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|deals of the Multiview Variety

Sameer Agarwal~’, Andrew Pryhuber, and Rekha R. Thomas

Abstract—The multiview variety of an arrangement of cameras is the Zariski closure of the images of world points in the cameras. The
prime vanishing ideal of this complex projective variety is called the multiview ideal. We show that the bifocal and trifocal polynomials from
the cameras generate the multiview ideal when the foci are distinct. In the computer vision literature, many sets of (determinantal)
polynomials have been proposed to describe the multiview variety. We establish precise algebraic relationships between the multiview ideal
and these various ideals. When the camera foci are noncoplanar, we prove that the ideal of bifocal polynomials saturate to give the multiview
ideal. Finally, we prove that all the ideals we consider coincide when dehomogenized, to cut out the space of finite images.

Index Terms—Projective geometry, structure-from-motion, nonlinear algebra

1 INTRODUCTION

general projective camera is a rank three matrix in
R**4. Given a camera arrangement A = (A;, ... ,4,),
the image formation map

Pa - P]% - (]P]%)n:

sends a homogenized world point q € P§ to its images
(p, = Aiq, ... ,p, = A,q) € (P§)". The ith copy of P& in
the codomain of ¢4 is the homogenized image plane of cam-
era i. The unique point ¢; € P} in the kernel of 4; is the focal
point of camera i. The map ¢ is defined at all points in P
except at the fod ¢y, ... ,c,. Triggs called ¢,(B3) the joint
image [1] and Heyden-Astrom call it the natural descriptor [2].
We are interested in studying the complete set of polyno-
mials that vanish on ¢ 4 (P} ).

Definition 1.1. Given a set S C B¢, the collection of all poly-
nomials in Clzy, ... ,x4] that vanish on S is a homogeneous
ideal, known as the vanishing ideal of S, and denoted as 1(S).
The variety V(I(S)) is the the smallest complex projective vari-
ety that contains S, known as the Zariski closure of S.

We refer the reader to [3] for the basics on ideals and
varieties. In this paper we will be interested in the vanishing
ideal of the joint image ¢ 4 (P} ).

Definition 1.2. The multiview ideal of A, denoted M 4, is the
vanishing ideal of ¢ 4(Py) in Clpy, ... ,p,] where p; = (x;,
Yi, z;) are the coordinates on the ith copy of P2. The Zariski clo-
sure of @4(P3) in (PZ)" is the complex projective variety
V(M 4), which we call the multiview variety of A.
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The terminology multiview ideal and multiview variety
comes from [4]. Following Triggs [1], Trager et al. refer to
the multiview variety as the joint image variety.

Starting with the seminal work of Longuet-Higgins [5],
researchers have studied various systems of polynomials
that vanish on ¢ 4 (P} ). In the computer vision literature these
equations are known as multiview constraints [2], [6], [7], [8],
[9]. Obviously, the ideals generated by these systems of poly-
nomials are contained in M 4. However, there hasn’t been
much discussion of whether these polynomials generate M 4
since the focus of all these papers has been on the multiview
variety and not its vanishing ideal. The aim of this paperis to
provide a complete description of the multiview ideal and
study its relationship to the above sets of polynomials.

It can be difficult to determine the vanishing ideal of a vari-
ety. However, there are various ad vantages to knowing it. To
be able to do any computations with a variety or to study its
structure using algebra, we need a description in terms of pol-
ynomials and the vanishing ideal is the optimal algebraic
description. This manifests itself in a number of ways.

The set of all polynomial functions on X is precisely
Clz1, ... ,z4]/I(X), known as the coordinate ring of X. In par-
ticular, a polynomial g vanishes on X if and only if g belongs to
I(X). Knowledge of a generating set {g1, ... ,gx} of I(X) also
informs us about the local structure of X, since a point z € X is
smooth if and only if the Jacobian matrix (gff;) has rank equal to

the codimension of X. More generally, if X C PZ ! is a projec-
tive variety then I(X) carries all the geometric information
about X allowing algebra (and algebraic algorithms) to infer
geometric properties of X. For example, the dimension and
degree of X can be read off from the Hilbert polynomial of 1(X)
which also carries many more sophisticated invariants of X.
See [3] for all the above.

In multiview geometry, many estimation problems can
be phrased as polynomial optimization problems over vari-
eties [4], [10]. In particular, the triangulation problem under
Gaussian noise amounts to projecting a point onto the mul-
tiview variety [11].

In general, polynomial optimization on a variety X C R"
boils down to certifying the non-negativity of a polynomial
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f on X by expressing it as a sum-of-squares (sos) modulo an
ideal J vanishing on X [12]. This means finding a sos poly-
nomial s = )~ p? such that f — s lies in J. This expressibility
is maximized, and the algorithms terminate in the lowest
possible degree, when J = I(X). We illustrate this on a very
small example.

Example 1.3. The polynomial =+ 1 is non-negative on
X = {0} C R. The ideal (z?) cuts out X but I(X) = (z).
Now (z+ 1) — 1 € (z) allowing s = 1 as the sos certificate.
On the other hand, if z +1 — s € (z?) then s has to have
degree at least 2; for instance (¢ + 1) — (1 +1z)* € (22).

The above phenomenon can have a major impact on the
number of rounds of convex relaxations needed to solve a
polynomial optimization problem such as the well-known
Lasserrefsos hierarchies [13], [14], where each round looks for
sos certificates of a fixed degree with degrees increasing
monotonically with rounds. In each round the semidefinite
program being solved is of size O(n?), where n is the num-
ber of variables and d is degree in that round. As a result, in
many cases only the first round maybe computationally fea-
sible and having access to I(X) can make the difference
between the problem being tractable or not.

The rest of the paper is structured as follows. After a brief
discussion of the notation used in this paper we begin in
Section 2 by introducing a family of ideals associated with
every camera arrangement .4 which we call the k-focal
ideals. We describe how these ideals behave under change
of coordinates, and dispel the popular myth that, under a
change of image coordinates, k-focal polynomials go to
k-focal polynomials. In Section 3, we prove our first main
theorem (Theorem 3.7), that the well-known bifocal (epipo-
lar constraints) and trifocal polynomials generate M 4 when
the camera foci in .4 are distinct. Next, in Section 4, we con-
sider three different types of determinantal polynomials
Eroposed to cut out the multiview variety by Heyden-

strom [2], Faugeras et al. [7] and Ma et al. [9]. We show
that while the ideals they generate are all contained in My,
none of them actually coincide with M 4. We establish their
precise algebraic relationship with M 4. In Section 5, we con-
sider the relationship of the multiview ideal to bifocal poly-
nomials and prove the algebraic analog of the statement
that the bifocal polynomials cut out the multiview variety
when the camera foci are noncoplanar. In Section 6, we
study how the various ideals relate to each other when we
restrict our attention to finite images, i.e., exclude points at
infinity. We conclude in Section 7 with a summary.

Many results in this paper require explicit computation. We
recommend the reader have a copy of Macaulay2 [15] (or
equivalent symbolic algebra software) handy. The Macaulay2
codes for our computations can be found at https:/ /sites math.
washington.edu/ ~thomas/papers/Multiview_Ideal.zip

1.1 Notation
In the rest of the paper, we will use P to denote P¢. The ideal
generated by the polynomials fi,..., f; will be denoted as
(.fl: :fs}-

We will use A for cameras and G for matrices in GL,. A
and G will denote arrangements of corresponding matrices.
Bold, lower-case roman letters will be used to indicate
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vectors, and lower-case greek letters will be used for func-
tions. Given a partial symbolic matrix M, minors(k, M) will
denote the ideal generated by all k x k minors of the matrix
M. The symbol [n] denotes the set {1,...,n} and (E’?‘J)
denotes the set of all size m subsets of [n].

2 THE k-FOoCAL IDEALS OF A CAMERA
ARRANGEMENT

Let p; be the tuple of variables (z;, y;, z:) denoting the coor-
dinates associated to the projective plane P; corresponding
to the ith camera image. Write p = (p1, ... ,ps), and con-
sider the partially symbolic matrix

A py
Az P2
Alp) == | . . . (1)

A, P
Let A(p) denote the evaluation of A(p) at p=p. If
p:=(py, --- ,P,) € ¢4(P}) then there exists some q € P
and scalars A\; € R such that 4;,q = A\;p, foralli=1,...,n.
Therefore, A(p) has a non-trivial kernel since it contains the
point (q, =i, ... ,—A,), and hence the maximal minors of
A(p), which are polynomials in pi, ... ,p,, vanish on p.
Since p was arbitrary, these maximal minors vanish on all
of 9 4(P) and on the multiview variety. Therefore

minors(4 + n, A(p)) C M.

In this section, we describe further minors of A(p) and
the ideals they generate, which will play an important role
in the description of M 4.

Definition 2.1. For a subset o = {oy, ...
k> 2, consider the partially symbolic matrix

, 0k} C [n] where

Asy poy 0 ... 0
A,y 0 psy .0

Ap)=| T T P T @
Ay 0 .. 0 pg

of size 3k x (4 + k). A maximal (4+ k) x (4 + k) minor of
A;(p) is called a k-focal polynomial of A. The k-focal ideal
of A, H%, is the ideal sum

HY = Z minors(4 + k, A;(p)).

oe (%)

Trager et al. also study the k-focal polynomials and refer
to them as k-linearities [16], [17]. Note that every k-focal
polynomial is multilinear and of total degree k. Such a
minor involves choosing 4 + k rows of A,(p), and by a
pigeonhole argument, at most four cameras may contribute
more than one row to the minor when k > 4. Indeed, if
more than four cameras contributed at least two rows each,
then at least 10 rows are accounted for, which leaves at
most k£ — 6 rows to take from the remaining k£ — 5 cameras.
So at least one camera will be left out entirely which means
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that the submatrix of that 4 + k£ minor has a zero column
and the minor is zero.

A useful fact for us will be that for two positive integers
[ > k> 2, there is a simple way to “bump up” a k-focal
polynomial to an [-focal polynomial by multiplying the
k-focal polynomial with a monomial

Lemma 2.2. Suppose f is a k-focal polynomial from cameras
.01} C [n] where k> 2. For any | > k cameras
Tk}, there is a l-focal polynomial g

o={oy, ...
= {0y, ..
such that (H Yw.)f=g for any choice of wariables

O';“T.']_,...

wy; € {24, Yry, 2, }, One for each camera.

Proof. Add the row and column associated to coordinate
wy, t0 Ay(p) for 1,. .., 71, as follows:

Ag, Psy --- 0 0 ... 0

Ag, 0 ... ps, O ... O

(Atl)wrl 0o ... 0 w, ... 0

: S 0
(Ao w, 0 ... 0 0 Wy,

Taking the determinant of this matrix yields the I-focal
polynomial g = ([T=% w:, ) f. O

Combining the above facts we get that any I-focal poly-
nomial for | > 4 is of the form ([[_*w,)f where f is a
k < 4 focal polynomial. This is a generalization of Proposi-
tion 2 in [16] that showed that every n-focal polynomial is a
monomial multiple of a k-focal polynomial for k <4. As a
result, we will primarily focus on the ideals H%, H%, and
H}, called the bifocal, trifocal, and quadrifocal ideals of A.

A closer look at H% reveals that it is the ideal generated
by the (}) epipolar constramts since Ay, j} is a 6 x 6 matrix,
whose determinant is the epipolar constraint between
images i and j. By Lemma 2.2, H% contains the bumped up
version of H% and for every triplet of images {1, j, k}, the 27
trifocals implied by the three trifocal tensors relating them.
And finally, H} contains the bumped up versions of H?
and H% and the 81 quadrifocals implied by the quadrifocal
tensor. The fact that we only need to study H3, H%, and H
lines up with the well known fact in multiview geometry
that when studying n-view constraints, one only needs to
study the epipolar matrix, the trifocal tensor and the quadri-
focal tensor. See Chapter 17 in the book by Hartley &
Zisserman [8] for explicit computations of the generators of
HY, HY, and H and their history.

In the remainder of this section, we will investigate how
k-focal ideals transform under certain linear transforma-
tions on cameras. It is widely known that, from image data,
the geometry of a camera arrangement can only be deter-
mined up to an arbitrary choice of P? coordinates. This is
reflected in the following lemma.

Lemma 2.3 (Projective Ambiguity). Suppose G € GL4.
Then for any k, HY = HY, where AG = (A,G, A5G, ...,
A;G).
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Proof. This follows since (AG),(p) = A,(p)diag(G, I;) for
any k-element subset o C [n] which implies that any
k-focal of AG differs from the same k-focal of A by a fac-
tor of det(G) # 0. O

From the proof of Lemma 2.3, we see that a P? coordinate
change that sends q — (G'q maps k-focals to k-focals, picking
up only a scalar factor det G # 0. We will now see that
change of coordinates on the image planes P? affect the
k-focals in a more subtle way.

LetG = (Gy, ... ,G,) € (GL3)" bea sequence of invertible
matrices and consider the camera arrangement GA :=
(G144, ... ,G,A,) obtained from a given arrangement A by
left-multiplying A; with G;. Note that the focal point of the
camera A; is the same as the focal point of the camera G; A;.
Since p; = (:,yi,2), we denote the ring Clxy,y1,21, ... ,
Ti, Vi, Ziy -+ +Tn, Yn, 20 DY Clp1, ... ,pn] and a polynomial in
itby f(p1, ... ,pn)- The sequence G induces a camera-wise lin-
ear change of coordinates g on Clpy, ... ,p,] bysending

I; I;
xe:lw | ~G ' w| 3)
% %

Note that this amounts to a change of coordinates in the
image planes P? of the cameras in A. Let G'p denote
xs(P) = (Gi'p1, --. ,G,'pn)- In what follows we will also
need the notation g L= (Gt G, G'A = (G4,

,G'Ay) and xg (pg) = G&pg.
To analyze the effect of xg on k-focal ideals, we recall the

classical Cauchy-Binet formula, a proof of which can be
found in [18].

Lemma 2.4 (Cauchy-Binet). If A and B are rectangular
matrices of size m x n and n x m, respectively, where m < n,
then the determinant of the square matrix AB is

det(AB) = ) det(Apq) det(By,),
)

where : indicates that all rows[columns are taken.
Lemma 2.5. For the k- facal ideal HY, xg(HY) =
_1( gA) =

Proof. We prove the first statement and the other follows
similarly. We will show that the k-focal ideal of Ay is
sent to the k-focal ideal of (Q.A) .- The result then follows
for the full k-focal ideal HY by summmg the k-focal ideals
of all A, as o varies over a]l k-subsets of [n].

Recall that a k-focal polynomial of Ay, := (A, ..
is a maximal minor of

HE,. Simi-
larly,

"1 Ak)

A1 m
Ay (p) = A.z P2
A.k . Pk
Applying xc to this maximal minor is the same as taking
the same maximal minor of
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A Gi'm
Ay G5 'po
A (xe(p) = |
Ay, Gi'pr

The corresponding k-focal polynomial of G.A is the same
maximal minor of

(GA)y(p) = ding(Gh, ., Gi) Ay (). @
The ideal xg(HY, ) is generated by the maximal minors
of Ay (xg(p)), namely
3k
{dﬁt(A[k](G_lp)[g,:]) 1o€ ( 13 )},

44k

while H("g A) is generated by the maximal minors of

(GA) ;) (p). We need to show that these ideals coincide.
Let G denote the block diagonal matrix with blocks
G1, ... ,Gn. A (4 + k)-minor of (GA) ,(p) is the determi-
nant of a submatrix with 4 + k rows indexed by some
TE (Eﬁ) Such a submatrix has the form G.Ay(G™'p)
where G, is the submatrix of G consisting of the rows of

G indexed by 1. By the Cauchy-Binet formula

det(Ge Ay (G~'p)
= Z det((Gr); ) det( Ay (G_lp)[a":l )-

oe(£3)

This implies that det(G;Aj(G'p)) lies in the ideal
xg(HY,
The reverse containment follows by applying the same
argument to Ay (p) = G'GAy(p) and GAy(p) where
G is the block diagonal matrix with blocks G, ... ,G;*.
Summing over all k camera subsets, the result follows:

i k
), al"ld hence, H{QA]M g Xg(HA[,__])-

xeHY) =xg| D Hi | = D xe(HY,)

oe() oe(t)
- Z H?éAJU =H§A-
ae([‘:]

)

This proof shows that, contrary to popular belief, it is not
true that k-focal polynomials go to k-focal polynomials
under the change of coordinates given by xg, but the ideals
do as in Lemma 2.5.

O

3 THE MuLTIvIEW IDEAL

Recall from Definition 1.2 that the multiview ideal M 4 of the

camera arrangement A is the vanishing ideal of ¢4 (Py),

meaning that it is the set of all polynomials in C[pi, ... ,ps]

that vanish on ¢ 4(P3). Since ¢ 4(P3) is a subset of (P%)", M4

is, in fact, generated by polynomials with real coefficients."
1. Let h(z) = f(x) +ig(x) be a complex polynomial, where f(x) and

g(x) are real polynomials. Then if h(z) vanish on a set of real points,
then so must f(x) and g(x).
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The complex projective variety V(M 4) C (P?)", which is
the complex Zariski closure of ¢ 4(IP3 ), is the multiview vari-
ety of .A. One might wonder if it is better to study the real
Zariski closure of ¢ 4(P}) and its vanishing ideal since com-
plex points in the multiview variety do not have any physi-
cal meaning, and hence no relevance to multiview
geometry. However, observe that if the real Zariski closure
was strictly smaller than the set of real points in V(My),
then there would be a polynomial not in M 4 that vanishes
on ¢ 4(P3), which would contradict that M 4 is the vanishing
ideal of ¢ 4 (3 ). Therefore, M4 is also the vanishing ideal of
the real Zariski closure of ¢ 4(IP}), and hence a real radical
ideal [19, Section 12.5].

Further, since ¢ 4 is a polynomial map and P}, is irreduc-
ible, V(M) is an irreducible three-dimensional variety in
(P?)". Hence M is a prime (homogeneous) ideal, meaning
that if fg € M 4 then either f or gisin M 4.

It was shown in [4] that the bifocals, trifocals and quadrifo-
cals of A form a universal Grobner basis of M 4 under a certain
genericity assumption on the cameras. This means that this
collection of polynomials form a Griobner basis for M4 with
respect to any term order [3]. We will use this result to estab-
lish a generating set for M 4 when the camera foci are distinct.

We first note what happens to M 4 under the change of coor-
dinates yg defined in the previous section. Recall that y; sends

a polynomial f(pi, ... ,ps) €Clp1, -.. ,pa] to f(G'pr, -,
G lpn)-

Lemma 3.1. The image of the multiview ideal M 4 under the map
Xg 8 Mgya, the multiview ideal of GA. ie., xg(Ma) = Mga.
Sfﬂ‘lﬂ‘ﬂﬂy, Xg-1 (ﬂ’ng) = ﬂ’fA.

Proof. Again, we will prove that xg(M4) = Mg4. The proof
that xg-1(Mga) = M4 is similar.
From the definition we see that a polynomial f(pi,
..., Pn) vanishes on the multiview variety V(M) if and
only if f(A:q, ... ,A,q)=0forallq € P*\ {ci, ... , ¢},
equivalently, if and only if

f(Gl_l(GlAlq): e :Ggl(GﬂAﬂq)) = 0:

forall q € P\ {c1, ... ,cn}. The multiview variety of GA
is the Zariski closure of the points (G14.q, ... ,G,A,q)
as q varies over P\ {cy, ... ,¢c,}. Therefore, f vanishes
on V(M) if and only if x4(f) vanishes on V(Mgy,). This
proves that xg(M4) C Mga.

To finish the proof we need to argue that if g(pi, ... ,
Pn) € Mgy then g = xg(f) for some f € M 4. A polynomial

g€ Mgy if and only if g(G1A,q, ... ,GnA,q) = 0 for all

qeP\{c, ... ,¢}ifand onlyif g(G1p,, ... ,Gup,) =0
forall (p,, ... ,p,) € V(My,). Define g(Gipy, ... , Gnpn) =
: f € My.Then xg(f) = g(p1, --- ,pn)- =

We will use the results obtained so far to give an elementary
proof that the bifocals and trifocals generate the multiview
ideal M 4 for any arrangement .4 of cameras with pairwise dis-
tinct foci. An important tool will be translational cameras.

Definition 3.2. A camera T is said to be translational if its left
3 x 3 block is the identity matrix, i, T = [I t] for some
teR’.
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Lemma 3.3. If T is an arrangement of translational cameras,
then H3 C H3.

Proof. Using Macaulay?2, this statement can be checked for
n = 4 translational cameras with foci represented symboli-
cally as (1,12, ti3, —1). Forn > 4, since H} = Eae([“]) HZ.
and Hy =3 __ () Hj , the statement follows.

We now use translational cameras to show that the quad-
rifocals are not needed in a generating set of M 4. This is
done by extending the result for translational cameras to
finite cameras. Recall that a finife camera is a camera whose
left 3 x 3 block is invertible, or equivalently a camera whose
focal point is not a point at infinity. Observe that any finite
camera can be obtained by multiplying some translational
camera on the left by an invertible 3 x 3 matrix.

Corollary 3.4. If A is any arrangement of cameras, then
HY C HY,.

Proof. If A is an arrangement of finite cameras, then
A; = Gi[I t] forsome G; € GLj. Therefore A = GT where
T is an arrangement of translational cameras. By
Lemma 3.3, H7 C H5. Hence, Lemma 2.5 implies

Hy = Hgr = xg(Hr) € xg(H7) = Hgr = Hy.

For any four cameras indexed by ¢ € ([ZJ), there exists

some G € GL4 which takes the foci of A, off of the plane at
infinity, i.e., so that A,G is an arrangement of finite cam-
eras. Inverting this P*-coordinate change does not change
ideal containment by Lemma 2.3. The general result fol-
lows since H: = EUE ([:]) Hj‘% C EGE ([2]) Hf% = H“j,‘ O

To get to our main result, we will need a result from [4]
about camera arrangements .4 that are generic in the sense
that all 4 x 4 minors of [A] A) --- AT] are non-zero. We call
such an .4 minor-generic.

Corollary 3.5. Suppose A is minor-generic. Then My =
H% +H.

Proof. Theorem 2.1 in [4] says that if A is minor-generic,
then the bifocals, trifocals and quadrifocals form a univer-
sal Grobner basis of M4. In particular, this implies that
My = H% + H% + H’;. The statement is then immediate
from Corollary 3.4. O

Minor-genericity is a purely algebraic condition on cam-
era arrangements. The following statement, which appears
as a brief comment in [4] without proof, gives a geometric
reinterpretation of this condition.

Lemma 3.6. If A is minor-generic, then the foci of the cameras in
A are pairwise distinct. Conversely, if the cameras in A have
pairwise distinct foci, then there exist G; € GLg3 such that GA
is minor-generic.

Proof. Let L; C C* denote the three-dimensional row span
of A;. If A; and A; have the same focal point then L; = L;
and hence any four of the six rows of A; and A; are line-
arly dependent and A is not minor-generic. This proves
the first statement.
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Now suppose the foci of cameras in .4 are pairwise
distinct. This means that the planes L; are pairwise dis-
tinct. For any G; € GL3, the rows of G;A; form a basis of
L;. By choosing G appropriately, the three rows of A;
can be sent to any choice of three linearly independent
vectors in L;. We need to show that there is a choice of G;
such that no four rows from the matrices G;A; are line-
arly dependent.

Consider the 3n x 4 matrix obtained by vertically
stacking the cameras in .4, as a point in (C*)*", with coor-
dinates z}, representing the (k,!)-entry of the ith camera.
We will identify this point in (C*)*" with the correspond-
ing 3n x 4 matrix, and stack of n cameras, and call all of
them A. Let A(z) denote the symbolic 3n x 4 matrix with
entries z},. Foro € ([3;‘]), let d, denote the determinant of
the 4 x 4 submatrix of A(z) with rows indexed by o.
These cut out (*') quartic hypersurfaces V(d,) in (C*)™.
Let v; denote the normal of the hyperplane L; C C".
Impose linear conditions saying that the rows of A(x),
numbered 3i, 37 + 1, 3¢ + 2, dot to zero with v;. These 3n
equations determine a subspace L in (C*)*" of dimension
at least 9n = 12n — 3n. The given point A lies in L. We
need to show that there is a choice of G € (GL3)" such
that GA (which again lies in L) avoids the determinantal
surfaces. This is equivalent to picking a basis for each L;
that stack together toa B e L\ |J ,V(d,).

We first show that L is not contained in any V(d,) by
exhibiting a point in L\ V(d,) for each o. Since at most
four cameras can be involved in any d,, we may assume
without loss of generality that o involves only rows of
the first four cameras. There are four cases to consider
depending on how many rows these four cameras con-
tribute to ¢ — the possibilities being (3,1,0,0), (2,2,0,0),
(2,1,1,0), and (1,1,1,1). In each case we will produce a
B e L\ V(d,). A key observation is that A; and A; having
distinct foci implies L; N L; is a proper subspace of both
L; and L; for all %, j. Our starting point in each case below
is A € L which we modify to the needed B by replacing
the bases of L; that provide the rows of A;.

Case 1. (3,1,0,0): Modify A to B by choosing a basis for L,
to be the three rows of B, so that no element in this
basis liesin L N Lo. Then B does not vanish on d,,.

Case 2. (2,2,0,0): Choose a basis for L; such that the two
rows vy, v; contributing to o from the first camera
are chosen from L; \ L. Then Lo N Span{uvi, v} is
a proper subspace of L, of dimension at most one.
Therefore taking two linearly independent vectors
v3,v4 outside of this subspace as the two rows
from L, creates a BB that does not vanish on d,.

Case 3. (2,1,1,0): Choose a basis for L; such that the two
contributing rows v, v, from the first camera lie in
Ly \ (Ls U L3). Choose the row v; from Ly such
that w3 € Ly \ (Span{vy,v2} U L3), which forces
Ly N Span{w, vs, v3} to be a proper subspace of L.
Taking v, outside this subspace, we get a point
B € L at which d, does not vanish.
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Case4. (1,1,1,1): Choose vy € Ly \ (La ULz U Ly), v € Lo\
(Span{v } U L3 U Ly), v3 € Ly \ (Span{vi,va} U Ly),
and vy € Ly \ (Span{vi, vs,v3}). By construction,
we get a point in L at which d, does not vanish.

Therefore, L N V(d,) is a proper subvariety of L for
each o, and a generic choice of G will put GA € L\
Uav(dﬂ')' D

We note that .4 having distinct foci does not imply that .4
is minor-generic. A simple example would be an arrange-
ment of four translational cameras; the submatrix consisting
of the four first rows in each camera has zero determinant.
However, having distinct foci allows the camera arrange-
ment to be made minor-generic by the action of a tuple G.
We are now ready to prove the main theorem of this section.

Theorem 3.7. Let A be an arrangement of cameras with distinct
foci. Then My = Hj + HY.

Proof. By Lemma 3.6, there exists G € (GL3)" such that GA
is minor-generic. Then, by Corollary 3.5, Mgy = Hg 4 +
H} ;. Therefore, by Lemmas 3.1 and 2.5, we get

My = Xg1 (Mga) = Xg—l(HéA) + Xg-1 (Hé’.xi) = H.Ei + H.:ji'
O

Proposition 5(1) in [16] says that the H% and H? together
cut out the multiview variety which implies that H% + H3 C
M 4. Theorem 3.7 shows that these polynomials also gener-
ate the multiview ideal providing the analogous ideal-
theoretic statement.

Theorem 3.7 improves on Corollary 2.7 in [4] which
states that when the foci of the cameras A; are in linearly
general position, then M, is generated by the bifocals and
trifocals. Theorem 3.7 requires no sophisticated condition
on the cameras beyond the foci being pairwise distinct.

Conca et al. [20] and Li [21] also consider the vanishing
ideal of the image of linear map from a projective space to a
product of projective spaces. It is shown in [20] that this
ideal is Cartwright-Sturmfels, meaning that its initial ideal
is radical after a generic change of coordinates. Both of these
works allow for projective spaces of arbitrary dimension.
Specializing to our situation, Li's results show that M4 =

o H% while we prove that M4 = H% + H?,.

Just like in [16] where the results automatically generalized
from projective cameras to euclidean cameras, Theorem 3.7
also generalizes to euclidean cameras. Recall thata camera A;
is euclidean if it is of the form A; = [R; t;] where R; € SOs.

Corollary 3.8. Let A be an arrangement of euclidean cameras
with pairwise distinct foci. Then M4 = H% + HY.

We state one more consequence of Theorem 3.7 which
will be needed in the next section.

Corollary 3.9. Let A be a camera arrangement with pairwise dis-
tinct foci. Then for any p, € P2, the points (Aic;, Asc;, ..
Pis - -, Anc;) lie in V(M 4) where c; is the focal point of A;.

"7

Proof. By Theorem 3.7, it suffices to show that for any i, the
bifocals and trifocals vanish on the points (Ac;,
Asci, ..., Py .., Apc). For any pair of cameras {i,j},
observe that (c;,0,—1) is a nonzero element of kerAy; ;
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(p;; Ajc;). For any pair {j,k} not containing camera i,
(¢i,—1,—1) is a nonzero element of ker Ay;; (A;jc;, Apc;).
Hence all polynomials of H% vanish on (Ac;, Asc;
s -3 Pire - Anci). A similar argument applies to any tri-
ples of cameras, from which it follows that all polyno-
mials in H% vanish on (Aic;, As¢, .., P;s - -, An). O

The image of focal point ¢ in image j, i.e., Ajc;, is called
the epipole in image j relative to image i. Corollary 3.9 shows
that while the product of an arbitrary point in image i with
all epipoles relative to image 7 does not appear in the image
of ¢, these points appear in the multiview variety after tak-
ing Zariski closure. See also Proposition 1in [16].

We conclude this section by showing that the hypothesis
in Theorem 3.7 cannot be relaxed, namely if a pair of foci of
cameras in .4 coincide, then the multiview ideal is strictly
larger than the ideal generated by bifocals and trifocals.

Example 3.10. Consider the four translational camera
arrangement A where t;,t; = (0,0,0), t; = (1,1,1), ty =
(—1,—1, —1). Eliminating the variables g and A; from the
ideal (A;q — \ip; : i = 1,...,n), we can directly obtain M 4.
Computing a primary decomposition of H% + H%, we
find that

H% + H = MaN (yy — 24, Y3 — 23, T4 — 24, T3 — 23)-

The extra component (y, — zi,y; — 23, Ta — 24, T3 — 23)
cuts out the points (p,, p,, Azc1, A4¢;), and from the pri-
mary decomposition we see that the projective variety
they form is not contained in V(M).

4 MORE IDEALS FOR THE MULTIVIEW VARIETY

In the computer vision literature, there are several sets of
polynomials that have been shown to vanish on the space of
images ¢4 (P ), and hence they also vanish on the multiview
variety. We now consider three such sets of polynomials
and the ideals they generate, and compare them to the mul-
tiview ideal M 4.

4.1 Heyden and Astrom [2]

Heyden and Astrém were the first to do an algebraic study of
the multiview variety, by studying the n-focal ideal H™ [2].
The variety of this ideal is indeed the multiview variety.

Lemma 4.1. For any camera arrangement A with pairwise dis-
tinct foci, V(M) = V(HY).

Proof. Recall from the image formation equations, A;q = A;p,
foralli=1,...,n,thatif p = (p,, ... ,p,) liesin theimage
of ¢, then the matrix A(p) has a non-trivial kernel. This
means that all maximal minors of .A(p) vanish on the image
of ¢4, and therefore also on its Zariski closure, which is the
multiview variety. Therefore, V(M) C V(HY).

To see the reverse inclusion, suppose p =(py, ... ,
p,) € V(H;) which means that A(p) is rank deficient
and there is a nonzero vector of the form (q,—
A1, ... ,—A) in the kernel of A(p). If q = 0, then we will
get that A;p;, = 0 for all i. However, since p, # 0, it must
be that A; = 0 for all i and hence the vector in the kernel
is the zero vector which is a contradiction. Therefore,
there is a nonzero vector q such that 4;q = A;p; for some
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A If q is not the focal point of any camera, then p lies in
@(PL). Since ¢4 is continuous, ¢ 4(P%) C ¢ 4(P3). It fol-
lows that ¢,(P%) C V(M) because P} =P% and so
p € V(M,4). On the other hand, if q is the focal point ¢; of
camera i, then p; = A;c; forall j # i, and by Corollary 3.9,
p € V(M,). Thus we get that V(M,4) D V(HY). O

Example 3.10 shows that the assumption of distinct foci
is necessary for Lemma 4.1. In this example, n =4 and
H, = H + H’ by Corollary 3.4. We see that V(H}) has a
component other than V(M 4).

4.2 Faugerasetal.[22]
The second set of polynomials we will study were con-
structed by Faugeras & Mourrain while proving that the
multiview variety is cut out by epipolar/bifocal and trifocal
polynomials, and that the quadrifocal constraints corre-
sponding to the quadrifocal tensor were not needed [7], [22].
Observe that A;q = \;p; implies A;q x p; = 0, for each i,
or equivalently, [p;], 4;q = 0, where

0 -z
[p‘a'] x Zi 0 =T |,
—Yi T 0

represents taking cross product with p;, i.e., [p] v =p; x v.
Stacking all 3 x 4 matrices [p;], A;, we get the 3n x 4 par-
tially symbolic matrix

AF(p) == T 6)
[Pn]x An

If there is a world point q satisfying 4;q x p; = 0, then this
matrix is rank deficient and all maximal minors of .Ap(p)
vanishes on the multiview variety.

Definition 4.2. The ideal of all maximal 4 x 4 minors of A" (p),
denoted by Fy, will be called the Faugeras ideal of the

arrangement A. We denote the subideals of F 4 generated by

minors involving only two and three cameras by F7 and F3,

respectively.

We now describe a sequence of matrix transformations
that allow us to obtain .AF(p) from A(p). Let P(p):=
diag([p1],, .-, [pn].) be the symbolic block diagonal matrix
of size 3n x 3n. Multiplying A(p) on the left by the block
diagonal matrix P(p) and dropping the rightmost n col-
umns of the resulting matrix, we obtain A" (p)

AF(p) = P(p)A(p) [Uj:] — Pp)A, @

where as before, we abuse notation to let .4 also represents
the 3n x 4 matrix [4,;;.. ; A,] obtained by stacking the cam-
eras vertically. From the matrix constructions of H and Fj,
we observe that their projective vanishing sets in (P?)"
coincide.
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Lemma 4.3. For any camera arrangement A with pairwise dis-
tinct foci, V(M 4) = V(F4).

Proof. The proof will follow from Lemma 4.1 if we can
show that V(F4) = V(H?%). If p € (P2)" is such that A (p)
drops rank, then there exists a nonzero q € ker(A”(p)) so
that A;q x p, = 0 for all . This means there exist nonzero
scale factors A; such that A;q= Ap,. The vector
(q,—A1, ... ,—A,) is a nontrivial element in ker(A(p)), so
A(p) is rank deficient. Therefore V(F,) C V(H?)

For the other inclusion, if there is a nontrivial
(q@, =M1, --.,—An) € ker(A(p)) for some p € (P?)", then
as in the proof of Lemma 4.1, ¢ must be nonzero, and so
q is a nontrivial element of ker(A”(p)). This shows that
V(F4) 2 V(H?), hence V(Fy) = V(HY) = V(My). O

4.3 Maetal.[9]
The third and final set of polynomials we will study are the
so called multiview rank constraints which were proposed by
Ma and collaborators [9] as an alternative to the multilinear
constraints studied for example in Hartley & Zisserman [8].
Suppose A; = [I 0] and A; = [B; t] for ¢ > 2. Starting
with A(p), a series of matrix operations are described in
Chapter 8in [9] to arrive at a new set of determinantal poly-
nomials, arising as maximal minors of

px(Ip) p1x0
P2 X (Bap1) pa2 x ta

AY (p) == : : . ®)

Pn X (Bnpl) Pn X tn

Definition 4.4. The ideal of all maximal 2 x 2 minors of A (p),
denoted by Y 4, will be called the Ma ideal of the arrangement A.

We observe that AY (p) can be obtained from A" (p) by
multiplying by a single matrix on the right

A (p) = AT (p) [%1 ?] ©)

From this we observe that Y4 has the same projective van-
ishing set as F'4, and hence H’j and M 4.

Lemma 4.5. For any camera arrangement A with pairwise dis-
tinct fociand A, = [I 0], V(M 4) = V(Y4).

Proof. If p € (P?)" is such that AY (p) drops rank, then there
exists a nontrivial (v1,vs) € ker(AY(p)). Therefore, q =
(v1p,,v2) € ker(A¥(p)) is nontrivial. Note that it is neces-
sary that we assume A; = [I 0] so that [p,],Ai(vip,,
v3) = v1[p1]« Py = 0. This shows that V(Y4) C V(F4).

For the other inclusion, if 0 # q € ker(A”(p)) for some
p € (P*)", thensince p, x [I 0]q = 0, there exists a scalar v,
such that v1p, = (q,q,,q3). This means that (v, q,) €
ker(A" (p)), which is nontrivial because if v; = 0, then
(41, 95,93) =0, so q #0. This shows V(Y,) 2 V(Fy),
and the desired result follows from Lemma 4.3. O

Observe that Y, is generated by polynomials of total
degree 3. This fact has an interesting consequence. As we
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mentioned earlier, Y; has been proposed as an alternate alge-
braic foundation for multi-view geometry. From Lemma 4.5,
we know that it cuts out the multiview variety. Since M 4 is
the vanishing ideal of the multiview variety, we get that
Y4 C M, However, from Theorem 3.7 we know that
My = H% + H?,ie., itis generated by polynomials of degree
two and three, which means that in general Y4 # M4 and
instead Y C M4 or equivalently Y4 C H% + H’. This means
that the bifocals and trifocals imply the multiview rank con-
straints, but not the other way around. Similarly, Hj; and F,,
which are generated by polynomials of total degree n and
four respectively, are properly contained in M 4. We see this
in Example 4.6 below.

4.4 Relationships to the Multiview Ideal

We now compute the three ideals on an example, for-
eshadowing their structural properties, which we exam-
ine next.

Example 4.6. Consider the translational arrangement .4
where t; = (0,0,0), t2 = (1,0,0), t3 = (0,1,0) whose mul-
tiview ideal is

My = (y122 — yo21, T223 — T322 + Y23 — Y322,

T123 — T321, T1T3Ys + T1Ysls — TaT3l — T3 Ys)-

The primary decompositions of H’j, F4, and Y4 are

HY = My (z1,y;,21) N (22, Yp, T2) N (z3:y3:$3)
Y= Man (21,y1,21) N (Y3, Yo, T3, T2, 23, 2273, 23)
N (21, Yy, T3, T2, T1, 23, zgz:s.,zg)

N (21, Y3, Y2, Y1, T3, 23, 2223, 23),

Fy = My {yy,yy, T2, T1, 22 5 2172, )
ﬂ(y3,y1,ir3,ir1, s 2123, )
n (ZE: 215 Y3y Y20 Y1, T3, 3)
N (23,22, %, T3 + Y3, T2 + Y2, T1, ;)
N (Y2, T2, 23, 2273, 25, Y323, Y322, Y3, T323,
T3Z9,T3Ys, 9?;2;: T1T3 + T1Y3 — 9?33;1)
N (Z:s:ygs9?2,5312122,2-'%:13322,13321,2?;2;:

2
T 29,T121, T1Y3 — T3Y1, T123, Tl) nc,

where C is a component minimally generated by 133 pol-
ynomials of total degree up to eight.

While each of HYj, F;, and Y4 notably contains M 4 as
a component, the nature of their other components is
worth further investigation.

To analyze the extra components, we rely on several
notions from commutative algebra, which we define next.
The first notion is that of a multigraded ring. Consider the
ring C[pi, ... ,p,] endowed with the Z"-grading °(w;) = e;
where w; € {z;,v:,2} and e; is the ith standard basis vector
in R". We say a polynomial in this ring is homogeneous if
each of its terms have the same multidegree.

The irrelevant ideal in this grading, which we denote by m,
is the intersection of the ideals m; := (z;, y;, i)

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 43, NO. 4, APRIL 2021

n

= ﬂmg = ﬁ(ﬂrs,yz-,zz-)-

i=1 i=1

(10)

Observe that m is generated by all multilinear monomials of
multidegree (1,1, ... ,1) and total degree n. It is the maxi-
mal ideal in the ring Clp,, ... ,p,] generated by homoge-
neous elements of strictly positive multidegree.

The radical of an ideal I is the ideal VI :={f: f*¢
I for some k € N}. If I is a homogeneous ideal then so is its
radical, and I C v/I. The colon of an ideal I with the ideal J,
denoted as (I : J) is the set of all polynomials f such that
fgelforallge J,ie,I:J={f: fJCI}.

Recall that the projective varieties of the ideals HY, Fy,
and Y, all agree and equal the multiview variety V(M4).
We can now state a first relationship among the ideals that
follows easily from the projective Nullstellensatz in our
multigraded setting, whose statement and proof will appear
in Appendix A.

Theorem 4.7. For any A with pairwise distinct foci,

(@ JHy:m= My
(b)) VFji:m= My
() /Yq:m= M,when A =[I0].

Proof. See Appendix A. O

In the language of algebraic geometry what this says is
that \/H?,+/F4 and /Y, all cut out the multiview variety
scheme-theoretically. They are not equal as ideals but they
agree in high enough multidegree with M, see [23, pp 50].

We now strengthen Theorem 4.7 (a) and (b) to show that
the operation of taking the radical is not needed, ie.,
H : m= My and F4 : m = M4. This means that H7; and
F, already cut out the multiview variety scheme-theoreti-
cally. Experimental evidence suggests that when A4, = [I| 0],
such a result is also true for Y, but an explicit proof is
made difficult by the convoluted structure of the 2 x 2
minors of A" (p).

We first show that the simple structure of the primary
decomposition of H’j observed in Example 4.6 holds in
general.

Lemma 4.8. For any camera arrangement A with pairwise dis-
tinct foci, H; = M4 Nw. In particular, H'; is a radical ideal
with prime decomposition M4 Nmy Nma M- - N My,

Proof. Suppose f is a generator of € H, i.e., a maximal
minor of A(p). Then f € m. Also, since f vanishes on
V(My), f € M 4. Therefore, H} € M4 Nm.

Now suppose f € M4 M m. Since M4 is generated by
bifocals and trifocals f = > A\irib; + ) j1;8t; where b;’s
are bifocals, ¢;’s are trifocals, r;, s; are monomials, and
Ai, i ; are scalars. Further, since f € m, every term in f is
divisible by some generator [];, w; of m where
w; € {&:, i, zi}. Now consider r;b;. Since b; involves only
two cameras, it must be that r; contains a variable w;
from each of the other n — 2 cameras so that each term of
r;b; lies in m. This makes r;b; a monomial multiple of a

n-focal by Lemma 2.2. The same argument holds for s;t;.
Thus, f € HY. O
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Proposition b3 in [17] proves that when A is minor-
generic, HY is a radical ideal. Lemma 4.8 shows that H’} is
always a radical ideal under the weaker assumption of dis-
tinct foci.

Theorem 4.9. For any camera arrangement A with pairwise dis-
tinct foci, H : m = M 4.

Proof. We first note that M, : m = M 4. Suppose f € My :
m. Then fu € M4 for any monomial generator u of m.
Since M 4 is prime and does not contain any monomials,
f €M, Since Hy = MgyNm by Lemma 4.8, H}:m =
I‘-’IA m= ﬂ{fA. O

We now consider the Faugeras ideal F4 and prove that
F4 : m = M 4. The nontrivial part is to argue that M 4 is con-
tained in F4 : m. This fact relies on the following technical
lemma, similar in flavor to Lemma 2.2, which shows that
bifocals and trifocals can both be multiplied by any genera-
tor of m to fall into Fy.

Lemma 4.10.

a) For n =2 cameras, and any monomial py;psr, there
exists a 4 x 4 minor f of AF(p) such that f=

(=1)"* prjpoi det A(p).

b) Let n =3 and i1,1s,i3 be pairwise distinct. Then for
any trifocal det A(p) (91,70, V11 Any coordinate pigj.,
there exists a 4 x 4 minor f of A" (p) such that f =
(—1)*pige det AP, ;i)

Proof. See Appendix B. O

Theorem 4.11. For any camera arrangement A with pairwise
distinct foci, Fip : m = My.

Proof. The containment F4 :m C M, follows as in Theo-
rem 4.9 because F 4 C M4 and hence, Fy:mC M, :
m = M 4. The other containment will follow by showing
H?%, H, C F4: m. For general camera arrangements with
n cameras, recall that F7 (resp. F?}) is the ideal generated

by all 4 x 4 minors of A" (p) that involve only two (resp.
three) cameras. By Lemma 4.10(a), for any multilinear
monomial ([[;,_, wn) and any bifocal b;j, ([Jwm)bi; € (f)
for some Faugeras minor f € Fi, hence Hi CFy:m. We
address the trifocals in two cases. First consider the case
when the two rows eliminated from A j)(p) to form a
trifocal ¢ € HY, ;;, come from the same camera, say with-
out loss of generality, from camera i. In this case,
t = w;bj, for some w;, and Lemma 4.10(a) again implies
te Fy:m. For the case when the two rows from
Afijsy(p) to form¢ € H, ;;, come from different cameras,
Lemma 4.10(b) implies that, for any ([ wm), ([Jwm)t €
(f) for some f € F¥. We conclude that H3 C F4 : m, as

desired. O

5 THE BIFOCAL IDEAL

We saw in Theorem 3.7 that the bifocals and trifocals
together generate the multiview ideal when the camera
foci are pairwise distinct. In this section, we investigate
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how imposing further conditions on the cameras can

lead to an even simpler description of the multiview

ideal. Heyden and Astrom [2] and Trager et al. [16]

show that when the camera foci are not all on a plane,

the bifocals are necessary and sufficient to cut out the
multiview variety. There has also been work to further
reduce this description by considering the minimal num-
ber of bifocals needed ([2], [24]), though we will not
address this question here. In this section, we focus on
the ideal-theoretic relationship between the bifocal ideal

H?% and the multiview ideal M4 when the camera foci

are noncoplanar.

To motivate our investigation, we start with some exam-
ples. We say that a camera arrangement A is coplanar, non-
coplanar or collinear if their foci have the corresponding
property.

Example 5.1. Consider the four noncoplanar translational
camera arrangement A; where t; = (0,0,0), t; = (1,0,0),
ty = (0,1,0), ty = (0,0, 1). Eliminating the variables ¢ and
A; from the ideal (A;q— Ap; :i=1,...,n), we observe
My, occurs as a component in H

H?‘h = ﬂ{fAl M (il’.‘g,yQ,ZQ,iL‘l,:l’.‘g,il’,“L)
N{z1,y1,21, T2 + Y2 + 2, T3 + Y3 + 23,24 + Ys + 24)

N (x3,Y3, 23, Y1,Y2,Ya) N (T4,Ya, 24, 21, 22, 23)-

Example 5.2. Consider the four coplanar translational cam-
era arrangement .4, where t; = (1,0,0), t, = (0,1,0), t3 =
(0,0,1), ts = (1/3,1/3,1/3). We observe that H = M4,
C where

C=(Ts+ys+ 2,23 +ys+ 23,2 + Yy + 20,21 + 4y + 21)-

In Example 5.1, each extra component of H contains an
irrelevant ideal m; and hence does not contribute to V(H% ).
Saturating the bifocal ideal Hil with respect to the full irrel-
evant ideal m removes these components. We will prove
that this is always true when camera foci are noncoplanar.
We begin by proving a series of three lemmas.

Lemma 5.3. Suppose A is an arrangement of n > 4 cameras
with pairwise distinct foci. Then A is noncoplamar =
H", C H3.

Proof. n = 4,5,6. If A is noncoplanar, then there is some
subset of four cameras that is noncoplanar. Order the
cameras in A so that these are the cameras A, ..., A4. By
a change of coordinates on P?, we can send the fod of the
cameras A, ..., Ay to the foci of the cameras in .A; from
Example 5.1. Then, by Lemma 2.5, applying P? coordinate
changes using some G € (GL3)", we can assume that A is
an arrangement of translational cameras. These transfor-
mations fix the first four cameras, and we think of the
cameras A; for i > b as variable, represented symbolically
by their translations, and the implication can confirmed
by direct calculation in Macaulay2.

n = 7. In this case, the full computation is too expen-
sive. To make the computation feasible, we split the
proof into two cases, depending on whether the arrange-
ment has five collinear cameras or not.
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CaseI. If a noncoplanar arrangement of seven cameras
has at most four collinear cameras, then every four cam-
era subset can be augmented with two additional cam-
eras to get a noncoplanar arrangement of six cameras.
Thus every 7-focal of such an arrangement, which looks
like w;wjwyq for some quadrifocal g, has the form of a 6-
focal from a noncoplanar arrangement, say w;w;q, multi-
plied by a coordinate wy. The n =6 case shows that
w;w;q is generated by 2-focals, hence w;w;wyq is gener-
ated by 2-focals.

Case II. We now consider the case of noncoplanar
seven camera arrangements in which five cameras are
collinear. In this case, by a proper choice of camera order-
ing and P coordinate change, we can assume the transla-
tions of As, As, A7 are of the form t; = (5,0,0)",
(s, 0, U)T, ts = (A7, U,U)T where the A; are symbolic. This
makes A, Ay, A5, Ag, A; collinear. The choice to take the
line that the cameras lie on to be the z axis is arbitrary,
but can be made without loss of generality. This arrange-
ment is now described by few enough variables to enable
a direct computation showing that H C H7.

n > 8. Now suppose n > 8 and f is an n-focal of A.
Recall that f involves all n cameras but at most four cam-
eras can contribute two rows to the matrix whose deter-
minant is f. At one extreme, these four cameras maybe
Ay, ..., Ay and at the other extreme they might be four
cameras different from the first four, which we call
As, ..., Ag. Thus the n-focal f € H is a monomial mul-
tiple of a 8-focal g=mgq of {4, ... 6 A4, A5, ..., Ag}
where where ¢is a quadrifocal and m is a monomial.

If the four cameras contributing to ¢ involve
Aj, ..., Ay, then gisamultiple of a 7-focal from noncopla-
nar cameras. On the other hand, if g € H}_ 4, then g can
be generated by the trifocals of 4, .. AS by Lemma 3.3:

ts =

>

N 3
t‘EHAgg,...,Ag

h..g (mtg ) .

In particular, this shows that g can be generated from 7-
focals, mt;. These come from noncoplanar seven camera
arrangements because Ai,...,A4 are noncoplanar. In
either case, we know that such 7-focals can be generated
by 2-focals, hence g€ H%. It follows that fc HY, as

desired. O

Lemma 5.4. Suppose A is an arrangement of n >4 cameras
with pairwise distinct foci. Then H C H3 = My = H% : m.
Proof. If f € H% : m, then f(]] 2:) € H% € M4, vanishes on
V(My). Since M, is prime and does not contain any
monomials, f & My. Therefore, Hj : m C M4. For the
other containment, by Theorem 3.7, it suffices to show
that H% and H¥ are contained in H7 : m. It is clear that
H% C Hj : m. By Lemma 2.2, multiplying any ¢ € H by a
generator [Jw; of m yields a monomial multiple of an
n-focal. By assumption, this n-focal lies in H3. Thus,
t€H%:mand My C H :m. 0
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Lemma 5.5. Suppose A is an arrangement of n > 4 cameras with
pairwise distinct foci. Then My = H? : m = Ais noncoplanar.

Proof. We prove the contrapositive, namely that if A is
coplanar then M4 # H3 : m. We will construct a point
p € V(H% : m) \ V(M), from which the result will follow.

Let n € P? be the normal vector of a plane containing
the foci of the cameras in .A. If the foci are not collinear
then n is unique, otherwise we choose any plane contain-
ing the foci and its normal n. Let l; C P* denote the image
of the plane n' in camera i, and let e; ; denote the image
of the focal point of camera j in image i. Then e;; € I;
since the focal point of camera j lies in n'. Choose
P € E]_ \ {21‘2, 21'3]' and P- € EQ \ {eg‘]_, 22'3}. Then there is
a unique world point q on n* whose images in cameras 1
and 2 are p, and p,. Let p, € [3 be the (unique) image of
q in camera 3. Then p,, p,, p; satisfy trifocal constraints.
Choose p; € I3\ {p;} and some p; € [; for i > 4. By con-
struction, p ¢ V(M 4). Since the cameras are coplanar, the
epipolar plane given by q and any two cameras i and j is
n' for any pair i, j. By choosing p; € I; for all 4, we force
every bifocal polynomial to vanish on p. Therefore by
construction, p € V(H3)\ V(M,), but since V(H}) =
V(H? : m), we conclude that HY : m # M. 0

Together, Lemmas 5.3, 5.4, 5.5 imply the following
theorem.

Theorem 5.6. Suppose A is an arrangement of n > 4 cameras
with pairwise distinct foci. Then the following are equivalent.

(a) Aisnoncoplanar.
(b) H, C HY.
(c) My=H:m.

We now make some observations about Theorem 5.6.

Theorem 6.1 in [2] observes that V(H%) = V(M) for
noncoplanar A while Proposition 5 (2) in [16] further shows
that V(H%) = V(M) is equivalent to the foci of A being
noncoplanar. Our Theorem 5.6 proves the analogous ideal
statement, namely that noncoplanarity of foci is equivalent
to My = H% : m.

Example 5.2 shows how Theorem 5.6 fails when A is
coplanar. The bifocal ideal H} contains the component
(T1+y1+ 21,02 + Y2 + 22,03 + Y3 + 23, T4 + Y4 + z4), which
cannot be removed by saturating with respect to m. Its vari-
ety cuts out the projections of the plane containing the foci
of Ay in each camera image. This plane in P? has normal
vector (1,1,1, —1). The following example shows that fur-
ther degeneracy occurs when camera foci are collinear.

Example 5.7. Consider the four collinear translational cam-
era arrangement A; where t; = (0,0,0), t; = (1,0,0), t; =
(2,0,0), t4 = (3,0,0). Here, HA C M 4,, but both ideals
are prime, so M 4, cannot occur as a component of H’2 .In
addition, the dimension of HE,‘ is one larger than that of
M 4,. This is explained by the fact that there is an entire
one-dimensional family of planes that contains the cam-
era centers of A;.

As seen in the above examples and discussion, the rela-
tion between H% and M4 can be complicated when camera
centers are coplanar or collinear. Determining the exact
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relationship between ideals in these degenerate settings
would be an interesting problem for the future.

In Theorem 5.6 we showed that when cameras are non-
coplanar, the n-focal ideal becomes a subset of the 2-focal
ideal. We now give an example to show that this contain-
ment need not hold for H% where n > k > 2. The con-
struction relies on having three of five cameras being
collinear.

Example 5.8. Consider the five translational camera arran-
gement Bwith t; = (0,0,0),t; = (0,0,1),t;3 = (0,0,2),ty =
(0,1,0),t5 = (0,0,1). Theorem 5.6 shows that H}; C Hj
since B is noncoplanar. However the following trifocal
from B]_, BQ, B3

t = — T1yays + 2 T2l Y3 — T3l Y2,

is not in H. Similarly, the quadrifocal

q = Tal = —T1T4YoYs + 2 T2Tal1 Y3 — T3TaY1 Yo,

from cameras By, B, B3, By is not in Hp.

6 FINITE IMAGES

The results of the previous sections have important practical
consequences when we restrict attention to the set of all
finite images, that is to all (p1,...,pa) € V(M4) with 2z # 0
for all 7. The vanishing ideal of this affine patch is obtained
by dehomogenizing M4 with respect to the variables z;
from each image plane. We call this the affine multiview ideal
of Aand denote it 7(M,4), where 7 : Clx;, y;, 2] — Cla;, yi] is
the map setting each z; to 1. From Theorem 3.7, we see that
(M) is generated by dehomogenized bifocals and deho-
mogenized trifocals when the foci of .4 are pairwise distinct.

Corollary 6.1. If A is a camera arrangement with pairwise dis-
tinct foci, then (M 4) = w(H?) + n(H%).

Using the following fact about dehomogenizing colon
ideals, the results of Section 4 yield a nice relation among
w(H), w(Fa),7(Y4), and the affine multiview ideal, 7(M4).

Lemma 6.2. For ideals I,J C Clz;,yi,z], n(I:J)=mn(I):
(J).

Proof. If f € #(I : J), then f = n(g) for some g which satisfies
gh € I for all h € J. Therefore fr(h) = n(g)m(h) = m(gh) €
a(I) for any h € J, proving f € n(I) : n(J). If fen(l):
7(J), then forany h € J, fr(h) € n(I), ie, there exists g € I
such that fr(h) = m(g). Denote the homogenization of f
with respect to z1,...,2, by f. We claim that feI:J.
Indeed for any h € J, n(fh) = n(f)n(k) = fr(h) = n(g) for
some g € . Homogenizing both sides, we get fh=g € I,
and we conclude that (1) : 7(J) C (I : J) O

Corollary 6.3. If A is a camera arrangement with pairwise dis-
tinct foci, then 7(M4) = n(H) = n(Fa) = 7(v/Ya).

Proof. Lemma 6.2 implies that 7(I: m) = x(I) : (1) = n(J)
for any ideal I. Dehomogenizing Theorems 4.9, 4.11,
and 4.7, each equality follows. O

Observe that the last equality in Corollary 6.3 requires
A, = [I 0]. Geometrically, Corollary 6.3 shows that while
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the homogenous ideals HY, Fi4, Y4, and M4 do not coincide,
they are the same away from the origin in each image plane.
In particular, this is the case on the affine patch {p € P*" :
= 2, = 1} corresponding to finite image data.

Using Theorem 5.6 we see that, when A is noncoplanar,
the dehomogenized bifocals alone suffice to generate the
affine multiview ideal (M ).

n=...

Corollary 6.4. Suppose A is a noncoplanar camera arrangement
with pairwise distinct foci. Then

n(My) = n(H?).

Proof. Dehomogenizing the result of Theorem 5.6, we get
n(My) = n(H% : m) = x(HY) : n(m) = n(H?). O

Corollary 6.4 shows that w(M,) is generated by quad-
ratics whenever A satisfies the noncoplanarity assumption.
This observation was used in [11] to create a semidefinite
programming relaxation of the triangulation problem which
is can be seen as minimizing euclidean distance from an
observed noisy data point to the affine multiview variety. It
was shown that when the noise is small, the semidefinite
relaxation solves triangulation. Of course, Corollary 6.3
needs the foci of the cameras to be noncoplanar and indeed,
the experiments in [11] show that the quality of the semide-
finite programming solution deteriorates as the foci become
coplanar and then collinear.

Geometrically, we can understand how the quality of
the relaxation deteriorates because the bifocal ideal cuts
out more than the multiview variety for coplanar arrange-
ments. In the coplanar case, the bifocal ideal cuts out the
image of the plane that contains the camera centers. These
points are not the images of true 3D points. It is therefore
possible that the nearest point problem yields a spurious
solution on this extra component. Similarly, in the collinear
case, the bifocal ideal cuts out a strictly larger variety than
just the multiview variety. In this case, the dimension of
the vanishing set of the bifocal ideal is one larger than the
multiview variety.

7 SUMMARY

The multiview variety is a foundational geometric object in
multiview geometry and understanding its vanishing ideal
M 4 precisely is important for any algebraic algorithm that
solves problems on this variety. There have been many
partial results about the algebraic structure of the multi-
view variety. The aim of our paper is to put them all into a
unified algebraic setting and give a complete description
of M.

Our main result is that when the foci of the cameras are
pairwise distinct, M 4 is generated by the bifocal and trifocal
polynomials of A (Theorem 3.7). The proof requires an
understanding of the behavior of coordinate changes on
k-focal ideals (Lemma 2.5), and translational cameras
(Lemma 3.3). The main result holds for euclidean cameras
as well (Corollary 3.8). We also give an example to illustrate
that the assumption of distinct foci cannot be relaxed for
this result to hold (Example 3.10).

Next we study three sets of polynomials that have been
proposed to cut out the multiview variety, by Heyden-
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Astrém, Faugeras and Ma et. al. respectively. We show that
the ideals generated by these polynomials are all properly
contained in M 4. We establish the exact algebraic relation-
ships between the above ideals and M 4 (Theorems 4.7, 4.9
and 4.11).

We then prove that if the camera foci are assumed to
be noncoplanar, then in fact M, is the saturation of the
bifocal ideal by the irrelevant ideal (Theorem 5.6). In this
situation the n-focal ideal is a subset of the bifocal ideal.

Finally we prove that the dehomogenization of the
ideals by Heydenu&strijm, Faugeras and Ma et. al. all
agree with the dehomogenization of M4 (Corollary 6.3).
Similarly, under noncoplanarity of foci, the bifocal ideal
also has the same dehomogenization (Corollary 6.4). This
means that all of these ideals cut out the space of finite
images.

TECHNICAL PROOFS

A.1 Muligraded Projective Nullstellensatz

In this section, we state and prove the projective Nullstellen-
satz in our multigraded setting, which we use to prove
Theorem 4.7 in Section 4. Let I C C[py,...,p,] be homoge-
neous with respect to the Z"-grading deg w; = e;. To be clear
about projective versus affine varieties, we define Vp(J) :=
V(I)={pe(P)":f(p)=0foral feI}, and for a set
S C (P?)", we define

Ip(S)={fem: f(p) =0for all p € S}.

We say that Vp(I) is the projective vanishing set of I in (P?)"
and Ip(S) is the largest homogeneous ideal vanishing on §
contained in m. While we force Ip(S) C m, it also makes
sense to consider the largest homogeneous ideal vanishing
on S without intersecting with m. As before we denote this
ideal by I(S), and notice that Ip(S) = I(S) Nm. In the usual
grading on C|py, ..., pn], a vanishing ideal I(S) is homoge-
neous in the usual sense which means that it is contained in
the usual irrelevant ideal (z1,y1,2,...,%n,Yn, 2n). Under
the multi-grading, Ip(S) is required to be in the correspond-
ing irrelevant ideal m. We will use the following variant of
the Nullstellensatz.

Lemma A.1. For any homogeneous ideal I C Clpy, ...
that I C m, Ip(Ve(I)) = +/1I.

Proof. Define the affine operations

, Pn] such

Va(l) = {p € (A%)": f(p) =0 for all f€ I}
1,(S)={f€Clp1,---,p] : f(p) =0 for all p € S}

where we treat S as a subset of (A%)". We will use the affine
version of the Nullstellensatz on the cone over V := Vp(I),
ie.,, theset Cy = V,(I) C (A®)". We claim that
I.(Cv) =Ip(V). (11)

First suppose f € I,(Cy). Given p = (p,,...,p,) €V,
all homogeneous coordinates of p, represented by scalings
(Mpy,---,Anp,), lie in Cy, so f vanishes for all homoge-
neous coordinates of p. This means that the homogeneous
components f; . of f, consisting of all terms with

T
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multidegree (iy,...,4,), vanish at p, so f € I(V), hence
I, (Cy) CI(V). By the Nullstellensatz in (A%)", I,(Cy) =
I,(Va(I)) =1, and by the assumption that 7 Cm,
VI C /m = m. This shows that I, (Cy) C (V) Nm = I(V).

Conversely, suppose f € Iz(V). Since any point p of
Cy such that p; # 0 for all i gives homogeneous coordi-
nates for a point in V, it follows that f vanishes on
Cv\ UL A% x - x {0}, x--- x A%, We need to show
that f vanishes on each of the sets A®x ---x {0},
x---x A%. Since fC m, it has strictly positive multide-
gree, and every monomial in f contains at least one coor-
dinate from each copy of A®. Setting all 3 coordinates to
zero in any A® forces f to be zero, so we conclude that
f € 1.(Cy). Finally, from (11), we conclude

VI =1,(Va(D)) = Iu(Cv) = Ie(V) = Ie(Ve(I)).

Corollary A.2. For any homogeneous ideal I C Clpy,...,ps),
I]p(V]p(I)) = \/Tﬂm.
Proof. Observe that
and
Vinm=vVInym=vINnmCm
Therefore by Lemma A.1, Ip(Ve(I)) = VI Nm. O

Corollary A.3. For any A with pairwise distinct foci,

Mynm=,/HiNm=+/Fynm=+Y;Nm.

Proof. We have already shown in Section 4 that Vp(HY) =
Vp(F4) = Vp(Y4) = Vp(M4). Since My is radical, the
result follows by Corollary A.2. O

We can now prove Theorem 4.7, restated here, from the
main body of the paper.

Theorem 4.7. For any A with pairwise distinct foci,

(1 JH" :m=M
(2) \;FA :m:M‘AA
(3) VY4 :m= M, when A; = [I |0

Proof. Taking colon ideal with m, the desired result follows
from Corollary A.3 and the fact that M 4 : m = M 4, which
was proven in Theorem 4.9. O

A.2 Proof of Lemma4.10

In this section, we elaborate on the technical details used to
prove Theorem 4.11. Recall that the nontrivial statement
there was that bifocals and trifocals can be multiplied by
any generator of m to fall into F4. This requires understand-
ing the 4 x 4 minors of A”(p) for which we once again
invoke the Cauchy-Binet formula and the observation that
A” (p) = P(p) A from (7).

First we characterize certain 4 x 4 minors of P(p). Let p;;
denote the jth coordinate of p;, i.e., , pn = =i, p = y;, and
Pi3 = %. Having the subscript (resp. superscript) p;; on P(p)
indicates eliminating from P(p) the unique row (resp. column)
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of [p;],, that does not contain p;;. On the other hand, having
the subscript p;; on the matrices .4 and A(p) will stand for
eliminating the unique row of the matrix containing p;;.

We will only need to consider the 4 x 4 minors of P(p)
when n = 2 and n = 3. Let R;,C; C {pi1,pi2, pis} denote col-
lections of coordinates, and write R = | J I 1R, C= UG
When n = 2, a 4 x 4 minor of P(p) is det(P[p)R) for some R,
C of size |R|=|C|=2, and when n=3, |R =|C|=5.
Observe thatif |R;| # |C;| for any 7, then the submatrix P(p)§,
has at least two linearly dependent rows or columns, yielding
a zero minor. When |R;| = |Cj| for all i P[p) is block diago-

nal, sodet (P(p)§) = [Tr det(([p:],)5)-

Lemma A.2. Let n = 2. The nonzero 4 x 4 minors of P(p) are
determined by collections of coordinates R,C with |R|=
|C1| = |Rs| = |Cs| = 1. For R = {pyj, par} and C = {pu, pom},
the 4 x 4 minor det(P[p)R) is the monomial

det(P(p)%) = (=17 by poipripom.

Proof. As noted above, if |R;| #|C;| for either i, then
det(P(p)g) =0, whereas if |R;|=|C;|=2 for either i
then P(p)$ r has a rank 2 block on its diagonal, hence
det(P[p)C) =0, proving the first statement. For R =
{p1j,p2r} and C = {py, pom }, the 4 x 4 minor det P(p)R is

det P(p)§ = det(([p],0) 7 det(([p2].)72)
= (=1)™pyypu) (= 1) " p2ipam)
= (=17 pakpupam.
O
Lemma A.3. Let n = 3. Suppose |R3| = |C3| = 1, and |R;| =
|C1| = |Rs| = |Ca| = 2. For Ry= {p3;},Cs = {px}, the
4 x 4 minor det(P[p)R) is the monomial

0 otherwise.

{ (_1)j+k+i+mP3jP3kplipzm if By # C1,Ry #Cs

where py; is the coordinate common to Ry and Cy and po,, is
the coordinate common to Ry and C..

Proof. WhenR C; as sets for i=1 or 3_2 then
(Ipid)% =0, hence det P(p)7 = [Ty det(([Pz] )7) =0.
On the other hand, when R, # C', det(([p1],, ) V)=(- 1)'py
where py; = Ry N Cy. Similarly det(([ps]..) R;) = (=1)"pom
where ps,, = Ry N Cy when Ry # (. O

We now show that bifocals and trifocals can both be mul-
tiplied by any generator of m to fall into F)4.

Lemma A.4.

(1) For n=2 cameras, and any monomial pi;pas,
there exists a 4 x 4 minor f of AF(p) such that f =

(~1)7" s det(A(p)).

(2) Letn = 3 and i1, iz, i3 be pairwise distinct. Then for any
trifocal dEt(A(—p){nmnm}) and any coordinate pi,,
there exists a 4 x 4 minor f of A (p) such that f=

(=1) Pige det(AD) s, s ))-

Proof. (a) Fix some pips. Since n =2, P(p)A is a 6 x 4
matrix and we need to delete two rows to get a 4 x 4
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minor. Using Lemma A.2 and Cauchy-Binet, the result
follows from the computation below:

f=det (P(P) {plj.pzk}A)

3 det (P(p)ﬁum}) det(Ac)

ic=2
= 3 det(P(p)ﬁ,Um}) det(Ac)

|C1]=ICal=1

det ((Ipi], )2 ) det (([pal. ) 22

1<l,m=3

X d'Et' ('A'{Pll P2m } )
z (—1) + kHMnPl iP2kPuP2m det (A{PII\PZm} )

1<l,m=3

= ()" pypn Y (=1 pupam det (A, p,.))

1<l,m=3

= (—1)"*p1;pox det(A(p)).

where the last equality follows from expanding the deter-
minant of A(p) along the last two columns.

(b) Without loss of generality, let iy = 1, iy = 2, i3 =3
and let py;. be arbitrary. For simplicity, suppose j; = j» =
1. Therefore, we consider the trifocal det(A(p),, ..1)-
Using Lemma A3 and Cauchy-Binet, we expand
f =det(P(p)pA) where Ry = {pi2,p13}, R2 = {p22,p},

R3 = {p3;.} as follows:
f = (P A
_ 3 det (P(p)fmﬁm}) det(Ac)

C:|C1=C5=2,/C5)=1
= Y aa((@l)Z) x Y (det(([pl]x)g;)

|C3)=1 ‘ [C11=Cal=2

X det(([’pz]x)gi) dEt(AC))

3 +
= Z(_l)ﬁkpskps«x X z
i=1

|C1|=|Cal=2

(e(@12)
C1#R) C2#R2

<)) dt () |

3
= (-1)"pa Z(_l)ip:h' X

2<l,m=3

> (w(n1522)
x det( ([pa], )22 2m) ) x det(A )
{p22.p23} {P11,P11:P21.Pom P3i }
k u ;
= (=1)"pa Z(—l)‘p;;f
i=1
X z (-

2<lm=3

= (—]—)kp:ik dEt'(A(p){pu\le})

I+m
1) prpam det ('A{Pll P11:P21 Pom:P3i )

Observe that the final equality follows from expanding
the determinant of A(p),,, ...} on the p; column.
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For general ji, j», performing the same computation
with Ry = {pu, p2,pis} \ {py, ), Re = {pa1,p22, pas}\

{np} and Ry = {pu} yields det(P(p)pA) =
(—1) p:”\. d'Et'(A(p){pljl ‘PZJ'z})- -’
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