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Abstract. We study iterated differential polynomial rings over
a locally nilpotent ring and show that a large class of such rings
are Behrens radical. This extends results of Chebotar and Chen,
Hagan, and Wang.

1. Introduction

Let R be a ring. An additive map d : R → R that satisfies Leibniz’s
rule is called a derivation of R. For a derivation d, the differential
polynomial ring R[X; d] is given by all polynomials of form anX

n +
· · ·+ a1X + a0 with n ≥ 0 and a0, . . . , an ∈ R. Multiplication is given
by Xa = aX + d(a) for all a ∈ R and extending via associativity and
linearity.

Recall that a ring is called Brown-McCoy radical if it cannot be
mapped onto a simple ring with identity. Similarly, a ring is called
Behrens radical if it cannot be mapped onto a ring with a non-zero
idempotent.

In 1972, Krempa [8] showed that the Köthe conjecture is equivalent
to the statement that every polynomial ring over a nil ring is Jacobson
radical. The problem remains open, but this equivalent formulation
motivated the investigation of parallel questions for more general rad-
ical classes. For example, Puczylowski and Smoktunowicz [10] proved
in 1998 that a polynomial ring over a nil ring is Brown-McCoy radical.
This result was strengthened in 2001 by Beidar, Fong, and Puczy-
lowski [1], who proved that a polynomial ring over a nil ring is Behrens
radical. The corresponding questions for multivariate polynomial rings
were open until recently. Then, in 2018, Chebotar, Ke, Lee, and Puczy-
lowski [4] employed techniques from convex geometry to prove that a
multivariate polynomial ring over a nil ring is Brown-McCoy radical.
It is still unknown whether such a ring need be Behrens radical.

2010 Mathematics Subject Classification. 16N40.
Key words and phrases. Behrens radical; differential polynomial ring; locally

nilpotent ring.
1



ITERATED DIFFERENTIAL POLYNOMIAL RINGS 2

After restricting the class of base rings from nil rings to locally nilpo-
tent rings, one can formulate analogous questions for differential poly-
nomial rings. At a 2011 conference in Coimbra, Portugal, Shestakov
asked whether a differential polynomial ring over a locally nilpotent
ring is necessarily Jacobson radical. This can in some sense be viewed
as the analog of the Köthe conjecture for differential polynomial rings.
Curiously, this statement turned out to be false; a 2014 result of Smok-
tunowicz and Ziembowski [12] yields a constructive counterexample.
Nonetheless, pursuing a similar line of investigation as in the non-
differential case, Greenfeld, Smoktunowicz, and Ziembowski [7] asked
whether a differential polynomial ring over a locally nilpotent must be
Behrens radical. This question was promptly resolved in the affirmative
by Chebotar [3] in 2018.

Extending the results of Chebotar in two different directions, Chen,
Hagan, and Wang [5] proved the following two theorems:

Theorem 1. [5, Theorem 1] Let d1, . . . , dp be derivations of a locally
nilpotent ring R. Let X1, . . . , Xp be commuting variables. Then the
differential polynomial ring R[X1, . . . , Xp; d1, . . . , dp] is Behrens radical.

Theorem 2. [5, Theorem 2] Let δ be a derivation of a locally nilpotent
ring R and let d be a derivation of R[X; δ] such that:

(i) d(R) ⊆ R,
(ii) d|R is locally nilpotent, and
(iii) dn(aX)−Xdn(a) ∈ R for all a ∈ R and positive integers n.
Then R[X; δ][Y ; d] is Behrens radical.

We remark that the proof of the latter theorem relies heavily on the
assumption that d|R is locally nilpotent.

We wish to expand upon this line of investigation. First we establish
a definition.

Definition 3. Let R be a ring. For all 1 ≤ i ≤ n, suppose that di is a
derivation of R[X1; d1] . . . [Xi−1; di−1]. We denote R[X1; d1] . . . [Xn; dn]
as R[X̄n, d̄n]. We call such a ring an iterated differential polynomial
ring over R.

If R is a ring without identity, let R∗ denote the ring given by ad-
joining an identity element to R.

In this paper, we will prove the following result:

Theorem 4. Suppose R[X̄n, d̄n] is an iterated differential polynomial
ring over a locally nilpotent ring R. Suppose that for all i each di can
be extended to a derivation on R∗[X1; d1] . . . [Xi−1, di−1] such that di
restricts to a derivation on R and further di(Xj) ∈ R∗ for all 0 < j < i.
Then R[X̄n, d̄n] is Behrens radical.
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We remark that one may view Theorem 4 as a unification of the
results in Theorems 1 and 2. If n = 1, we recover Chebotar’s original
theorem [3, Theorem 1]. If n is arbitrary and the derivations di are
taken to be trivial off of R, we recover Theorem 1. If we set n = 2, we
retrieve a strengthened version of Theorem 2; namely, hypothesis (ii)
has been removed and hypothesis (iii) has been weakened. In particu-
lar, the key ingredients used in the proof of [5, Theorem 2] are shown
to be unnecessary.

The results of this paper notwithstanding, there arises naturally the
following question:

Question 5. Let R be a locally nilpotent ring and R[X̄n, d̄n] an iterated
differential polynomial ring. Is R[X̄n, d̄n] Behrens radical?

2. Results

We first set notation. For elements a and b of a ring R, we define
[a, b]0 = a, [a, b]1 = [a, b] = ab− ba, and [a, b]k = [[a, b]k−1, b] for k > 1.
Given elements b1, . . . , bp ∈ R and non-negative integers k1, . . . , kp, we
denote by [a, b̄]k1,...,kp the expression [. . . [a, b1]k1 , . . . , bp]kp and denote

by b̄k1,...,kp the expression bk11 . . . b
kp
p .

Additionally, suppose that ci′1,...,i′r ∈ R for 0 ≤ i′q ≤ iq where 1 ≤ q ≤
r and the iq are non-negative integers. Then, we write

i1,...,ir∑
i′1,...,i

′
r=0

ci′1,...,i′r :=

i1∑
i′1=0

· · ·
ir∑

i′r=0

ci′1,...,i′r .

Alternatively, if i1 = · · · = ir = s, then we write

s∑
i′1,...,i

′
r

ci′1,...,i′r :=

s,...,s∑
i′1,...,i

′
r=0

ci′1,...,i′r =
s∑

i′1=0

· · ·
s∑

i′r=0

ci′1,...,i′r .

We will now establish some preliminary lemmata. Our first lemma
is an easy consequence of the Leibniz rule:

Lemma 6. Let a, b, c be elements of a ring R. For any non-negative
integer k, we have

[ab, c]k =
k∑

i=0

Di[a, c]i[b, c]k−i

for some Di ∈ Z. �

Other useful results include the following:
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Lemma 7. For elements a and b in a ring R and non-negative integers
r and s, we have

[ar, b]s =
s∑

w1,...,wr=0

Ew1,...,wr [a, b]w1 . . . [a, b]wr

for some Ew1,...,wr ∈ Z.

Proof. The cases r = 0 and r = 1 are trivial. The first nontrivial case
is Lemma 6. We induct on r. By applying Lemma 6, we can see that

[ar+1, b]s =
s∑

i=0

Di[a
r, b]i[a, b]s−i.

for some Di ∈ Z. Now we may apply the inductive hypothesis:

s∑
i=0

Di[a
r, b]i[a, b]s−i =

s∑
i=0

i∑
w1,...,wr=0

DiEw1,...,wr [a, b]w1 . . . [a, b]wr [a, b]s−i

=
s∑

w1,...,wr+1=0

Ew1,...,wr+1 [a, b]w1 . . . [a, b]wr+1 .

for some Di, Ew1,...,wr , Ew1,...,wr+1 ∈ Z. �

Lemma 8. For elements a1, . . . , an and b in a ring R and non-negative
integers i1, . . . , in and s, we have

[āi1,...,in , b]s =
s∑

w
(1)
1 ,...,w

(1)
i1

=0

· · ·
s∑

w
(n)
1 ,...,w

(n)
in

=0

E
(1)

w
(1)
1 ,...,w

(1)
i1

. . . E
(n)

w
(n)
1 ,...,w

(n)
in

[a1, b]w(1)
1
. . . [a1, b]w(1)

i1

. . . [an, b]w(n)
1
. . . [an, b]w(n)

in

for E
(j)

w
(j)
1 ,...w

(j)
ij

∈ Z for 1 ≤ j ≤ n.

Proof. Induct on n. The base step is Lemma 7. Applying Lemma 6,
observe that

[āi1,...,in+1 , b]s =
s∑

j=0

Dj[ā
i1,...,in , b]j[a

in+1

n+1 , b]s−j.

Then, applying the inductive hypothesis to [āi1,...,in , b]j and the basis

step to [a
in+1

n+1 , b]s−j, we are done. �
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We will also take advantage of [5, Lemma 4 and Lemma 5]. We recite
these here for completeness.

Lemma 9. [5, Lemma 4] Let e, x1, . . . , xp be elements of a ring R and
n1, . . . , np be non-negative integers. Then

ex̄n1,...,np =

n1∑
i1=0

· · ·
np∑

ip=0

(
n1

i1

)
. . .

(
np

ip

)
x̄i1,...,ip [e, x̄]n1−i1,...,np−ip .

�

Lemma 10. [5, Lemma 5] Let e, x1, . . . , xp be elements of a ring R
with e2 = e. Then for any non-negative integers k1, . . . , kp, we have

[e, x̄]k1,...,kp =

k1∑
i1=0

· · ·
kp∑

ip=0

ri1,...,ipe[e, x̄]i1,...,ip

for some ri1,...,ip ∈ R. �

An easy application of Lemma 9 and Lemma 10 yields the following
fact:

Lemma 11. Suppose e, x1, . . . , xn are elements of a ring. Then ex̄i1,...,in

can be written as a sum of terms each ending in e[e, x̄]k1,...,kn where
0 ≤ kj ≤ ij and 1 ≤ j ≤ n. �

Finally, the following two lemmata are the technical heart of the
proof of Theorem 4.

Let V be a K-vector space. Then, denote by EndK(V ) the K-algebra
of all linear transformation of V .

Lemma 12. Let N be a subalgebra of EndK(V ). Let a, x1, . . . , xn ∈
EndK(V ). Let i1, . . . , in, k be non-negative integers. First, define the
following sets:

(i) Let A be the set of all [a, xj]i for 1 ≤ j ≤ n and 0 ≤ i ≤ k.
(ii) Suppose that we can write any [x1, xj]w(1)

1
. . . [x1, xj]w(1)

i1

. . . [xn, xj]w(n)
in

in the form
∑i1,...,in

i′1,...,i
′
n=0 x̄

i′1,...,i
′
nbi′1,...,i′n for any 1 ≤ j ≤ n and for some

bi′1,...,i′n ∈ EndK(V ). Let B be the set of the bi′1,...,i′n that arise in this

way for 0 ≤ w
(t)
s ≤ k for all s, t.

(iii) Let C be the set of all elements of form βα where α ∈ A and
β ∈ B.

Suppose that C ⊆ N . Then [x̄i1,...,ina, xj]k can be written in the form

i1,...,in∑
i′1,...,i

′
n=0

x̄i
′
1,...,i

′
nci′1,...,i′n
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for some ci′1,...,i′n ∈ N for all 1 ≤ j ≤ n.

Proof. By applying Lemma 6 and 8, we obtain

[x̄i1,...,ina, xj]k =
k∑

i=0

Di[x̄
i1,...,in , xj]i[a, xj]k−i

=
k∑

i=0

i∑
w

(1)
1 ,...,w

(1)
i1

=0

· · ·
i∑

w
(n)
1 ,...,w

(n)
in

=0

DiE
(1)

w
(1)
1 ,...,w

(1)
i1

. . . E
(n)

w
(n)
1 ,...,w

(n)
in

[x1, xj]w(1)
1
. . . [x1, xj]w(1)

i1

. . . [xn, xj]w(n)
in

[a, xj]k−i.

for some Di, E
(1)

w
(1)
1 ,...,w

(1)
i1

. . . E
(n)

w
(n)
1 ,...,w

(n)
in

∈ Z.

A single term of this sum is of form

DiE
(1)

w
(1)
1 ,...,w

(1)
i1

. . . E
(n)

w
(n)
1 ,...,w

(n)
in

[x1, xj]w(1)
1
. . . [x1, xj]w(1)

i1

. . . [xn, xj]w(n)
in

[a, xj]k−i

=

i1,...,in∑
i′1,...,i

′
n=0

DiE
(1)

w
(1)
1 ,...,w

(1)
i1

. . . E
(n)

w
(n)
1 ,...,w

(n)
in

x̄i
′
1,...,i

′
nbi′1,...,i′n [a, xj]k−i

=

i1,...,in∑
i′1,...,i

′
n=0

DiE
(1)

w
(1)
1 ,...,w

(1)
i1

. . . E
(n)

w
(n)
1 ,...,w

(n)
in

x̄i
′
1,...,i

′
nci′1,...,i′n .

for some bi′1,...,i′n ∈ B and some ci′1,...,i′n ∈ C ⊆ N . Since for any c ∈ N ,
we have that zc ∈ N for all z ∈ Z, this concludes. �

Lemma 13. Let N be a locally nilpotent subalgebra of EndK(V ). Let
ai1,...,in , x1, . . . , xn ∈ EndK(V ). Suppose e =

∑m1,...,mn

i1,...,in=0 x̄
i1,...,inai1,...,in is

an idempotent. Define the following sets:
(i) Consider the set of all [ai1,...,in , xj]i for all 1 ≤ j ≤ n, 0 ≤ i ≤

maxs{ms}, and 0 ≤ ir ≤ mr. Call this set A1. For any ai1,...,in, suppose

that we may write [x̄i1,...,inai1,...,in , x1]k1 as
∑i1,...,in

i′1,...,i
′
n=0 x̄

i′1,...,i
′
nci′1,...,i′n for

some ci′1,...,i′n ∈ N for all 0 ≤ k1 ≤ m1. Let the set of all [ci′1,...i′n , xj]i for
all 1 ≤ j ≤ n, 0 ≤ i ≤ maxs{ms}, and 0 ≤ i′r ≤ mr be called A2. In
this way, inductively define A1, . . . , An. Let A =

⋃n
i=0Ai.

(ii) Suppose that any [x1, xj]w(1)
1
· · · [x1, xj]w(n)

i1

· · · [xn, xj]w(n)
in

can be

written in the form
∑i1,...,in

i′1,...,i
′
n=0 x̄

i′1,...,i
′
nbi′1,...,i′n for 1 ≤ j ≤ n and for

some bi′1,...,i′n ∈ EndK(V ). Let B be the set of the bi′1,...,i′n that arise in

this way for 0 ≤ w
(t)
s ≤ maxj{mj} for all s, t.
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(iii) Let C be the set of all elements of form βα where α ∈ A and
β ∈ B.

Suppose C ⊆ N . Then e = 0.

Proof. First, we remark that by Lemma 12, our assumption (i) is a
valid hypothesis. Let S be the subalgebra of N generated by C. Then
S is nilpotent, so there exists subspaces 0 = V0 ⊆ V1 ⊆ · · · ⊆ Vh = V
such that S(Vi) = Vi−1. We claim that for any 0 ≤ l ≤ h we have
e[e, x̄]k1,...,kn(Vl) = 0 for all 0 ≤ kj ≤ mj and 1 ≤ j ≤ n.

We induct on l. When l = 0, the statement is clear. Before proceed-
ing with the induction, we make the following intermediary assertion:

Claim. The element [e, x̄]k1,...,kn can be written in the form

m1,...,mn∑
i1,...,in=0

x̄i1,...,inci1,...,in

for some ci1,...,in ∈ S.

Proof. For this claim, we perform a nested induction on n. When
n = 1, we have

[e, x1]k1 =

m1,...,mn∑
i1,...,in=0

[x̄i1,...,inai1,...,in , x1]k1 .

By condition (i) and the fact that C generates S, this concludes the
basis. For the inductive step, observe that

[e, x̄]k1,...,kn =

m1,...,mn∑
i1,...,in=0

[[x̄i1,...,inai1,...,in , x̄]k1,...,kn−1 , xn]kn .

Applying the inductive hypothesis, this is

m1,...,mn∑
i1,...,in=0

i1,...,in∑
i′1,...,i

′
n=0

[x̄i
′
1,...,i

′
nci′1,...,i′n , xn]kn .

for some ci′1,...,i′n ∈ S. Applying condition (i) to [x̄i
′
1,...,i

′
nci′1,...,i′n , xn]kn ,

this proves our intermediary claim. �
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Now we proceed with the outer induction. Let v ∈ Vl. Then

e[e, x̄]k1,...,kn(v) =

m1,...,mn∑
i1,...,in=0

ex̄i1,...,inci1,...,in(v)

=

m1,...,mn∑
i1,...,in=0

ex̄i1,...,in(ui1,...in)

for ui1,...in ∈ Vl−1. By Lemma 11 and the inductive hypothesis, we are
done. �

Proof of Theorem 4. We follow the approach of [3] and [5]. Suppose
R[X̄n, d̄n] as in the theorem is Behrens radical. Then there exists a sur-
jective homomorphism ϕ from R[X̄n, d̄n] onto a subdirectly irreducible
ring A such that there is a nonzero idempotent in the heart of A. Note
that A must be a prime ring whose extended centroid K is a field. Let
Q be the Martindale right ring of quotients of A.

Let xi : A → A be maps given by xi(ϕ(t)) := ϕ(Xit) for all t ∈
R[X̄n, d̄n] where 1 ≤ i ≤ n. We claim that the xi are well-defined.
Suppose ϕ(t) = 0 and ϕ(Xit) 6= 0. Since A is prime, there must be
t′ ∈ R[X̄n, d̄n] such that ϕ(t′)ϕ(Xit) 6= 0. We also have

ϕ(t′)ϕ(Xit) = ϕ(t′Xit)

= ϕ(t′Xi)ϕ(t)

= 0,

which is a contradiction. Note that the xi are endomorphisms of right
A-modules, so all xi are in Q. Let the subring of Q generated by A and
the xi be denoted A′. Let R′ be the subring of R∗[X̄n, d̄n] generated
by R[X̄n, d̄n] and Xj

i for all 1 ≤ i ≤ n and all 0 ≤ j. Let ψ : R′ → A′

be an additive map such that ψ(Xj
i ) = xji and ψ(t) = ϕ(t) for all

t ∈ R[X̄n, d̄n]. Note that ψ is a homomorphism extending ϕ. We can
write a nonzero idempotent e ∈ A ⊆ A′ as

e = ϕ

(
m1∑
i1=0

· · ·
mn∑
in=0

X i1
1 . . . X

in
n ri1,...,in

)

= ψ

(
m1∑
i1=0

· · ·
mn∑
in=0

X i1
1 . . . X

in
n ri1,...,in

)

=

m1∑
i1=0

· · ·
mn∑
in=0

x̄i1,...,inai1,...,in



ITERATED DIFFERENTIAL POLYNOMIAL RINGS 9

where the mj are non-negative integers, ri1,...,in ∈ R, and ψ(ri1,...in) =
ai1,...,in . Let D be the subring of A′ generated by all xi and all ai1,...,in .
Let B = D ∩ ψ(R). Note that B and the subalgebra BK of Q are
locally nilpotent. The subalgebra DK of A′K is finitely generated, so
it can embedded into EndK(V ) for some K-vector space V . Then we
can assume that xi ∈ EndK(V ). Finally, we have that N = BK is
locally nilpotent and e =

∑m1

i1=0 · · ·
∑mn

in=0 x̄
i1,...,inai1,...,in is a nonzero

idempotent. Applying Lemma 13, we have a contradiction. �
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