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Abstract. Empirical measurements of ecological networks such as food webs and mutualistic networks are
often rich in structure but also noisy and error-prone, particularly for rare species for which observations are
sparse. Focusing on the case of plant–pollinator networks, we here describe a Bayesian statistical technique that
allows us to make accurate estimates of network structure and ecological metrics from such noisy observational
data. Our method yields not only estimates of these quantities, but also estimates of their statistical errors,
paving the way for principled statistical analyses of ecological variables and outcomes. We demonstrate the use
of the method with an application to previously published data on plant–pollinator networks in the Seychelles
archipelago, calculating estimates of network structure, network nestedness, and other characteristics.

INTRODUCTION

Network-based methods of analysis have contributed sub-
stantially to our understanding of ecological systems by help-
ing us identify structure in the patterns of interaction between
species [1–4]. Theoretical studies have shown that such pat-
terns a�ect the dynamics and stability of ecosystems [5–7].
This is particularly the case for mutualistic networks such as
plant-pollinator interactions—our focus in this paper—whose
functions are critical to terrestrial biodiversity [8–10] and crop
production [10–12].

A central prerequisite for quantitative analysis of network
structure and function is accurate network data, and signifi-
cant e�ort has been invested in recent years in data gather-
ing for ecological networks of many kinds, including mu-
tualistic networks. There is, however, some debate over
whether the observed structure of mutualistic networks rep-
resents the true interaction patterns produced by evolutionary
and ecological mechanisms, at least to a good approxima-
tion [4, 6, 13], or whether, conversely, it is biased by incomplete
sampling [14], for instance failing to detect the interactions of
rare species [15–18]. In this paper we describe a new tech-
nique that aims to give quantitative answers to these questions
by applying methods of Bayesian inference to ecological net-
work data. Treating the case of plant–pollinator networks, we
show that it is possible to accurately infer interaction network
structure from observational data while taking into account
confounding variables such as varying species abundances.
The output of our calculations is an estimate of the true struc-
ture of the network and also a quantification of our uncertainty
about this structure. Standard techniques from statistical net-
work science [19, 20] and network ecology [18] can then help
us make precise statements about the accuracy of any further
conclusions we draw from the network structure. Estimates of
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interaction certainty can also help us identify interactions that
would benefit from greater sampling e�ort.

The structure of mutualistic networks is typified by several
characteristic features [21]: moderate connectance, meaning
that a modest fraction of all potential interactions are realized;
long-tailed degree distributions, meaning that there are many
specialist species with a small number of interactions and a
few generalist species with many interactions; and nestedness,
meaning that the interactions of the least-connected species are
often subsets of the interactions of better-connected species.
(These features are not necessarily independent. For instance,
it has been suggested that nestedness is itself a consequence
of the long-tailed degree-distribution [22].) A significant vol-
ume of research has been devoted to explaining these features
in terms of ecological and evolutionary mechanisms—see Bas-
compte and Jordano [6] and Vázquez et al. [13] for reviews.
Other work, however, has suggested that they can also be gen-
erated merely as artifacts of skewed abundance distributions
and incomplete sampling, both very common in ecological
systems [15, 16]. In particular, Blüthgen et al. [15] have
shown that nestedness and broad degree distributions can be
a result of failure to observe interactions between rare species
because of low sampling e�ort and/or the infrequency of the
interactions in question. Findings like this have stimulated fur-
ther investigations of the e�ects of sampling bias on network
structure [4], both empirically by varying sampling e�ort in
the field [23–27] and theoretically using models of network
structure [15, 28–30]. These studies suggest that incomplete
sampling strongly underestimates the number of interactions
in networks and overestimates the degree of specialization.
The approach described in this paper o�ers one way to ad-
dress these shortcomings and obtain reliable estimates of the
structure of mutualistic networks, free of measurement bias.

The paper is organized as follows. We first outline a first-
principles statistical model of plant–pollinator interactions and
show how it can be used to estimate network structure from
error-prone observational data. Then, we demonstrate these
methods with an application to a typical plant–pollinator data
set, showing how they give us not only the network structure
itself but also statistically principled estimates of quantities
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such as nestedness. Finally, we give some conclusions and
directions for future work.

RESULTS

Network reconstruction from observational data

The typical field study of plant–pollinator interactions in-
volves recording instances of potential pollinators (such as
insects) visiting plants within a prescribed observation area
and over a prescribed period of time. We will refer to these
records as visitation data. Network ecologists analyze vis-
itation data by constructing networks of plant and pollinator
species, where a connection between two species indicates that
a plant-pollinator interaction exists between them.

However, the meaning of edges in ecological networks is
not always clear [31]. One popular way to transform visita-
tion data into networks is to connect two species when they
interact “enough”—say when a pollinator species is seen on
the reproductive organ of a plant species at least once or some
other arbitrary number of times—but in this case the precise
meaning of an edge will depend on the details of the data
collection and the choices made in the analysis. How many
visits do we take as evidence of a plant–pollinator interaction?
A single visit is probably not enough—it might well be an
error or misobservation. Is two enough, or ten, or a hundred?
What about the observations that were entirely missed? Other
methods of analysis transform the data in di�erent ways, for
instance encoding them as weighted networks, possibly with
some statistical processing along the way [32]. Even in this
case, however, the edges still just count numbers of visits (per-
haps transformed in some way), so the resulting networks are
e�ectively histograms in disguise, recording only potential in-
teractions rather than true biological connections.

A more principled approach to network construction begins
with a clear definition of what relationship (or relationships) a
network’s edges encode [33]. We argue that network ecology
often calls for a network of preferred interactions. In the con-
text of plant-pollinator networks the edges of such a network in-
dicate pollinators that preferentially visit certain plant species
and encode a variety of mechanisms that constrain species in-
teractions, such as temporal or spatial uncoupling (i.e., species
that do not co-occur in either time or space), constraints due
to trait mismatches (e.g., proboscis size very di�erent from
corolla size), and physiological-biochemical constraints that
prevent the interactions (e.g., chemical barriers). (One can re-
gard preferred interactions as being the opposite of the “forbid-
den links” described in [34–36]). These preferred interactions
are arguably the relevant ones for instance when analyzing the
reaction of a network to abrupt changes: when one removes a
plant species from a system, for example, the pollinators that
prefer it will have to modify their behavior [7, 37, 38]. Of
course these interactions are binary—either a species prefers
another species or it doesn’t—so the resulting network will not
have any so-called “quantitative” information.

The data gathered in a typical field study are certainly reflec-
tive of preferred interactions but they are, for many reasons,

not perfect measurements of networks of preferred interac-
tions [13, 17]. First, there may be observational errors. While
the observers performing the work are usually highly trained
individuals, they may nonetheless make mistakes. They may
confuse one species for another, which is particularly easy to
do for small-bodied insects, or smaller species may be over-
looked altogether. Observers may make correct observations
but record them wrongly. And there will be statistical fluctu-
ations in the number of visits of an insect species to a plant
species over any finite time. For rare interactions there may
even be no visits at all if we are unlucky. The insects them-
selves may also appear to make “mistakes” by visiting plants
that they typically do not pollinate. These and other factors
mean that the record of observed visits is an inherently untrust-
worthy guide to the true structure of the network of preferred
interactions. Here we develop a statistical method for making
estimates of network structure despite these limitations of the
data.

Model of plant–pollinator data

Consider a typical plant–pollinator study in which some
number =? of plant species, labeled by 8 = 1 . . . =? , and
some number =0 of animal pollinator species, labeled by
9 = 1 . . . =0, are under observation for a set amount of time,
producing a record of observed visits such that "8 9 is the num-
ber of times plant species 8 is visited by pollinator species 9 .
Collectively the "8 9 can be regarded as a data matrix S with
=? rows and =0 columns. This is the input to our calculation.

The unknown quantity, the thing we would like to under-
stand, is the network of plant–pollinator interactions. We can
think of this network as composed of two sets of nodes, one
representing plant species and the other pollinator species,
with connections or edges joining each pollinator to the plants
it pollinates. In the language of network science this is a bipar-
tite network, meaning that edges run only between nodes of
unlike kinds—plants and pollinators—and never between two
plants or two pollinators. Such a network can be represented
by a second matrix H, called the incidence matrix, with the
same size as the data matrix and elements ⌫8 9 = 1 if plant 8 is
preferentially visited by pollinator 9 and 0 otherwise.

The question we would like to answer is this: What is
the best guess at the structure of the network, represented
by H, given the data S? It is not straightforward to answer
this question directly, but it is relatively easy to answer the
reverse question. If we imagine that we know H, then we
can say what the probability is that we make a specific set
of observations S. And if we can do this then the methods
of Bayesian inference allow us to invert the calculation and
compute H from a knowledge of S and hence achieve our
goal. The procedure is as follows.

Consider a specific plant–pollinator species pair 8, 9 . How
many times do we expect to see 9 visit 8 if there is, or is not, a
preferred interaction between 8 and 9? The answer will depend
on several factors. First, and most obviously, we expect the
number of visits to be higher if 9 is in fact a pollinator of 8.
That is, we expect "8 9 to be larger if ⌫8 9 = 1 than if ⌫8 9 = 0.
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Second, we expect there to be more visits if there is greater
sampling e�ort—for instance if the period of observation is
longer or if the land area over which observations take place is
larger [15, 16, 26, 27]. Third, we expect to see more visits for
more abundant plant and pollinator species than for less abun-
dant ones, as demonstrated by several studies [28, 30]. And
fourth, as discussed above, we expect there to be some random
variation in the number of visits, driven by fluctuations in in-
dividual behavior and the environment. These are the primary
features that we incorporate into our model. It is possible to
add others to handle specific situations (see Ref. [39] and the
Methods), but we focus on these four here.

We translate these factors into a mathematical model of
plant–pollinator interaction as follows. The random varia-
tions in the numbers of visits will follow a Poisson distribution
for each plant–pollinator pair 8, 9 , parameterized by a single
number, the distribution mean `8 9 , provided only that measure-
ments made su�ciently far apart are independent (which under
normal conditions they will be). We expect `8 9 to depend on
the factors discussed above and we introduce additional pa-
rameters to represent this dependence. First we introduce a
parameter A to represent the change in the average number of
visits when two species are connected (⌫8 9 = 1), versus when
they are not (⌫8 9 = 0). We write the factor by which the num-
ber of visits is increased as 1 + A with A � 0, so that A = 0
implies no increase and successively larger values of A give us
larger increases. Second, we represent the e�ect of sampling
e�ort by an overall constant ⇠ that multiplies the mean `8 9 .
The same constant is used for all 8 and 9 , since the same sam-
pling e�ort is devoted to all plant–pollinator pairs. Third, we
assume that the number of visits is proportional to the abun-
dance of the relevant plant and pollinator species: twice as
many pollinators of species 9 , for instance, will mean twice as
many visits by that species, and similarly for the abundance
of the plant species [13]. Thus the number of visits will be
proportional to f8g9 , for some parameters f8 and g9 represent-
ing the abundances of plant 8 and pollinator 9 , respectively, in
suitable units (which we will determine shortly).

Putting everything together, the mean number of observed
visits to plant 8 by pollinator 9 is

`8 9 = ⇠f8g9 (1 + A⌫8 9 ), (1)

and the probability of observing exactly "8 9 visits is drawn
from a Poisson distribution with this mean:

%("8 9 |`8 9 ) =
`

"8 9

8 9

"8 9 !
4
�`8 9

. (2)

This equation gives us the probability distribution of a single
element "8 9 of the data matrix. Then, combining Eqs. (1)
and (2), the data likelihood—the probability of the complete
data matrix S—is given by the product over all species thus:

%(S |H, \) =
÷
8, 9

⇥
⇠f8g9 (1 + A⌫8 9 )

⇤"8 9

"8 9 !
4
�⇠f8 g 9 (1+A⌫8 9 )

,

(3)
where \ is a shorthand collectively denoting all the parameters
of the model: ⇠, A,f and g. Our model is thus e�ectively

a model of an entire network, rather than single interactions,
in contrast with other recent approaches to the modeling of
network data reliability [17, 18, 32].

There are two important details to note about this model.
First, the definition in Eq. (1) does not completely determine
⇠, f, and g because we can increase (or decrease) any of these
parameters by a constant factor without changing the resulting
value of `8 9 if we simultaneously decrease (or increase) one
or both of the others. In the language of statistics we say
that the parameters are not “identifiable.” We can rectify this
problem by fixing the normalization of the parameters in any
convenient fashion. Here we do this by stipulating that f8 and
g9 sum to one, thus:

=?’
8=1

f8 =
=0’
9=1

g9 = 1. (4)

In e�ect, this makes f8 and g9 measures of relative abundance,
quantifying the fraction of individual organisms that belong to
each species, rather than the total number. This definition dif-
fers slightly from more standard ones, which for example state
that the abundance of a pollinator species is its number of ob-
served visits. Second, there may be other species-level e�ects
on the observed number of visits in addition to abundance,
such as the propensity for observers to overlook small-bodied
pollinators. There is, at least within the data that we will be
working with, no way to tell these e�ects from true variation
in abundance—no way to tell for example if there are truly
fewer individuals of a species or if they are just hard to see and
hence less often observed. As a result, the abundance param-
eters in our model actually capture a combination of e�ects
on observation frequency. This does not a�ect the accuracy
of the model, which works just as well either way, but it does
mean that we have to be cautious about interpreting the values
of the parameters in terms of actual abundance. This point is
discussed further in the applications below.

Bayesian reconstruction

The likelihood of Eq. (3) tells us the probability of the
data S given the network H and parameters \. What we
actually want to know is the probability of the network and
parameters given the data, which we can calculate by applying
Bayes’ rule in the form

%(H, \ |S) = %(S |H, \)%(H |\)%(\)
%(S) . (5)

This is the posterior probability that the network has struc-
ture H and parameter values \ given the observations that
were made. There are three important parts to the expression:
the likelihood %(S |H, \), the prior probability of the net-
work %(H |\), and the prior probability of the parameters %(\).
The denominator %(S) we can ignore because it depends on
the data alone and will be constant (and hence irrelevant for
our calculations) once S is determined by the observations.

Of the three non-constant parts, the first, the likelihood, we
have already discussed—it is given by Eq. (3). For the prior on
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the network %(H |\) we make the conservative assumption—in
the absence of any knowledge to the contrary—that all edges
in the network are a priori equally likely. If we denote the
probability of an edge by d, then the prior probability on the
entire network is

%(H |\) =
÷
8, 9

(1 � d)1�⌫8 9
d
⌫8 9

. (6)

We consider d an additional parameter which is to be inferred
from the data and which we will henceforth include, along
with our other parameters, in the set \.

To complete Eq. (5), we also need to choose a prior%(\) over
the parameters. We expect there to be some limit on the value
of A, which we impose using a minimally informative prior with
finite mean (this distribution turns out to be the exponential
distribution). For the remaining parameters we use uniform
priors. With these choices, we then have everything we need
to compute the posterior probability, Eq. (5).

Once we have the posterior probability there are a number
of things we can do with it. The simplest is just to maximize
it with respect to the unknown quantities H and \ to find the
most likely structure for the network, and parameters, given the
data. This, however, misses an opportunity for more detailed
inference and can moreover give misleading results. In most
cases there will be more than one value of H and \ with high
probability under Eq. (5): there may be a unique maximum of
the probability, a most likely value, but there are often many
other values that have nearly as high probability and o�er
plausible network structures competitive with the most likely
one. To get the most complete picture of the structure of the
network we should consider all these plausible structures.

For example, if all plausible structures are similar to one
another in their overall shape then we can be quite confident
that this shape is reflective of the true preferred interactions
between plant and pollinator species. If plausible structures
are widely varying, however, then we have many di�erent
candidates for the true structure and our certainty about that
structure is correspondingly lower. In other words, by consid-
ering the complete set of plausible structures we can not only
make an estimate of the network structure but also say how
confident we are in that estimate, in e�ect putting “error bars”
on the network.

How do we specify these errors bars in practice? One way
is to place posterior probabilities on individual edges in the
network. For example, when considering the edge connecting
plant 8 and pollinator 9 , we would not ask “Is there an edge?”
but rather “What is the probability that there is an edge?”
Within the formulation outlined above, this probability is given
by the average

%(⌫8 9 = 1|S) =
’
H

π
⌫8 9%(H, \ |S) 3\ , (7)

where the sum runs over all possible incidence matrices and
the integral over all parameter values. More generally we can
compute the average of any function 5 (H, \) of the matrix H

and/or the parameters \ thus:
⌦
5 (H, \)

↵
=
’
H

π
5 (H, \) %(H, \ |S) 3\. (8)

Functions of the matrix and functions of the parameters can
both be interesting—the matrix tells us about the structure of
the network but the parameters, as we will see, can also reveal
important information.

Computing averages of the form (8) is unfortunately not an
easy task. A closed-form expression appears out of reach and
the brute-force approach of performing the sums and integrals
numerically over all possible networks and parameters is com-
putationally intractable in all but the most trivial cases. The
sum over H alone involves 2=?=0 terms, which is normally a
very large number.

Instead therefore we use an e�cient Monte Carlo sampling
technique to approximate the answers. We generate a sam-
ple of network/parameter pairs (H1, \1), . . . , (H=, \=), where
each pair appears with probability proportional to the posterior
distribution of Eq. (5). Then we approximate the average of
5 (H, \) as

⌦
5 (H, \)

↵
' 1

=

=’
8=1

5 (H8 , \8) . (9)

Under very general conditions, this average will converge to
its actual value asymptotically as the number of Monte Carlo
samples = becomes large. Full details of the computations are
given in Materials and Methods, and an extensive simulation
study of the model is presented in Supplementary Note 1.

Checking the model

Inherent in the discussion so far is the assumption that the
data can be well represented by our model. In other words, we
are assuming there is at least one choice of the network H and
parameters \ such that the model will generate data similar to
what we see in the field. This assumption could be violated
if our model is a poor one, but there is nothing in the method
that would tell us so. To be fully confident in our results we
need to be able not only to infer the network structure, but
also to check whether that structure is a good match to the
data. The Bayesian toolbox comes with a natural procedure
for doing this. Given a set of high-probability values of H

and \ generated by the method, we can use them in Eq. (3) to
compute the likelihood %(S |H, \) of a data set S and then
sample possible data sets from this probability distribution, in
e�ect recreating data as they would appear if the model were
in fact correct. We can then compare these data to the original
field data to see if they are similar: if they are then our model
has done a good job of capturing the structure in the data.

In the parlance of Bayesian statistics this approach is known
as a posterior–predictive assessment [40]. It amounts to cal-
culating the probability

%( e"8 9 |S) =
’
H

π
%( e"8 9 |H, \)%(H, \ |S) 3\ (10)

that pollinator species 9 makes e"8 9 visits to plant species 8 in
artificial data sets generated by the model, averaged over many
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sets of values of H and \. We can then use this probability to
calculate the average value of e"8 9 thus:

h e"8 9i =
’
f"8 9

e"8 9 %( e"8 9 |S) . (11)

The averages for all plant–pollinator pairs can be thought of
as the elements of a matrix hfSi, which we can then compare
to the actual data matrix S, or alternatively we can calculate
a residue S � hfSi. If hfSi and S are approximately equal,
or equivalently if the residue is small, then we consider the
model a good one.

To quantify the level of agreement between the fit and the
data, we compute the discrepancy [40] between the artificial
data and S as

-
2 =

’
8 9

("8 9 � h e"i8 9 )2

h e"i8 9
. (12)

Under the hypothesis that the model is correct, -2 follows a
chi-squared distribution with =? ⇥=0 degrees of freedom [40].
A good fit between model and data is signified by a value of -2

that is much smaller than its expectation value of =? ⇥ =0 .
Note that the calculation of %( e"8 9 |S) in Eq. (10) is of the
same form as the one in Eq. (8), with 5 (H, \) = %( e"8 9 |H, \),
which means we can calculate %( e"8 9 |S) in the same way we
calculate other average quantities, using Monte Carlo sampling
and Eq. (9).

Application to visitation data sets

Well-sampled data

To demonstrate how the method works in practice, we first
consider a large data set of plant–pollinator interactions gath-
ered by Kaiser-Bunbury and collaborators [41] at a set of study
sites on the island of Mahé in the Seychelles. The data de-
scribe the interactions of plant and pollinator species observed
over a period of eight months across eight di�erent sites on
the island. The data also include measurements of plant abun-
dances for all observation periods and all sites. Our method
for inferring network structure does not make use of the abun-
dance measurements, but we discuss them briefly at the end of
this section.

The study by Kaiser-Bunbury et al. focused particularly
on the role of exotic plant species in the ecosystem and on
whether restoring a site by removing exotic species would
significantly impact the resilience and function of the plant–
pollinator network. To help address these questions, half of
the sites in the study were restored in this way while the rest
were left unrestored as a control group.

As an illustration of our method we apply it to data from
one of the restored sites, as observed over the course of a
single month in December 2012 (the smallest time interval for
which data were available). We pick the site named “Trois-
Frères” because it is relatively small but also well sampled.
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FIG. 1. Illustration of the method of this paper applied to data from
the study of Kaiser-Bunbury et al. [41]. (a) We start with a data
matrix S that records the number of interactions between each plant
species and pollinator species. Species pairs that are never observed
to interact ("8 9 = 0) are shown in white. (b) We then draw 2000
samples from the distribution of Eq. (5), four of which are shown
in the figure. Each sample consists of a binary incidence matrix H,
values for the relative abundances f and g (shown as the orange and
blue bar plots, respectively), and values for the parameters⇠, A , and d

(not shown). (c) We combine the samples using Eqs. (7)–(9) to give
an estimate of the probability of each edge in the network and the
complete parameter set \. For the data set studied here our estimates
of the expected values of the parameters ⇠, A, and d are h⇠i = 20.2,
hAi = 45.9, and hdi = 0.244.
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Our calculation then proceeds as shown in Fig. 1. There were
8 plant and 21 pollinator species observed at the site during the
month, giving us an 8⇥ 21 data matrix S as shown in Fig. 1a.
(Following common convention, the plots of matrices in this
paper are drawn with rows and columns ordered by decreasing
numbers of observed interactions, so that the largest elements
of the data matrix—the darkest squares—are in the top and
left of the plot.)

Now we use our Monte Carlo procedure to draw 2000 sets
of incidence matrices H and parameters \ from the poste-
rior distribution of Eq. (5) (Fig. 1b). These samples vary
in their structure: some edges, like the one connecting the
plant N. vanhoutteanum and the pollinator A. mellifera, are
present in nearly all samples, while others, like the one be-
tween M. sechellarum and A. mellifera, appear only a small
fraction of the time. Some others never occur at all. Averaging
over these sampled networks we can estimate the probability,
Eq. (7), that each connection exists in the network of preferred
interactions between plant and animal species—see Fig. 1c.
Some connections have high probability, close to 1, meaning
that we have a high degree of confidence that they exist. Others
have probability close to 0, meaning we have a high degree of
confidence that they do not exist. And some have intermediate
probabilities, meaning we are uncertain about them (such as
the M. sechellarum–A. mellifera connection, which has prob-
ability around 0.45). In the latter case the method is telling us
that the data are not su�cient to reach a firm conclusion about
these connections. Indeed, if we compare with the original
data matrix S in Fig. 1a, we find that most of the uncertain
connections are ones for which we have very few observations,
relative to the total number of observations for these species—
say "8 9 = 1 or 2 for species with dozens of total observations
overall.

As we have mentioned, we also need to check whether the
model is a good fit to the data by performing a posterior–
predictive test. Figure 2 shows the results of this test. The
main plot in the figure compares the values of the 40 largest
elements of the original data matrix S with the corresponding
elements of the generated matrix fS. In each case, the original
value is well within one standard deviation of the average value
generated by the test, confirming the accuracy of the model.
The inset of the figure shows the residue matrix S�fS, which
reveals no systematic bias unaccounted for by the model. The
discrepancy -

2 of Eq. (12) takes the value 26.94 in this case,
well below the expected value of =?=0 = 168, which indicates
that the good fit is not a statistical fluke.

In addition to inferring the structure of the network itself,
our method allows us to estimate many other quantities from
the data. There are two primary methods by which we can do
this. One is to look at the values of the fitted model parameters,
which represent quantities such as the preference A and species
abundances f, g. The other is to compute averages of quanti-
ties that depend on the network structure or the parameters (or
both) from Eq. (9).

As an example of the former approach, consider the param-
eter d, which represents the average probability of an edge,
also known as the connectance of the network. Figure 3a
shows the distribution of values of this quantity over our set

FIG. 2. Results of a posterior–predictive test on the data matrix S

for the example data set analyzed in Fig. 1. The main plot shows the
error on the 40 largest entries of S, while the inset shows the residue
matrix S � hS̃i. Because the actual data S are well within one
standard deviation of the posterior–predictive mean, the test confirms
that the model is a good fit in this case. Error bars correspond to one
standard deviation and are computed with = = 2000 samples from the
posterior distribution.
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FIG. 3. Analyses that can be performed using samples from the
posterior distribution of Eq. (5). (a) Distribution of the connectance d.
Connectance values for binary networks obtained by thresholding the
data matrix at "8 9 > 0 and "8 9 � 5 are shown as vertical lines for
reference. (b) Distribution of the preference parameter A . The mean
value of A is hAi = 45.9 and its mode close to 40, but individual
values as high as 100 are possible. (c) Distribution of the nestedness
measure NODF. Values obtained by thresholding the data matrix at
"8 9 > 0 and "8 9 > 1 are shown for reference. (d) Measured and
estimated abundances for each of the plant species ('2 = 0.54).
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of Monte Carlo samples, and neatly summarizes our overall
certainty about the presence or absence of edges. If we were
certain about all edges in the network, then d would take only
a single value and the distribution would be narrowly peaked.
The distribution we observe, however, is somewhat broadened,
indicating significant uncertainty. The most likely value of d,
the peak of the distribution, turns out to be quite close to the
value one would arrive at if one were simply to assume that ev-
ery pair of species that interacts even once is connected in the
network. This does not mean, however, that one could make
this assumption and get good results. As we show below, the
network one would derive by doing so would be badly in error
in other ways.

Figure 3b shows the distribution of another of the model
parameters, the parameter A , which measures the extent to
which pollinators prefer the plants they normally pollinate
over the ones they do not. For this particular data set the most
likely value of A is around 40, meaning that pollinators visit
their preferred plant species about 40 times more often than
non-preferred ones, all other things being equal, an impressive
level of selectivity on the part of the pollinators.

For the calculation of more complicated network proper-
ties we can perform an average over the value of any func-
tion 5 (H, \) of the network as long as an algorithm can com-
pute it. As an example, Fig. 3c shows a calculation of the
quantity known as “Nestedness based on Overlap and De-
creasing Fill” (NODF), a measure of the nestedness property
discussed in the introduction. This quantity measures the
extent to which specialist species—those with relatively few
interactions—tend to interact with a subset of the partners
of generalist species [42]. While it is complicated to com-
pute NODF analytically, due to the fact that one must order
the species by degrees [22], it is straightforward to calculate
it within our framework: we simply calculate the value for
each sampled network H and plot the resulting distribution.
Interestingly, the most likely value of NODF is significantly
di�erent from the one we would calculate had we assumed,
as discussed above, that a single interaction is su�cient to
consider two species connected. On the contrary, we find that
the system is almost certainly more nested than this simple
analysis would conclude.

In Fig. 3d, we compare the values of our estimated plant
abundance parameters f to the measured abundances reported
by Kaiser-Bunbury et al. [41]. These parameters are not mea-
sures of abundance in the usual sense, because they combine
actual abundance (quantity or density) with other character-
istics such as ease of observation. We do find a correlation
between the estimated and observed abundances, but it is rel-
atively weak ('2 = 0.54), signaling significant disagreement,
on which we elaborate in the discussion section.

Undersampled data

As we have pointed out, the connections in the network
about which we are most uncertain tend to be ones that are un-
dersampled, i.e., those for which we have only a small amount
of data. In an ideal world we could address this problem by

FIG. 4. Illustration of the e�ect of data aggregation on edge uncer-
tainty. (a) Histogram of the edge probabilities %(⌫8 9 = 1|S) for the
four restored sites in the Mahé study as observed in October 2012
and analyzed individually. (b) Equivalent histogram after aggregat-
ing the data over the sites and then estimating a single network from
the resulting data matrix. The horizontal lines, both drawn at fifty
observations—are added merely as a guide to the eye. Note how the
upper histogram has more mass near the middle of the plot, while the
lower one has most of its mass close to probability zero or one, indi-
cating greater certainty in the positions of the edges in the aggregated
data.

taking more data, but it is rare that we have the opportunity to
do this. More commonly the data have already been gathered
and our task is to produce the best results we can with those
data. There are nonetheless some remedies open to us, such as
aggregating data over di�erent geographical areas or time win-
dows. In Fig. 4 we compare the edge probabilities estimated
from data recorded individually at the four “restored” sites in
the Mahé study during October 2012 to the edge probabilities
we obtain when we aggregate these observations into a single
data matrix and only then estimate the network. (We use re-
stored sites observed during the same month because they are
likely to be ecologically similar, meaning the data are measur-
ing approximately the same system.) Comparison of the two
distributions shows—as we would hope—that there are fewer
uncertain edges in the aggregated network than in its disaggre-
gated parts, i.e., there are fewer edges with probabilities in the
middle of the distribution and more with probabilities close to
zero or one.

In other cases neither aggregation nor gathering more data
is possible, for instance when reanalyzing a data set already
collected by others—such data sets record the results of ob-
servational studies that are already over, and may contain too
few observations. Our approach still allows us to perform
rigorous inferences in these circumstances. For example, Jor-
dano et al. [44] used dozens of existing plant-pollinator and
plant-frugivore data sets to argue that the degree distributions
of mutualistic networks have a long tail, but this conclusion is
undermined by issues with undersampling.

For example, one of the data sets they studied, originally
gathered by Inouye and Pyke [43], records 1314 individual
interactions over a period of 3 months in Kosciusko National
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FIG. 5. Distributions of species-level parameters for a network of plants and pollinators in Kosciusko National Park, Australia, from the study
by Inouye and Pyke [43]. (a) Thresholded degree distributions calculated by connecting species 8 and 9 with an edge if "8 9 > 0. Inferred
degree distributions are calculated using the method of this paper, where we measure the average fraction ?: of nodes with a given degree :

over = = 2000 Monte Carlo samples. (b) Inferred distributions of abundances f and g, calculated as a histogram over = = 2000 Monte Carlo
samples of the abundance parameters of the fitted model. Error bars correspond to one standard deviation in all cases.

Park, Australia, between 40 plants and 85 pollinator species,
which works out to an average of 0.386 unique observations
per species pair. Is this sampling e�ort su�cient to establish
edges with certainty? As a point of reference, the data we
have analyzed in Fig. 1 comprises 201 observations between
8 plants and 21 pollinators species—an average 1.196 obser-
vations per pair of species—and the aggregated data of Fig. 4
contain 1.420 observations for every pair. Nonetheless, there
is uncertainty about some of the connections in these recon-
structed networks; this suggests that the network of Inouye and
Pyke, with less than a third as much data per species pair, will
contain significant uncertainty.

Even so, our method allows us to make inferences about this
network. In Fig. 5, we show estimates of the degree distribu-
tions of both plant and pollinator nodes in the network obtained
by from the posterior distribution %(H |S), along with naive
estimates calculated by thresholding the (undersampled) data,
as in the study by Jordano et al. [44]. As the figure shows,
the results derived from the two approaches are drastically
di�erent. The thresholded degree distributions were classi-
fied as scale-free by Jordano et al., but this classification no
longer holds once we account for the issues with the data;
the inferred degree distributions are in this case well-modeled
as Poisson degree distributions of means 5.53 and 2.60 for
plants and pollinators respectively and the power-law form is
a poor fit. On the other hand, the abundance parameters of
the model, shown in Fig. 5, do appear to have a broad dis-
tribution, an interesting finding that calls for a rethinking of
the relationship between abundances and degree distributions.
It is generally thought that interactions will tend to be evenly
distributed under an even distribution of abundance [13] but
here the opposite seems to be true.

DISCUSSION

In this paper, we have proposed a statistical model of plant–
pollinator interactions and shown how it can be used to in-
fer the structure and properties of empirical plant–pollinator
networks from noisy, error-prone measurements. The model
employs elementary ecological insights to create an expressive
and versatile structure that can capture the pattern of interac-
tions in a wide range of ecosystems. We have used the toolbox
of Bayesian statistics to develop both an inference algorithm
and a model checking procedure for the model. Our meth-
ods explicitly allow for the possibility that there are multiple
plausible networks that could fit a given set of observations, a
hallmark of Bayesian analysis. Doing this allows us to make
accurate deductions even in cases where data sets are small
and the number of model parameters is large.

From our analysis of published plant-pollinator visitation
data, we have derived the following four conclusions. First,
our analysis has confirmed previous findings that the measure-
ment of connectance is uncertain [23–27] and has shown that
moderate connectance [6] seems to hold in plant-pollinator
networks even once we account for uncertainty (Fig. 3a). Sec-
ond, we have found that pollinators strongly prefer the plants
they normally visit over the ones they do not, with estimates of
pollinators visiting their preferred plant species about 40 times
more often than non-preferred ones (Fig. 3b). This result high-
lights the strong selectivity of pollinators for the plant species
they usually visit. Third, we have found that networks recon-
structed using our method are more nested than networks built
using thresholds of one or a few visits to determine a plant-
pollinator interaction, which supports the long-lasting claim
that plant-pollinator networks are nested [6]. Finally, our anal-
ysis has suggested that the distribution of number of inter-
actions per species (degree distribution) is less skewed than
previously thought [44]. This result supports recent findings
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showing that incomplete sampling strongly underestimates the
number of interactions and overestimates the degree of spe-
cialization.

Our model and inference algorithm also estimate species
abundances. As we have argued, these estimates actually cap-
ture a combination of e�ects on observation frequency beyond
just plain abundances. This explains why the correlation be-
tween measured an estimated abundances of plant species were
correlated, but not strongly so. Disagreements between mea-
sured an estimated were observed previously by Vazquez et
al. [28], who used null models to show that measured abun-
dances cannot in general explain the form of visitation matri-
ces. Taken together, these results indicate that the frequency
of observed interaction between plants and pollinators is not in
fact proportional to their abundances (as defined in the classi-
cal sense), but instead incorporates a range of factors including
potentially abundance, ease of observation, network e�ects,
and others [45]. One candidate for a possible additional factor
that could play a role is adaptive foraging by pollinators, which
has been shown to influence the structure of ecological net-
works [4, 46]. Adaptive foraging occurs, for example, when
pollinators deliberately visit less abundant plants more often
if those plants contain more food (such as nectar or pollen)
relative to more abundant plants with less food [7]. Our es-
timated “abundance” parameters automatically include such
factors where traditional field measurements of abundance do
not, and analyses that use such traditional measurements, as
in Refs. [15, 16], may as a result fail to control for signifi-
cant species-level e�ects on observed visitation rates [13]. We
would therefore argue that best practice calls for the use of esti-
mated rather than measured abundances—such as the number
of visits of a species—when measuring networks of preferred
interactions, as in the methodology proposed here.

There are a number of ways in which the approach presented
here could be extended. The method as described assumes
an ecosystem that is more or less static, but ecosystems can
change rapidly with the seasons. One could imagine a dynamic
variant of the model that allows parameters to evolve over time,
or networks with several levels of preference, allowing for
more nuanced description of plant–pollinator systems. On the
applications side, we have limited our analysis to the important
case of plant–pollinator networks, but similar methods could
be applied to other types of ecological networks, allowing us
to better separate signal from noise in these domains too.

METHODS

As outlined in the main text, our method relies on a gen-
erative network model in which observed visits to plants by
pollinators are considered noisy measurements of an unob-
served underlying plant–pollinator network. This formulation
allows us to frame the task of determining the network struc-
ture as a Bayesian inference problem [31, 47–49] in which the
probability of the network having incidence matrix H given a
data matrix S is

%(H, \ |S) = %(S |H, \)%(H |\)%(\)
%(S) , (13)

where \ are model parameters and %(S) is an unimportant
normalizing constant. The element "8 9 of matrix S records
the number of times insects of species 9 are seen to polli-
nate plant species 8, while ⌫8 9 = 0, 1 encodes the presence
or absence of an edge between the two species in the plant–
pollinator network. Both matrices are of dimension =? ⇥ =0

where =? is the number of plants and =0 is the number of
pollinators.

We model the number of visits "8 9 as a Poisson random
variable with mean

`8 9 = ⇠f8g9 (1 + A⌫8 9 ), (14)

and, use independent priors on all parameters, with

%(A) = _4
�_A

, _ = 0.01, (15)

and uniform priors on ⇠,2, and 3. We further assume that
edges are a priori equally likely with probability d and use a
uniform prior distribution on d itself. This leads to

%(H, \ |S) / %(\)
÷
8 9

(1 � d)1�⌫8 9
d
⌫8 9

`

"8 9

8 9

"8 9 !
4
�`8 9

, (16)

with %(\) / %(A). We note that in this Bayesian formulation,
one can easily model interaction specific traits [39] or account
for known biology like trait-matching [13, 50] by altering the
priors on ⌫8 9 for a particular pair of species 8, 9 [48].

Bayesian reconstruction of networks

Given the probability distribution in Eq. (16) there are a
number of approaches we could take. Following [47, 48] we
could employ an expectation–maximization (EM) algorithm to
calculate the distribution over potential network structures and
a point estimate of \ or, following [49], we could integrate out
the parameters \ and then sample from the resulting marginal
distribution on H. Neither of these approaches is completely
satisfactory here however, the first because point estimates of
the parameters can be unreliable for large models such as ours,
and the second because the values of the model parameters are
actually of interest to us, so we would prefer not to eliminate
them.

Instead therefore we make use of a technique from the liter-
ature on finite mixture models [51] to sample e�ciently from
the joint distribution of both H and \ and hence estimate both.
First, we sample values of the parameters \ from their marginal
distribution

%(\ |S) =
’
H

%(H, \ |S). (17)

The sum over H can be carried out analytically because the
particular %(H, \ |S) defined in Eq. (17) can be written in the
form’

H

%(H, \ |S) =
’
H

÷
8 9

G

⌫8 9

8 9 H

1�⌫8 9

8 9 =
÷
8 9

(G8 9 + H8 9 ),
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where G8 9 and H8 9 combine all the terms associated with the
situation where there is/is not an edge. We then find that

%(\ |S) / 4
�⇠

%(\)
÷
8 9

(⇠f8g9 )"8 9

⇥
⇥
1 � d + d(1 + A)"8 9

4
�⇠f8 g 9A

⇤
.

(18)

We can now sample from this distribution using standard meth-
ods such as Hamiltonian Monte Carlo—see below. This gives
us our estimates of the parameter values.

For given values of the parameters we then estimate the
network H itself by sampling from the distribution

%(H |S, \) = %(S |H, \)%(H |\)
%(S |\) . (19)

Using the previous expressions for the likelihood %(S |H, \)
and %(H |\)—Eqs. (3) and (6) of the Results—and noting that
the denominator %(S |\) is proportional to Eq. (18), we find

%(H |S, \) =
Œ

8 9 (1 � d)1�⌫8 9
⇥
d(1 + A)"8 9

4
�⇠f8 g 9A

⇤⌫8 9

Œ
8 9

⇥
1 � d + d(1 + A)"8 9

4
�⇠f8 g 9A

⇤

=
÷
8 9

&

⌫8 9

8 9 (1 �&8 9 )1�⌫8 9
, (20)

where

&8 9 = %(⌫8 9 = 1|S, \) = d(1 + A)"8 9
4
�⇠f8 g 9A

1 � d + d(1 + A)"8 9
4
�⇠f8 g 9A

(21)
is the posterior probability of an edge between species 8 and 9 ,
given the parameters \.

We now simply average &8 9 over our sampled values of the
parameters \ to get the expected probability of an edge be-
tween any pair of nodes. More generally, we can calculate an
estimate of any function 5 (H, \) by drawing < samples \: of
the parameter set and = random incidence matrices H; (\: ) for
each set, with edges appearing independently with probabili-
ties &8 9 given by (21), then averaging:

⌦
5 (H, \)

↵
' 1

<=

<’
:=1

=’
;=1

5

�
H; (\: ), \:

�
. (22)

Implementation

In our implementation of this approach we sample param-
eters \ from the distribution of Eq. (18) using the technique
known as Hamiltonian Monte Carlo (HMC). In HMC one de-
fines an inertial mechanics in a position space equivalent to the
space of the parameters, with auxiliary momenta chosen so that
the dynamics under the corresponding Hamilton’s equations
samples from the desired distribution [52]. We implement the
calculation in Stan,a probabilistic programming language that
automatically performs HMC sampling for arbitrary target dis-
tributions [53]. In practice, the program operates on the log

of the posterior probability, which for our distribution (18) has
the form log %(\ |S) = �⇠ +Õ

8 9 (-8 9 + .8 9 ) where

-8 9 = "8 9 log⇠f8g9 , (23)

.8 9 = log
�
1 � d + d(1 + A)"8 9

4
�⇠f8 g 9A

�
. (24)

To avoid potential over- or underflow and ensure numerical
stability we rewrite the latter expression slightly by defining

`8 9 = log(1�d), a8 9 = log d+"8 9 log(1+A)�⇠Af8g9 , (25)

and then writing

.8 9 =
⇢
`8 9 + log

�
1 + 4

a8 9�`8 9 � if `8 9 > a8 9 ,

a8 9 + log
�
1 + 4

`8 9�a8 9 � otherwise,
(26)

which ensures that .8 9 is always a manageable number.
An important practical consideration is verifying the con-

vergence of the Monte Carlo algorithm. HMC mixes rapidly,
but, like all Monte Carlo methods, it can sometimes become
trapped at local optima. To ensure representative sampling
of the posterior distribution, we therefore perform multiple
Monte Carlo runs from random initial states and if any of the
runs converges to a region of significantly smaller probability
than the others then we repeat the entire calculation. In the
example calculations given in the paper we perform four runs,
with an equilibration period of 5000 Monte Carlo steps each,
followed by taking 500 samples.

Quantifying error using posterior predictive assessment

A crucial part of the model fitting process is assessing
whether the model is a good fit to the data. In the main
text we argue that a so-called posterior predictive test is a good
way of making this assessment. The idea is to generate a new
artificial data set fS from the model using the values of the
model parameters derived from the fit to the input data S. If
we find that fS looks similar to the input data then our model
has done a good job of capturing the structure of the data.

To carry out this procedure we need to calculate the posterior
predictive distribution for species pair 8, 9 given by

%( e"8 9 |S) =
’
H

π
%( e"8 9 |H, \)%(H, \ |S) 3\. (27)

Since the likelihood %(S |H, \), Eq. (3), factors into separate
terms for each plant–pollinator pair 8, 9 , this expression can
with only a little work be simplified to

%( e"8 9 |S) =
π

%(\ |S)
⇥
&8 9%( e"8 9 |⌫8 9 = 1, \)

+ (1 �&8 9 )%( e"8 9 |⌫8 9 = 0, \)
⇤
3\, (28)

and the integral can then be approximated by simply averaging
over the set of sampled values of \.

Two particularly useful statistics for the posterior predictive
test are the mean and the variance of e"8 9 , which in this case
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are equal since e"8 9 by definition has a Poisson distribution for
given H and \. Both are, to a good approximation, given by

_8 9 ⇡
1
=

=’
:=1

⇥
&8 9 (\: )`8 9 (⌫8 9 = 1) +

�
1 �&8 9 (\: )

�
`8 9 (⌫8 9 = 0)

⇤
,

(29)
where `8 9 is the mean defined in Eq. (14).

Description of the data sets

The data analyzed in Figs. 1–4 were gathered Kaiser-
Bunbury et al. [41] in inselbergs (steep-sided monolithic rocky
outcroppings) on the tropical granitic island of Mahé, located
in the Indian Ocean. The vegetation on the inselbergs is char-
acterized by short trees, shrubs, and an absence of flowering
herbs. The data we analyze includes records of the visits of
pollinator species to all plant species found in each of the eight
inselbergs, observed between September 2012 and April 2013
during the island’s eight-month-long tropical flowering sea-
son. Species visiting flowers were recorded as pollinators if
they touched the sexual parts of the flowers within a standard
observation window of 30 minutes [54]. Floral abundances
were obtained by counting flowers in 1-meter cubes randomly
located along transects spanning the inselbergs. The visit data
were used to generate 64 data matrices of plant–pollinator
interactions, one for each period and location. Our primary
analysis focuses on the matrix for the site known as Trois-
Frères as observed during the month of December 2012. We
chose this data set primarily because it is relatively small and
hence easy to visualize.

The data analyzed in Fig. 5 were gathered by Inouye and
Pyke [43] in the Kosciusko National Park, Australia, between
the 21st December, 1983, and the 30th of March, 1984. The
observations were made at 26 plots of 2m x 2m, chosen before
the flowering season, and spread between an alpine zone, at
elevations ranging from 1940 to 2040 meters, and in a mon-
tane habitat at elevations of 1860 to 1920 meters. Flowers
were counted roughly every second day. Insect visitations
data were collected with incidental observations made during
the phenological censuses of the flowers, as well as during
regular dedicated observation periods of 10 minutes, spread
throughout the study. The data set of Inouye and Pyke [43] is
only one of several data sets re-analyzed by Jordano et al. [44].
We chose this data set because it is somewhat under-sampled,
making it an ideal example of cases where our method can
improve estimates.

DATA AVAILABILITY

The Mahé visitation data that support the findings of this
study are available as supplementary material of Kaiser-
Bunbury et al. [41]. The data analyzed in Fig. 5 can be
downloaded from the Web of Life data base [55], available
at http://www.web-of-life.es, under the network iden-
tifier M_PL_019.

CODE AVAILABILITY

Reference stan and python implementations of the meth-
ods described in this study are freely available online [56].
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