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Abstract. We characterize bijective linear maps on Mn(C) that preserve the square roots of
an idempotent matrix (of any rank). Every such map can be presented as a direct sum of a map
preserving involutions and a map preserving square-zero matrices. Next, we consider bijective
linear maps that preserve the square roots of a rank-one nilpotent matrix. These maps do not
have standard forms when compared to similar linear preserver problems.

Introduction

Linear preserver problems (LPPs) concern the characterization of linear maps acting on matrix
spaces that leave invariant certain functions, subsets, relations, etc. Let Mn(C) denote the full
matrix algebra of n× n complex matrices. Given a relation ∼ on Mn(C), one may study linear
maps f : Mn(C) → Mn(C) satisfying f(A) ∼ f(B) whenever A ∼ B. Given any matrix
product ? on Mn(C), one can define a relation via zero ?-products; that is, declare A ∼ B
if A ? B = 0. Then linear maps preserving the relation ∼ amounts to characterizing linear
maps f : Mn(C) → Mn(C) such that f(A) ? f(B) = 0 whenever A ? B = 0. In the cases of
the usual product A ? B = AB, the Lie product [A,B] = AB − BA, and the Jordan product
A ◦ B = AB + BA, bijective linear maps preserving the zero product are well-understood;
see [15], [14], and [6], respectively (also note that a map that preserves the zero Lie product
equivalently preserves commuting pairs of matrices). Motivated by similar questions in the
setting of ring theory, the authors in [5] took a much more general approach concerning additive
maps preserving products (that is, f(x)f(y) = f(u)f(v) whenever xy = uv, where x, y, u, and
v are elements of a ring satisfying some technical but reasonable conditions). Many of the
above results conclude that such maps must be homomorphisms or antihomomorphisms, up
to multiplication by a scalar. In other words, by only preserving a multiplicative property on
certain pairs of elements, it turns out that all multiplicative structure must be preserved. See
[12] for a more detailed discussion of LPPs and their solutions.

Recently, several authors have considered preserving relations induced by products equal to
fixed nonzero matrices. We say that a linear map f : Mn(C) → Mn(C) preserves ?-products
equal to C if f(A) ? f(B) = C whenever A ? B = C. One technique is to show that if f
preserves ?-products equal to C, then f also preserves the zero ?-products. We collect some
results concerning the three matrix products mentioned above.
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Suppose f(A)f(B) = C whenever AB = C. Under the additional hypothesis of bijectivity,
the case C = eij was investigated in the two papers [1] and [2]. In both cases, f must be a
scalar times a homomorphism (note that antihomomorphisms are not permissible). Likewise, if
C is diagonalizable, a recent result appearing in [4] characterized all such maps and found that
if C is singular, then f must be a scalar times a homomorphism and if C is invertible, then f
may take a slightly different form. For example, if AB = In, the n × n identity matrix, then
BA = In. This suggests that the transpose map X 7→ XT (an antihomomorphism) preserves
products equal to the identity. The case for arbitrary C is unknown; in particular, for nilpotents
of high rank.

Suppose [f(A), f(B)] = C whenever [A,B] = C. With the added hypotheses of bijectivity,
the case C = e12 was addressed in [7] while the case C = e11 − e22 was addressed by the second
author in [9]. Maps preserving the solutions to AB −BA = e12 do not preserve commutativity
while maps preserving the solutions to AB − BA = e11 − e22 do preserve commutativity. The
description is currently unknown for arbitrary C. On the other hand, when considering the
Jordan product A ◦ B = AB + BA, a complete description of bijective linear maps such that
f(A) ◦ f(B) = M whenever A ◦ B = K has been obtained by the authors in [3], where M and
K are arbitrary (in other words, maps preserving equal Jordan products have been completely
classified). The usual product and Lie product seem to be more complex.

In this paper, we wish to understand bijective linear maps f : Mn(C)→Mn(C) such that

f(A)2 = B whenever A2 = B, (1)

where B is a fixed nonzero idempotent or a rank-one nilpotent matrix. The matrix A is called a
square root of B and we say f preserves the square roots of B. The conditions on f remind us of
the equally deep subset of LPPs concerning maps preserving the roots of a matrix polynomial;
that is, given a complex polynomial p(x), describe bijective linear maps f : Mn(C) → Mn(C)
satisfying p(f(A)) = 0 whenever p(A) = 0. When p(x) has at least two distinct roots, a complete
description of f was obtained by Howard [8]. If p(x) has only repeated roots, the results may
be deduced from [Lemma 2.5, [11]]. As a special case, maps preserving the square-zero matrices
(zeros of p(x) = x2) is handled in [13].

The results in this paper may be considered a generalization of the results in [1] and [2] since
every map preserving products equal to eij also preserve the square roots of eij . However, the
square roots of a nontrivial idempotent or a nilpotent matrix do not span Mn(C), and so we
only obtain a meaningful description of f on the proper subspace of Mn(C) generated by the
square roots. Hence in some sense the solutions obtained here are “nonstandard” compared to
other LPPs.

In Section 1, we characterize the square roots of an idempotent matrix e11 + e22 + · · · + ett.
The subspace of Mn(C) generated by all such square roots can be written as a direct sum of two
square subspaces of Mn(C), and consequently the maps that preserve the square roots can be
written as a direct sum of two maps, each acting on a direct summand, that preserve different
subsets of matrices. This is a rather surprising conclusion when compared to other LPPs. For
the precise statement, see Theorem 1.5.

In Section 2, we characterize the square roots of e12, a rank-one nilpotent matrix. The space
generated by all square roots of e12 can be written as a direct sum of a square subspace and
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a nonsquare subspace of Mn(C). Thus maps that preserve the square roots of e12 may take
nonstandard forms, and we give some examples. Under certain technical conditions, at least a
partial description of f can be obtained via Šemrl’s square-zero matrix preserver result [13]. See
Theorem 2.6 for the precise statement.

1. Maps preserving the square roots of an idempotent matrix

Let Et = e11 + · · ·+ ett, a rank-t idempotent matrix. We wish to study bijective linear maps
f : Mn(C)→Mn(C) that preserve the square roots of Et. The square roots of Et are described
in Lemma 1.1, the proof of which is straightforward.

Lemma 1.1. Given an A ∈Mn(C), we have that A2 = Et if and only if

A =

(
C 0
0 S

)
,

for some complex t × t matrix C and a complex (n − t) × (n − t) matrix S such that C2 = Et

and S2 = 0.

Consequently the subspace generated by the square roots of Et can be written as a direct sum
of two matrix spaces, as follows.

Lemma 1.2. If A = 〈A ∈Mn(C) : A2 = Et〉, then

A =

(
Mt(C) 0

0 sln−t

)
.

Proof. Note that Mt(C) is generated by t×t involutions and sln−t is generated by (n−t)×(n−t)
square-zero matrices. Since the direct sum of an arbitrary t × t involution with an arbitrary
(n− t)×(n− t) square-zero matrix is a square root of Et, the result follows from Lemma 1.1. �

Let

Ut =

(
Mt(C) 0

0 0

)
, Ln−t =

(
0 0
0 Mn−t(C)

)
denote the upper and lower block subspaces of Mn(C). Let sl(Ln−t) denote the trace-zero
matrices in Ln−t. Lemma 1.2 asserts that A = Ut ⊕ sl(Ln−t).

If f : Mn(C) → Mn(C) is a bijective linear map such that f(A)2 = Et whenever A2 = Et,
then f(A) = A and Ut ⊕ sl(Ln−t) = f(Ut) ⊕ f(sl(Ln−t)). This is an unconventional situation
for a linear preserver problem, in the sense that the span of the preserved subset is not all of
Mn(C). Thus, it only makes sense to describe f on its restriction to A (i.e., we cannot determine
how f behaves outside of A).

Lemma 1.3. Let f : A → A be a bijective linear map such that f(A)2 = Et whenever A2 = Et.
Then f(Ut) ◦ f(sl(Ln−t)) = 0 and for all T ∈ A with T 2 = 0, we have f(T )2 = 0.

Proof. Given a C ∈ Ut with C2 = Et and S ∈ Ln−t with S2 = 0, clearly (C + xS)2 = Et for all
x ∈ C and

f(C + xS)2 = (f(C) + xf(S))2 = f(C)2 + xf(C) ◦ f(S) + x2f(S)2 = Et.
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Cancelling f(C)2 = Et, the system of equations reduces to

xf(C) ◦ f(S) + x2f(S)2 = 0. (2)

Subtracting the two equations obtained by taking x = 1 and x = −1, it follows that f(C)◦f(S) =
0. Using the fact that the set of such C span Ut and the set of such S span sl(Ln−t), as well as
the fact that f(C) ◦ f(S) is bilinear in C and S, we conclude that f(Ut) ◦ f(sl(Ln−t)) = 0.

Given a square-zero matrix T ∈ A, it may be written as a direct sum of square-zero matrices
in Ut and sl(Ln−t). In light of the observation f(Ut) ◦ f(sl(Ln−t)) = 0, equation (2) also implies
that f(S)2 = 0 whenever S ∈ sl(Ln−t) is a square-zero matrix. To prove that f preserves
square-zero matrices in A it suffices to show that f(T )2 = 0 whenever T ∈ Ut is a square-zero
matrix.

Working in Ut, let T̂ be the Jordan normal form of T , written as T = PT̂P−1 for some
invertible P ∈ Ut. It is easy to find a t× t involution, say Â, such that Â ◦ T̂ = 0. Hence there
is a matrix A = PÂP−1 such that (A+ xT )2 = Et for all x ∈ C. Using the same computations
as above, we conclude that f(A) ◦ f(T ) = 0 and f(T )2 = 0. �

We have seen that Ut ⊕ sl(Ln−t) = f(Ut) ⊕ f(sl(Ln−t)) as well f(Ut) ◦ f(sl(Ln−t)) = 0. It
is not immediately obvious, however, if f preserves the direct summands. This turns out to be
the case.

Lemma 1.4. If f : A → A is a bijective linear map such that f(A)2 = Et whenever A2 = Et,
then f(Ut) = Ut and f(sl(Ln−t)) = sl(Ln−t).
Proof. Write Et = f(U) + f(V ), where U ∈ Ut and V ∈ sl(Ln−t). Let Cu, Su ∈ Ut and
Cl, Sl ∈ sl(Ln−t) be the matrices such that f(U) = Cu + Cl and f(V ) = Su + Sl. So we have

(Cu + Su) + (Cl + Sl) = Et. (3)

Clearly Cl = −Sl. By Lemma 1.3, f(U) ◦ f(V ) = 0 and so Cu ◦ Su = Cl ◦ Sl = 0. Substituting
in Cl = −Sl, we can conclude that C2

l = S2
l = 0. Squaring equation (3), we get

C2
u + S2

u = Et. (4)

Since Cl = −Sl, we can substitute Su = Et − Cu into (4) to get

C2
u + (Et − Cu)2 = 2C2

u − 2Cu + Et = Et.

We have arrived at the conclusion that Cu is idempotent; i.e., C2
u = Cu.

Since Ct is trace-zero and f(V ), a linear combination of square-zero matrices by Lemma 1.3,
is also trace-zero, we have

t = tr(Et) = tr(f(U) + f(V )) = tr(Cu + Cl) = tr(Cu).

The trace of an idempotent matrix is its rank. Hence rk(Cu) = t. Now, the only rank-t
idempotent matrix in Ut is Et. Consequently, Cu = Et and Su = 0.

Hence f(Ut) contains a matrix whose Ut-direct summand component is Et. Since the Jordan
product of f(sl(Ln−t)) with Et must be zero by Lemma 1.3, it follows that f(sl(Ln−t)) =
sl(Ln−t).

Now f(Ut)◦f(sl(Ln−t)) = f(Ut)◦sl(Ln−t) = 0. The only matrix in Ln−t whose Jordan product
with sl(Ln−t) is identically zero is the (n− t)× (n− t) zero matrix. Hence f(Ut) = Ut. �
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Theorem 1.5. Let n ≥ 3. If f : A → A is a bijective linear map such that f(A)2 = Et

whenever A2 = Et, with 1 ≤ t ≤ n− 1, then f is of the form f = g ⊕ h, where g : Ut → Ut is a
bijective linear map preserving involutions and h : sl(Ln−t)→ sl(Ln−t) is a bijective linear map
preserving square-zero matrices.

Proof. By Lemma 1.4, take g to be the restriction of f to Ut and h to be the restriction of f to
sl(Ln−t). The hypotheses on f ensure that any involution in Ut is mapped to an involution and
that any square-zero matrix in Ln−t is mapped to a square-zero matrix. The description of g is
due to Howard [8] and the description of h is due to Šemrl [13].

If t ≥ 3, g takes the form X 7→ ±PXP−1 or X 7→ ±PXTP−1, where P ∈ Ut is invertible.
If t ≤ n − 2, h takes the form X 7→ cQXQ−1 or X 7→ cQXTQ−1, where c ∈ C is nonzero and
Q ∈ Ln−t is invertible. �

Remark 1.6. In general, g and h may be of opposite types; one could be a homomorphism
and the other an antihomomorphism, so in general f need not be a homomorphism nor an
antihomomorphism on A.

There are some extremal cases of interest. If t = 1, then g(e11) = ±e11. If t = 2, then g
does not have a standard description (for example, the map X 7→ PXP−1 − tr(X)I2 preserves
involutions but is not of a standard form). If t = n− 1, then sl(L1) = 0, and so h is simply the
zero map.

Remark 1.7. If n = 2, then A = 〈e11〉. Hence any linear map f : M2(C) → M2(C) such that
f(e11) = ±e11 preserves the square roots of e11.

Remark 1.8. One can use the theorem to obtain a description of maps preserving products
of rank-t idempotents which differ in the image and preimage. Let P,Q ∈ Mn(C) be rank-
t idempotent matrices. Since P and Q are similar to Et, we can write P = UEtU

−1 and
Q = V EtV

−1 for some U, V ∈Mn(C), invertible. Thus the subspace generated by square roots

of P and Q are conjugates of A, denoted AP and AQ, respectively. Let f̂ : AQ → AP be a

bijective linear map satisfying f̂(A)2 = P whenever A2 = Q. Notice that

X 7→ U−1f̂(V XV −1)U

is a bijective linear map from A to A preserving square roots of Et. By deferring to Theorem
1.5, the description of f̂ may be obtained. The description of f̂ can then be extended to all of
Mn(C).

2. Maps preserving the square roots of a rank-one nilpotent matrix

We now wish to consider bijective linear maps f : Mn(C) → Mn(C) with f(A)2 = e12,
whenever A2 = e12. First, we identify the square roots of e12, which exist as long as n ≥ 3.
Since any square root of e12 must commute with e12, it is easy to verify the following lemma.

Lemma 2.1. Let n ≥ 3 and A ∈Mn(C). If A2 = e12, then

A =

0 a uT

0 0 0T

0 v S

 ,
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where a ∈ C, S ∈ Mn−2(C) is a square-zero matrix, u,v ∈ Cn−2 satisfy v ∈ kerS, u ∈ kerST ,
and uTv = 1.

Can the S in Lemma 2.1 be arbitary? Consider the following equivalent matrix-theoretical
question: given any square-zero matrix, S, does there exist u ∈ kerST and v ∈ kerS such
that uTv = 1? This turns out to be false when S has maximum rank and n is even, but true
otherwise.

Lemma 2.2. If S ∈ Mt(C) is similar to diag(J2(0), J2(0), . . . , J2(0)), and u,v ∈ Ct satisfy
Sv = STu = 0, then uTv = 0. Otherwise, if rk(S) < t

2 , there exist u,v ∈ Ct such that

Sv = STu = 0 and uTv = 1.

Proof. Let e1, e2, . . . , et denote the collection of standard basis vectors of Ct and let Jk(λ) denote
the k × k Jordan block corresponding to the eigenvalue λ ∈ C.

There is an invertible Q ∈Mt(C) such that

S = Qdiag(J2(0), J2(0), . . . , J2(0))Q−1.

Let Ŝ = diag(J2(0), J2(0), . . . , J2(0)). If v ∈ kerS, then it may be written v = Qv̂, where

v̂ ∈ 〈e1, e3, . . . , et−1〉 = ker Ŝ. Similarly, u ∈ kerST implies u = (Q−1)T û, where û ∈
〈e2, e4, . . . , et〉 = ker ŜT . Then

uTv = ûTQ−1Qv̂ = ûT v̂ = 0.

If rk(S) < t
2 , then we may write

S = Qdiag(J2(0), J2(0), . . . , J2(0), J1(0), . . . , J1(0))Q−1,

with at least one copy of J1(0). Then the kernels of the Jordan form of S and its transpose have
at least one vector in common, in particular, et. Taking v̂ = û = et and defining v = Qv̂ and
u = (Q−1)T û, we get

uTv = ûTQ−1Qv̂ = (et)
Tet = 1,

as claimed. �

As before, the square roots of e12 span a proper subspace of Mn(C). Let A denote this
subspace and let us restrict attention to bijective linear maps acting on A.

Lemma 2.3. Let n ≥ 3 and A = 〈A ∈Mn(C) : A2 = e12〉. If n = 4, A has the form

A =


0 ∗ ∗ ∗
0 0 0 0
0 ∗ 0 0
0 ∗ 0 0

 .
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Otherwise, A has the form

A =



0 ∗ ∗ . . . ∗
0 0 0 . . . 0
0 ∗
0 ∗
...

... sln−2
0 ∗


.

Proof. The fact that e12 ∈ A is clear from the Lemma 2.1. Observe

A =

0 0 uT

0 0 0T

0 v 0

 ,

is a square root of e12 as long as uTv = 1, where u,v ∈ Cn−2. Let e1, e2, . . . , en−2 denote the
collection of standard basis vectors of Cn−2. Taking u = ej and v = ej for 1 ≤ j ≤ n− 2 yields
uTv = 1, which corresponds to the matrix A = e1j + ej2. Letting i denote the imaginary unit,
the pair u = i ej and v = −i ej also has uTv = 1 and corresponds to the matrix A = ie1j − iej2.
Taking linear combinations of the matrices e1j + ej2 and ie1j − iej2 shows that e1j , ej2 ∈ A for
j ≥ 3. The case when n = 3 is clear.

Let n = 4. Suppose

A =

0 0 uT

0 0 0T

0 v S


is a 4 × 4 square root of e12 with u,v ∈ C2 and S2 = 0. By Lemma 2.2, we must have S = 0.
Hence A = 〈e12, e13, e14, e32, e42〉.

Suppose n ≥ 5. Also by Lemma 2.2, for every rank-one square-zero matrix S ∈ sln−2 there
exist vectors u,v ∈ Cn−2 such that

A =

0 0 uT

0 0 0T

0 v S


is a square root of e12. Since A contains the matrix units e1j and ej2 for j ≥ 3, it follows that0 0 0T

0 0 0T

0 0 S

 ∈ A.
The rank-one square-zero matrices in the lower (n−2)× (n−2) block span a subspace of Mn(C)
isomorphic to sln−2, so A has the form as claimed. �

Let C = 〈e12, e13, . . . , e1n, e32, e42, . . . , en2〉 and, borrowing notation from Section 1, let Ln−2
denote the space of lower (n− 2)× (n− 2) block matrices in Mn(C). Since the size of the lower
block is fixed in this preserver problem, we drop the subscript and just refer to the lower block
as L. The previous lemma demonstrates that A = C for n = 3 and 4, and A = C ⊕ sl(L) for
n ≥ 5.
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Lemma 2.4. Let f : A → A be a bijective linear map such that f(A)2 = e12, whenever A2 = e12.
Then

(1) f(e12) ∈ 〈e12〉,
(2) f(C) ◦ f(S) = 0 whenever (C + S)2 = e12, with C ∈ C and S ∈ sl(L), and
(3) f(S)2 = 0 whenever S ∈ sl(L) is a square-zero matrix, except possibly if rk(S) = n−2

2 .

Proof. If A2 = e12, then A+ xe12 is a square root of e12 for all x ∈ C and

e12 = f(A+ xe12)
2 = f(A)2 + xf(e12) ◦ f(A) + x2f(e12)

2.

Using f(A)2 = e12 and the standard trick of varying over values of x, conclude that f(e12)
2 = 0

with f(e12) ∈ A, as well as f(e12) ◦ f(A) = 0. By linearity, it follows that f(e12) ◦ A = 0.
Writing

f(e12) =

0 ∗ uT

0 0 0T

0 v S

 ∈ A,
we get that if n = 3, 4, then S = 0, and if n ≥ 5, then S ◦ sln−2 = 0 implies S = 0. Using
e1j , ej2 ∈ A for j ≥ 3, we get that f(e12) ◦ e1j = f(e12) ◦ ej2 = 0 implies u = 0 and v = 0. Thus
f(e12) ∈ 〈e12〉.

By Lemma 2.1, every square root of e12 may be written as C + xS, where x ∈ C, subject to
the constraints C2 = e12, S

2 = 0, and C ◦S = 0. Then f(C)2 = e12 and f(C+xS)2 = e12 imply
that

xf(C) ◦ f(S) + x2f(S)2 = 0.

By the usual argument, it follows that f(C) ◦ f(S) = 0 and f(S)2 = 0. This proves (2).
By Lemma 2.2, one can always find a C ∈ C such that (C+xS)2 = e12 for all x ∈ C, provided

that rk(S) < n−2
2 . Hence (3) is proved as well. �

Lemma 2.4 demonstrates that f possesses some multiplicative structure. However, we can
find several maps that preserve the square roots of e12 that are not simply automorphisms or
antiautomorphisms. The first map exploits the special relationship between e12 and A.

Example 1. Suppose f : Mn(C) → Mn(C) be a bijective linear map such that f(A)2 = e12
whenever A2 = e12. Since e12A = Ae12 = 0, it follows that A 7→ f(A) + z(A)e12 also preserves
square roots of e12 whenever z : Mn(C)→ C is a linear functional.

One can also ask for a description on the quotient space A/〈e12〉. In fact, every bijective
linear map that preserves square roots of e12 restricts to a bijection on A/〈e12〉. This can be
seen as follows. Given such a preserver f , define ζ : A → A by A 7→ f(A) − g(A)e12, where
g : Mn(C) → C is linear, such that the (1, 2)-entry of ζ(A), denoted [ζ(A)]1,2, is zero for all
A ∈ A. Define

Â = {A ∈ A : [A]1,2 = 0} ∼= A/〈e12〉.

Clearly, ζ(Â) ⊆ Â by the definition of ζ. If A ∈ Â is such that ζ(A) = f(A) − g(A)e12 = 0,

then f(A) ∈ 〈e12〉. Since f(e12) ∈ 〈e12〉 by Lemma 2.4, it follows that A ∈ 〈e12〉 ∩ Â = 0. Hence

ker ζ|Â = 0 and ζ acts bijectively on Â.
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In fact the subspace sl(L) does not need to be mapped back into sl(L). Hence maps preserving
square roots of e12 do not necessarily preserve direct summands.

Example 2. Consider the linear map f : A → A defined by0 a uT

0 0 0T

0 v S

 7→
0 a uT

0 0 0T

0 v + s1 S

 ,

where s1 is the first column of S. The map f is bijective. Suppose A is a square root of e12.
Then uTv = 1, Sv = STu = 0 and S2 = 0. Then observe that

f(A)2 =

0 uTv + uT s1 (STu)T

0 0 0T

0 Sv + Ss1 S2

 =

0 1 + uT s1 0T

0 0 0T

0 0 0


and f preserves square roots of e12 because uT s1 is the first entry of the vector STu = 0.

Analogously, adding any row of S to uT yields a map that preserves the square roots of e12.
In fact, adding any fixed linear combination of the columns of S to v or the rows of S to uT

also yields such a map.
Note that sl(L) is not mapped to a multiple of a conjugate of sl(L). Indeed, suppose for

all X ∈ sl(L), f(X) = cUXU−1 for some invertible U ∈ Mn(C). Then cUeijU
−1 = eij for

i ≥ 3, j ≥ 3, and i 6= j. This implies that for all such pairs (i, j), the off-diagonal entries of U
in the ith column and jth row are zero. Hence U is a linear combination of the n × n identity
matrix, e12, and e21. But then cU sl(L)U−1 ⊆ sl(L) while f(sl(L)) 6⊆ sl(L), a contradiction.
The proof for X 7→ cUXTU−1 follows by similar reasoning. Hence f does not act as a standard
map on sl(L).

So maps preserving square roots of e12 can be very strange. Contrast this to the recent result
of Catalano and Chang-Lee [2], who found standard solutions for maps preserving products
equal to e12.

Every square-zero matrix S ∈ sl(L) satisfying rk(S) < n−2
2 is mapped to a square-zero matrix.

In principle, it may be that a square-zero matrix whose rank is exactly n−2
2 is not mapped to a

square-zero matrix. However, we claim that if rank-one and rank-two square-zero matrices of are
mapped to square-zero matrices, we can guarantee that all square-zero matrices are preserved.
The following is a simplified argument of results appearing in [10] and is of independent interest.

Proposition 2.5. Let n ≥ 4. If φ : sln → sln is a bijective linear map that sends rank-one and
rank-two square-zero matrices to square-zero matrices, then φ takes the form

(1) φ(X) = cUXU−1, or
(2) φ(X) = cUXTU−1,

where c ∈ C and U ∈Mn(C) is invertible.

Proof. Given a square-zero matrix S ∈ sln, one can conclude using a Jordan normal form
argument that there exist k = rk(S) orthogonal rank-one square-zero matrices S1, S2, . . . , Sk
such that

S = S1 + S2 + · · ·+ Sk.
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By hypothesis, φ(Si)
2 = 0 and φ(Si + Sj)

2 = φ(Si) ◦ φ(Sj) = 0 for all 1 ≤ i, j ≤ k. Hence

φ(S)2 = φ(S1 + S2 + · · ·+ Sk)2 = 0,

and so φ preserves all square-zero matrices. By [13], φ takes a standard form. �

Considering the examples above, there is little hope of obtaining a complete description of
bijective linear maps preserving square roots of e12. Despite this, observe that in each example,
the space C was preserved and the image of sl(L) completely contained sl(L). In fact these two
properties are equivalent, as the next theorem shows. Note that if n = 3 or n = 4, the theorem
trivially holds since A = C in both cases. We also discuss the case n = 6 in Remark 2.7.

Theorem 2.6. Let n ≥ 5 and n 6= 6. If f : A → A is a bijective linear map such that
f(A)2 = e12 whenever A2 = e12. Then f(C) = C if and only if f(sl(L))|sl(L) = sl(L). Moreover,
if either situation holds, then there is a bijective linear map φ : sl(L)→ sl(L) preserving square-
zero matrices that extends to f .

Proof. If f(C) = C, then f is bijective, and so f(sl(L))|sl(L) = sl(L). Conversely, assume
for a contradiction that f(sl(L))|sl(L) = sl(L) but f(C) 6= C. Using this and the fact that
f(e12) ∈ 〈e12〉 ⊆ C, there must be a j ≥ 3 so that A = e1j + ej2 or A = ie1j − iej2 satisfies
f(A)|sl(L) = R 6= 0. Since f(A)2 = e12, we get that R is a square-zero matrix. By hypothesis
there is a bijective linear map φ : sl(L) → sl(L) that extends to f ; that is, φ(X) = f(X)|sl(L)
for all X ∈ sl(L). If n = 5, then φ sends rank-one square-zero matrices to square-zero matrices.
Since every square-zero matrix in sl3 is rank-one, it follows that φ preserves square-zero matrices.
If n ≥ 7, then rank-one and rank-two square-zero matrices in sl(L) are mapped to square-zero
matrices, and so by Proposition 2.5, φ preserves square-zero matrices as well. So we have

φ(X) = cUXU−1 or φ(X) = cUXTU−1

for all X ∈ sl(L), where U ∈Mn−2(C) is invertible and c ∈ C\{0}.
By statement (2) of Lemma 2.4, we have that f(A) ◦ f(ekl) = 0 whenever j 6= k, l and

k, l ≥ 3 are distinct. Hence R ◦ f(ekl)|sl(L) = R ◦ φ(ekl) = R ◦ (cUeklU
−1) = 0. Equivalently,

U−1RU ◦ ekl = 0, and so the off-diagonal entries of U−1RU in the kth column and lth row are
zero. By varying k, l over all possible choices, we conclude that U−1RU is a diagonal square-zero
matrix. The only diagonal square-zero matrix is the zero matrix, and so R = 0, a contradiction.
Thus the assumption that f(C) 6= C is false, proving the converse. �

Remark 2.7. In the case n = 3 or n = 4, the equivalence is trivial since A = C in both
cases. In the case n = 6, the space sl(L4) contains only rank-one and rank-two square-zero
matrices; but the rank-two square-zero matrices have maximum rank in sl(L4). By Lemma
2.2, there is no matrix C ∈ C such that (C + S)2 = e12 when S ∈ sl(L4) and rk(S) = 2.
Hence it may be that f(S)2 6= 0, which explains the above exclusion. Note that a description
of bijective linear map sending rank-one square-zero matrices to square-zero matrices would be
a significant generalization of Šemrl’s result [13] (and by extension, Proposition 2.5) that would
find application in many preserver problems. In particular, if such maps turn out to be standard,
then there is no need to exclude n = 6 in Theorem 2.6 above.
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One can use a similar method as in Remark 1.8 to extend to the arbitrary rank-one nilpotent
cases. Let N,M ∈Mn(C) be rank-one nilpotents and f̂ : Mn(C)→Mn(C) be a bijective linear

map such that f̂(A)2 = N , whenever A2 = M . Then writing N = Ue12U
−1 and M = V e12V

−1

for some invertible U, V ∈ Mn(C), the map X 7→ U−1f̂(V XV −1)U is a bijective linear map
preserving the square roots of e12.

Based on the complicated structure of the square roots of e12 and the (nonstandard) maps
that preserve them, we believe that the characterization of maps preserving square roots of
arbitrary nilpotent matrices would also be quite challenging.
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