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Abstract
A simple variational argument is presented which indicates that the spin–orbit coupling in
itinerant systems can be enhanced by strong electronic correlations. The importance of the
enhancement in the formation of the giant magnetic anisotropy found in the metallic
paramagnetic and magnetically ordered states of compounds containing transition metal and
light actinide elements (such as tetragonal Sr2RhO4, Sr2IrO4, the cubic uranium
monochalcogenides and tetragonal URu2Si2) is discussed.

Keywords: magnetic anisotropy, spin orbit coupling, electronic correlations, enhancement

1. Introduction

Spin–orbit coupling has been a subject of fundamental inter-
ests formany decades, startingwith JohnVan-Vleck’s research
on insulating solids [1] and its extension to metals [2]. In
metals, treating the electrons as non-interacting within a
tight-binding approximation, it was found [2] that the orbital
angular momentum is partially quenched, but the spin–orbit
coupling to magnetically ordered spins partially revives the
orbital magnetization. The subject of spin–orbit coupling is
also of great technological importance [3]. The technological
importance stems from the central role that permanent mag-
nets play in many devices and their use in energy conversion
and power generation [4]. One of the most important proper-
ties of permanentmagnets is the anisotropy that arises from the
spin–orbit interaction. Highly accurate state-of-the-art DFT
electronic structure calculations of the magnetic anisotropy of
3d metals, such as bcc Fe, hcp Co, and fcc Ni, yield results
that are in disagreement with experiments [5, 6]. These cal-
culations do not even reproduce the correct easy-axis for Ni.
This failure has been attributed to the either the omission of
the orbital correlations induced by the intra-atomic Coulomb

5 Author to whom any correspondence should be addressed.

interactions [7, 8] or the inability of density functional theory
to calculate energy differences which are as small as 10−6 eV
per atom. On the other hand, there have been successful pre-
dictions of the magnetic anisotropies of magnetic impurities
in non-magnetic hosts due to electronic correlations [9]. The
inclusion of electronic correlations in LDA+U [10] and LDA
+ DMFT [11] calculations of the orbital magnetization of 3d
transition metals compounds have produced good results.

Recently, the subject of spin–orbit coupling has undergone
a major resurgence of interest. The resurgence of interest
in this subject is partly caused by the realization that it
plays an essential role in spintronics [12] and in topological
materials, such as the so-called topological insulators [13]
and Weyl semimetals [14–16]. The resurgence is also partly
due to the realization that spin–orbit coupling can play an
important role in controlling the metal insulator transition in
strontium irradiates [17, 18]. Recent studies on the uranium
based superconductor UTe2 [19] have shown that a dramatic
change in the magnetic anisotropy occurs at the ferromag-
netic instability [20], which has been attributed to strong
spin–orbit coupling [21]. It has also be shown [22] that, by
using an itinerant LSDA description, spin–orbit coupling
describes the giant magnetic anisotropy in the large moment
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anti-ferromagnetic state [23] of URu2Si2. This giant
anisotropy is not a consequence of spontaneous symme-
try breaking, since similarly large anisotropies are also found
in the paramagnetic and Hidden Ordered states [24–27]. How-
ever, RPA + LDA calculations of the magnetic anisotropy of
the paramagnetic susceptibility of URu2Si2 [28], utilizing the
atomic spin–orbit splitting, produces an anisotropy of about
1.3 which is significantly smaller than the experimentally
observed value of about 10 [24, 29].

In this note we extend the hypothesis of Jansen [7, 8],
Shishidou et al [10] and Zhu et al [11] to include paramagnetic
metals [9] and indicate that giant magnetic anisotropy may
be generated by strong Coulomb and Hund’s rule correlations
in the paramagnetic states of metallic compounds contain-
ing transition metal and light actinide elements. Specifically,
the manuscript illustrates the effects that electronic correla-
tions have on the apparent magnitude of spin–orbit coupling
in paramagnetic metals [9, 30].

An enhancement of the spin–orbit coupling may be
expected to induce extremely large changes in the magnetic
anisotropy.Qualitatively, the origin of the magnetic anisotropy
in tetragonalmaterials can be viewed as being due to the strong
coupling between orbital moments to the crystalline structure
that hinders their re-orientation due to weak applied magnetic
fields. On the other hand, the spins are free to rotate and align
with the applied field, so the spin–orbit coupling can be viewed
as providing a strong effective magnetic field which can reori-
ent the orbital moment [31]. Specifically, if one considers non-
interacting electrons and treat the spin–orbit coupling strength,
λ as a perturbation, then up to second-order the anisotropy
energy, ΔE, can be expressed in terms of the spin moments
Sα as

ΔE =
∑
α,β

χα,β
L,L

[
λ2SαSβ + 2μBλSαBβ + μ2

BB
αBβ

]
(1)

where χα,β
L,L is the orbital susceptibility

χα,β
L,L =

∑
n,m

ρn
< n|L̂α|m >< m|L̂β |n >

Em − En
(2)

and L̂α denotes the components of the orbital angular momen-
tum operator and ρ̂n is the statistical operator. Hence, the dom-
inant contribution to the magnetic anisotropy is expected to
scale with the square of the spin–orbit coupling strength. For
cubic materials, the orbital susceptibility exhibits cubic sym-
metry, so one expects that the magnetic anisotropy will vanish
to this order of perturbation approximation and only be found
in fourth or higher-order perturbation approximations [31].
Thus, since the magnetic anisotropy is expected to be second-
order in the spin–orbit interaction in tetragonal materials and
fourth-order in cubic materials, even a modest enhancement
of the spin–orbit coupling may produce an extremely large
anisotropy.

In the next section, we shall introduce a model Hamiltonian
appropriate to describe itinerant 5d and 5f electron systems.
In the following section, we shall introduce the variational
approximation. This will be followed by the description of

how, in the absence of spin–orbit coupling, electronic correla-
tions can enhance the spin–orbit interaction. The final section
discusses and summarizes the results.

2. The Hamiltonian

The on-site Coulomb and Hund’s rule interaction between
electrons in an atomic shell with angularmomentum l = 3, can
be written as [32–34]

Ĥint =
1
2

∑
i,m,m′ ,σ

Un̂i,m,σ n̂i,m′ ,σ +
1
2

∑
i,m�=m′ ,σ

(U − J)n̂i,m,σ n̂i,m′ ,σ

− 1
2

∑
i,m�=m′ ,σ

J f †i,m,σ fi,m,σ f
†
i,m′ ,σ fi,m′ ,σ

+
1
2

∑
i,m,σ

Jn̂i,m,σ n̂i,m,σ , (3)

where f †i,m,σ and fi,m,σ create and annihilate an electron in an
atomic f orbital localized at site i, with the z-component of
the orbital angular momentum m and spin σ. The quantities
Um,m′ and Jm,m′ are, respectively, the Coulomb and the Hund’s
rule exchange interactions which should be dependent on m
and m′ and are related to the Slater integrals [35]. However,
following Anderson [32], we shall assume that the interaction
strengths are independent of m and m′. The quantity U rep-
resents the strength of the inter-orbital direct Coulomb inter-
action. The quantity J represents the exchange interaction
between f electrons with parallel spins. To be spin-rotationally
invariant, the exchange interaction should have the form of a
scalar product

− J
∑
m,m′

Ŝm.Ŝm′ . (4)

The z-component of the scalar product is included in the
second line, while the spin-flip components are included are
shown in the third line. The last term in equation (3) is nec-
essary for invariance under orbital rotations to be preserved.
The requirement of invariance under orbital rotations, leads
to the identification of U′ = U+ J as the direct intra-orbital
Coulomb interaction. This differs from the commonly used
relation U′ = U+ 2J since, in the atomic representation, the
pair hopping terms are identically zero as they do not con-
serve the z-component of the total orbital angular momentum.
The interaction has SU(2)× SO(3) symmetry but we describe
the SO(3) rotation group by a (2l+ 1)-dimensional representa-
tion with a basis that is composed of the spherical harmonics6.
The interaction is combinedwith a Hamiltonian describing the

6 The mapping of SU(2) onto SO(3) is two to one and cannot simply be con-
sidered a representation of SO(3). However, the introduction of a projective or
ray-representation [36] with a topologically determined phase factor allows
one to treat the mapping SU(2)→ SO(3) as a representation of SO(3). Alter-
natively, following the suggestion of Bethe [37], one may extend the range of
rotations by introducing an enigmatic operator that produces rotations through
2π which is not equivalent to the identity. The addition of this enigmatic quasi-
identity operator to the group of rotation operators of I R3 doubles the order
of the group. The generalized or doubled SO(3) matrix group allows a one to
one mapping between it and SU(2).

2
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Bloch bands of non-relativistic non-interacting electrons∑
k ,α,σ

ε0α(k) f
†
k ,α,σ fk ,α,σ (5)

where ε0α(k) is the band energy of the αth Bloch band with the
Bloch wave vector k. Since the Coulomb interactions are spin-
rotationally invariant, the spin σ is a good quantum number
in the absence of spin–orbit coupling. The atomic spin–orbit
coupling interaction can be expressed as

ĤSO =
λ

2

∑
i,m,m′ ,σ

< m, σ|Lzσz|m′, σ > f †i,m,σ fi,m′ ,σ

+
λ

2

∑
i,m,m′

[
< m, ↓|L̂+Ŝ−|m′, ↑ > f †i,m,↓ fi,m′ ,↑

+ < m, ↑|L̂−Ŝ+|m′, ↓ > f †i,m,↑ fi,m′ ,↓

]
. (6)

We shall neglect the effect that the spin–orbit interaction gen-
erated at one atomic site has on a neighbouring atomic site
since we argue that this is small. The argument is based on
the fact that the non-local spin–orbit coupling falls off propor-
tional to r−3 where r is the distance between the two sites and
the fact that r is large compared to the linear dimension of the
atomic wave functions.

3. The variational approximation

One method of treating many-body correlations is to use the
equations of motion. The equations of motion for fermionic
operators lead to a set of coupled equations that involve
higher-order fermionic operators. In general, the set of cou-
pled equations do not terminate. A commonly used truncation
scheme simply approximates higher-order fermionic operators
by introducing expectation values. Roth has proposed that,
instead of replacing factors in the higher-order fermionic oper-
ators by their expectation values, one should evaluate their
commutation relations with the other members of the set of
fermionic operators and then take the thermal average [38].
This process can be used to restrict the set of operators to a
set for which the expectation values are positive definite and
the resulting energy eigenvalues are real. As Roth [38–40]
noticed, the resulting eigenvalue equation suggests that there
is a connectionwith a variational principle. Sawada [41], using
the Gibb’s–Bogoliubov inequality, showed that the truncation
scheme restricts the operators to those which span a sub-space
of Hilbert space, thereby establishing the variational nature
of Roth’s hierarchy of truncation schemes. Roth’s method is
illustrated in the first sub-section of the appendix . In the sec-
ond subsection of the appendix , we shall outline the method of
derivation of the mean-field form of the Coulomb interaction
shown in equation (3) when the set of operators are truncated
to single-electron operators and then display the forms of the
various terms.

In this section, we shall display the form of the mean-field
Hamiltonian for a system which is totally spin-rotationally
invariant. The diagonal and off-diagonal single-electron

expectation values are denoted by

ni,m,σ =< f †i,m,σ fi,m,σ >

Φi;m,σ;m′ ,σ′ =< f †i,m,σ fi,m′ ,σ′ > (7)

and are to be considered as independent variational parame-
ters. In the absence of spin–orbit coupling, in a paramagnetic
state and in the absence of magnetic fields, the system is spin-
rotationally invariant. In this case, the mean-field interaction
reduces to [9, 42]

ĤMF
int =

1
2

∑
i,m,m′ ,σ

U(n̂i,m,σni,m′,σ + ni,m,σ n̂i,m′ ,σ)

− 1
2

∑
i,m,m′ ,σ

Uni,m,σni,m′ ,σ +
1
2

∑
i,m�=m′ ,σ

(U − J)(n̂i,m,σni,m′ ,σ

+ ni,m,σ n̂i,m′ ,σ)−
1
2

∑
i,m�=m′ ,σ

(U − J)ni,m,σni,m′ ,σ

+
1
2

∑
i,m,σ

J(n̂i,m,σni,m,σ + ni,m,σ n̂i,m,σ)−
1
2

∑
i,m,σ

Jni,m,σni,m,σ

− 1
2

∑
i,m�=m′ ,σ

(U − J)

×
(
f †i,m,σ fi,m′ ,σΦi;m′,σ;m,σ+Φi;m,σ;m′ ,σ f

†
i,m′ ,σ fi,m,σ

)

+
1
2

∑
i,m�=m′ ,σ

(U − J)Φi;m,σ;m′ ,σΦi;m′ ,σ;m,σ

+
1
2

∑
i,m�=m′ ,σ

J

×
(
f †i,m,σ fi,m′ ,σΦi;m′,σ;m,σ+Φi;m,σ;m′ ,σ f

†
i,m′ ,σ fi,m,σ

)

− 1
2

∑
i,m�=m′ ,σ

JΦi;m,σ;m′ ,σΦi;m′,σ;m,σ. (8)

As the system is spin-rotationally invariant, the correlations
between opposite spins vanish

Φi;m,σ;m′,σ = 0 (9)

and have been omitted. A derivation of a typical term of the
mean-field interaction energy is given in equation (39) through
(47) of the appendix . In what follows, we shall consider
the uniform state in which the expectation values are inde-
pendent of the site index i. Since the mean-field Hamilto-
nian is quadratic in the fermion operators it can always be
diagonalized leading to renormalized quasiparticle dispersion
relations εα,σ(k) that are described by a new set of quantum
numbers (α, σ). Thus, following the work of Sawada [41], the
Gibbs–Bogoliubov variational grand-canonical free-energy,
ΩV, is calculated as

ΩV =
∑
k ,α,σ

(εα,σ(k)− μ) fα,σ(k)+ kBT
∑
k ,α,σ

×
[
fα,σ(k) ln fα,σ(k)+ (1− fα,σ(k)) ln(1− fα,σ(k))

]
3
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− N
2

⎡
⎣ ∑
m,m′ ,σ

Unm,σnm′ ,σ +
∑

m�=m′ ,σ

(U − J)nm,σnm′ ,σ

+
∑
m,σ

Jnm,σnm,σ

]
+
N
2

∑
m�=m′ ,σ

×
[
(U − J)Φm,σ;m′ ,σΦm′,σ;m,σ − JΦm,σ;m′ ,σΦm′ ,σ;m,σ

]
.

(10)

The first line represents the quasiparticle energy contribution
to the free-energy, Eqp − μN. The second line describes the
entropy. In these lines, fα,σ(k) is considered to be a quan-
tum statistical quasiparticle distribution function that is to be
determined variationally. The last line displays corrections that
avoid double-counting the interaction energy.Minimization of
ΩV w.r.t. fα(k) results in fα(k) being identified with the Fermi-
function.Minimization ofΩV w.r.t the expectation values nm,σ ,
leads to a set of equations

1
N

∑
k ,α,σ′

(
∂εα,σ′(k)
∂nm,σ

)
fα,σ′ (k)

= U
∑
m′
nm′ ,σ + (U − J)

∑
m′ �=m

nm′ ,σ + Jnm,σ. (11)

The term on the left-hand side originates with the quasiparticle
energy and the terms on the right-hand side come from the
double-countingcorrections to the total energy.Since fα,σ(k) is
an independent variational parameter, the derivative only acts
on the quasi-particle energies. The free-energy is minimized
when the inter-band correlations satisfy the equations

1
N

∑
k ,α,σ′

(
∂εα,σ′(k)
∂Φm,σ;m′ ,σ

)
fα,σ′ (k)

= (U − J)
∑
m′ �=m

Φm′,σ;m,σ + JΦm′ ,σ;m,σ. (12)

The above sets of equations have to be solved self-consistently.
In the absence of spin–orbit coupling, the vanishing of

Φm,σ;m′ ,σ can be demonstrated by minimizing the general
expression for ΩV w.r.t. the conjugate field Φm′,σ;m,σ . In the
absence of spin–orbit coupling and applied magnetic fields,
the left-hand side of the self-consistency equation forΦm,σ;m′ ,σ ,
does not contain source terms. Hence in the absence of
spin–orbit coupling, the self-consistency equations reduce to
a set of homogeneous equations, so finite off-diagonal spin
correlations can only be generated by spontaneous symmetry
breaking [42].

In the next section,we shall show that the electronic correla-
tions induced by U result in an enhancement of the spin–orbit
coupling.

4. Enhanced spin–orbit coupling

In this section, we examine the enhancement of the spin–orbit
coupling that is produced by treating the Coulomb interaction

U with Roth’s method. The one-electron spin–orbit coupling
is expressed as the sum of components that are longitudinal
and transverse to the axis of quantization

ĤSO = λ

[
L̂zŜz +

1
2
(L̂+Ŝ− + L̂−Ŝ+)

]
. (13)

First, we describe the enhancement of the transverse com-
ponents which will be followed by the description of the
enhancement of the longitudinal component of the spin–orbit
coupling.

In the absence of magnetic order and applied magnetic
fields, the only single-electron terms in the Hamiltonian that
are off-diagonal in both the spin and orbital quantum num-
bers are the transverse terms in the spin–orbit coupling. The
transverse spin–orbit coupling has the same form as terms
displayed in equation (48) of the appendix which are gener-
ated by the mean-field approximation to the Coulomb inter-
action U between electrons with antiparallel spins. Therefore,
the spin–orbit coupling and part of the off-diagonal mean-
field Coulomb correlations can be combined into an effective
spin–orbit coupling ˆ̃H±

SO given by

ˆ̃H±
SO =

∑
i,m

[
< m, ↓| ˆ̃H+

SO|m− 1, ↑ > f †i,m,↓ fi,m−1,↑

+ < m− 1, ↑| ˆ̃H−
SO|m, ↓ > f †i,m−1,↑ fi,m,↓

]
, (14)

where the interaction matrix elements are given by [9]

< m, ↓| ˆ̃H+
SO|m− 1, ↑ >

=

(
λ

2
< m, ↓|L̂+Ŝ−|m− 1, ↑ > −UΦm−1,↑;m,↓

)

(15)

and the Hermitean conjugate expression

< m− 1, ↑| ˆ̃H−
SO|m, ↓ >

=

(
λ

2
< m− 1, ↑|L̂−Ŝ+|m, ↓ > −UΦm,↓;m−1,↑

)
.

(16)

Diagonalizationof the resultingmean-fieldHamiltonian yields
the quasi-particle dispersion relations εα(k) that are functions
of Φm,↓;m−1,↑ and nm,σ . The quasi-particle energies contribute
the term

Eqp =
∑
k ,α

εα(k) fα(k) (17)

to the variational free-energy ΩV. Minimization of ΩV with
respect to the off-diagonal expectation value Φm,↓;m−1,↑ yields
the non-linear relation

0 =
1
N

∑
k ,α

(
∂εα(k)

∂Φm,↓;m−1,↑

)
fα(k)+ UΦm−1,↑;m,↓ (18)

where the first term originates from the quasi-particle energy,
Eqp and the second term originates from the double-counting

4
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correction. The derivative of the quasi-particle energy w.r.t.
spin–orbit correlations can be used to define the relation

1
N

∑
k ,α

(
∂εα(k)

∂Φm,↓;m−1,↑

)
fα(k)

= U
∑
m′

χm
′−1,m′

m,m−1 < m′ − 1, ↑| ˆ̃H+
SO|m′, ↓ > . (19)

which recognizes that the Bloch states are linear superposi-
tions of states with different values of m. The above equations
have the appearance of a linear response relation, however,
they are strictly non-linear since the susceptibilities are defined
in terms of the derivatives of the band energies εα(k) calcu-
lated in the presence of the spin–orbit coupling. The presence

of the factor ˆ̃H+
SO is required by time-reversal invariance and

inversion symmetry, as can be seen by considering the weak-
coupling limit where linear response theory can be applied. On
substituting the above definition in equation (18), one obtains
the matrix equation

Φ = −χH̃SO

= −χ [HSO − UΦ] . (20)

The matrix equation can be formally inverted to yield an
expression for the off-diagonal correlations in terms of the bare
spin–orbit interaction strength HSO,

Φ = −[I− Uχ]−1χHSO. (21)

This equation serves as a self-consistency equation for the off-
diagonal electronic correlations Φ. The effective strength of
the spin–orbit coupling is then found to be given by

H̃SO = HSO − UΦ

= [I− Uχ]−1HSO. (22)

Thus, the transverse part of the spin–orbit interaction is
enhanced by the presence of the Coulomb interaction U.

Similarly, the longitudinal component of the spin–orbit
coupling is also enhanced by U. In the presence of spin–orbit
coupling, the diagonal variational parameters that minimize
the variational function satisfy the equation

1
N

∑
k ,α

(
∂εα(k)
∂nm,σ

)
f (εα(k)) = U

∑
m′,σ′

nm′,σ′ − J
∑
m′
nm′,σ

− Unm,σ + J
∑
σ′
nm,σ′ (23)

and a similar equation holds in the absence of the longitudinal
component of the spin–orbit coupling. The spin–orbit induced
correlations between m and σ are denoted byΔnm,σ . Since the
induced spin–orbit correlations Δnm′ ,σ′ have the same sym-
metry as the product m′ × σ′ they vanish when either m′ or
σ′ are summed over. Hence, the induced spin–orbit correla-
tions in the first, second and fourth terms of the right-hand side

of the equation vanish. Therefore, the induced longitudinal
spin–orbit correlations are given by

UΔnm,σ =
1
N

∑
k ,α

(
∂εα(k)
∂nm,σ

)
f (εα(k))

∣∣∣∣H̃SO
0 , (24)

which, like the induced transverse correlations, only depends
on U. An effective longitudinal spin–orbit coupling can be
defined by

< m, σ|H̃SO|m, σ >=< m, σ|HSO|m, σ > −UΔnm,σ. (25)

The equation for the induced polarization is a non-linear self-
consistency equation for the effective longitudinal component
of the spin–orbit coupling. The non-linear relations can be
written in the form of a set of coupled equations

Δnm,σ = −
∑
m′,σ′

χm,m′ < m′, σ′| ˆ̃HSO|m′, σ′ > (26)

which formally can be solved to yield the expression for the
effective longitudinal spin–orbit coupling strength

H̃SO = HSO − UΔn

= [I− Uχ]−1HSO (27)

which is seen to be enhanced. The above results differs from
those obtained by Liu et al [30] who do not consider off-
diagonal spin correlations, so they find that only the longitudi-
nal part of the spin–orbit coupling is enhanced. Furthermore,
their enhancement is not just due to U but instead involves the
combinationU′ − J or, equivalently,U+ J. Thus, the enhance-
ment calculated byLiu et al [30] involves theHund’s rule inter-
action.We attribute this difference to the approximation of Liu
et al [30] which explicitly breaks rotational-invariance and,
therefore, results in only the z-component of the spin–orbit
interaction being enhanced. However we do note that, since
the inter-band susceptibilities are expected to be smaller than
the intra-band susceptibilities, the z-component is expected to
be preferentially enhanced.

The present analysis assumes the absence of inter-bandcou-
pling and so, in this treatment, the source of the enhancements
of the components of the spin–orbit coupling are band spe-
cific. This leads to the speculation that the spin–orbit coupling
is largest when orbital mixing and the lifting of the orbital
degeneracy is smallest, i.e. at half-filling. On the other-hand
when the orbital splittings are large, one may speculate that
the relative size of the transverse component of the interaction
(∝

√
l(l+ 1)− m(m+ 1) ) and the longitudinal components

(∝ m) varies according to band-filling.

5. Discussion

Our results show that the spin–orbit interactions in strongly
correlated electron materials are enhanced by the Coulomb
interaction U. The spin–orbit coupling enhancement is
expected to be modest compared with the enhancement of
the spin susceptibility. This expectation is borne out by the
spin and orbitally rotational invariant analysis, shown in the
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appendix . In the absence of spin–orbit coupling, the spin
susceptibility is found to be spin-rotationally invariant and is
given by

χz,zS,S = 2μ2
B

∑
m

(
χ0
m;m1− Uχ0

m;m

)[
1− J

∑
m′

(
χ0
m′;m′

1−Uχ0
m′ ;m′

)] , (28)

where χ0
m;m denotes the ω → 0 and q → 0 Lindhard suscepti-

bility for the bands with m orbital character. Likewise, the z-
component of the corresponding orbital susceptibility is given
by

χz,zL,L = 2μ2
B

∑
m,m′

δm,m′
m2χ0

m,m

1− (U − 2J)χ0
m,m

(29)

and the transverse component is found to be

χ+,−
L,L = 2μ2

B

∑
m,m′

δm′ ,m+1
(l(l+ 1)− m(m+ 1))χ+,−

m,m′

1− (U − 2J)χ+,−
m,m′

. (30)

The above expressions are derived in the last subsection of the
appendix using the rotationally invariant variational approxi-
mation. The above formulae indicate that, with the assumption
that the susceptibilities are proportional to the density of states
at the Fermi-energy and m-independent, the criterion for the
appearance of ferromagnetic spin order reduces to

1 = (U + (2l+ 1)J)ρ(μ), (31)

so the Hund’s rule interaction promotes ferromagnetism. On
the other hand, the criterion for orbital ferromagnetism simply
is given by

1 = (U − 2J)ρ(μ), (32)

which requires the presence of much stronger direct Coulomb
interaction U. Although the expression in equation (31)
involves the full atomic degeneracy (2l+ 1), in a real solid
with band splittings due to crystal field and spin–orbit split-
ting, the factor of (2l+ 1) should be replaced by an effec-
tive orbital degeneracy [43]. Thus, the spin–orbit enhancement
factor of ferromagnetic materials is expected to increase as the
number of the bands, N, that participate in the Fermi-surface
is reduced since use of the Stoner criterion yields an enhance-
ment of ∼ 1+ U

NJ . For ferromagnetic 5d transition metals
with significant t2g–eg splittings, which sets N ≈ 2, for which
J ∼ 0.2U [44], one estimates that the spin–orbit enhancement
factor should be approximately 2.8. Likewise, for URu2Si2
with J ∼ 0.33U [45] and N ≈ 6, one estimates that λ is
enhanced by a factor of 1.5. However, the calculations of
Werwinski et al [22] show that, in the antiferromagneti-
cally ordered phase, the spin–orbit splitting is about 0.8 eV
which, when compared with the atomic splitting λ(2l+
1)/2 ∼ 0.24, indicates an enhancement of the order of 3.3.
Werwinski et al attribute the anomalously large enhance-
ment to near Fermi-energy nesting [46], which is known
to play a significant role in the formation of the Hidden
Ordered and Antiferromagnetic phases [47, 48]. The impor-
tance of spin–orbit correlations in URu2Si2 is indirectly

indicated by RPA calculations of the paramagnetic phase
which takes the tetragonal crystal structure into account, but
use the atomic value of the spin–orbit splitting [28]. The
RPA calculations, that did not include spin–orbit fluctua-
tions, only produced an anisotropy in the susceptibility of
1.3 which is significantly smaller than the measured value of
about 6 [29].

The concept of enhanced spin–orbit coupling might possi-
bly also find application in the uranium monochalcogenides.
The uranium monochalcogenides US, USe, and UTe have
cubic crystal structures, undergo transitions to ferromagnetic
phases at the temperatures of 177, 160, and 104K, respectively
[49] and exhibit giant magnetic anisotropies [50, 51]. The
anisotropy is so strong that the size of the saturation magnetic
moment markedly depends on the direction of the magnetiza-
tion [52] and may be even responsible for introducing a slight
rhombohedral distortion that occurs at the Curie temperature
[53].

The concept of Coulomb correlation enhanced spin–orbit
interaction has already found application in 4d–5d transi-
tion metal compounds [30] such as Sr2RhO4 and Sr2IrO4.
In Sr2RhO4 it was found [30] that an enhanced spin–orbit
coupling of about 2.15 above the bare value was necessary
to account for the discrepancy between the Fermi-surface
found in LDA calculations [54] with Suhubnikov–de Haas,
de Haas–van Alphen [55] and ARPES [56] measurements. In
Sr2IrO4, it has been found that the spin–orbit coupling splits
the degeneracy of the d band, leading to a half-filled jeff = 1

2
band. The effect of a small Coulomb interaction was shown
to lead to a reconstruction of the normal state Fermi-surface,
the formation of a gap of order 70 meV (inferred from the
resistivity) which occurs across the entire Fermi-surface and
the formation of a canted antiferromagnetic state in which
the moments reside in the basal plane. The small magnitude
of the Mott gap has been confirmed by optical absorption
measurements [57], which shows that the gap decreases from
0.4 eV at T = 10 K to 0.08 eV at T = 500 K. The small-
ness of the gap is consistent with the claim that the material
has both Mott-Hubbard and Slater character [58]. The mag-
netic insulating state is also rather remarkable since the canted
moments are strongly locked to the oxygen octahedra, as was
predicted by the LDA + SO + U calculations [17] and found
in neutron diffraction experiments [59] and non-linear optical
harmonic generation [60]. The calculated electronic structure
shows reasonable agreement with ARPES experiments [61].
However, there are significant discrepancies in the maxima
of the valence band. It has been noted that better agreement
may be obtained if the spin–orbit coupling is enhanced from
the value of 0.4 eV. Using the values of U ∼ 1.35 eV and
J ∼ 0.25 appropriate for Ir [62] and assuming equal participa-
tion by the t2g bands, one estimates an enhancementof 2.8 from
the arguments presented here.

The realization that spin–orbit coupling strength is not
simply determined by the atomic coupling, opens up the
possibility that the coupling may be modified by the appli-
cation of pressure, uni-axial pressure, chemical doping or
magnetic fields or by applied currents, much in the same way
that techniques are used to drive materials towards quantum
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critical points. However, although it is feasible that a mate-
rial spontaneously develops spin–orbit coupling, we consider
this scenario is unlikely. The possibility of such an insta-
bility was originally uncovered by Pomeranchuk [63] in his
enumeration of the instabilities of a Fermi-liquid. Recently,
it was shown that an instability in the l = 1 channel is sub-
jected to severe restrictions [64] but may occur in higher
angular momentum channels. Likewise, the present theory
predicts that the paramagnetic state should become unsta-
ble long before a transition occurs at which spin–orbit cou-
pling is spontaneously generated. Therefore, it seems that it
is much more likely that a substantial spin–orbit coupling
may be created through the enhancement of the one-electron
spin–orbit coupling that is guaranteed to exist by the Dirac
equation.

In conclusion, we have presented a simple variational argu-
ment that indicates that the spin–orbit interaction is enhanced
in strongly correlated materials and have discussed materials
in which enhancements of between 2 and 3 can be found.
These enhancements should become apparent in spin–orbit
induced magnetic anisotropy, since the magnetic anisotropy is
a high-order function of the spin–orbit coupling.

Acknowledgments

The work at Temple was supported by the US Department
of Energy, Office of Basic Energy Science, Materials Science
through the award DEFG02-84ER45872. The work at Col-
orado was supported by the US National Science Foundation
via Grant DMR-1903888.One of the authors (PSR) would like
to acknowledge discussions with T. Durakiewicz, P M Oppe-
neer, C N R Rao, D H Torchinsky, X X Xi, Qi-Min Yan and
J-X. Zhu.

Appendix

In the appendix we shall outline Roth’s decoupling method
and then indicate how the mean-field Hamiltonian can be
obtained from Roth’s decoupling procedure [38]. In the final
subsection, we shall demonstrate how the variational method
can be used to calculate various susceptibilities and show
that the method maintains spin-rotationally invariance, in the
absence of spin–orbit coupling.

A.1. Roth’s decoupling method

The Green’s function is defined as

GAα ,Aβ (t) = − i
�
< T̂Âα(t)Â

†
β(0) > (33)

where T̂ is the Wick’s time-ordering operator. The Martin-
Schwinger hierarchy of equations of motion takes the form

i�
∂

∂t
GAα,Aβ (t) = δ(t) < {Âα(t), Â

†
β(0)}+ > +

∑
γ

Kα,γGAγ ,Aβ (t)

(34)
where the interaction matrix Kα,γ and the fermionic operators
satisfy Âα

[Âα, Ĥ] =
∑
γ

Kα,γÂγ. (35)

In general, the set of equations do not truncate. The truncation
scheme introduced by Roth consists of evaluating the nested
commutator/anticommutator

{[Âα, Ĥ], Â
†
β}+ =

∑
γ

Kα,γ{Âγ , Â
†
β}+ (36)

and then taking the thermal average or expectation value in
the ground state. Hence, the Fourier transformed equations of
motion have the matrix form∑

γ

(
�ωδα,γ − Kα,γ

)
GAγ ,Aβ (ω) =< {Âα, Â

†
β}+ > . (37)

The truncation scheme corresponds to choosing a set of opera-
tors forwhich the interactionmatrix is Hermitean and the inho-
mogeneous term is positive definite. As shown by Sawada [41],
this truncation procedure defines an approximate Hamiltonian
Ĥ

MF
that obeys the Bogoliubov inequality

Ω = −kBT ln Ξ

� ΩV = ΩMF + Tr(Ĥ − ĤMF)ρ̂MF (38)

where ρ̂MF is the grand-canonical statistical operator derived
from ĤMF. Since the lower bound of ΩV is Ω, ΩV is a varia-
tional function.

A.2. Mean-field theory

In this section, we shall illustrate the derivation of the mean-
field Hamiltonian by focussing on a particular term in the inter-
action Hamiltonian of equation (3). This will be followed by a
presentation the various terms in the spin and orbital rotational
interaction Hamiltonian. In equation (48) we shall display the
mean-field interaction that is responsible for the correlations
that enhance the spin–orbit interaction in equation (15).

To illustrate the derivation of the mean-field Hamiltonian
shown in equation (8), which does not include spin–orbit
coupling, we consider a Hamiltonian of the form

Ĥ =
∑

i,m,i1,m1,σ

[εmδm,m1δi,i1 + ti,m,i1,m1 ] f
†
i,m,σ fi1,m1,σ

+
(U − J)

2

∑
i,m�=m1,σ

f †i,m,σ fi,m,σ f
†
i,m1,σ

fi,m1,σ. (39)

Since the orbital angular momentumm is measured relative to
a lattice site, m is not conserved. In fact, the overlap integrals
should be represented by Slater–Koster parameters [65, 66].
The commutation relation is evaluated as

[ fi,m,σ , Ĥ] =
∑
i1,m1

[εmδm,m1δi,i1 + ti,m,i1,m1 ] fi1,m1,σ

+ (U − J)
∑
m1 �=m

fi,m,σ f
†
i,m1,σ

fi,m1,σ. (40)

7
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From this, one may restrict the Roth truncation to the set of
single-particle operators

Â1
i,m,σ = fi,m,σ

Â1†
i,m,σ = f †i,m,σ. (41)

The expectation value of the double commutator is found as

< {[Â1
i,m,σ , Ĥ], Â

1†
i′,m′ ,σ}+ >

= εmδm,m′δi,i′ + ti,m,i′ ,m′ + δi,i′δm,m′ (U − J)
∑
m1 �=m

ni,m1,σ

− δi,i′ (1− δm,m′ )(U − J)Φi;m′ ,σ;m,σ (42)

where the diagonal expectation values are denoted by

ni,m,σ =< f †i,m,σ fi,m,σ > (43)

and the off-diagonal expectation values are denoted as

Φi;m,σ;m′ ,σ =< f †i,m,σ fi,m′ ,σ > . (44)

Thus, the effective Hamiltonian contains expectation values
that are either diagonal or off-diagonal in the orbital index.
This is generally expected to be the case since one-electron
bands states can be represented by linear superpositions of
atomic orbitals. A similar equation holds for the complex
conjugates of the operators. The above equations are to be
contrasted with the atomic Hartree–Fock equation which sim-
ply corresponds to replacing the occupation number by a
site-independent average

f †i,m1,σ
fi,m1,σ → ni,m1,σ (45)

which neglects the off-diagonal terms. The quasi-particle dis-
persion relations εα,σ(k) are then given by transforming to the
Bloch representation and diagonalizing the Hermitean matrix,
ĤMF(k) which has the matrix elements

ĤMF
m,m′ (k) = εmδm,m′ + tm,m′ (k)+ δm,m′ (U − J)

∑
m1 �=m

nm1,σ

− (U − J)(1− δm,m′ )Φm′ ,σ;m,σ (46)

where the expectation values nm1,σ and Φm,σ;m′σ are to be
evaluated self-consistently. The quasi-particle dispersion rela-
tions are functions of the variational parameters. An equivalent
Hamiltonian ĤMF can be inferred from the dispersion rela-
tion which contains the interaction terms and their Hermitean
conjugates

ĤMF
int =

∑
i,m,i′ ,m′ ,σ

[εmδm,m′δi,i′ + ti,m,i′m′ ] f †i,m,σ fi′,m′ ,σ

+
(U − J)

2

∑
i,m�=m′ ,σ

[
n̂i,m,σni,m′ ,σ + ni,m,σ n̂i,m′ ,σ

]

− (U − J)
2

∑
i,m�=m′ ,σ

[
f †i,m′ ,σ fi,m,σΦi;m,σ;m′ ,σ

+Φi;m′ ,σ;m,σ f
†
i,m,σ fi,m′ ,σ

]
− (U − J)

2

∑
i,m�=m′ ,σ

ni,m,σni,m′ ,σ

+
(U − J)

2

∑
i,m�=m′ ,σ

Φi;m′,σ;m,σΦi;m,σ;m′ ,σ. (47)

The mean-field interaction includes a subtraction the expec-
tation value of the interaction between pairs of particles
which avoids double-counting as expected from mean-field
approximations.

Applying the above procedure to the Coulomb interaction
between electrons with antiparallel spins

Ĥint =
U
2

∑
i,m,m′ ,σ

n̂i,m,σ n̂i,m′ ,σ

generates the mean-field interaction

ĤMF
int =

U
2

∑
i,m,m′ ,σ

[
n̂i,m,σni,m′ ,σ + ni,m,σ n̂i,m′ ,σ

]

− U
2

∑
i,m,m′ ,σ

[
f †i,m′ ,σ fi,m,σΦi;m,σ;m′,σ

+ f †i,m,σ fi,m′ ,σΦi;m′ ,σ;m,σ

]

− U
2

∑
i,m,m′ ,σ

[
ni,m,σni,m′,σ − |Φi;m,σ;m′ ,σ|2

]
(48)

which includes the double-counting corrections. The Coulomb
interaction U between antiparallel spins is the only interac-
tion that generates spin and orbital flip correlations similar
to the spin-flip terms in the spin–orbit coupling that enter
equation (15) and are ultimately responsible for the enhance-
ment of the spin–orbit interaction.

The mean-field interaction corresponding to the Hund’s
rule spin-flip interaction

Ĥint = −J
2

∑
i,m�=m′ ,σ

f †i,m,σ fi,m,σ f
†
i,m′ ,σ fi,m′ ,σ (49)

is given by

ĤMF
int =

J
2

∑
i,m�=m′ ,σ

(
f †i,m,σ fi,m′ ,σΦi;m′,σ,m,σ +Φi;m,σ,m′ ,σ f

†
i,m′ ,σ fi,m,σ

)

− J
2

∑
i,m�=m′ ,σ

Φi;m,σ,m′ ,σΦi;m′,σ,m,σ −
J
2

∑
i,m�=m′ ,σ

×
(
f †i,m,σ fi,m,σΦi;m′ ,σ,m′ ,σ +Φi;m′,σ,m′ ,σ f

†
i,m,σ fi,m,σ

)

+
J
2

∑
i,m�=m′ ,σ

Φi;m,σ,m,σΦi;m′,σ,m′ ,σ. (50)

The first line describes processes which result is states that
are linear superpositions of states with different orbital char-
acters. The inter-orbital correlations enter into equation (8)
since the tight-binding Hamiltonian contains orbital mixing

8
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that stabilizes the correlations. The third line represent spin-
flip interactions which contribute to the transverse spin-flip
susceptibility.

The interaction

Ĥint =
J
2

∑
i,m,σ

f †i,m,σ fi,m,σ f
†
i,m,σ fi,m,σ (51)

ensures the orbital rotational invariance of the exchange inter-
action, yields the relationU′ = U+ J. The mean-field form of
the interaction is given by

ĤMF
int =

J
2

∑
i,m,σ

(
f †i,m,σ fi,m,σni;m,σ + ni;m,σ f

†
i,m,σ fi,m,σ

)

− J
2

∑
i,m,σ

ni;m,σni;m,σ −
J
2

∑
i,m,σ

×
(
f †i,m,σ fi,m,σΦi;m,σ,m,σ +Φi;m,σ,m,σ f

†
i,m,σ fi,m,σ

)

+
J
2

∑
i,m,σ

Φi;m,σ,m,σΦi;m,σ,m,σ. (52)

A.3. Spin and orbital susceptibilities

In this subsection, we shall indicate how the transverse
and longitudinal susceptibilities, exhibited in equation (28)
through (30), can be calculated within the variational scheme.
First we shall present the spin susceptibility and show that it
retains spin-rotational invariance in the absence of spin–orbit
coupling. This will be followed by the derivation of the orbital
susceptibility, which also exhibits rotational invariance when
the system is invariant under rotations. The analysis demon-
strates that themean-field approximation is inherently spin and
orbital rotationally invariant.

A.3.1. The spin susceptibility. The anomalous Zeeman inter-
action, ĤZ, can be expressed in terms of the longitudinal and
transverse parts via

ĤZ = −μB

[
gSzBzS +

g
2
(B+

S Ŝ
− + B−

S Ŝ
+)
]
. (53)

The total spin raising operator is given by

Ŝ+ =
∑
i,m

f †i,m,↑ fi,m,↓ (54)

which is diagonal in the orbital index. The lowering operator,
S−, is given by the complex conjugate expression.

The transverse susceptibility, χ+,−
S,S , can be calculated by

collecting together all the single-electron spin-flip operator
which are diagonal orbital angular momentumm in the mean-
field Hamiltonian. These terms can be expressed as

−
∑
m

B−
m f

†
i,m,↑ fi,m,↓ (55)

where the effective transverse field is given by

B−
m =

(
gμB
2
B−
S + UΦi;m,↓;m,↑ + J

∑
m′

Φi;m′ ,↓;m′,↑

)
. (56)

The first term originates from the anomalous Zeeman inter-
action, and the second term originates from the m′ = m term
in the Coulomb interaction between electrons with antiparallel
spins shown in equation (48). The third term comes from the
mean-field terms which represent the spin-flip terms exchange
interaction, displayed in equation (50), together with the cor-
rection that imposes orbital rotational invariance, shown in
equation (52).

The spin-flip correlationsΦi;m′,↓;m,↑ can be obtained by diag-
onalizing the Hamiltonian. The diagonalization can be per-
formed by solving the coupled equations of motions for the
Green’s functions with the mean-field Hamiltonian. Since
the mean-field Hamiltonian consists of single-electron terms,
the set of equations truncate. The Fourier transform of the
equations of motion become algebraic equations that depend
on the tight binding elements tm,m′ (k), Φm,σ,m′σ and B±

m . For
simplicity, we shall restrict our discussion to the hypotheti-
cal situation in which the orbital quantum numbers are pre-
served. In this case, the coupled set of equations of motion
reduce to

(ω − εm,↓(k))Gm,↓,m,↓(k,ω) = 1− B+
mGm,↑,m,↓(ω)

(ω − εm,↑(k))Gm,↑,m,↓(k,ω) = −B−
mGm,↓,m,↓(ω). (57)

Hence, the spin-flip Green’s function is found as

Gm,↑,m,↓(k,ω) =
−B−

m

(ω − εm,↓(k))(ω − εm,↑(k))− B+
mB−

m

(58)

which yields the quasiparticle energies

εm,±(k)=
εm,↑(k)+ εm,↓(k)

2
±

√(
εm,↑(k)− εm,↓(k)

2

)2

+B+
mB−

m.

(59)
Therefore, the desired spin-flip correlation is given by the
expectation value

Φm,↓,m,↑ =< f †m,↓ fm,↑ >

=
1
N

∑
k

⎡
⎣ f (εm,−(k))− f (εm,+(k))√

(εm,↑(k)− εm,↓(k))2 + 4B+
mB−

m

⎤
⎦B−

m

= χ−,+
m B−

m . (60)

In the limit Bm → 0 and T→ 0, one finds χ+,−
m → ρm(μ). More

generally, the above relation takes the form

Φm,↓,m,↑ =
∑
m′

χ−,+
m,m′B

−
m′ . (61)

On substituting the expression for the effective spin-flip field
in equation (60), one finds that the spin-flip correlation is given
by

(1− Uχ−,+
m )Φm,↓,m,↑ = μBB

−
S χ

−,+
m + Jχ−,+

m

∑
m′

Φm′,↓;m′ ,↑.

(62)

9
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The equation can be solved to yield the correlation as

Φm,↓,m,↑ = μBB
−
S

χ−,+
m

1− Uχ−,+
m

[
1−

∑
m′

Jχ−,+
m′

1− Uχ−,+
m′

]−1

. (63)

Hence, one finds that the reduced spin susceptibility is

∑
m

χ−,+
m = μ2

B

∑
m

(
χ−,+
m 1− Uχ−,+

m

)
[
1−

∑
m′

(
Jχ−,+

m′

1−Uχ−,+
m′

)] , (64)

which is identical to the result obtained from the Bethe-
Salpeter equation

χ−,+
m,m′ = χ−,+

m + χ−,+
m Uχ−,+

m,m′ + Jχ−,+
m

∑
m1

χ−,+
m1,m′ (65)

for the transverse dynamic spin susceptibility. Since it is cus-
tomary, in linear response theory to define the induced magne-
tization due to the coupling with an applied field B−

S instead
of B−

S /2, the transverse susceptibility includes a factor 4.
Therefore, the transverse spin susceptibility is given by

χ−,+
S,S = 4μ2

B

∑
m

(
χ−,+
m

1−Uχ−,+
m

)
[
1−

∑
m′

(
Jχ−,+

m′

1−Uχ−,+
m′

)] . (66)

The longitudinal spin susceptibility, χz,zS,S, can be derived by
noting that the mean-field Hamiltonian [equation (8)] contains
diagonal terms of the form

−
∑
m,σ

Bm,σ f
†
m,σ fm,σ , (67)

where the internal field Bm,σ is given by

Bm,σ = μBBSσ − U
∑
m′
nm′,σ − (U − J)

∑
m′ �=m

nm′,σ − Jnm,σ.

(68)
The component of the spin polarization originating from them
orbit can be expressed as

∑
σ

σnm,σ =
∑
σ

σ

∫ ∞

−∞
dερm(ε+ Bm,σ) f (ε) (69)

where the f(ε) that extremalizes the free-energy is the Fermi-
function. The quantity χm is introduced via

χ0
m = −

∫ ∞

−∞
d ερm(ε)

(
∂ f (ε)
∂ε

)
, (70)

which is recognized as having the same zero field value as the
quantity χ+,−

m introduced previously. On expanding the right-
hand side of the spin polarization in terms of the effective field,
one finds the equation∑

σ

σnm,σ(1− Uχ0
m) = 2μB BSχ

0
m + Jχ0

m

∑
m′ ,σ

σnm′ ,σ. (71)

This equation can be solved to yield the spin polarization

∑
σ

σnm,σ = 2μB BS

(
χ0
m1− Uχ0

m

)[
1−

∑
m′

(
Jχ0

m′

1−Uχ0
m′

)] . (72)

Hence, one identifies the longitudinal spin susceptibility as

χz,zS,S = 2μ2
B

∑
m

(
χ0m

1−Uχ0m

)
[
1−

∑
m′

(
Jχ0

m′

1−Uχ0
m′

)] . (73)

Comparison of the longitudinal with the transverse spin
susceptibility confirms that χ+,−

S,S = 2χz,zS<S which indicates
that spin-rotational invariance is preserved by the mean-field
approximation.

A.3.2. The orbital susceptibility. The Zeeman interaction
with the orbital moment can be expressed as

ĤZ = −μB

[
BzLL̂

z +
1
2

(
B+
L L̂

− + B−
L L̂

+
)]

. (74)

By contrast to the spin susceptibilities, the orbital susceptibil-
ities are anisotropic in the absence of spin–orbit coupling.

The transverse orbital susceptibility can be calculated by
noting that the transverse field which acts on the orbital BL can
be combined with the induced orbital polarizations to yield
an effective transverse interaction. The effective transverse
orbital interaction conserves the spin quantum number and is
written as

Ĥ = −
∑
i,m,σ

[ f †i,m+1,σ fi,m,σB
−
m + f †i,m,σ fi,m+1,σB

+
m ] (75)

where the effective transverse orbital field is given by

B−
m =

√
l(l+ 1)− m(m+ 1)B−

L + (U − J)Φi;m,σ,m+1,σ

− JΦi;m,σ,m+1,σ. (76)

Since the differential transverse orbital susceptibility is calcu-
lated in the zero field limit, one may assume spin-rotational
invariance. Thus, the effective interaction is spin-independent
and is given by

B−
m =

√
l(l+ 1)− m(m+ 1)B−

L + (U − 2J)Φi;m,m+1 (77)

where we have dropped the spin indices. The equations of
motion for the Green’s functions can be written as a matrix
equation (

�ωÎ − ĤMF(k)
)
G(ω, k) = δ (78)

where δ is a unit vector. If the hopping Hamiltonian is diag-
onal in m, the matrix is a Hermitean tridiagonal matrix. The
determinant is denoted by Dk (ω)

Dk (ω) = |�ωÎ − ĤMF(k) |. (79)

The quasiparticle dispersion relations are found from the sec-
ular equation

Dk (ω) = 0. (80)
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Since the cofactor of the mth diagonal element is given by

− ∂

∂εm
Dk (ω) (81)

where εm is the binding energy of the mth atomic orbit, the
diagonal Green’s function Gm,m(ω, k) is found as

Gm,m(ω, k) = − ∂

∂εm
lnDk (ω). (82)

The diagonal Green’s function allows the direct calculation of
the thermal average nm. The off-diagonal Green’s function is
given by the derivative

Gm+1,m(ω, k) =
∂

∂B+
m
lnDk (ω). (83)

Furthermore, due to the tridiagonal nature of the determinant,
it only depends linearly on the combinationB+

mB
−
m , which leads

to the expectation value of the off-diagonal Green’s function
being given by

Φm,m+1 = χ−,+
m B−

m . (84)

Hence, on substituting the expression for the effective field B−
m ,

one obtains the equation

Φm,m+1 = χ−,+
m

[√
l(l+ 1)− m(m+ 1)B−

L

+ (U − 2J)Φi;m,m+1

]
(85)

which results in the transverse orbital susceptibility being
given by

χ−,+
L,L = 2μ2

B

∑
m,m′

δm′ ,m+1
(l(l+ 1)− m(m+ 1))χ−,+

m,m′

1− (U − 2J)χ−,+
m,m′

, (86)

where the factor of two comes from the spin degeneracy.
The longitudinal orbital susceptibility,χz,zL,L, can be found by

identifying a single-electron interaction with the z-component
of the orbital magnetic field BL

ĤL = −
∑
m,σ

f †m,σ fm,σ

[
μBBLm− U

∑
m′
nm′,σ

− (U − J)
∑
m′ �=m

nm′,σ − Jnm,σ

⎤
⎦ . (87)

In the absence of BzS, the system is spin-rotationally invariant.
Therefore, the expectation values are spin independent

nm,σ = nm,σ = nm. (88)

Under this condition, the effective interaction with the orbital
field is given by

ĤL = −
∑
m,σ

f †m,σ fm,σBm (89)

where we have introduced an effective orbital field

Bm =

[
μBBLm+ (U − 2J)nm − (U − J

2
)NT

]
(90)

and where NT is the total number of electrons. Hence, the last
term in Bm is independent of the applied field BL. For a sys-
tem that is invariant under rotations, the average value of the
occupation of the mth orbital is given by

nm =

∫ ∞

−∞
dερm(ε+ Bm) f (ε) (91)

where ρm(ε) is the single-particle density of states for the mth
orbital. On expanding the right-hand side in terms of the field
dependent parts of the thermally average occupation numbers,
one finds

Δnm = χm [μBBL + (U − 2J)Δnm] (92)

in which we have introduced the susceptibility

χ0
m = −

∫ ∞

−∞
dερm(ε)

(
∂ f (ε)
∂ε

)
. (93)

The above equations are solved for the orbital polarization

Δnm = μBBL
χ0
m

1− (U − 2J)χ0
m
. (94)

If the z-component of the orbital magnetization is defined by

Mz
L = 2μB

∑
mΔnm (95)

the longitudinal orbital susceptibility is given by

χz,zL,L = 2μ2
B

∑
m

m2χ0
m

1− (U − 2J)χ0
m
. (96)

Hence, the orbital polarization is enhanced susceptibility is
enhanced by the Coulomb and the exchange interaction in the
combination (U− 2J).
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