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ABSTRACT. We study iterated differential polynomial rings over
a locally nilpotent ring and show that a large class of such rings
are Behrens radical. This extends results of Chebotar and Chen,
Hagan, and Wang.

1. INTRODUCTION

Let R be a ring. An additive map d : R — R that satisfies Leibniz’s
rule is called a derivation of R. For a derivation d, the differential
polynomial ring R[X;d] is given by all polynomials of form a,X™ +
<o+ a1 X + ag with n > 0 and ay, ..., a, € R. Multiplication is given
by Xa = aX + d(a) for all a € R and extending via associativity and
linearity.

Recall that a ring is called Brown-McCoy radical if it cannot be
mapped onto a simple ring with identity. Similarly, a ring is called
Behrens radical if it cannot be mapped onto a ring with a non-zero
idempotent.

In 1972, Krempa [8] showed that the Kothe conjecture is equivalent
to the statement that every polynomial ring over a nil ring is Jacobson
radical. The problem remains open, but this equivalent formulation
motivated the investigation of parallel questions for more general rad-
ical classes. For example, Puczylowski and Smoktunowicz [10] proved
in 1998 that a polynomial ring over a nil ring is Brown-McCoy radical.
This result was strengthened in 2001 by Beidar, Fong, and Puczy-
lowski [1], who proved that a polynomial ring over a nil ring is Behrens
radical. The corresponding questions for multivariate polynomial rings
were open until recently. Then, in 2018, Chebotar, Ke, Lee, and Puczy-
lowski [4] employed techniques from convex geometry to prove that a
multivariate polynomial ring over a nil ring is Brown-McCoy radical.
It is still unknown whether such a ring need be Behrens radical.
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After restricting the class of base rings from nil rings to locally nilpo-
tent rings, one can formulate analogous questions for differential poly-
nomial rings. At a 2011 conference in Coimbra, Portugal, Shestakov
asked whether a differential polynomial ring over a locally nilpotent
ring is necessarily Jacobson radical. This can in some sense be viewed
as the analog of the Kothe conjecture for differential polynomial rings.
Curiously, this statement turned out to be false; a 2014 result of Smok-
tunowicz and Ziembowski [12] yields a constructive counterexample.
Nonetheless, pursuing a similar line of investigation as in the non-
differential case, Greenfeld, Smoktunowicz, and Ziembowski [7] asked
whether a differential polynomial ring over a locally nilpotent must be
Behrens radical. This question was promptly resolved in the affirmative
by Chebotar [3] in 2018.

Extending the results of Chebotar in two different directions, Chen,
Hagan, and Wang [5] proved the following two theorems:

Theorem 1. [5, Theorem 1| Let dy,...,d, be derivations of a locally
nilpotent ring R. Let X,,...,X, be commuting variables. Then the
differential polynomial ring R[ X1, ..., X,;dy, ..., d,| is Behrens radical.

Theorem 2. [5, Theorem 2| Let 6 be a derivation of a locally nilpotent
ring R and let d be a derivation of R[X; 4] such that:
(i) d(R) C R,
(i1) d| g is locally nilpotent, and
(i7i) d"(aX) — Xd"(a) € R for all a € R and positive integers n.
Then R[X;0][Y;d] is Behrens radical.

We remark that the proof of the latter theorem relies heavily on the
assumption that d|g is locally nilpotent.

We wish to expand upon this line of investigation. First we establish
a definition.

Definition 3. Let R be a ring. For all 1 <17 < n, suppose that d; is a
derivation of R[Xy;dy]...[X;-1;d;—1]. We denote R[X1;d4]...[Xn;d,)
as R[X,,d,]. We call such a ring an iterated differential polynomial
ring over R.

If R is a ring without identity, let R* denote the ring given by ad-
joining an identity element to R.
In this paper, we will prove the following result:

Theorem 4. Suppose R[X,,d,] is an iterated differential polynomial
ring over a locally nilpotent ring R. Suppose that for all i each d; can
be extended to a deriwation on R*[Xy;di]...[X;-1,d;i—1] such that d;
restricts to a derivation on R and further d;(X;) € R* for all0 < j < 1.
Then R[X,,d,] is Behrens radical.
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We remark that one may view Theorem 4 as a unification of the
results in Theorems 1 and 2. If n = 1, we recover Chebotar’s original
theorem [3, Theorem 1]. If n is arbitrary and the derivations d; are
taken to be trivial off of R, we recover Theorem 1. If we set n = 2, we
retrieve a strengthened version of Theorem 2; namely, hypothesis (ii)
has been removed and hypothesis (iii) has been weakened. In particu-
lar, the key ingredients used in the proof of [5, Theorem 2] are shown
to be unnecessary.

The results of this paper notwithstanding, there arises naturally the
following question:

Question 5. Let R be a locally nilpotent ring and R[X,,d,] an iterated
differential polynomial ring. Is R[X,,, d,] Behrens radical?

2. RESuLTS

We first set notation. For elements a and b of a ring R, we define
la,blo = a, [a,b]; = [a,b] = ab — ba, and |a, b]x = [[a, b]x_1,b] for k > 1.
Given elements by, ...,b, € R and non-negative integers ki, ..., k,, we
denote by [a,blk, ..k, the expression [...[a,bi]k,,...,byls, and denote
by bF1-*» the expression b . .. blg”.

Additionally, suppose that c;; . € R for 0 <4 <, where 1 < ¢ <
r and the ¢, are non-negative integers. Then, we write

Z’l""vi'r

il 'L'r
.y . — “ .. ) .
E Czl,..‘,z’r . E E C'Ll,...,z’T~
=0

i el =0 =0 i
Alternatively, if i1 = -+ =i, = s, then we write
s 8,...,8 s s
E Cit il = E Cit il = E E Cif il
i ! i yenyil =0 =0 i=0

We will now establish some preliminary lemmata. Our first lemma
is an easy consequence of the Leibniz rule:

Lemma 6. Let a,b,c be elements of a ring R. For any non-negative
integer k, we have

for some D; € 7. O

Other useful results include the following;:
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Lemma 7. For elements a and b in a ring R and non-negative integers
r and s, we have

[ar> b]s = Z Eu,...own [av b]uu e [a, b]wr

W1 ,...,wr=0

for some E,, .. € Z.

Proof. The cases r = 0 and r = 1 are trivial. The first nontrivial case
is Lemma 6. We induct on r. By applying Lemma 6, we can see that

@™ 0]y = > Dila”, blifa, ..
=0

for some D; € Z. Now we may apply the inductive hypothesis:

Z D; [a/Ty b]i[aa b]s—i = Z Z DiEwh...,wr [a7 b}wl SR [a7 b]wr [a7 b]s—i
=0

i=0 wi,...,wr=0

= Z By, orir [@, 0], - [@, Do, -

for some D;, By, ... w.r Euwr,..jwrp1 € Z. OJ
Lemma 8. For elements ay,...,a, and b in a ring R and non-negative
integers iy, ..., i, and s, we have
S S
Zi1 et _ E : 1) (n)
a " bls = E T Ewu) RO Ewm) w™
T, !
'wgl), ,will) 0 wgn), .,wgz) 0

[al, b]wg) coe [al, b]wg) R [an, b]wgn) s [an, b]

(n)
i1 win

for E(j()j) G €L for 1 < j <mn.
wy ,A..wij

Proof. Induct on n. The base step is Lemma 7. Applying Lemma 6,
observe that

S
@'t bl =) Dyla blila by
j=0

Then, applying the inductive hypothesis to [a’**~" b]; and the basis

step to [a/"f}, bls_;, we are done. O
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We will also take advantage of [5, Lemma 4 and Lemma 5]. We recite
these here for completeness.

Lemma 9. [5, Lemma 4] Let e, x4, ..., x, be elements of a ring R and
ny,...,n, be non—negative integers. Then

o n ST -

TSNS ( ) () S N

i1=0 ip=0
O

Lemma 10. [5, Lemma 5] Let e,x1,...,x, be elements of a ring R
with e* = e. Then for any non—negative integers ki, ..., ky, we have

exkh -k § : E :Tn 11, ip

11=0 1p=0

for some ;. i, € R. U

An easy application of Lemma 9 and Lemma 10 yields the following
fact:

Lemma 11. Suppose e, 1, ..., x, are elements of a ring. Then ez
can be written as a sum of terms each ending in ele, Tk, . k., where
0<k; <ijandl <j<n. O

Finally, the following two lemmata are the technical heart of the
proof of Theorem 4.

Let V be a K-vector space. Then, denote by End (V') the K-algebra
of all linear transformation of V.

Lemma 12. Let N be a subalgebra of Endx(V). Let a,xq,...,2z, €
Endg (V). Let iq,...,i,, k be non-negative integers. First, define the
following sets:

(1) Let A be the set of all [a,z;]; for 1 <j<n and0<i<k.

(1) Suppose that we can write any [x1, ;] ay...[T1, 2] @ ... [Tn, ;] o

. . y y 1 wil Wip,

in the form ZZ’:’;?:O by for any 1< j < n and for some
bi....r. € Endg(V). Let B be the set of the by . i that arise in this
wayfor0<ws) <k for all s,t.

(i1i) Let C' be the set of all elements of form Ba where o € A and

g e B.
Suppose that C C N. Then [z""a, z;]x can be written in the form

11 4eeeyln

-/ !
ey 2T )
1 n e, .
E T Cit .o,

s/ o A—
19500, =0
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Jor some ¢y i € N foralll < j<mn.

Proof. By applying Lemma 6 and 8, we obtain

k
—i1yeesin _ —i1yeensin
[z tra, il = E Dy[z " ws]ila, 2]k

1=0

k 7 7

1) (n)
- > D,E" B
D
wgl), ,w(l) =0 w%“),...,wg;’):o

[:L‘l, xj]w§1) . [.1'1, :L‘j]wgi) Ce [xn, xj]w§:> [CL, a:j]k,l-

for some D, Efvl()l) RO Eg? (™ € Z.

n)
yeens Wy ”Zn

A single term of this sum is of form

Dz‘ES()l) FOR EZEZL) (™ 21, xj] .- 21, xj]wzﬁln [z, xj]wg;) (@, 2]k

yeeny W i1 oo, W in
Zl’ 77In
_ ( (n) yeees
- § : DE W B (n)ﬂ’f1 "b’ anlas Tl
7 -W i1 ’LU yeeny, W in
21, Li0,=0
Zl7 77/71
_ § : 1) (n) i
- D;E w®, o w® ’Ew(n) w(n)x "G il
yeeey W 21 1 Wi
zl, Li0,=0

for some bi,,...x, € B and some ¢y i € C C N. Since for any ¢ € N,
we have that zc € N for all z € 7Z, this concludes. U

Lemma 13. Let N be a locally nilpotent subalgebra of Endg (V). Let
iy, iny X1y - -+ T € Bndpe (V). Suppose e = Y1 ghrsing,, g s
an idempotent. Define the following sets:

(1) Consider the set of all [a;, . ., x;]i for all1 < j <mn, 0 <i<
maxg{ms}, and 0 < i, < m,. Call this set Ay. For any Qis,...in s SUPPOSE
that we may write [Z""a;, ;.  x1]k, as Y. 1 :%70m e ’nc/, L for
some ¢y g € N for all0 < ki <my. Let the set of all [cy, i, xj]l for
all1 < j<mn,0<i<max,{ms}, and 0 < i, < m, be called Ay. In
this way, inductively define Ay, ..., A,. Let A=J]_, Ai.

(ii) Suppose that any [xl,xj] - (21, 5] o0 [T, 5] o can be

i in
written in the form Z“: o T 1 ’nb/ iy Jor 1.< 7 < n and for
some by i € Endg(V). Let B be the set of the by . that arise in
(t)

this way for 0 < ws’ < max;{m;} for all s,t.
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(i1i) Let C' be the set of all elements of form Pa where a € A and
g e B.
Suppose C C N. Then e = 0.

Proof. First, we remark that by Lemma 12, our assumption (i) is a
valid hypothesis. Let S be the subalgebra of N generated by C'. Then
S is nilpotent, so there exists subspaces 0 =1V, CV; C ... CV, =V
such that S(V;) = V;_;. We claim that for any 0 < [ < h we have
ele, )y, e, (Vi) =0forall 0 < k; <mjand 1 < j <n.

We induct on I. When [ = 0, the statement is clear. Before proceed-
ing with the induction, we make the following intermediary assertion:

Claim. The element [e, Z], . x, can be written in the form

)

mi,...,Mn

*ilv---vin . .
§ : x cha---»'Ln

i1 ,nnyin=0

for some ¢;, . ;. € 5.

Proof. For this claim, we perform a nested induction on n. When
n = 1, we have

mi,...,Mn

le, z1]k, = Z [i’il""’i”ail,.,.,imxl]kl-

1 4eyin=0

By condition (i) and the fact that C' generates S, this concludes the
basis. For the inductive step, observe that

mi,...,Mn

(€, Tk oo = Z [Z 0 iy s By ey Tk -
i1yeyin=0

Applying the inductive hypothesis, this is

MiyesMp G1yeenin

—il il
E E [z" "Cil il L)k, -

ilv---vi'rL:O le,,l,lnzo

-/ !

for some ¢y i € S. Applying condition (i) to [f’l*""inci/17,,%,xn]kn,
this proves our intermediary claim. 0
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Now we proceed with the outer induction. Let v € V. Then

for w;, 4, € Vi—1. By Lemma 11 and the inductive hypothesis, we are
done. ]

Proof of Theorem 4. We follow the approach of [3] and [5]. Suppose
R[X,,d,] as in the theorem is Behrens radical. Then there exists a sur-
jective homomorphism ¢ from R[X,,, d,] onto a subdirectly irreducible
ring A such that there is a nonzero idempotent in the heart of A. Note
that A must be a prime ring whose extended centroid K is a field. Let
@ be the Martindale right ring of quotients of A.

Let x; : A — A be maps given by z;(p(t)) := ¢(X;t) for all t €
R[X,,d,] where 1 < i < n. We claim that the z; are well-defined.
Suppose (t) = 0 and p(X;t) # 0. Since A is prime, there must be
t' € R[X,,,d,] such that p(t')p(X;t) # 0. We also have

o(t")p(Xit) = p(t' Xt)
= o(t'X;)p(t)
=0,

which is a contradiction. Note that the x; are endomorphisms of right
A-modules, so all x; are in (). Let the subring of () generated by A and
the z; be denoted A’. Let R’ be the subring of R*[X,,,d,] generated
by R[X,,d,] and X/ forall 1 <i <nandall 0<j. Lett: R — A’
be an additive map such that (X7) = 2/ and (t) = ¢(t) for all
t € R[X,,d,]. Note that 1 is a homomorphism extending ¢. We can
write a nonzero idempotent e € A C A’ as

6280(%...%)({1...)(%"%1 ,,,,, m)

i1=0 in=0
mi mMn

_ i1 7

= § E X1t X9
11=0 in=0
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where the m; are non-negative integers, r;, ;. € R, and ¢(r;, ) =
iy ,.i,- Let D be the subring of A" generated by all z; and all a;, ;.
Let B = D N#(R). Note that B and the subalgebra BK of @) are
locally nilpotent. The subalgebra DK of A'K is finitely generated, so
it can embedded into Endg (V') for some K-vector space V. Then we
can assume that z; € Endg(V). Finally, we have that N = BK is
locally nilpotent and e = 7" ... 37" (zitng, o ds a nonzero
idempotent. Applying Lemma 13, we have a contradiction. U
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