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Abstract

Let K be a Makar-Limanov algebraically closed skew field. In the first
part of this paper, we prove that the image of a generalized multilinear
polynomial, with coefficients in K, evaluated over Mm(K), is Mm(K).
In the second part, we show that any matrix in Mm(K) may be written
as the sum of three or fewer elements from the image of a generalized
polynomial, with coefficients in K, evaluated over Mm(K).
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1 Introduction

The celebrated L’vov-Kaplansky conjecture states that the set of values of
a multilinear polynomial evaluated on a matrix algebra over a field is a vector
space. So far, this statement has been proven only for the case of 2×2 matrices
[3]. Recently, this research area has been active, with many partial results pub-
lished. We refer the reader to the survey paper, [6], for an overview. Primarily,
research has been focused on matrices over fields. However, some researchers
have shown interest in the images of generalized polynomials on certain alge-
bras [1, 2]. Throughout this paper, let K be a Makar-Limanov algebraically
closed skew field [4], and Mm(K) be the ring of m ×m matrices over K. Let
X = {x1, x2, . . . } be an infinite set of noncommuting indeterminates. Let K{X}
be the free K-algebra in the indeterminates of X. Throughout the paper, we
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will refer to the elements of K{X} as generalized polynomials. We will study
the images of these generalized polynomials evaluated over Mm(K).

In [5], Rowen writes a generalized polynomial as

F (X1, . . . , Xn) =
∑

ri1Xi1ri2 . . . ritXitri,t+1,

where ri1, . . . , ri,t+1 ∈ K and Xi1 , . . . , Xit ∈ {X1, . . . , Xn}. For our purposes,
we wish to be more explicit concerning the indices of summation. So, we adjust
Rowen’s notation, and write a non-constant generalized polynomial as

F (X1, . . . , Xn) = b+

p∑
k=1

bk1Xk1bk2 . . . bk,qkXk(qk)
bk,qk+1,

where b ∈ K, bk1, . . . , bk,qk+1 ∈ K \ {0}, and Xk1 , . . . , Xk(qk)
∈ {X1, . . . , Xn}.

Note, qk denotes the degree of the k-th monomial of F (X1, . . . , Xn), and qk is
fixed for each 1 ≤ k ≤ p. Also, we define qk ≥ 1 for all 1 ≤ k ≤ p. Thus, p
determines the number of non-constant monomials of F (X1, . . . , Xn).

A generalized polynomial, F (X1, . . . , Xn), is called multilinear provided that
each term of the generalized polynomial is of exactly order one for every Xi.

Considering polynomials over K, the Makar-Limanov construction provides
an interesting property [4, Lemma 2]:

Remark 1.1. For a non-constant generalized polynomial, F (X1, . . . , Xn), with
coefficients in K, the image of F (X1, . . . , Xn) in K, F (K), is K.

Proof. Let F (X1, . . . , Xn) be a generalized polynomial with coefficients in K.
Since F (X1, . . . , Xn) is non-constant, by Lemma 2 from [4], there exist X1, . . . ,
Xn such that F (X1, . . . , Xn) 6= 0. Then there exists a variable Xi such that
F (X1, . . . , Xi−1, Xi, Xi+1, . . . , Xn) is a non-constant generalized polynomial in
one variable.

Let a be any element of K. Then, F (X1, . . . , Xi−1, Xi, Xi+1, . . . , Xn) − a
is also a non-constant generalized polynomial with coefficients in K. Since K is
algebraically closed, there exists a solution Xi to this polynomial. This holds
for all a ∈ K, so the image of any generalized polynomial, with coefficients in
K, is K.

Remark 1.1 implies that if F (X1, . . . , Xn) is a generalized polynomial with
coefficients inK and is non-constant evaluated overMm(K), then F (X1, . . . , Xn)
is non-constant evaluated over the scalar matrices of Mm(K).

This paper contains two main results. First, Theorem 2.2 shows that, for
a non-constant generalized multilinear polynomial, F (X1, . . . , Xn), with co-
efficients in K, F (Mm(K)) = Mm(K). Second, Theorem 3.7 states that if
F (X1, . . . , Xn) is a non-constant generalized polynomial with coefficients in K,
then every D ∈Mm(K) is the sum of three or fewer elements of F (Mm(K)).

2



2 Generalized Multilinear Polynomials over K

In this section, we will show that for any non-constant generalized multilinear
polynomial, F (X1, . . . , Xn), with coefficients in K, F (Mm(K)) = Mm(K). We
will first prove this result for generalized multilinear polynomials in one variable.
Note that if F (X) is a generalized multilinear polynomial in one variable, it will
have the form F (X) =

∑p
k=1 akXbk, where ak, bk ∈ K, and p ∈ N.

Lemma 2.1. Let F (X) be a non-constant generalized multilinear polynomial
with coefficients in K. Then, for any matrix D ∈Mm(K), there exists a matrix
X ∈Mm(K) such that F (X) = D.

Proof. Let F (X) =
∑p
k=1 akXbk be a non-constant generalized multilinear

polynomial, and letD ∈Mm(K). We will show that there exists anX ∈Mm(K)
such that F (X) = D. Note that

p∑
k=1

akXbk =

p∑
k=1

ak

x11 . . . x1m

...
. . .

...
xm1 . . . xmm

 bk
=


∑p
k=1 akx11bk . . .

∑p
k=1 akx1mbk

...
. . .

...∑p
k=1 akxm1bk . . .

∑p
k=1 akxmmbk

 .
We will find a solution for the system of equations given by

dij =

p∑
k=1

akxijbk,

for all 1 ≤ i, j ≤ m. By Remark 1.1, we know that each equation has a solution,
xij ∈ K. As each variable, xij , only appears in one equation, we can construct
X to have ij-th entry xij . Thus, for any D ∈Mm(K), we have found a matrix
X ∈Mm(K) such that F (X) = D.

Now we will consider a non-constant generalized multilinear polynomial in
n variables, F (X1, . . . , Xn).

Theorem 2.2. Let F (X1, . . . , Xn) be a non-constant generalized multilinear
polynomial with coefficients in K. Then, for any matrix D ∈ Mm(K), there
exist matrices X1, . . . , Xn ∈Mm(K) such that F (X1, . . . , Xn) = D.

Proof. Let F (X1, . . . , Xn) be a non-constant generalized multilinear polynomial,
and let D ∈Mm(K). By Remark 1.1, we know that for any d ∈ K, there exist
x1, . . . , xn ∈ K such that F (x1I, . . . , xnI) = dI. Set Xj = xjI for 1 ≤ j <
n. Therefore, F (X1, . . . , Xn−1, Xn) is a non-constant generalized multilinear
polynomial in one variable evaluated over Mm(K). So, by Lemma 2.1, there
exists Xn ∈Mm(K) such that F (X1, . . . , Xn−1, Xn) = D.

Thus, the L’vov-Kaplansky conjecture holds if we replace the infinite field
with a Makar-Limanov algebraically closed skew field.
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3 Generalized Polynomials over K

In general, the images of (not necessarily multilinear) generalized polynomi-
als evaluated over matrices are more difficult to describe than the multilinear
case. We will prove that F (Mm(K)) 6= Mm(K) for some non-constant general-
ized polynomial, F (X1, . . . , Xn), with coefficients in K, but spanF (Mm(K)) =
Mm(K) for all such polynomials. The following lemmas will be useful in proving
these results.

Lemma 3.1. Let F (X1, . . . , Xn) be a non-constant generalized polynomial with
coefficients in K. Then, there exists an Xi ∈ {X1, . . . , Xn} such that for some
x1, . . . , xi−1, xi+1, . . . , xn ∈ K, F (x1I, . . . , xi−1I,Xi, xi+1I, . . . , xnI) is a non-
constant generalized polynomial in one variable with coefficients in K, evaluated
over Mm(K).

Proof. Let F (X1, . . . , Xn) be a non-constant generalized polynomial with coef-
ficients in K evaluated over Mm(K). By Remark 1.1, F (X1, . . . , Xn) is non-
constant as a function on Kn. Hence, there exist Xi and x1, . . . , xi−1, xi+1, . . . ,
xn ∈ K such that F (x1I, . . . , xi−1I,Xi, xi+1I, . . . , xnI) is a non-constant gener-
alized polynomial in one variable with coefficients in K, evaluated over Mm(K).

Hence, for ease of matrix computation, many of our proofs will reduce a
given polynomial in n variables to a non-constant generalized polynomial in one
variable. These polynomials will be of the form:

G(X) = a+

p∑
k=1

ak1Xak2 . . . ak,zkXak,zk+1,

where a ∈ K, ak1, . . . , ak,zk+1 ∈ K \ {0}, and zk, p ≥ 1.

In the next lemma, we learn that, for any system of nonzero generalized
polynomials in n variables over K, there exists a solution in Kn that ensures
each polynomial is nonzero.

Lemma 3.2. For h ≥ 1, let {H1(x1, . . . , xn), . . . ,Hh(x1, . . . , xn)} be a set of
h nonzero generalized polynomials with coefficients in K. Note, Hi(x1, . . . , xn)
may be trivially dependent on any xj, for 1 ≤ i ≤ h and 1 ≤ j ≤ n. Then, there
exist x1, . . . , xn ∈ K such that Hi(x1, . . . , xn) 6= 0 for all 1 ≤ i ≤ h.

Proof. Given that all Hi(x1, . . . , xn) are nonzero,

H(x1, . . . , xn) := H1(x1, . . . , xn) · · ·Hh(x1, . . . , xn)

is a nonzero polynomial. Therefore, by Remark 1.1, there exist x1, . . . , xn ∈ K
such that H(x1, . . . , xn) 6= 0. Thus, it must be the case that Hi(x1, . . . , xn) 6= 0
for all 1 ≤ i ≤ h.
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We will now turn our attention to the image of any non-constant generalized
polynomial, F (X1, . . . , Xn). First, we will show that all diagonal matrices are
in F (Mm(K)).

Theorem 3.3. Let Dm(K) ⊆ Mm(K) be the set of diagonal matrices, and let
F (X1, . . . , Xn) be a non-constant generalized polynomial with coefficients in K.
Then, Dm(K) ⊆ F (Mm(K)).

Proof. By Lemma 3.1, we know there exists a set, x1, . . . , xi−1, xi+1, . . . , xn ∈
K, such that G(Xi) = F (x1I, . . . , xi−1I,Xi, xi+1I, . . . , xnI) is a non-constant
generalized polynomial with coefficients in K. Thus, if Dm(K) ⊆ G(Mm(K)),
then Dm(K) ⊆ F (Mm(K)). Set Xi = X. So,

G(X) = a+

p∑
k=1

ak1Xak2 . . . ak,zkXak,zk+1,

where a ∈ K, ak1, . . . , ak,zk+1 ∈ K \ {0}, and zk, p ≥ 1.
Let G(X) = B for some X ∈ Dm(K). Then, B ∈ Dm(K), where

bii = a+

p∑
k=1

ak1xiiak2 . . . ak,zkxiiak,zk+1

for 1 ≤ i ≤ m. As each bii is the output of a nonzero polynomial, by Remark
1.1, we know, for any dii ∈ K, there exists a xii ∈ K such that bii = dii. Thus,
for any D ∈ Dm(K), there exists an X ∈ Dm(K) such that F (X) = D.

Next, we will further describe the image of any non-constant generalized
polynomial, F (X1, . . . , Xn), with coefficients in K, by showing the diagonal
matrices are not the only upper triangular matrices contained in F (Mm(K)).
First, we will build some notation. Let T ∈ Mm(K) be upper triangular. For
nonzero ci ∈ K, rename

c1Tc2 . . . czTcz+1 = W (z)(T ),

and let w
(z)
ij be the ij-th entry of W (z)(T ). Recall that the product of upper tri-

angular matrices is itself upper triangular, so for all i > j, w
(z)
ij = 0. Therefore,

we will focus on the entries where i ≤ j.
Through matrix multiplication, we see that w

(z)
ij is a polynomial in the set

of variables, Vij := {tµγ : i ≤ µ, γ ≤ j}.
Notice that we can rewrite a non-constant generalized polynomial, G(T ),

with coefficients in K, as

G(T ) = a+

p∑
k=1

ak1Tak2 . . . ak,zkTak,zk+1 = a+

p∑
k=1

W (zk,k)(T ).

As seen in the duple of the superscript, W (zk,k) is now indexed by k to denote
the specific set of nonzero constants {ak1, . . . , ak,zk+1} in the term W (zk,k) =
ak1Tak2 . . . ak,zkTak,zk+1.
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If B = G(T ), we have bij = a +
∑p
k=1 w

(zk,k)
ij . Let uij be the sum of the

terms of a+
∑p
k=1 w

(zk,k)
ij that are non-trivially dependent on tij . Recall, that

zk ≥ 1. Given the properties of matrix multiplication, for i < j, each uij is of
the form:

uij =

p∑
k=1

zk∑
s=1

ak1tiiak2 . . . ak,s−1tiiak,stijak,s+1tjjak,s+2 . . . ak,zktjjak,zk+1.

Thus, we can denote uij as a polynomial of {tii, tij , tjj}, uij(tii, tij , tjj).
In the following lemma, we will show that each uij is a nonzero polynomial.

This implies that a+
∑p
k=1 w

(zk,k)
ij is non-trivially a polynomial in tij .

Lemma 3.4. Let G(T ) be a non-constant generalized polynomial evaluated over
upper triangular T ∈ Mm(K), with coefficients in K. For i < j, each uij,
defined above, is a nonzero polynomial evaluated over K.

Proof. First, we will partition the terms of G(T ) based on the degree of T . For
all terms of G(T ), let ak1Tak2 . . . ak,zkTak,zk+1 ∈ ΩTv provided that v = zk.

Let T be an upper triangular matrix with the ij-th entry equal to t for i ≤ j.
Then,

uij(t, t, t) =

p∑
k=1

zk∑
s=1

ak1tak2 . . . ak,s−1tak,stak,s+1tak,s+2 . . . ak,zktak,zk+1

=

p∑
k=1

zkak1tak2 . . . ak,zktak,zk+1.

Let us partition the terms of uij(t, t, t) based on degree of t. For all terms of
uij(t, t, t), let zkak1tak2 . . . ak,zktak,zk+1 ∈ ωTv provided that v = zk. For the sake
of contradiction, assume uij(t, t, t) = 0 for some pair i, j with 1 ≤ i < j ≤ m.
Then

∑
y∈ωT

v
y = 0 for all v ∈ N. Note, for all y ∈ ωTv ,

y = zk(ak1tak2 . . . ak,zktak,zk+1).

Let us consider any scalar matrix, aI, where a ∈ K \ {0}. Then, there
exists an upper triangular matrix, A, such that its ij-th entry is equal to a for
i ≤ j. Thus, by above, ωAv = vΩaIv and

∑
y∈ωA

v
y = 0. Therefore, as K is of

characteristic zero [4],
∑
x∈ΩaI

v
x = 0 for all v ∈ N and a ∈ K. So, G(T ) is a

constant polynomial evaluated over scalar matrices, a contradiction by Remark
1.1.

Thus, uij is nonzero for i < j.

Now, we are ready to show that the image of any non-constant generalized
polynomial, with coefficients in K, contains some non-diagonal upper triangular
matrices in Mm(K).
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Theorem 3.5. Let F (X1, . . . , Xn) be a non-constant generalized polynomial
with coefficients in K, and let D ∈Mm(K). Then, there exist upper triangular
matrices T 1, . . . , Tn ∈ Mm(K) such that F (T 1, . . . , Tn) = B, where bij = dij
for i < j.

Proof. By Lemma 3.1, we know there exists a set, x1, . . . , xi−1, xi+1, . . . , xn ∈
K, such that G(Xi) = F (x1I, . . . , xi−1I,Xi, xi+1I, . . . , xnI) is a non-constant
generalized polynomial with coefficients in K. Thus, if for any D ∈ Mm(K),
there exists an upper triangular T ∈ G(Mm(K)) such that dij = tij for all i < j,
then T ∈ F (Mm(K)), as well.

So, for an upper triangular T ∈Mm(K), consider

G(T ) = a+

p∑
k=1

ak1Tak2 . . . ak,zkTak,zk+1 = a+

p∑
k=1

W (zk,k)(T ).

If G(T ) = B, then bij = a+
∑p
k=1 w

(zk,k)
ij is dependent on the set of variables

Vij = {tµγ : i ≤ µ, γ ≤ j}. Also, by Lemma 3.4, bij is non-trivially dependent
on tij .

Now, we will prove by construction that for any D ∈ Mm(K), there exists
an upper triangular matrix, T , such that G(T ) = B, where bij = dij for i < j.
To accomplish this, we will index the diagonals of a matrix, X ∈Mm(K), such
that σc(X) := {xrs : s− r = c} where −(m− 1) ≤ c ≤ m− 1. Therefore, σ0(X)
is the main diagonal, σ1(X) is the superdiagonal, and so on.

We will use strong induction on c to show there exists T c such that G(T c) =
B, where B and D agree on every entry of the diagonals 1 through c for all
1 ≤ c ≤ m− 1.

Recall uij(tii, tij , tjj) is the sum of the terms in bij that are dependent on
tij . From Lemma 3.4, we know that uij(tii, tij , tjj) is nonzero, so Lemma 3.2
ensures there is a set Y0 := {thh ∈ K : 1 ≤ h ≤ m}, such that uij(tii, tij , tjj) is
non-constant over tij for all i < j.

Consider our base case c = 1. We will construct a T 1 such that G(T 1) = B,
where bij = dij for j = i+ 1. First, set the hh-th entry of T 1 equal to thh ∈ Y0

for all 1 ≤ h ≤ m. We know for j = i+ 1,

bij =

p∑
k=1

zk∑
s=1

ak1tiiak2 . . . ak,s−1tiiak,stijak,s+1tjjak,s+2 . . . ak,zktjjak,zk+1.

Thus, bij = uij(tii, tij , tjj). Since uij(tii, tij , tjj) is a non-constant polynomial
in K, uij(tii, tij , tjj) = dij has a solution, by Remark 1.1. Denote this solution
tij , and set the ij-th entry of T 1 to tij . As tij /∈ Vµγ for any tµγ ∈ σ1(T ) \ {tij},
we can fix tij ∈ σ1(T ) such that G(T 1) = B, and bij = dij for bij ∈ σ1(B).
Thus, our base case holds.

Now, assume the induction hypothesis: for some 1 ≤ q < m − 1, there
exists T q such that G(T q) = B, where bij = dij for all bij ∈ σc(B) such that

7



1 ≤ c ≤ q < m − 1. Recall bij ∈ σc(B) is dependent only on the variables
v ∈ Vij . Thus, there exists a set of fixed entries of T q, Yq = {tij : 0 ≤ j− i ≤ q},
such that bij = dij for all bij where 1 ≤ j − i ≤ q.

Consider the q+1 case. Let us construct T q+1. By the inductive hypothesis,
for 0 ≤ γ − µ ≤ q, we can set the µγ-th element of T q+1 to tµγ ∈ Yq. Thus, if
G(T q+1) = B, then bµγ = dµγ for 1 ≤ γ − µ ≤ q.

By our choice of tii and tjj , bij is non-trivially dependent on tij . Therefore,
for the fixed set {tµγ : tµγ ∈ Vij \ {tij}} ⊆ Yq, there exists a tij ∈ K such that
bij = dij for j − i = q + 1. Recall, if tij , tµγ ∈ σq+1(T ) and tµγ ∈ Vij , then
tµγ = tij . So, we can find a T q+1 such that G(T q+1) = B, and bij = dij for
1 ≤ j − i ≤ q + 1. Thus, for any D ∈ Mm(K), there exists a B ∈ G(Mm(K))
such that B is upper triangular, and dij = bij for all i < j.

Therefore, for any D ∈Mm(K), there exists a B ∈ F (Mm(K)) such that B
is upper triangular, and dij = bij for all i < j.

The above argument also holds if we consider T 1, . . . , Tn ∈ Mm(K) to be
lower triangular matrices.

Corollary 3.6. Let F (X1, . . . , Xn) be a non-constant generalized polynomial
with coefficients in K, and let D ∈Mm(K). Then, there exist lower triangular
matrices T 1, . . . , Tn ∈ Mm(K), such that F (T 1, . . . , Tn) = B where bij = dij
for i > j.

Theorem 3.3, Theorem 3.5, and Corollary 3.6 all discuss types of matrices
that are in the image of a non-constant generalized polynomial, F (X1, . . . , Xn),
with coefficients in K. One might wonder if F (Mm(K)) = Mm(K). The
following example shows that this is not the case. Consider the polynomial
F (X) = X2. Suppose there exists X ∈M2(K) such that

(X)2 =

[
0 1
0 0

]
,which implies (X)4 =

[
0 0
0 0

]
.

Therefore, X is nilpotent with index greater than 2, a contradiction since the
nilpotency index of an m×m matrix is at most m. Thus, we know F (Mm(K)) 6=
Mm(K) for some non-constant generalized polynomial, F (X1, . . . , Xn).

With this in mind, Theorem 3.7 will prove that

spanF (Mm(K)) = Mm(K)

for any non-constant generalized polynomial, F (X1, . . . , Xn), with coefficients
in K. More specifically, we will show that any D ∈ Mm(K) can be written as
the sum of three or fewer elements of F (Mm(K)).

Theorem 3.7. Let F (X1, . . . , Xn) be a non-constant generalized polynomial
with coefficients in K. Then, every D ∈ Mm(K) is the sum of three or fewer
elements in F (Mm(K)).

Proof. Let us consider an arbitrary D ∈Mm(K). By Theorem 3.5 and Corollary
3.6, there exist B,C ∈ F (Mm(K)) such that B is an upper triangular matrix
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where bij = dij for 1 ≤ i < j ≤ m, and C is a lower triangular matrix where
cij = dij for 1 ≤ j < i ≤ m. By Theorem 3.3, there exists a diagonal matrix,
A ∈ F (Mm(K)), such that aii = dii − (bii + cii) for all 1 ≤ i ≤ m. Therefore,
by construction, D = A+B +C. So, every D ∈Mm(K) is the sum of three or
fewer elements in F (Mm(K)).

It may be possible to reduce the number of elements in F (Mm(K)) needed
to sum to any D ∈Mm(K) from three to two. We conclude this paper with the
following question:

Question. Let F (X1, . . . , Xn) be a non-constant generalized polynomial with
coefficients in K. Is it possible to write any D ∈ Mm(K) as a sum of two or
fewer elements from F (Mm(K))?
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