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The slack ideal of a polytope is a saturated determinantal ideal that gives rise to 
a new model for the realization space of the polytope. The simplest slack ideals 
are toric and have connections to projectively unique polytopes. We prove that if a 
projectively unique polytope has a toric slack ideal, then it is the toric ideal of the 
bipartite graph of vertex-facet non-incidences of the polytope. The slack ideal of a 
polytope is contained in this toric ideal if and only if the polytope is morally 2-level, 
a generalization of the 2-level property in polytopes. We show that polytopes that 
do not admit rational realizations cannot have toric slack ideals. A classical example 
of a projectively unique polytope with no rational realizations is due to Perles. We 
prove that the slack ideal of the Perles polytope is reducible, providing the first 
example of a slack ideal that is not prime.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

An important focus in the study of polytopes is the investigation of their realization spaces. Given a 
d-polytope P ⊂ Rd, its face lattice determines its combinatorial type. The realization space of P is the set 
of all geometric realizations of polytopes in the combinatorial class of P . A new model for the realization 
space of a polytope modulo projective transformations, called the slack realization space, was introduced in 
[9]. This model arises as the positive part of the real variety of IP , the slack ideal of P , which is a saturated 
determinantal ideal of a symbolic matrix whose zero pattern encodes the combinatorics of P . The slack 
ideal and slack realization space were extended to matroids in [3].
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The overarching goal of this paper is to initiate a study of the algebraic and geometric properties of 
slack ideals as they provide the main computational engine in our model of realization spaces. As shown in 
[9], slack ideals can be used to answer many different questions about the realizability of polytopes. These 
ideals were introduced in [10] where they were used to study the notion of psd-minimality of polytopes, a 
property of interest in optimization. Thus, developing the properties and understanding the implications 
of slack ideals can directly impact both polytope and matroid theory. Even as a purely theoretical object, 
slack ideals present a new avenue for research in commutative algebra.

In this paper, we focus on the simplest possible slack ideals, namely, toric slack ideals. Since slack ideals 
do not contain monomials, the simplest ones are generated by binomials. Toric ideals are precisely those 
binomial ideals that are prime. Toric slack ideals already form a rich class with important connections to 
projective uniqueness. In general, slack ideals offer a new classification scheme for polytopes via the algebraic 
properties and invariants of the ideal, and the toric case offers a nice example of this. The vertex-facet 
(non)-incidence structure of a polytope P can be encoded in a bipartite graph whose toric ideal, TP , plays 
a special role in this context. We call TP the toric ideal of the non-incidence graph of P , and say that IP

is graphic if it coincides with TP . In Theorem 4.4 we prove that IP is graphic if and only if IP is toric and 
P is projectively unique. On the other hand, there are infinitely many combinatorial types in high enough 
dimension that are projectively unique but do not have toric slack ideals, as well as non-projectively unique 
polytopes with toric slack ideals. We give several concrete examples.

The toric ideal TP has other interesting geometric connections. We prove that IP is contained in TP if 
and only if P is morally 2-level, which is a polarity-invariant property of a polytope that generalizes the 
notion of 2-level polytopes [18], [2], [7], [14]. Theorem 3.10 characterizes morally 2-level polytopes in terms 
of the slack variety. As a consequence we get that a polytope with no rational realizations cannot have a 
toric slack ideal.

An important feature of a toric ideal is that the positive part of its real variety is Zariski dense in its 
complex variety. This implies that the toric ideal is the vanishing ideal of the positive part of its variety. 
In general, it is not easy to determine whether IP is the vanishing ideal of the positive part V+(IP ), of its 
variety V(IP ). We show that the slack ideal of a classical polytope due to Perles is reducible and that in 
this case, V+(IP ) is not Zariski dense in V(IP ). This eight-dimensional polytope is projectively unique and 
does not have rational realizations. It provides the first concrete instance of a slack ideal that is not prime.

Organization of the paper. In Section 2 we summarize the needed background on slack ideals of polytopes. 
In Section 3 we introduce TP , the toric ideal of the non-incidence graph of a polytope P , and show its 
relationship to pure difference binomial slack ideals and morally 2-level polytopes. We prove in Section 4
that slack ideals are graphic if and only if they are toric and the underlying polytope is projectively unique. 
In particular, we show that all d-polytopes with d + 2 vertices or facets have graphic slack ideals, but this 
property holds beyond this class. In this section we also illustrate toric slack ideals that do not come from 
projectively unique polytopes and the existence of projectively unique polytopes that do not have toric 
slack ideals. We conclude in Section 5 with the Perles polytope [12, Section 5.5]. We show that the Perles 
polytope has a reducible slack ideal despite being projectively unique, providing the first concrete example 
of a non-prime slack ideal. In this case, V+(IP ) is not Zariski dense in V(IP ).

Acknowledgments. We thank Arnau Padrol, David Speyer and Günter Ziegler for helpful conversations. 
We also thank Marco Macchiafor providing us with a list of known 2-level polytopes, available at https://
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indebted to the SageMath [4], Macaulay2 [13] and Maple [15] software systems for the computations in this 
paper.
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2. Background: slack matrices and ideals of polytopes

We now give a brief introduction to slack matrices and slack ideals of polytopes. For more details see [8], 
[10] and [9].

A d-dimensional polytope P ⊂ Rd with v labelled vertices and f labelled facet inequalities has two 
usual representations: a V-representation P = conv{p1, . . . , pv} as the convex hull of vertices, and an 
H-representation P = {x ∈ Rd : Wx ≤ w} as the intersection of the half spaces defined by the facet 
inequalities Wjx ≤ wj , j = 1, . . . , f , where Wj denotes the jth row of W ∈ Rf×d. Let V ∈ Rv×d be the 
matrix with rows p1

�, . . . , pv
�, and let 1 ∈ Rv be the vector of all ones. The combined data of the two 

representations yields a slack matrix of P , defined as

SP :=
[
1 V

] [
w�

−W �

]
∈ Rv×f . (1)

Since scaling the facet inequalities by positive real numbers does not change the polytope, P in fact has 
infinitely many slack matrices of the form SP Df where Df denotes a f × f diagonal matrix with positive 
entries on the diagonal. Also, affinely equivalent polytopes have the same set of slack matrices.

Slack matrices were introduced in [21]. The (i, j)-entry of SP is wj − Wjpi which is the slack of the 
ith vertex pi of P with respect to the jth facet inequality W �

j x ≤ wj of P . Since P is a d-polytope, 
rank(

[
1 V

]
) = d + 1, and hence, rank (SP ) = d + 1. Also, 1 is in the column span of SP . Further, the 

zeros in SP record the vertex-facet incidences of P , and hence the entire combinatorics (face lattice) of P . 
Interestingly, it follows from [8, Theorem 22] that any matrix with the above properties is in fact the slack 
matrix of a polytope that is combinatorially equivalent to P .

Theorem 2.1. A nonnegative matrix S ∈ Rv×f is the slack matrix of a polytope in the combinatorial class 
of the labelled polytope P if and only if the following hold:

(1) support(S) = support(SP ),
(2) rank (S) = rank (SP ) = d + 1, and
(3) 1 lies in the column span of S.

This theorem gives rise to a new model for the realization space of P , as observed in [10] and [5]. We 
briefly explain the construction of the slack model for the realization space of P from [10], developed further 
in [9].

The symbolic slack matrix, SP (x), of P is obtained by replacing the nonzero entry of SP in position (i, j)
by the variable xi,j . We assume that there are t variables xi,j and let x denote the collection of all xi,j

(namely, those indexed by vertices pi and facets Fj with pi /∈ Fj). The slack ideal of P is the saturation of 
the ideal generated by the (d + 2)-minors of SP (x), namely

IP := 〈(d + 2)-minors of SP (x)〉 :

⎛
⎝ ∏

(i,j):pi /∈Fj

xi,j

⎞
⎠

∞

⊂ C[x]. (2)

Note that since IP is saturated, it does not contain any monomials. The slack variety of P is the complex 
variety V(IP ) ⊂ Ct. If s ∈ Ct is a zero of IP , then we identify it with the matrix SP (s).

By [10, Corollary 1.5], two polytopes P and Q in the same combinatorial class are projectively equivalent 
if and only if DvSP Df is a slack matrix of Q for some positive diagonal matrices Dv, Df . Using this fact and 
Theorem 2.1, we see that the positive part of V(IP ), namely V(IP ) ∩ Rt

>0 =: V+(IP ), leads to a realization 
space for P , modulo projective transformations.
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Theorem 2.2. [9] Given a polytope P , there is a bijection between the elements of V+(IP )/(Rv
>0 ×Rf

>0) and 
the classes of projectively equivalent polytopes in the combinatorial class of P .

The space V+(IP )/(Rv
>0 × Rf

>0) is called the slack realization space of P .

3. The toric ideal of the non-incidence graph of a polytope

We begin by defining the toric ideal TP of the non-incidence graph of a polytope P . In the next section we 
characterize when TP equals IP which relies on the projective uniqueness of P . In this section we examine 
the relationship between IP and TP and the implications of IP being contained in TP .

First we recall the definition of a toric ideal. Let A = {a1, . . . , an} be a point configuration in Zd. 
Sometimes we will identify A with the d × n matrix whose columns are the vectors ai. Consider the 
C-algebra homomorphism

π : C[x1, . . . , xn] → C[t±1
1 , . . . , t±1

d ], such that xj 	→ taj .

The kernel of π, denoted by IA, is called the toric ideal of A. The ideal IA is binomial and prime (see [19, 
Chapter 4]). More precisely, IA is generated by homogeneous binomials:

IA = 〈xu+ − xu− ∈ C[x1, . . . , xn] : u ∈ kerZ(A)〉, (3)

where kerZ(A) = {u ∈ Zn : Au = 0}, u = u+ − u−, with u+, u− ∈ Zn
≥0 the positive and the negative parts 

of u.
Let IA be a toric ideal and VA = VC(IA) be its complex affine toric variety which is the Zariski closure 

of the set of points {(ta1 , . . . , tan) : t ∈ (C∗)d}. Define

φA : (C∗)d → Cn, t 	→ (ta1 , . . . , tan),

so that VA = φA((C∗)d). We are interested in the positive part of VA, namely, VA ∩Rn
>0. Note that this set 

contains φA(Rd
>0).

The following result follows from the Zariski density of the positive part of a toric variety in its complex 
variety. However, we write an independent proof.

Lemma 3.1. Let IA be a toric ideal in C[x1, . . . , xn]. If u, v ∈ Nn and xu − xv vanishes on the set of points 
φA(Rd

>0), then xu − xv ∈ IA.

Proof. Notice that xu − xv evaluated at any point (ta1 , . . . , tan) ∈ φA((C∗)d) is just tAu − tAv. Then, 
since xu − xv vanishes on φA(Rd

>0), we have that tAu = tAv for all t ∈ Rd
>0. Thus, if we fix i ∈ {1, . . . , d}

and specialize to tj = 1 for all j 
= i, we get t(Au)i

i = t
(Av)i

i for all ti ∈ R>0, which means we must have 
(Au)i = (Av)i. Since this holds for all i, it follows that Au = Av, hence xu − xv ∈ IA by (3). �
Definition 3.2. Let P be a d-polytope in Rd.

(1) Define the non-incidence graph of P , denoted as GP , to be the undirected bipartite graph on the vertices 
and facets of P with an edge connecting vertex i to facet j if and only if i does not lie on j.

(2) Let TP be the toric ideal of AP , the vertex-edge incidence matrix of GP . The matrix AP has rows 
(columns) indexed by the vertices (edges) of GP , with (i, j)-entry equal to 1 if vertex i is incident to 
edge j and 0 otherwise. We call TP the toric ideal of the non-incidence graph of P .
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Fig. 1. Non-incidence graph GP .

Note that GP records the support of a slack matrix of P , and so we can think of its edges as being labelled 
by the corresponding entry of SP (x). Toric ideals of bipartite graphs have been studied in the literature.

Lemma 3.3 ([17, Lemma 1.1], [20, Theorem 10.1.5]). The ideal TP is generated by all binomials of the form 
xC+ − xC− , where C is an (even) chordless cycle in GP , and C+, C− ∈ Z|E| are the incidence vectors of 
the two sets of edges that partition C into alternate edges (that is, if we orient edges from vertices to facets 
in GP , then C+ consists of the forward edges in a traversal of C, and C− the backward edges). Thus, for 
every even closed walk W in GP , and indeed any union of such, xW + − xW − ∈ TP .

Example 3.4. Consider the 4-polytope P = conv(0, 2e1, 2e2, 2e3, e1 + e2 − e3, e4, e3 + e4) [10, Table 1. #3]
where ei is the standard unit vector in R4. This polytope is projectively unique with f -vector (7,17,17,7). 
It has symbolic slack matrix

SP (x) =

F1 F2 F3 F4 F5 F6 F7⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

p1 0 x1,2 0 0 0 x1,6 0
p2 x2,1 0 0 0 0 x2,6 0
p3 x3,1 0 x3,3 0 0 0 x3,7
p4 0 x4,2 x4,3 0 0 0 x4,7
p5 0 0 0 0 x5,5 0 x5,7
p6 0 0 0 x6,4 x6,5 x6,6 0
p7 0 0 x7,3 x7,4 0 0 0

.

Its non-incidence graph GP is given in Fig. 1. Notice that each edge of GP can be naturally labelled with 
the corresponding xi,j from SP (x). Under this labelling, the chordless cycle marked with dashed lines in 
Fig. 1 corresponds to the binomial x1,6x2,1x3,3x4,2 −x1,2x2,6x3,1x4,3 ∈ TP . One can check that the remaining 
generators of TP , corresponding to chordless cycles of GP , are

x3,7x4,3 − x3,3x4,7, x4,7x5,5x6,4x7,3 − x4,3x5,7x6,5x7,4,

x3,7x5,5x6,4x7,3 − x3,3x5,7x6,5x7,4, x1,6x4,2x6,4x7,3 − x1,2x4,3x6,6x7,4,

x2,6x3,1x6,4x7,3 − x2,1x3,3x6,6x7,4, x1,6x4,2x5,7x6,5 − x1,2x4,7x5,5x6,6,

x2,6x3,1x5,7x6,5 − x2,1x3,7x5,5x6,6, x1,6x2,1x3,7x4,2 − x1,2x2,6x3,1x4,7.

The toric ideal TP can coincide with IP as we will see in the next section. For the remainder of this 
section we focus on the connections between IP and TP .

An ideal is said to be a pure difference binomial ideal if it is generated by binomials of the form xa − xb. 
It follows from (3) that toric ideals are pure difference binomial ideals. We now prove that if IP is toric, or 
more generally, a pure difference binomial ideal, then IP is always contained in TP .
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Lemma 3.5. If a binomial xa − xb belongs to IP , then it also belongs to TP .

Proof. Let p = xa − xb. Each component ai of a and bj of b appears as the exponent of a variable in 
the symbolic slack matrix SP (x) and is hence indexed by an edge of GP . Recall that all matrices obtained 
by scaling rows and columns of SP by positive scalars also lie in the real variety of IP , and hence must 
vanish on p. This implies that the sum of the components of a appearing as exponents of variables in a row 
(column) of SP (x) equals the sum of the components of b appearing as exponents of variables in the same 
row (column).

Now think of the edges of GP in the support of a as oriented from vertices of P to facets of P and 
edges in the support of b as oriented in the opposite way. Then the previous statement is equivalent to 
saying that p is supported on an oriented subgraph of GP (possibly with repeated edges) with the property 
that the in-degree and out-degree of every node in the subgraph are equal. Therefore, this subgraph is the 
vertex-disjoint union of closed walks in GP , which by Lemma 3.3 implies that p is in TP . �
Corollary 3.6. If IP is a pure difference binomial ideal, then IP ⊆ TP .

This containment can be strict as we see in the following example.

Example 3.7. Consider the 5-polytope P with vertices p1, . . . , p8 given by

e1, e2, e3, e4, −e1 − 2e2 − e3, −2e1 − e2 − e4, −2e1 − 2e2 + e5, −2e1 − 2e2 − e5

where e1, . . . , e5 are the standard basis vectors in R5. It can be obtained by splitting the distinguished vertex 
v of the vertex sum of two squares, (�, v) ⊕ (�, v) in the notation of [16]. This polytope has 8 vertices and 
12 facets and its symbolic slack matrix has the zero-pattern below

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 ∗ 0 0 0 0 ∗ 0 0 0 0 0
0 0 0 ∗ ∗ 0 0 0 0 0 0 0
0 0 0 0 0 ∗ ∗ ∗ 0 0 ∗ ∗
∗ 0 0 ∗ 0 ∗ 0 0 ∗ 0 ∗ 0
∗ ∗ ∗ 0 0 0 0 0 ∗ ∗ 0 0
0 0 ∗ 0 ∗ 0 0 ∗ 0 ∗ 0 ∗
∗ 0 ∗ 0 0 ∗ 0 ∗ 0 0 0 0
0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

One can check using Macaulay2 [13] that IP is toric and IP � TP . In fact, dimC[x]/IP = 20, while 
dimC[x]/TP = 19.

At first glance it might seem that if IP is contained in TP then IP is a pure difference binomial ideal, 
but this is not true in general.

Example 3.8. For the 3-cube, IP � TP . The toric ideal TP is minimally generated by 80 binomials, each 
corresponding to a chordless cycle in GP , while IP is minimally generated by 222 polynomials many of 
which are not binomials.

In fact, one can attach a geometric meaning to polytopes for which IP ⊆ TP . A polytope P is said to 
be 2-level if it has a slack matrix in which every positive entry is one, i.e., SP (1) is a slack matrix of P . 
This class of polytopes have received a great deal of attention in the literature [18], [2], [7], [14] and are also 
known as compressed polytopes.
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Definition 3.9. We call a polytope P morally 2-level if SP (1) lies in the slack variety of P .

Note that if P is morally 2-level, it might not be that SP (1) is a slack matrix of P , but merely that 
1 ∈ V+(IP ). Hence, morally 2-level polytopes contain 2-level polytopes. These polytopes correspond to 
pointed polyhedral cones having a choice of generators such that there is a 0/1 slack matrix of that cone. 
For example, all regular d-cubes are 2-level and hence any polytope that is combinatorially a d-cube is 
morally 2-level but not necessarily 2-level. Being morally 2-level does not require that there is a polytope 
in the combinatorial class of P that is a 2-level polytope. For example, a bisimplex in R3 is morally 2-level, 
but no polytope in its combinatorial class is 2-level. This is since SP (1) can lie in the slack variety of P
even though it may not have the all-ones vector in its column space. A very attractive feature of the set of 
morally 2-level polytopes is that it is closed under polarity unlike the set of 2-level polytopes, but preserves 
many of the properties of 2-level polytopes such as psd-minimality [11], [10].

Theorem 3.10. A polytope P is morally 2-level if and only if IP ⊆ TP .

Proof. Notice that the ideal JP = 〈(d + 2)-minors of SP (x)〉 is contained in the slack ideal IP . Suppose 
that SP (1) ∈ V(IP ). Then any (d + 2)-minor p of SP (x) must have the same number of monomials with 
coefficient +1 as those with coefficient −1 since p must vanish on SP (1), which sets each monomial to one. 
This implies that we can write p as a sum of pure difference binomials. Since p is a minor, each of these 
pure difference binomials corresponds to a pair of permutations that induce two perfect matchings on the 
same set of vertices. The union of these two matchings is a subgraph of GP , which we can view as a directed 
graph by orienting the two matchings in opposite directions. Then each vertex will have equal in-degree and 
out-degree, which shows that these edges form a union of closed walks in GP , and thus the corresponding 
binomial is in TP by Lemma 3.3. Therefore p ∈ TP , so that JP ⊆ TP . Since toric ideals are saturated with 
respect to all variables, the result follows.

Conversely, suppose IP ⊆ TP . Since TP is generated by pure difference binomials, which vanish when 
evaluated at SP (1), we have SP (1) ∈ V(TP ). But IP ⊆ TP implies that V(IP ) ⊇ V(TP ) � SP (1), which is 
the desired result. �

We have talked about pure difference binomial slack ideals as a superset of toric slack ideals. A slack ideal 
is binomial if it is generated by binomials of the form xa − γxb, where γ is a non-zero scalar. Therefore, 
one might extend the study of toric slack ideals to the following hierarchy of binomial slack ideals:

toric ⊆ pure difference binomial ⊆ binomial.

So far, we have not encountered a pure difference binomial slack ideal that is not toric, nor a binomial slack 
ideal which is not pure difference, but it might be possible that all containments are strict. It follows from 
Corollaries 2.2 and 2.5 in [6] that, if the slack ideal IP is binomial, then it is a radical lattice ideal. This 
implies that the slack variety is a union of scaled toric varieties.

4. Projective uniqueness and toric slack ideals

Recall that a polytope P is said to be projectively unique if any polytope Q that is combinatorially 
equivalent to P is also projectively equivalent to P , i.e., there is a projective transformation that sends Q
to P . This corresponds to saying that the slack realization space of P is a single positive point.

Every d-polytope with d +2 vertices or facets is projectively unique [12, Exercise 4.8.30 (i)]. In particular, 
all products of simplices are projectively unique. We first prove that the slack ideal of a d-polytope with 
d + 2 vertices or facets coincides with TP , and is thus toric.
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Proposition 4.1. Let P be a polytope in Rd with d + 2 vertices or facets. Then its slack ideal IP equals the 
toric ideal TP .

Proof. Up to polarity we may consider P to be a polytope with d +2 vertices. In this case P is combinatorially 
equivalent to a repeated pyramid over a free sum of two simplices, pyrr(Δk ⊕ Δ�), with k, � ≥ 1, r ≥ 0 and 
r+k+� = d [12, Section 6.1]. Since taking pyramids preserves the slack ideal, it is enough to study the slack 
ideals of free sums of simplices (respectively, product of simplices). By [10, Lemma 5.7], if P = Δk ⊕Δ�, then 
SP (x) has the zero pattern of the vertex-edge incidence matrix of the complete bipartite graph Kk+1,�+1.

From [10, Proposition 5.9], it follows that IP is generated by the binomials

det(MC) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x1 0 0 · · · 0 x2
x3 x4 0 · · · 0 0
0 x5 x6 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · x2c−2 0
0 0 0 · · · x2c−1 x2c

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

where MC is a c × c symbolic matrix whose support is the vertex-edge incidence matrix of the simple cycle 
C (of size c) in Kk+1,�+1.

On the other hand, TP is generated by the binomials xD+ − xD− corresponding to chordless cycles D of 
the non-incidence graph GP by Lemma 3.3. Thus, it suffices to show that there exists a bijection between 
simple cycles C in Kk+1,l+1 and chordless cycles D in GP such that det(MC) = xD+ − xD− .

Let v1, . . . , vk+�+2 be the vertices of P and F1, . . . , F(k+1)(�+1) be its facets. Since SP (x) has the support 
of the vertex-edge incidence matrix of Kk+1,�+1, we can consider Kk+1,�+1 to be a bipartite graph on the 
vertices v1, . . . , vk+�+2 where each edge {vi1 , vi2} corresponds exactly to the facet Fj of P containing neither 
vi1 nor vi2 . Notice that the non-incidence graph GP can be obtained by subdividing each edge {vi1 , vi2} of 
Kk+1,�+1 into two edges {vi1 , Fj} and {Fj , vi2}.

Now, let C be a simple cycle of size c in Kk+1,�+1 with vertices vi1 , vi2 , . . . , vic
and assume that 

Fj1 , Fj2 , . . . , Fjc
are the facets corresponding to the edges of C. Then in GP there is a cycle D of size 

2c on vertices vi1 , Fj1 , vi2 , Fj2 , . . . , Fjc−1 , vic
, Fjc

. In fact, one can see that the subgraph induced by these 
vertices is exactly a chordless cycle in GP . This is because from the support of SP we know each facet in 
P corresponds to a vertex of degree 2 in GP ; furthermore, every edge in GP must be between a vertex and 
a facet, but since every facet already has degree 2 in the cycle D, this subgraph must consist only of this 
cycle. Hence from a simple cycle C in Kk+1,�+1, we get a chordless cycle D in GP , as desired. The reverse 
correspondence is analogous. �

The class of polytopes for which IP = TP is larger than those with d + 2 vertices or facets.

Example 4.2. For the polytope given in Example 3.4, which was 4-dimensional but with 7 vertices and 7
facets, one can check that IP is the toric ideal TP .

In R2 the only projectively unique polytopes are triangles and squares. In R3 there are four combinatorial 
classes of projectively unique polytopes — tetrahedra, square pyramids, triangular prisms and bisimplices. 
The number of projectively unique 4-polytopes is currently unknown. There are 11 known combinatorial 
classes, attributed to Shephard by McMullen [16], and listed in full in [1]. Beyond the 4-polytopes with 
4 + 2 = 6 vertices or facets, this list has three additional combinatorial classes. One of them is the polytope 
seen in Example 4.2. It was shown in [10] that all of the 11 known projectively unique polytopes in R4 have 
toric slack ideals. This discussion suggests that there might be a connection between projective uniqueness 
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of a polytope and its slack ideal being toric. In this section we establish the precise result. The toric ideal 
TP of the non-incidence graph GP will again play an important role.

Definition 4.3. We say that the slack ideal IP of a polytope P is graphic if it is equal to the toric ideal TP .

Theorem 4.4. The slack ideal IP of a polytope P is graphic if and only if P is projectively unique and IP is 
toric.

Proof. Suppose that IP is graphic. Then, IP is toric, so we only need to show that P is projectively unique. 
Pick a maximal spanning forest F of the bipartite graph GP . By Lemma 5.2 we may scale the rows and 
columns of SP so that it has ones in the entries indexed by F . Take an edge of GP outside of F and 
consider the binomial corresponding to the unique cycle this edge forms together with F . Since IP = TP , 
this binomial is in IP , therefore it must vanish on the above scaled slack matrix of P . This implies that 
the entry in the slack matrix indexed by the chosen edge must also be 1. Repeating this argument we see 
that the entire slack matrix has 1 in every non-zero entry which implies that there is only one possible 
slack matrix for P up to scalings, hence only one polytope in the combinatorial class of P up to projective 
equivalence.

Conversely, suppose that P is projectively unique and IP is toric, say IP = IA for some point configuration 
A. Let xu − xv be a generator of TP . Notice this generator vanishes when each xi = 1, and by Lemma 3.3, 
xu − xv = xC+ − xC− for some chordless cycle C of GP . Now, since IP is toric, by Corollary 3.6 we have 
that IP ⊆ TP , and then by Theorem 3.10, SP (1) ∈ V(IP ). Since P is projectively unique, every element of 
V+(IP ) is obtained by positive row and column scalings of SP (1). Therefore, φA(Rd

>0) ⊆ V+(IP ) consists 
of row and column scalings of SP (1). Since a binomial of the form xC+ − xC− , where C is a chordless 
cycle, contains in each of its monomials exactly one variable from each row and column of SP (x) on which 
it is supported, it must also vanish on all row and column scalings of SP (1). It follows that the generator 
xu − xv vanishes on φA(Rd

>0). By Lemma 3.1, this means that xu − xv ∈ IP , thus all generators of TP are 
contained in IP , which completes the proof. �

Theorem 4.4 naturally leads to the question whether P can have a toric slack ideal even if it is not 
projectively unique and whether all projectively unique polytopes have toric slack ideals. In the rest of this 
section, we discuss these two questions.

All d-polytopes with toric slack ideals for d ≤ 4 were found in [10]. These polytopes all happen to be 
projectively unique, and hence have graphic slack ideals. Therefore the first possible non-graphic toric slack 
ideal has to come from a polytope of dimension at least five. Indeed, we saw that the polytope in Example 3.7
has a toric slack ideal but is not graphic. Hence, this polytope is not projectively unique by Theorem 4.4, 
recovering a result implied by a theorem of McMullen [16, Theorem 5.3].

In the next section we will see a concrete 8-polytope that is projectively unique but does not have a toric 
slack ideal. However, this is not an isolated instance as there are infinitely many such examples in high 
enough dimension.

Proposition 4.5. For d ≥ 69 there exist infinitely many projectively unique d-polytopes that do not have a 
toric (even pure difference binomial) slack ideal.

Proof. In [1], Adiprasito and Ziegler have shown that for d ≥ 69 there are infinitely many projectively unique 
d-polytopes. On the other hand, it follows from results in [10] concerning semidefinite lifts of polytopes that 
in any dimension, there can only be finitely many combinatorial classes of polytopes whose slack ideal is a 
pure difference binomial ideal. �
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Fig. 2. The Perles Gale diagram.

5. The Perles polytope has a reducible slack ideal

We now consider a classical example of a projectively unique polytope with no rational realization due 
to Perles [12, p.94]. This is an 8-polytope with 12 vertices and 34 facets with the additional feature that 
it has a non-projectively unique face. It is minimal in the sense that every d-polytope with at most d + 3
vertices is rationally realizable. We will show that the Perles polytope does not have a toric slack ideal and 
that in fact, its slack ideal is not prime, providing the first such example.

The non-existence of rational realizations of a polytope immediately implies that its slack ideal is not 
toric. This is a corollary of Theorem 3.10.

Corollary 5.1. Let P be a polytope in Rd with no rational realization. Then IP cannot be a pure difference 
binomial ideal and, in particular, cannot be toric.

Proof. If P has no rational realization, then SP (1) does not lie in the slack variety of P , since a rational 
point in V+(IP ) yields a rational realization of P by [9, Lemma 4.1]. Therefore, by Theorem 3.10, IP is not 
contained in TP . Now applying Corollary 3.6, we can conclude that IP is not a pure difference binomial 
ideal and, in particular, is not toric. �

The Perles polytope P is constructed in [12, p.95] from its affine Gale diagram shown in Fig. 2. This 
planar configuration stands in for the vector configuration in R3 (Gale diagram) consisting of 12 vectors 
— the eight vectors A, B, C, D, E, F, G, H indicated with black dots that have x3 = 1 and the four vectors 
−F, −G, −H, −I indicated with open circles that have x3 = −1. This means that P has 12 vertices and is 
of dimension 12 − 3 − 1 = 8. The facets of P are in bijection with the 34 minimal positive circuits of the 
Gale diagram. Computing these, we get the support of the slack matrix SP shown below.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 ∗ ∗ ∗ 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 ∗ 0 0 ∗ ∗ ∗ 0 0 0 0 ∗ ∗ ∗ ∗ 0 0 0 0 ∗ ∗ ∗ ∗ 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 ∗ 0 0 ∗ ∗ 0 0 ∗ ∗ 0 0 ∗ ∗ 0 0 ∗ 0 0 0 ∗ ∗ 0 0 0 0 0 0 0
0 0 0 0 ∗ 0 0 0 0 0 0 ∗ ∗ 0 0 ∗ ∗ 0 0 ∗ 0 0 ∗ ∗ 0 0 0 ∗ ∗ ∗ 0 0 0 0
0 0 0 0 0 0 0 ∗ 0 ∗ 0 ∗ 0 0 0 0 0 0 0 0 0 ∗ ∗ 0 0 ∗ 0 ∗ ∗ 0 ∗ ∗ ∗ 0
∗ 0 0 0 0 0 0 0 0 0 ∗ 0 ∗ 0 0 0 0 ∗ 0 ∗ 0 0 0 0 0 0 ∗ 0 0 ∗ 0 0 0 ∗
0 ∗ 0 0 0 0 0 0 ∗ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ 0 0 0 0 ∗ ∗ 0 0 ∗
0 0 ∗ 0 0 ∗ 0 0 0 0 0 0 0 0 0 0 0 0 ∗ 0 ∗ 0 0 0 0 ∗ 0 0 0 0 ∗ ∗ ∗ ∗
∗ 0 0 ∗ 0 0 0 ∗ 0 0 0 0 0 0 0 0 0 0 0 0 ∗ 0 0 0 ∗ 0 0 ∗ 0 0 0 ∗ ∗ 0
0 ∗ 0 0 ∗ 0 0 0 0 ∗ 0 0 0 ∗ 0 0 0 ∗ ∗ 0 ∗ 0 0 0 0 0 ∗ ∗ ∗ 0 0 ∗ 0 0
0 0 ∗ 0 0 0 ∗ 0 0 0 0 0 ∗ 0 0 ∗ 0 0 0 0 0 0 ∗ ∗ ∗ 0 ∗ 0 ∗ 0 0 0 0 0
0 0 0 0 0 ∗ 0 0 ∗ 0 ∗ ∗ 0 0 ∗ 0 ∗ 0 0 ∗ 0 ∗ 0 0 0 ∗ 0 0 0 ∗ ∗ 0 ∗ ∗

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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It is straightforward to obtain SP (x) from the above matrix, but a direct calculation of the slack ideal of 
this example is challenging. Therefore, we resort to a scaling technique that makes slack ideal computations 
easier. The idea is to work with a subvariety of the slack variety that contains a representative for every 
orbit under row and column scalings. We do this by fixing as many entries as possible in SP (x) to one. 
Having less variables, the slack ideal becomes easier to compute. The non-incidence graph GP from Section 
3 provides a systematic way to scale a maximal number of entries in SP (x) to one.

Lemma 5.2. Given a polytope P , we may scale the rows and columns of its slack matrix so that it has ones 
in the entries indexed by the edges in a maximal spanning forest F of the graph GP .

Proof. For every tree T in the forest, pick a vertex to be its root, and orient the edges away from it. Now 
for each tree, pick the edges leaving the root and set to one the corresponding entry of SP by scaling the 
row or column corresponding to the destination vertex of the edge. Continue the process with the edges 
leaving the vertices just used and so on, until the trees are exhausted. Notice that once we fix an entry, the 
only way for us to change it again is by scaling either its row or column, which would mean in the graph 
that we would revisit one of the nodes of its corresponding edge. But this would imply the existence of a 
cycle in F , so by the time this process ends we have precisely the intended variables set to one. �

Even after the above scaling trick, the symbolic slack matrix of the Perles polytope has 75 variables 
which is challenging to work with. Therefore, we will work with a subideal of IP .

Consider the following submatrix of SP (x) coming from its first 13 columns.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 x1 x2 x3 0 0 0 0 0 0 0
0 0 0 x4 0 0 x5 x6 x7 0 0 0 0
0 0 0 0 0 0 x8 0 0 x9 x10 0 0
0 0 0 0 x11 0 0 0 0 0 0 x12 x13
0 0 0 0 0 0 0 x14 0 x15 0 x16 0

x17 0 0 0 0 0 0 0 0 0 x18 0 x19
0 x20 0 0 0 0 0 0 x21 0 0 0 0
0 0 x22 0 0 x23 0 0 0 0 0 0 0

x24 0 0 x25 0 0 0 x26 0 0 0 0 0
0 x27 0 0 x28 0 0 0 0 x29 0 0 0
0 0 x30 0 0 0 x31 0 0 0 0 0 x32
0 0 0 0 0 x33 0 0 x34 0 x35 x36 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The ideal of 10 ×10 minors of this submatrix, saturated by all its variables is clearly a subideal of IP . Using 
the scaling lemma we first set xi = 1 for i = 1, 4, 5, 6, 7, 8, 9, 10, 13, 15, 16, 17, 18, 21, 22, 26, 27, 28, 29, 30, 31,

32, 33, 35. The resulting scaled slack subideal is:

〈x2
36 + x36 − 1, x34 − x36 − 1, x25 − x36, x24 − x36, x23 − 1, x20 − x36,

x19 − x36, x14 − x36 − 1, x12 − x36, x11 − 1, x3 − 1, x2 − x36 − 1〉.

This means that after scaling, the first 13 columns of every matrix SP (s) obtained from s ∈ V(IP ) with full 
support must have the form
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 α + 1 1 0 0 0 0 0 0 0
0 0 0 1 0 0 1 1 1 0 0 0 0
0 0 0 0 0 0 1 0 0 1 1 0 0
0 0 0 0 1 0 0 0 0 0 0 α 1
0 0 0 0 0 0 0 α + 1 0 1 0 1 0
1 0 0 0 0 0 0 0 0 0 1 0 α

0 α 0 0 0 0 0 0 1 0 0 0 0
0 0 1 0 0 1 0 0 0 0 0 0 0
α 0 0 α 0 0 0 1 0 0 0 0 0
0 1 0 0 1 0 0 0 0 1 0 0 0
0 0 1 0 0 0 1 0 0 0 0 0 1
0 0 0 0 0 1 0 0 α + 1 0 1 α 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4)

where α = −1±
√

5
2 is a root of x2 + x − 1. One can check that there is a unique way to extend the above 

12 × 13 matrix to a 12 × 34 matrix with rank nine and the support of the Perles slack matrix, provided we 
scale one variable to one in each of the new columns, as allowed by Lemma 5.2. The resulting parametrized 
matrix is shown in Fig. 3. Up to scaling, the two matrices corresponding to the two values of α are therefore 
the only elements in the slack variety.

Theorem 5.3. The slack ideal of the Perles polytope is not prime.

Proof. Let us consider the polynomial

f(x) = (x10x15x36)2 + (x10x15x36)(x9x16x35) − (x9x16x35)2

= (x10x15x36 − α1x9x16x35)(x10x15x36 − α2x9x16x35),

where α1 = −1+
√

5
2 , α2 = −1−

√
5

2 are the roots of x2 + x − 1. We see that the linear factor of f(x) containing 
α1 will not vanish on the submatrix (4) when we set α = α2, and vice versa. Therefore neither of the linear 
factors will vanish on the slack variety. On the other hand, one can check that evaluating f(x) on the matrix 
in Fig. 3 reduces it to α2 + α − 1 which is zero. Since f(x) is homogeneous with respect to each row and 
column of the matrix, it will also vanish on the whole slack variety. Therefore, the vanishing ideal of the 
slack variety is not prime which implies that IP is not prime. �
6. Conclusion

We have shown that the slack ideal of a polytope P may not be prime. However, the following question 
remains.

Problem 6.1. Is IP a radical ideal? If not, what are the simplest counterexamples?

We have seen in Section 5 that V+(IP ) need not be Zariski dense in the slack variety V(IP ), and hence 
IP is not always the vanishing ideal of V+(IP ). In the case that IP is toric, we know that IP is indeed the 
vanishing ideal of V+(IP ), providing a perfect correspondence between algebra and geometry. Many further 
questions remain. In particular, what sort of polytope combinatorics lead to simple algebraic structure in 
slack ideals?

Problem 6.2. What conditions on P make its slack ideal toric, or pure difference binomial, or binomial?
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13

0 0 0 0 0 0 0

0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

1 1 1 0 0 0 0

α+2 1 0 1 α+2 α+1 0

0 0 α+1 0 0 0 1

0 0 1 1−α 0 0 1

0 0 0 1 1 1 1

α 0 0 0 1 1−α 0

1 1−α 0 0 1 0 0

0 α 0 0 0 0 0

0 0 α+2 α+1 0 1 α+2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A 0 0 0 1 α+1 1 0 0 0 0 0 0 0 1 1 α α+1 α 1 1 α+1 0 0 0 0 0 0

B 0 0 0 1 0 0 1 1 1 0 0 0 0 1−α 1 α α 0 0 0 0 α 1−α 1 α+2 0 0

C 0 0 0 0 0 0 1 0 0 1 1 0 0 1 1 0 0 1 α 0 0 1 0 0 0 1−α α+

D 0 0 0 0 1 0 0 0 0 0 0 α 1 0 0 1 1 0 0 1 0 0 1 1 0 0 0

E 0 0 0 0 0 0 0 α+1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 α 0 0 1 0

F 1 0 0 0 0 0 0 0 0 0 1 0 α 0 0 0 0 1−α 0 α 0 0 0 0 0 0 1

G 0 α 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1−α 1 0 0

H 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1−α 0 1 0 0 0 0 α 0

−F α 0 0 α 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1−α 0 0 0 1 0 0

−G 0 1 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 1 0 1 0 0 0 0 0 1

−H 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 α+1 α+1 0 α

−I 0 0 0 0 0 1 0 0 α+1 0 1 α 0 0 1 0 1 0 0 1 0 1 0 0 0 1 0

Fig. 3. Slack matrix of the Perles polytope.
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In fact, so far, we have not been able to find any slack ideal that is in one of these classes but not in the 
others.

Problem 6.3. Is any of the inclusions

toric ⊆ pure difference binomial ⊆ binomial

of classes of slack ideals strict?

We also characterized the toric slack ideals that come from projectively unique polytopes as being TP , 
the toric ideal of GP , the graph of vertex-facet non-incidences of P . Such slack ideals were called graphic. 
The fact that testing and certifying projective uniqueness is easy for toric slack ideals is very interesting, 
as that is in general a hard problem. This raises the question of finding other classes of polytopes for which 
one can certify projective uniqueness easily.

Problem 6.4. Is there another class of polytopes, beyond those with graphic slack ideals, for which one can 
characterize projective uniqueness?

Apart from these concrete questions, many others could be formulated. There are, in particular, two 
general directions of study that can potentially be very fruitful: strengthening the correspondence between 
algebraic invariants and combinatorial properties, and revisiting the literature on realization spaces in our 
new language to see if further insights can be gained or open questions can be answered.
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