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Abstract—Multipath-assisted imaging algorithms have been
shown to achieve super-resolution by incorporating multipath
information into the imaging pipeline. In this paper, we derive
the imaging degrees of freedom for multipath-assisted imaging
systems to quantify the amount of super-resolution possible.

I. INTRODUCTION

Super-resolution imaging techniques attempt to break con-
ventional diffraction limits by extracting more information
from the spectra of the measured data than that usually
available. For conventional LOS imaging models that assume
the imaging targets to be embedded in free space, it has been
argued in [1]-[3] that super-resolution requires an exponential
increase in resources to extract data beyond the well-known
degrees of freedom limit [4], [5].

However, for urban radar imaging setups, it has been shown
experimentally and numerically in [6]-[11] that scattering
(multipath) results in better imaging resolution as compared
to that possible with conventional LOS models. We term such
imaging algorithms as multipath-assisted imaging algorithms.

In this paper, we theoretically establish multipath-assisted
super-resolution via an imaging degrees of freedom analysis.

Related literature: Our system model is most closely
related with that of [12], [13], where the spatial degrees of
freedom for wireless networks in the presence of external
scatterers is studied. For a closed cut-set completely surround-
ing the transmitter volume, in [13] it is shown that no super-
resolution is possible in the limit of large radiating systems.

However, the model considered in [12], [13] corresponds to
an aperture subtending the angle (2,, = 27 at the center of
the transmitter volume, which is unrepresentative of practical
imaging apertures (where {1, < 2).

The €2,, < 27 case has previously been considered for LOS
imaging in [14] and with multipath in [15]. However, in [15]
only heuristics based DoF formulae are presented; in this paper
we theoretically show the increase in DoF by extending the
LOS DoF framework of [4], [5], [14] to our system model
with multipath. Our results explain the numerical observations
of [6]-[11], [15] for a single frequency illumination model.

Contributions: We present a degrees of freedom analysis
for multipath-assisted imaging algorithms. Our main result
consists of upper and lower bounds on the imaging DoF for
apertures with angular extent {2,, < 2. We also establish
that with multipath, the singular values of the imaging channel

exhibit a heavy tail decay beyond the LOS DoF. Our analysis
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Fig. 1. System model for 2D imaging.

remains consistent with [13] when Q,,, = 27; no DoF increase
over LOS is predicted in this scenario.

Outline: The paper is organized as follows. We present
the multipath-assisted imaging system model in Section II.
In Section III, we formulate the degrees of freedom analysis
problem. We then derive our main results in Section IV
and present numerical evaluation of our theoretical results
in Section V. In Section VI we conclude the paper with
discussions and some directions for future work.

II. SYSTEM MODEL

Consider a spherical volume V,;, C RY of radius a located
at the origin such that the imaging targets are wholly enclosed
within it. Reflectors external to Vj,, are located in V,.y C RV,
The imaging aperture V,, C RV~ is located at a minimum
distance D from the origin. Figure 1 depicts the system model
under consideration for 2D imaging (/N = 2).

As we are only interested in imaging the targets inside V,,
we subtract out the direct backscatter from V;.; from the total
field. The Fourier transform of the resulting field is

E (s) = / G (s,r) - I(x')dr/, (1)
Voo
where I (r'), r’ € V,;, denotes the current densities induced in
Vop due to the illuminating field u;,,. G(-, -) is the combined
multipath Green’s function,

G (s5,') = G (5,1") + G (5.1'), 2
() () (&) ISITZOZ(O)
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where G(-,-) denotes the LOS Green’s function and G(-,-)
denotes the NLOS Green’s function,

G (s, 1) = /V h(r's)G(s,r'5) G (s, r')dr’'s. ()
-

In the equation above, h(:) denotes the reflectivities of the
reflectors in V,.y and s = s (r) , r € V,,, is a coordinate system
defined over V,, such that s is normalized to D. Let £, be the
space of all measured fields for our multipath system model.

III. PROBLEM FORMULATION

The goal of degrees of freedom analysis is to identify
the dimensions of the smallest possible subspace that can
approximate the space of the measured fields &,, up to an
arbitrarily small precision. To characterize the space of all
measured fields, we consider the signals flowing through the
cut-set shown in Figure 2 that separates V,;, from V;.; and V.

A. Space of Measured Fields

To characterize the space of all measured fields, we consider
the support sets of the signals flowing through the cut-set in
the spatial and the spatial frequency (wavenumber) domains.

The spatial support is determined by the angular extent
(as seen from the origin) of the physical aperture, (,;,, and
that of the reflector volume, 27, The wavenumber support is
governed by the spatial bandwidth, whose value we evaluate
in Section IV-A. We also derive conditions under which the
spatial bandwidth is well-defined in Section I'V-B.

B. Degrees of Freedom Analysis

We use the following definition for the degrees of freedom:
Definition 1: The degrees of freedom (DoF) N, (.A) required
to approximate a set A up to an accuracy of e is defined as

N, (A) = min {N : dy (A) < e},

where d (A) is the Kolmogorov N-width [16], defined as

Definition 2: The Kolmogorov N-width dy (A) of a space
A that is to be approximated by N-dimensional subspaces X
of a normed linear space X is

i ()= Jaf, pup 1S =l

In Section IV-C we derive upper and lower bounds on the
DoF for our system model when A = &,,, X is the optimal
PSWF basis and the choice of the norm corresponds to the
L5 norm over the measurable set on which the PSWF basis is
maximally concentrated.

IV. MAIN RESULTS
A. Spatial Bandwidth W

We first present a lemma on the spatial bandwidth for the
sum of two spatially bandlimited fields before deriving the
spatial bandwidth W for our system model in Corollary 1.

Lemma 1: Given two fields E; (s) and Es (s) with spatial
bandwidths W5 and W5 respectively, the spatial bandwidth W
for their sum E; (s) 4+ Eq (s) is given by

W = max {Wl, WQ} .
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Fig. 2. Cut-set for degrees of freedom analysis.

Proof: Define Gq(+,-) and Ga(+, ) such that
E; (s) = / Gy (s,7') - I(r')dr’, 4)
1%
E; (s) = / Gy (s,7') - I(r')dr’, (5)
v

and let E(s) = E;(s) + Ex(s), G(s,1') = Gy (s,v') +
G (s,1’) and denote the set of all possible fields E (s) by
£. To approximate £ by B,,, we pass E (s) through an ideal
low-pass filter with wavenumber support w to obtain [4]

_ Lsin(ws)

E, (s) =

™ S

* B (s) :/ G, (s,0)-I(x")dr', (6)
%

where G, (s,1') = 13229 4 G (5, 1) is the filtered Green’s
function and * denotes convolution in the s domain.

The spatial bandwidth corresponds to the value W such that
deviation Dpg,, (€) between the sets £ and B,, vanishes for all
w > W. Here, Dg, (€) is given by the L5 (—o0, c0) norm of
the error AE (s) = E(s) — Ey, (),

w

Ds. (€)= AB@)3 = [ JABGFa @
where AE (s) = [, AG (s,r') - I(r')dr’ and AG (s,1') =
G (s,1') — Gy (5,7) = AGq (5,¥) + AGo (s, 7).

To minimize Dg, (£), we minimize an upper bound to it
obtained via Young’s inequality [4]

IAE ()]} < sup (IAG (s, 7)) - [LE)IT. ®
r'eVv

For finite ||I(r/ )||f, the RHS above may be minimized
by choosing W such that the term sup,. ¢y, (||AG (s, r’)||§)

vanishes for all w > W. To relate W with W; and W5, we
further upper bound the RHS by noting that

IAG (s,')|[5 < 2[|AG (5,1)5 + 2 [[AGa (s,') ][, (9)

via the triangle inequality and Jensen’s inequality. Therefore,
it suffices to choose W = max {W;, W>} to ensure that both

45 %erms on the RHS of (9) vanish for all w > W. |
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Corollary 1: To apply the results of Lemma 1 to our system
model in Section II, we substitute Gq (s,r') = G (s,r'),
Gs (s,r') = G (s,1), V =V, and € = &,,. From the main
results in [4] and [13], we know that W7 = W5 = kga, where
ko = 27“ is the wavenumber given the illumination wavelength
A. Therefore, from Lemma 1, the optimal spatial bandwidth
for our system model is W = max {Wy, W} = koa.

B. Well-Definedness of W

The spatial bandwidth derived in Corollary 1 is only well-
defined if the upper bound to the deviation Dg, (£,,) can be
made as small as desired (for all w > W) independent of
the value of the current densities induced on the targets and
reflectors. This is only possible if ||I(r’)||; is finite to prevent
any super-gain effects from occurring.

Lemma 2: The spatial bandwidth W is well-defined when

(Hf(r’)é(r’,r”) ) <1.
1
Proof: From the system model, we have

I)=1, ")+ f(r) /v G (r',r's) - I(x's)dr's, (10)
vf

sup
r’"’€Vyy

1(r',) = L, (¢'s) + h (') / G (o r) () dr, (11)
Vou

where f(-) and h(-) are the reflectivities of the targets and re-
flectors respectively. On substituting (11) in (10), rearranging,
and applying the triangle and Young’s inequalities, we obtain

)t

(12

)il < ITe)l - swp (£ ) G0
r'’eVy

L, (r') + f (') /V G (r',r'y) L (v',) dr'
rf

1

where G (-,-) is the NLOS Green’s function defined in (3).
From the impossibility of super-gain ie. ||[I(r')||; < oo
and (12), the desired condition is readily obtained. [ |

C. Degrees of Freedom Analysis

Given the spatial bandwidth is well-defined, the degrees of
freedom required to approximate &, up to an accuracy of € can
be evaluated via Definition 1. As D, (£,,) < d for arbitrarily
small § > 0 for all w > W; we may approximate &,, by
the space of unit energy, bandlimited signals, By, where the
bandlimitation is to the spatial bandwidth W [4], [5], [17].

As per Definitions 1 and 2, it is necessary to choose an
appropriate basis X and norm || - || for the degrees of freedom
to be defined. To do so, we characterize the spatial support
in terms of the angular extents (2, and (), introduced in
Section III-A by defining sets S; and S,

Si={s:s=s(r),re Vy},
Si = {S, . S/ = s’(r’s),r’s S Vrf,ap g ‘/Tf}v

13)
(14)

where Vi.rqp is a subset of V., that includes all reflector
locations that result in scattering towards V,,. For instance
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Fig. 3. Spatial and wavenumber support sets for 2D imaging (with k = 3).

when the reflectors are diffuse, Vit op = V,.y. However, for
specular reflectors, V,.¢ 4, C V;.p only includes the reflector
locations that are oriented appropriately to scatter incoming
waves towards V,,;,. Note that in the definitions above, s (resp.
s") is a normalized coordinate system defined over Vj,, (resp.
Vi #,ap) such that every element of S; (resp. S;) corresponds to
the azimuth angle of the ray joining the origin and r (resp. r'y).
Thus, for the Lebesgue measure m(-), we have m(S;) < Qg
(resp. m(S;) < Q) with equality only when the physical
aperture is continuous (resp. when the reflectors are diffuse
i.e. Vit ap = Vry and when V,.; is densely populated).

Having defined S; and S;, we define the spatial support set
Su = S;US; as the union of the non-overlapping elements of
S; and S;. Let the set S, consist of £ > 1 disjoint intervals.
In Figure 3 we show a generic example of the support sets for
2D imaging with a continuous physical aperture.

Theorem 1: The degrees of freedom N, (€,,) is upper and
lower bounded as N; < N, (&) < Ny,

1 1—¢€ N,
Nl = NO,l + ﬁ In ( 626 ) In <7T 20,l) + 0] (111 (NQ[)),

K 1—¢€2 TNy
ﬁ In (62) In <2) + o (ln (N()’u)) y

where Ny = WmT(Sl), Now = W%(S) and W = %52,

Proof: As multipath results in further atfenuation in
NLOS compared to LOS due to the reflectivity h (r';) of
the reflectors, the DoF N, (&,,) is highly dependent on the
reflectivity of the reflectors. Therefore, we only attempt to
bound the DoF from above and below. Our lower bound
corresponds to choosing h (') = 0 everywhere in V,.¢; this is
equivalent to the LOS DoF i.e. choosing X" as the PSWF basis
maximally concentrated on S; and using the £ (S;) norm
in Definition 1. Similarly, our upper bound corresponds to
choosing h (r's) = 1 everywhere in V,.;; this is equivalent to
choosing X" as the PSWF basis maximally concentrated on S,
and using the L5 (S,,) norm in Definition 1.

Nu = N()A,u +
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Note that given S and the £ (S) norm, the Kolmogorov
N-width dy (Bw) is [4], [5], [16], [18], [19]

dn (Bw) = \/E7 (15)
i.e. the Nth eigenvalue of the PSWF integral equation,
sin (W (s — ")
ué“?ggi;@‘*wNﬁ"Mg'ZANwNGL seS. (16)

¥ (s) in (16) is the Nth bandlimited PSWF basis function,
1/)N( ) € Bw, such that fR L/JN Qb]y[( )dS = 6N,M and
Js¥n(s)¥ar(s)ds = dnarAn for N # M and the Kronecker
delta function &y, as. Thus, when X is the PSWF basis
maximally concentrated on S and the £ (S) norm is used,
from Definition 1 and the results of [16], [18]-[20] we have

+ A, (17)

Wm(S)

where the additional term A is logarithmic in Ny = —

and is weakly dependent on e,

A= —lln (1 - ) In (W;VO) +0(n(Ny), (18)

for ' disjoint intervals in S. Thus, our result follows on
choosing S = S;, k' = 1 (assuming a continuous aperture) for
the lower bound, and S = S, ¥’ = & for the upper bound. H

A direct consequence of our DoF bounds is that we expect
the normalized singular values of the actual multipath channel
to exhibit a heavy tail decay behavior beyond N = Ny ;, with
singular value amplitude close to 1 for N < Nj; and close
to the reflectivities A (r’5) of the elements in Sy, \ S; for N >
Np,;. In addition, due to our upper DoF bound, we expect the
singular values to transition to 0 beyond N = N ,,.

Note that for a continuous, closed aperture i.e. ), = 27,
we have S, = S;US; = S as m(S;) = Qyp, = 2. Therefore,
in the Q,, = 27 case, we recover the results of [13] with no
DoF increase beyond the LOS DoF i.e. Ny = N, = 2W +
O (In (2W)). However, for all Q, < 27, N, (€,,) > N,.

V. NUMERICAL EXPERIMENTS

We now numerically evaluate the validity of Theorem 1
by considering the simulation setup shown in Figure 4. Our
setup consists of a 1D SIMO aperture of length L, imaging
a line target of length L, in the presence of two large planar
reflectors of equal length L, centered at x = £D,r,z =
—%. A single transmitter, indicated by the black triangle in
Figure 3, illuminates the target with 30 GHz sinusoids, and the
receive elements, indicated by circles in Figure 4, sample the
backscattered data. The imaging target is located at a distance
D along the z-axis from the aperture and makes an angle
f from the x-axis. Throughout, we consider a 2D scattering
model with the Green’s function given by
i
where HZ(-) is the O-order Hankel function of the second kind.

For the geometry under consideration, W = %kOLob cos 0

and Qg = 2Lap Given the symmetry and the specular

/L2, +4D?"

G(r,r') = (ko |r —1']), (19)

aperture reflectors object

Vap Vrf Vob

Fig. 4. System diagram for 2D SIMO imaging with specular reflectors.
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Fig. 5. Virtual aperture interpretation for Figure 4.

nature of the reflectors, we compute (2, by forming virtual
apertures corresponding to both reﬂectors In Figure 5 we
show the virtual apertures for our setup. Thus, S; consists
of the azimuth angles of the rays joining the origin and
points on the virtual apertures, and {j;, = Q&,),U U Qai,),v.
From Figure 3, it is clear that both reflectors induce virtual

apertures of equal size L,%)m Lg,)ﬂ, Lgp,» such that
2Drf+La2p,'u )

Q= 2sinfy — 2sin 6y, where 0 = tan~! 5

2D, ;- tap.v

and 0; = tan~! < L > Note that S; N S; = 0 here.

Lap

For simplicity, we let D,; = and assume L,y to be
large enough such that L,;, , = min {Lap, wTTfLTf} = Lgp.
From Theorem 1, we obtain

2LapLob cos 6LapLob cos 6

A JL2, + D A, /or2, + 4D

where the terms with logarithmic dependence on Ny; and
Ny, have been suppressed for clarity. Note that x = 3 here.
To numerically evaluate the DoF, we discretize (1) and
observe the behavior of the normalized singular values of the
LOS and combined multipath Green’s functions G (s,r’) and
G (s, ') respectively. Note that the normalized singular values
correspond to the Kolmogorov N-widths according to (15).

(20)
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Fig. 6. Heavy tail decay behavior of multipath channel singular values with
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Fig. 7. Multi-step behavior of multipath channel singular values with

h(f'/s,l) =3 X h(r/syg) = h.

Throughout, we simulate our setup with the parameter
values A = 1 cm, Ly, = 0.5 m, Ly, = 0375 m, D = 0.6
m, D,y = %, L,y = 0.5625 m. We simulate the interac-
tion between the illuminating RF signals and all targets and
reflectors via the Lambertian model presented in [21].

In Figure 6 we plot the normalized singular values for the
LOS and multipath channels when both reflectors have the
same reflectivity, h(r’s1) = h(r's2) = h. We fix 6 = 0°,
and the reflectivity f of the target, and vary h. The upper and
lower bounds in (20) evaluate to Ny; = 28.8 and Ny, =
58.6 for the given values. The singular values corresponding
to the choice S = .S coincide with the LOS singular values;
with multipath, the singular values exhibit a heavy tail decay
with constant amplitude equalling h between Ny ; and Ny ,,.
We also plot the singular values corresponding to the choice
S = S,; the DoF for this case is seen to match the number
of non-zero multipath singular values. In Figure 7, we further
illustrate the heavy tail decay behavior by constraining the
reflectivity of one reflector to be 3x of the other reflector’s
reflectivity, h(r's1) = 3 X h(r's2) = h. It can be seen that
the singular values undergo a multi-step transition from h to
% mid-way at w (due to the symmetry in the setup).

In Figure 8 we show the validity of our bounds across 6 by
plotting N, (€,,) as a function of 6 for different values of e
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Fig. 8. Multipath DoF as a function of 6 for different values of e.

with the system parameter values chosen such that h(r's 1) =
h(r's2) = h and sup.cy,, (Hf(r’)f}(r’,r”) ‘ ) = 0.99.
As expected from the behavior of the singula% values in
Figure 6, we observe that N, (&,,,) is well approximated by the
upper bound for small € and by the lower bound for large e.
For intermediate € values the curve lies between our predicted
upper and lower bounds.

Our results clearly indicate an increase in the DoF with
multipath; as the DoF is directly related to the imaging
resolution, with larger DoF resulting in better resolution,
this implies that super-resolution beyond conventional LOS
imaging is a definite possibility for multipath-assisted imaging
systems. The extent to which the additional DoF may be
exploited, however, is highly dependent on the environment
geometry and reflectivity in addition to the system precision;
N, (E) is close to the upper bound only for small e.

VI. CONCLUDING REMARKS

In this paper, we presented a degrees of freedom analy-
sis to quantify the amount of super-resolution possible with
multipath-assisted imaging systems. Our analysis and main
result indicate that the increase in DoF over LOS imaging
is due to the interaction with the environment; thus, the
environment geometry and reflectivity play a large role in
determining the extent of super-resolution possible over LOS.

Our analysis indicates a heavy tail decay in the singular
values between the lower bound (LOS DoF) and upper bound.
Our main results remain consistent with [13] and predict no
increase in the DoF when €, = 27 i.e. a continuous, closed
aperture surrounding the imaging targets is used.

An important extension to our analysis would be the per-
formance evaluation of multipath-assisted algorithms [6]-[11]
to quantify the gap, if any, between the DoF upper bound and
the actual performance of multipath-assisted algorithms.

We conclude by noting the close similarity between our
results and the main results of [22], [23]. This is not sur-
prising, given the common electromagnetic theory framework
underlying both wireless communication and imaging [2], [3].
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