other partitioning schemes - e.g.,
first converting several partial sums back to optical signals, and
then performing another OtoE conversion to calculate the final sum,
which achieves higher communication speed because optical prop-
agation delay is smaller than electrical wire delay. However, these
alternatives impose much higher power/energy costs. Therefore,
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the partitioning scheme in our design achieves optimized tradeoffs
between power, latency, and design complexity.

3.2 Hybrid Optical-Electrical Crossbar Design

In this section, we present the detailed hybrid circuit structure for
MAC operations by first illustrating our approach using a small
fully-connected (FC) layer example, and then elaborating on the
generalized design. These circuits are formed as 2D crossbars similar
to many RRAM-based designs (e.g., [13]); however, the underlying
compute mechanisms are entirely different as our crossbar enables
hybrid optical-electrical MAC operations.

FC Layer Example. Figure 2a shows a FC layer example, and the
corresponding circuit structure is shown in Fig. 2b. Each column
of the circuit derives one output of this FC layer. Each input is
connected to a different row of the crossbar, and is distributed to all
outputs using splitters, so that the three outputs can be calculated
at the same time. We specify the evolution of the analog values
along the first column of the circuit to clearly illustrate how the
outputs are derived.

In this example, since there are three outputs, each input is split
into 3 equal streams using the distribution splitters. Each split input
signal (e.g., v1 in Fig. 2b) then goes through another splitter called
the weight splitter, which outputs the product of the split input and
the weight value (e.g., v2). Next, each {split input, weight} product
is converted to an electrical signal (v3) to participate in the analog
accumulation operation (v4). Since weights can be positive or nega-
tive, the output of a weight splitter is connected to two PDs with
opposite polarities (Fig. 2c). The sign bit of the weight is used to
control the switches connected to the PDs: when PD+ is connected,
current will flow downward along a copper wire to add to the fi-
nal result; otherwise, current will flow upward and be subtracted
from the accumulation result. The final accumulation result passes
through an electrical current amplifier (E_amplifier) (v5), which is
used to compensate for: (1) the input split fraction; (2) EtoO/OtoE
conversion efficiency losses (EtoO_loss and OtoE_loss); and (3) other
optical losses (coupling_loss and splitter_loss). The E_amplifier also
performs the ReLU function, one of the most common activation
functions in deep neural networks (DNNs), because a positive in-
put current will result in a proportional amplified output, while
a negative input will generate no current at the output. Finally,
the output of each amplifier is passed through a TL to generate
an optical output of this layer (e.g., outy). Note that, the output
values are bounded by the maximum power value that a TL can
generate (1 mW in our current design). If the actual value exceeds
this bound, it simply represents an overflow situation where the
value is truncated, similar to digital implementations.

Generalized Structure. A general crossbar design with M in-
puts and N outputs is shown in Fig. 3. The underlying idea is similar
to the FC layer example. One difference is that, if the number of
outputs is large (e.g., >= 4), then one or more trees of splitters
are used to distribute one input to participate in the computations
of multiple outputs. This is necessary to achieve balanced splitter
variations across all columns. Otherwise, if serial distribution split-
ters are used (as shown in Figure 2b), values distributed to farther
columns will encounter higher variations that are cumulative of all
previous splitters, and such a cumulative effect is severe because
the number of outputs in a DL workload is typically quite large.
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Figure 3: The generalized hybrid MAC crossbar design (same
legend as Fig. 2b). The TLs are not needed in the last layer.

The largest number of splits that can be applied to a single input
is limited by the PD’s sensitivity - i.e., the minimal optical input
power required for the PD to correctly sense the data. In our design,
the maximum number of input splits is 64, which ensures that the
smallest absolute values of all possible {split input, weight} products
are greater than the PD’s sensitivity requirement.

If the number of outputs is greater than 64, additional amplifiers
(the O_amplifiers in Fig. 3) are inserted so that the inputs can be
distributed to the rest of the crossbar columns. The O_amplifier
consists of a PD (or TL) for OtoE conversion, an E_amplifier, and a
TL for EtoO conversion.

3.3 Whole Accelerator Design

Multiple hybrid MAC circuits are integrated to implement a DL
accelerator (Fig. 4). The most efficient implementation is to use one

crossbar-like structure to calculate the outputs of one DNN layer.
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Figure 4: Overview of our hybrid DL accelerator design.

Then the outputs of a crossbar are routed to the inputs of the next
crossbar to execute multiple layers of a DNN. Moreover, to mini-
mize routing complexity, the crossbars can be oriented as shown in
Fig. 4 so that the waveguide distances between the crossbars imple-
menting any adjacent DNN layers are minimized. If it is not possible
to use one hybrid MAC crossbar to implement each DNN layer (e.g.,
due to cost constraints), intermediate results of the crossbars need
to be stored/re-fetched to/from memory. Fortunately, given the fast
computation speed, and since the main elements in the hybrid MAC
circuit are passive splitters/low-power ring resonators and low-cost
PDs, it is practical to build large hybrid MAC crossbars to minimize
memory access overheads.

The input interface of the accelerator consists of the input mem-
ory which stores the inputs of a DL workload, DACs (digital-to-
analog converters), and TLs to convert electrical inputs to optical
signals. The outputs of the accelerator drive the ADCs (analog-
to-digital converters) to generate digital signals, which are subse-
quently written back to the output memory. The weight values of a
DNN (stored in the configuration memory) control the split ratios
of weight splitters/ring resonators and the switches of the PDs.

Similar to DL accelerators implemented using other emerging
technologies (e.g., RRAM), the weight values of a trained DNN need
to be configured into the cross-point elements only once. In our
design, the configuration overhead is small (e.g., it takes <4 ns to
configure multiple elements and consumes 0.5 pJ per element if
the ring resonators in [15] are used). Moreover, if a hybrid MAC
crossbar can be dedicated to each DNN layer, such configuration
costs can be amortized across a large number of inference tasks.

Regarding the physical design, the hybrid accelerator consists
of a CMOS chip containing SRAMs, DACs, and ADCs, and a GaAs
chip containing TLs, splitters, and E_amplifiers (see Fig. 4). CMOS
and GaAs chips can be bonded through hybrid integration [5].

4 Evaluation Methodology and Results

To evaluate our hybrid accelerator approach, we compose a proof-
of-concept design based on a 4-layer multilayer perceptron (MLP)
network for classifying the widely-used MNIST dataset. This net-
work consists of one 784256 input layer, two 256x256 hidden
layers, and one 256x10 output layer. Correspondingly, our accel-
erator consists of four MAC crossbars (one per layer). This design
operates on reduced-precision fixed-point numbers, which is com-
mon for DL accelerators. The input and weight values are quantized
to 16 and 8 levels, respectively. The activation function is ReLU.
We obtain accurate latency, power, and energy results for our
design, and quantitatively compare our accelerator against a state-
of-the-art memristor-based design. Moreover, since analog com-
puting is subject to noises/variations (in both optical and electrical
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Table 2: Device and circuit parameters.
Waveguide/splitter parameters [1, 3]

1:64 splitter tree_height/width=66 um per 2 inputs/220 um’;
waveguide_propagation_speed=1.763e5 um/ns;
longest waveguide delay between two layers=21.6 ps;
waveguide propagation loss=0.3 dB/cm; splitter loss=0.2 dB;
coupling loss=0.5 dB; bending radius=30 um;
Electrical component parameters from HSPICE simulations
E_amplifier_latency®=7.72 ps; E_amplifier_power=1.4 mW;
E_amplifier_max_gain=800X;
wire_propagation_speed=2.22¢4 um/ns>;
DAC_power/latency = 0.267 mW/88.5 ps;
ADC_power/latency = 1.2 mW/294 ps.

1 We design the splitter tree using pixelated topology optimization in which we minimize a
loss function by varying which pixels are Si3N3 or SiOj. The selected pattern affects how
light couples from the single input waveguide into intermediate modes and finally to the out-
puts, thereby enabling us to achieve a more compact splitter than a conventional multi-mode
interferometer. Moreover, for a design with two waveguide layers, half of the splitter trees are

placed in each layer to reduce the vertical distance of the crossbar.

2 The E_amplifier is implemented using 4 GaAs bipolar junction transistors, and outputs a
maximum current of 1.25 mA (which, when serves as an input to a TL, corresponds to an optical
output with the maximum optical power of 1 mW).

3 Because the splitter trees occupy a large area, we are able to increase the width of the wire

to 20 um to optimize for propagation speed for wire length of up to 10 mm, while accounting
for scattering and skin effects.

domains), we develop a software simulation framework to assess
the accuracy of our hybrid accelerator.

4.1 Latency/Power/Energy Models and Results

We derive accurate latency, area, power, and energy results of our
design using device/circuit parameters obtained from detailed de-
vice/HSPICE simulations, as summarized in Tables 1 and 2.
Latency/Area. The total execution latency is obtained by sum-
ming up the latencies of all crossbars, inter-crossbar latencies, and
the input/output interface latencies. The latency of each crossbar
is bounded by the delay for a signal to travel from the first input to

the last output, and can be estimated using Equations (1)-(3).
crossbar_latency = horizontal latency + vertical_latency

@)

horizontal_latency = (tree_width X num_columns/64)/

waveguide_propagation_speed + ([num_columns[64] — 1)x )
(TL_latency + E_amplifier_latency + PD_latency)
vertical_latency = PD_latency + E_amplifier_latency+

TL_latency + tree_height [ waveguide_propagation_speed+ (3)

(tree_height X (num_rows/2 — 1))/ wire_propagation_speed

Thanks to the fast computation speed and efficient inter-crossbar
data communication, an MNIST inference task takes only 2.91 ns
in our hybrid design, as shown in Fig. 5a and Fig. 5b. We can see
that the electrical wire propagation delay dominates the overall
latency, even though the wire geometry has already been scaled to
maximize propagation speed (see Table 2). However, as discussed
in Sec. 3.1, using electrical wires throughout still yields the best en-
ergy efficiency. Moreover, all peripheral electrical circuitry (SRAMs,
DAGCs, and ADCs) only needs to operate at a clock cycle time of
2.91 ns, so they do not impose latency bottlenecks.

The horizontal and vertical dimensions of each crossbar provided
in the delay model are used to determine the total area of each
crossbar. The four crossbars together occupy an area of 39.6mm?.

Power/Energy. The active and inactive power of a hybrid cross-
bar circuit is estimated using Equations (4) and (5), respectively.
Note that, when the TLs are configured as lasers to perform EtoO
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layer |layer |layer |input/output| inter-
1 2/3 |4 interfaces | crossbar DRl
Latency (ns) 1.22 [0.43 [0.39 (0.38 0.06 291
Active power (W) [12.88|4.24 |0.02 |2.25 0 16.33 (avg.
Inactive power (W) 8.48 |2.56 |0 2.04 0 power)
(a) Latency/power breakdown per operation
m copper wire
. mTL
waveguide
E_amplifier
DAC+ADC
PD
others

(b) Latency breakdown (c) Layer 1 crossbar active power
per component type breakdown per component type

Figure 5: Detailed latency and power results.

conversions, they cannot be power-gated off since it takes a long
time for them to be turned on. The power results and breakdown
are summarized in Fig. 5a and Fig. 5c.

Combining the latency and power results, the energy of an infer-
ence task for the MNIST MLP network is 47.52 nJ, calculated using
Equation (6). In addition to the energy of the hybrid MAC crossbars
(which accounts for the majority of the total energy consumption),
we also include the energy consumption of DACs/ADCs (derived
using the HSPICE simulation results reported in Table 2) and the
energy to fetch inputs and store outputs from/to SRAMs (which is
only 0.22 nJ per inference task, derived using CACTI [2]).

active_crossbar_power = max_PD_power X num_columnsx

num_rows + (E_amplifier_power + TL_power) X num_columns+

4
(max_PD_power + E_amplifier_power + TL_power)X @
num_rows X ([num_columns /647 — 1)
inactive_crossbar_power = TL_power X (num_columns+
5
num_rows X ([num_columns/64] — 1)) ®)
Total_energy = Z [inactive_crossbar_power(layer) x (2.91 ns—
layer
crossbar_latency(layer)) + active_crossbar_power(layer)x
(6)

crossbar_latency(layer)] + ADC_power X ADC_latency X 10+
DAC_power X DAC_latency X 784 + TL_power X 2.91 ns X 784+

energy_to fetch_inputs + energy_to_store_outputs

Quantitative Comparison. We perform quantitative compari-
son between our design and an ISAAC-like memristor-based DL
accelerator [13] designed for the same 4-layer MLP network. The
memristor-based DL accelerator consists of: (1) 22 128X128 cross-
bars (occupying an area of 3.1mm?), which allow all weights to be
mapped so there is no need to reprogram; (2) SRAMs for storing in-
puts, partial results generated by the crossbars, and final outputs; (3)
an H-tree structure for connecting the crossbars and SRAMs as well
as analog repeaters for reducing H-tree wire latency; and (4) periph-
eral components. The latency, power, and area of the crossbars are
derived based on the RRAM devices in [17]. Any inactive crossbars
are power-gated off to minimize power consumption. To derive
the total latency and power due to SRAM accesses, we obtain the
per-access latency and power using CACTI [2], and combine them
with the total access count obtained using EvaNN [12]. We estimate
the power and latency of the H-tree interconnects, the repeaters,
and other peripheral components with HSPICE simulation.

The comparison results are summarized in Table 3. Our hybrid
accelerator achieves a 2214x improvement in latency. Thus, even
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Table 3: Quantitative comparison results.

latency (ns) energy (nJ)
our memristor our memristor
design design design design
MAC crossbar 2.47 30.47 46.40 16.47
inter-crossbar data |, oo | (41134 | 088 | 306320
communication
peripheral 0.38 1.53 0.24 2.21
total 291 6443.34 47.52 3081.88
2214x difference 65x difference

though our design incurs higher power cost, it is still able to achieve
a 65X improvement in energy.

Note that, in current memristor-based designs, the majority of
the latency and energy are spent on inter-crossbar communication
due to two limitations. First, RRAM crossbar sizes are rather lim-
ited (typically no larger than 128x128) since larger ones are more
susceptible to device variations. Consequently, the computations of
one layer of the MLP network must be carried out using multiple
crossbars. Second, to minimize wire complexity and overhead, the
results of one crossbar array are typically first written to SRAMs,
and then read by the subsequent crossbars [13]. In contrast, the size
of our hybrid crossbars can be tuned for a given workload (as dis-
cussed in Sec. 3.3). Larger crossbars simply incur longer delays but
are not much more susceptible to variations, because the number of
the E_amplifiers, which incur the largest amount of noises based on
HSPICE results, is fixed at one per column. Moreover, the outputs of
one hybrid crossbar can be directly routed to the inputs of another
by leveraging fast inter-layer communication in the optical domain.
Therefore, our design is able to achieve significantly lower latency
and higher energy efficiency than memristor-based designs.

4.2 Noise/Variation Models and Results

In addition to optical losses which we have accounted for by fac-
toring them into the amplification ratio of the E-amplifiers, our
design is also subject to noises and variations (e.g., manufacturing
variations in splitters, noises in amplifiers, temperature variations,
and so on). To evaluate their impact on DL workload accuracy, we
modify the forward propagation steps in TensorFlow and Keras to
model various noises/variations, and perform Monte Carlo simula-
tions which consist of 3 million experiments. In each simulation,
we vary each weight value (to model splitter variations) by A; and
each accumulation result (to model the cumulative variations of
TLs, PDs, wires, and E_amplifiers) by A, where A1 and Ay are
random variables uniformly distributed on [—x, x]. Our accelerator
is designed with a x=5% target. In addition, we also report x=3% and
7% to show sensitivity. Our results (Fig. 6) show that the degradation
of accuracy due to noises/variations is minimal (< 0.25%).

We also obtain the MNIST workload accuracy of the memristor-
based design (introduced in Sec. 4.1) using a PyTorch framework
that simulates memristor crossbar structures and assuming the
same input/weight quantization levels as our design. The accuracy
of the memristor-based design ranges from 97.54% (for 7% RRAM
device variations) to 97.87% (with no device variation), which is
comparable to our accuracy results.

5 Conclusions

In this paper, we present a hybrid optical-electrical DL accelerator,
the first work that allows incoherent optical signals to be used for
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Figure 6: Average MNIST accuracy vs. % of noises/variations.

performing analog MAC operations. Grounded by the TL’s ultra-
efficient EtoO/OtoE conversion capabilities, our idea is to perform
the accumulation operations, which cannot be performed using
incoherent optical signals, in the electrical domain instead. As a
result, our design is not only realizable in practice, but also achieves
unprecedented latency and energy improvements over existing DL
accelerators. The highly promising results of this work encourage
us to investigate new design approaches that will allow incoherent
optical signals to be used to compute a wide variety of DL workloads.
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