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are toric and have connections to projectively unique polytopes. We prove that if a
projectively unique polytope has a toric slack ideal, then it is the toric ideal of the
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1. Introduction

An important focus in the study of polytopes is the investigation of their realization spaces. Given a
d-polytope P C R, its face lattice determines its combinatorial type. The realization space of P is the set
of all geometric realizations of polytopes in the combinatorial class of P. A new model for the realization
space of a polytope modulo projective transformations, called the slack realization space, was introduced in
[9]. This model arises as the positive part of the real variety of Ip, the slack ideal of P, which is a saturated
determinantal ideal of a symbolic matrix whose zero pattern encodes the combinatorics of P. The slack
ideal and slack realization space were extended to matroids in [3].
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The overarching goal of this paper is to initiate a study of the algebraic and geometric properties of
slack ideals as they provide the main computational engine in our model of realization spaces. As shown in
[9], slack ideals can be used to answer many different questions about the realizability of polytopes. These
ideals were introduced in [10] where they were used to study the notion of psd-minimality of polytopes, a
property of interest in optimization. Thus, developing the properties and understanding the implications
of slack ideals can directly impact both polytope and matroid theory. Even as a purely theoretical object,
slack ideals present a new avenue for research in commutative algebra.

In this paper, we focus on the simplest possible slack ideals, namely, toric slack ideals. Since slack ideals
do not contain monomials, the simplest ones are generated by binomials. Toric ideals are precisely those
binomial ideals that are prime. Toric slack ideals already form a rich class with important connections to
projective uniqueness. In general, slack ideals offer a new classification scheme for polytopes via the algebraic
properties and invariants of the ideal, and the toric case offers a nice example of this. The vertex-facet
(non)-incidence structure of a polytope P can be encoded in a bipartite graph whose toric ideal, Tp, plays
a special role in this context. We call Tp the toric ideal of the non-incidence graph of P, and say that Ip
is graphic if it coincides with Tp. In Theorem 4.4 we prove that Ip is graphic if and only if Ip is toric and
P is projectively unique. On the other hand, there are infinitely many combinatorial types in high enough
dimension that are projectively unique but do not have toric slack ideals, as well as non-projectively unique
polytopes with toric slack ideals. We give several concrete examples.

The toric ideal Tp has other interesting geometric connections. We prove that Ip is contained in Tp if
and only if P is morally 2-level, which is a polarity-invariant property of a polytope that generalizes the
notion of 2-level polytopes [18], [2], [7], [14]. Theorem 3.10 characterizes morally 2-level polytopes in terms
of the slack variety. As a consequence we get that a polytope with no rational realizations cannot have a
toric slack ideal.

An important feature of a toric ideal is that the positive part of its real variety is Zariski dense in its
complex variety. This implies that the toric ideal is the vanishing ideal of the positive part of its variety.
In general, it is not easy to determine whether Ip is the vanishing ideal of the positive part V. (Ip), of its
variety V(Ip). We show that the slack ideal of a classical polytope due to Perles is reducible and that in
this case, V1 (Ip) is not Zariski dense in V(Ip). This eight-dimensional polytope is projectively unique and
does not have rational realizations. It provides the first concrete instance of a slack ideal that is not prime.

Organization of the paper. In Section 2 we summarize the needed background on slack ideals of polytopes.
In Section 3 we introduce Tp, the toric ideal of the non-incidence graph of a polytope P, and show its
relationship to pure difference binomial slack ideals and morally 2-level polytopes. We prove in Section 4
that slack ideals are graphic if and only if they are toric and the underlying polytope is projectively unique.
In particular, we show that all d-polytopes with d + 2 vertices or facets have graphic slack ideals, but this
property holds beyond this class. In this section we also illustrate toric slack ideals that do not come from
projectively unique polytopes and the existence of projectively unique polytopes that do not have toric
slack ideals. We conclude in Section 5 with the Perles polytope [12, Section 5.5]. We show that the Perles
polytope has a reducible slack ideal despite being projectively unique, providing the first concrete example
of a non-prime slack ideal. In this case, V4 (Ip) is not Zariski dense in V(Ip).

Acknowledgments. We thank Arnau Padrol, David Speyer and Giinter Ziegler for helpful conversations.
We also thank Marco Macchiafor providing us with a list of known 2-level polytopes, available at https://
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indebted to the SageMath [4], Macaulay?2 [13] and Maple [15] software systems for the computations in this
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2. Background: slack matrices and ideals of polytopes

We now give a brief introduction to slack matrices and slack ideals of polytopes. For more details see [8],
[10] and [9].

A d-dimensional polytope P C R? with v labelled vertices and f labelled facet inequalities has two
usual representations: a V-representation P = conv{p;,...,p,} as the convex hull of vertices, and an
H-representation P = {x € R? : Wx < w} as the intersection of the half spaces defined by the facet
inequalities W;x < wj, j = 1,..., f, where W; denotes the jth row of W ¢ R/*4 Let V € R"*? be the
matrix with rows p; ',...,p, ", and let 1 € R” be the vector of all ones. The combined data of the two
representations yields a slack matrixz of P, defined as

T

Spi=[1 V] j‘;w e RV, (1)

Since scaling the facet inequalities by positive real numbers does not change the polytope, P in fact has
infinitely many slack matrices of the form SpD; where D; denotes a f x f diagonal matrix with positive
entries on the diagonal. Also, affinely equivalent polytopes have the same set of slack matrices.

Slack matrices were introduced in [21]. The (¢, j)-entry of Sp is w; — W;p,; which is the slack of the
ith vertex p; of P with respect to the jth facet inequality W].Tx < w; of P. Since P is a d-polytope,

rank([l V}) = d + 1, and hence, rank (Sp) = d + 1. Also, 1 is in the column span of Sp. Further, the
zeros in Sp record the vertex-facet incidences of P, and hence the entire combinatorics (face lattice) of P.

Interestingly, it follows from [8, Theorem 22] that any matrix with the above properties is in fact the slack
matrix of a polytope that is combinatorially equivalent to P.

Theorem 2.1. A nonnegative matriz S € R**f is the slack matriz of a polytope in the combinatorial class
of the labelled polytope P if and only if the following hold:

(1) support(S) = support(Sp),
(2) rank (S) =rank (Sp) =d+1, and
(3) 1 lies in the column span of S.

This theorem gives rise to a new model for the realization space of P, as observed in [10] and [5]. We
briefly explain the construction of the slack model for the realization space of P from [10], developed further
in [9].

The symbolic slack matriz, Sp(x), of P is obtained by replacing the nonzero entry of Sp in position (3, j)
by the variable z; ;. We assume that there are ¢t variables x; ; and let x denote the collection of all z; ;
(namely, those indexed by vertices p; and facets F; with p; ¢ F;). The slack ideal of P is the saturation of
the ideal generated by the (d + 2)-minors of Sp(x), namely

oo

Ip := {(d + 2)-minors of Sp(x)) : H Zi C C[x]. (2)
(i,j):piéF]‘

Note that since Ip is saturated, it does not contain any monomials. The slack variety of P is the complex
variety V(Ip) C Ct. If s € C! is a zero of Ip, then we identify it with the matrix Sp(s).

By [10, Corollary 1.5], two polytopes P and @ in the same combinatorial class are projectively equivalent
if and only if D, SpDy is a slack matrix of () for some positive diagonal matrices D,, D;. Using this fact and
Theorem 2.1, we see that the positive part of V(Ip), namely V(Ip) NRL ) =: V4 (Ip), leads to a realization
space for P, modulo projective transformations.
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Theorem 2.2. [9] Given a polytope P, there is a bijection between the elements of Vi (Ip)/(R%q x ]RJ;O) and
the classes of projectively equivalent polytopes in the combinatorial class of P.

The space V4 (Ip)/(RY, x ]R{J;o) is called the slack realization space of P.
3. The toric ideal of the non-incidence graph of a polytope

We begin by defining the toric ideal Tp of the non-incidence graph of a polytope P. In the next section we
characterize when Tp equals Ip which relies on the projective uniqueness of P. In this section we examine
the relationship between Ip and Tp and the implications of Ip being contained in Tp.

First we recall the definition of a toric ideal. Let A = {a;,...,a,} be a point configuration in Z<.
Sometimes we will identify A with the d X n matrix whose columns are the vectors a;. Consider the
C-algebra homomorphism

m:Clry,...,zn) — (C[tlil,...,tf}, such that z; — t%.

The kernel of 7, denoted by I 4, is called the toric ideal of A. The ideal I4 is binomial and prime (see [19,
Chapter 4]). More precisely, I 4 is generated by homogeneous binomials:

+ —

Igy=(x" —x" €Clz1,...,2,] : u € kerg(A)), (3)

where kerz(A) ={u € Z" : Au =0}, u=u" —u~, with ut,u™ € Z2, the positive and the negative parts
of u. -

Let I4 be a toric ideal and V4 = V¢ (I4) be its complex affine toric variety which is the Zariski closure
of the set of points {(t2,...,t2") : t € (C*)¢}. Define

A (CHT=C™, e (821, ..., t20),

so that V4 = ¢4((C*)?). We are interested in the positive part of V4, namely, V4 NRZ,. Note that this set
contains ¢ 4(R<,).

The following result follows from the Zariski density of the positive part of a toric variety in its complex
variety. However, we write an independent proof.

Lemma 3.1. Let 14 be a toric ideal in Clxq,...,2,]. If u,v € N™ and x* — xV vanishes on the set of points
gf)A(RiO), then x" —x¥V € I 4.

Proof. Notice that x" — xV evaluated at any point (t21,...,t2") € ¢4((C*)?) is just tA* — tAv. Then,
since x" — xV vanishes on ¢ 4(R%,), we have that t4" =tV for all t € RZ,. Thus, if we fix i € {1,...,d}
and specialize to t; = 1 for all j # 4, we get tEAu)i = tl(-AV)i for all ¢; € Ry, which means we must have

(Au); = (Av);. Since this holds for all 4, it follows that Au = Av, hence x"* —x¥ € I 4 by (3). O
Definition 3.2. Let P be a d-polytope in R<.

(1) Define the non-incidence graph of P, denoted as G p, to be the undirected bipartite graph on the vertices
and facets of P with an edge connecting vertex i to facet j if and only if ¢ does not lie on j.

(2) Let Tp be the toric ideal of Ap, the vertex-edge incidence matrix of Gp. The matrix Ap has rows
(columns) indexed by the vertices (edges) of Gp, with (i, j)-entry equal to 1 if vertex i is incident to
edge j and 0 otherwise. We call Tp the toric ideal of the non-incidence graph of P.
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Fig. 1. Non-incidence graph Gp.

Note that G'p records the support of a slack matrix of P, and so we can think of its edges as being labelled
by the corresponding entry of Sp(x). Toric ideals of bipartite graphs have been studied in the literature.

Lemma 3.3 ([17, Lemma 1.1], [20, Theorem 10.1.5]). The ideal Tp is generated by all binomials of the form
xC" — xC, where C is an (even) chordless cycle in Gp, and CT,C~ € ZIF are the incidence vectors of
the two sets of edges that partition C into alternate edges (that is, if we orient edges from vertices to facets
in Gp, then CT consists of the forward edges in a traversal of C, and C~ the backward edges). Thus, for
every even closed walk W in Gp, and indeed any union of such, W xW ¢ Tp.

Example 3.4. Consider the 4-polytope P = conv(0, 2e1, 2eq, 2e3,e1 + €2 — €3, eq,€3 + €4) [10, Table 1. #3]
where e; is the standard unit vector in R*. This polytope is projectively unique with f-vector (7,17,17,7).
It has symbolic slack matrix

Fy Fy E3 Fy Fy Fs Fy

P1 [ 0 Z1,2 0 0 0 Z1,6 0
P> T21 0 0 0 0 x2.6 0
p3 |z3p 0 w33 0 0 0 w37
Sp(x) = Py 0 T4 T4 3 0 0 0 Ta7 |
V2 0 0 0 0 x5.5 0 Ts5,7
ps | O 0 0 w4 x65 x66 O
Py L 0 0 X733 X7.4 0 0 0 |

Its non-incidence graph Gp is given in Fig. 1. Notice that each edge of Gp can be naturally labelled with
the corresponding z; ; from Sp(x). Under this labelling, the chordless cycle marked with dashed lines in
Fig. 1 corresponds to the binomial x 6x2,173,3T4,2—21,2%2,673,174,3 € Tp. One can check that the remaining
generators of Tp, corresponding to chordless cycles of Gp, are

T37%4,3 — X3,3%4,7, L4705 526,417,3 — L4,3T57L6,5L7,4,
I3,705,5L6,4L7,3 — L3,3L57L6,5L7,4, L1,674,206,4%73 — L1,224,3L6,6L7,4,
T26%3,106,427,3 — L2123,3%6,627,4, T1,604,205,706,5 — L1,224,7L5526,6,
22,6X3,1L5,7L6,5 — L2,1L3,725 56,6, L1,672,123,7L4,2 — L1,202,6L3,1L4,7-

The toric ideal Tp can coincide with Ip as we will see in the next section. For the remainder of this
section we focus on the connections between Ip and Tp.

An ideal is said to be a pure difference binomial ideal if it is generated by binomials of the form x® — xP.
It follows from (3) that toric ideals are pure difference binomial ideals. We now prove that if Ip is toric, or
more generally, a pure difference binomial ideal, then Ip is always contained in Tp.
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Lemma 3.5. If a binomial x® — xP belongs to Ip, then it also belongs to Tp.

Proof. Let p = x® — xP. Each component a; of a and b; of b appears as the exponent of a variable in
the symbolic slack matrix Sp(x) and is hence indexed by an edge of Gp. Recall that all matrices obtained
by scaling rows and columns of Sp by positive scalars also lie in the real variety of Ip, and hence must
vanish on p. This implies that the sum of the components of a appearing as exponents of variables in a row
(column) of Sp(x) equals the sum of the components of b appearing as exponents of variables in the same
row (column).

Now think of the edges of Gp in the support of a as oriented from vertices of P to facets of P and
edges in the support of b as oriented in the opposite way. Then the previous statement is equivalent to
saying that p is supported on an oriented subgraph of Gp (possibly with repeated edges) with the property
that the in-degree and out-degree of every node in the subgraph are equal. Therefore, this subgraph is the
vertex-disjoint union of closed walks in Gp, which by Lemma 3.3 implies that p is in Tp. O

Corollary 3.6. If Ip is a pure difference binomial ideal, then Ip C Tp.
This containment can be strict as we see in the following example.
Example 3.7. Consider the 5-polytope P with vertices py,...,pg given by
e1,€2,€3,e4,—€1] — 2e9 — €3, —2e1 — ea — €4, —2e1 — 2e3 + €5, —2e; — 2ea — €5

where ey, ..., e5 are the standard basis vectors in R®. It can be obtained by splitting the distinguished vertex
v of the vertex sum of two squares, (O,v) @ (O,v) in the notation of [16]. This polytope has 8 vertices and
12 facets and its symbolic slack matrix has the zero-pattern below

0O = 00 00 = 0O0O0TO0OTUO
0 00 « x 0 0O0O0OTUO0OTUO0TO
0 00O O *x x x 0 0 % =
*x 00 «x 0 x 0 0 x 0 % 0
* x x 0 0 0 0 0 %« x 0 O
0 0 « 0 x 0 0 %= 0 % 0 =
*x 0« 00 «x 0 « 0 0 0 O
_0 00 0 0 0 0 0 *x % =% * |

One can check using Macaulay2 [13] that Ip is toric and Ip C Tp. In fact, dim C[x]|/Ip = 20, while
dim C[x]/Tp = 19.

At first glance it might seem that if Ip is contained in Tp then Ip is a pure difference binomial ideal,
but this is not true in general.
Example 3.8. For the 3-cube, Ip C Tp. The toric ideal Tp is minimally generated by 80 binomials, each
corresponding to a chordless cycle in Gp, while Ip is minimally generated by 222 polynomials many of
which are not binomials.

In fact, one can attach a geometric meaning to polytopes for which Ip C Tp. A polytope P is said to
be 2-level if it has a slack matrix in which every positive entry is one, i.e., Sp(1) is a slack matrix of P.
This class of polytopes have received a great deal of attention in the literature [18], [2], [7], [14] and are also
known as compressed polytopes.
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Definition 3.9. We call a polytope P morally 2-level if Sp(1) lies in the slack variety of P.

Note that if P is morally 2-level, it might not be that Sp(1) is a slack matrix of P, but merely that
1 € V;(Ip). Hence, morally 2-level polytopes contain 2-level polytopes. These polytopes correspond to
pointed polyhedral cones having a choice of generators such that there is a 0/1 slack matrix of that cone.
For example, all regular d-cubes are 2-level and hence any polytope that is combinatorially a d-cube is
morally 2-level but not necessarily 2-level. Being morally 2-level does not require that there is a polytope
in the combinatorial class of P that is a 2-level polytope. For example, a bisimplex in R? is morally 2-level,
but no polytope in its combinatorial class is 2-level. This is since Sp(1) can lie in the slack variety of P
even though it may not have the all-ones vector in its column space. A very attractive feature of the set of
morally 2-level polytopes is that it is closed under polarity unlike the set of 2-level polytopes, but preserves
many of the properties of 2-level polytopes such as psd-minimality [11], [10].

Theorem 3.10. A polytope P is morally 2-level if and only if Ip C Tp.

Proof. Notice that the ideal Jp = ((d + 2)-minors of Sp(x)) is contained in the slack ideal Ip. Suppose
that Sp(1) € V(Ip). Then any (d + 2)-minor p of Sp(x) must have the same number of monomials with
coefficient +1 as those with coefficient —1 since p must vanish on Sp(1), which sets each monomial to one.
This implies that we can write p as a sum of pure difference binomials. Since p is a minor, each of these
pure difference binomials corresponds to a pair of permutations that induce two perfect matchings on the
same set of vertices. The union of these two matchings is a subgraph of G p, which we can view as a directed
graph by orienting the two matchings in opposite directions. Then each vertex will have equal in-degree and
out-degree, which shows that these edges form a union of closed walks in Gp, and thus the corresponding
binomial is in T» by Lemma 3.3. Therefore p € Tp, so that Jp C Tp. Since toric ideals are saturated with
respect to all variables, the result follows.

Conversely, suppose Ip C Tp. Since Tp is generated by pure difference binomials, which vanish when
evaluated at Sp(1), we have Sp(1) € V(Tp). But Ip C Tp implies that V(Ip) 2 V(Tp) > Sp(1), which is
the desired result. O

We have talked about pure difference binomial slack ideals as a superset of toric slack ideals. A slack ideal
is binomial if it is generated by binomials of the form x® — yxP, where v is a non-zero scalar. Therefore,
one might extend the study of toric slack ideals to the following hierarchy of binomial slack ideals:

toric C pure difference binomial C binomial.

So far, we have not encountered a pure difference binomial slack ideal that is not toric, nor a binomial slack
ideal which is not pure difference, but it might be possible that all containments are strict. It follows from
Corollaries 2.2 and 2.5 in [6] that, if the slack ideal Ip is binomial, then it is a radical lattice ideal. This
implies that the slack variety is a union of scaled toric varieties.

4. Projective uniqueness and toric slack ideals

Recall that a polytope P is said to be projectively unique if any polytope @ that is combinatorially
equivalent to P is also projectively equivalent to P, i.e., there is a projective transformation that sends @
to P. This corresponds to saying that the slack realization space of P is a single positive point.

Every d-polytope with d+ 2 vertices or facets is projectively unique [12, Exercise 4.8.30 (i)]. In particular,
all products of simplices are projectively unique. We first prove that the slack ideal of a d-polytope with
d + 2 vertices or facets coincides with Tp, and is thus toric.
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Proposition 4.1. Let P be a polytope in R¢ with d + 2 vertices or facets. Then its slack ideal Ip equals the
toric ideal Tp.

Proof. Up to polarity we may consider P to be a polytope with d+2 vertices. In this case P is combinatorially

equivalent to a repeated pyramid over a free sum of two simplices, pyr, (Ar ® Ay), with k,£ > 1, r > 0 and

r+k+¢ = d[12, Section 6.1]. Since taking pyramids preserves the slack ideal, it is enough to study the slack

ideals of free sums of simplices (respectively, product of simplices). By [10, Lemma 5.7], if P = A @Ay, then

Sp(x) has the zero pattern of the vertex-edge incidence matrix of the complete bipartite graph Ky 41 s+1.
From [10, Proposition 5.9], it follows that Ip is generated by the binomials

X 0 0 0 )

Tr3 T4 0 0 0

0 s Tg 0 0
det(Mc)=| . . .

0 0 0 L2c—2 0

0 0 O Toe—1 T2c

where M¢ is a ¢ X ¢ symbolic matrix whose support is the vertex-edge incidence matrix of the simple cycle
C (of size ¢) in Ky11 041-

On the other hand, Tp is generated by the binomials xP" —xP”

corresponding to chordless cycles D of
the non-incidence graph Gp by Lemma 3.3. Thus, it suffices to show that there exists a bijection between
simple cycles C' in K11 541 and chordless cycles D in Gp such that det(M¢) = xPt —xP™,

Let vy, .. -y Fleg1y(e41) be its facets. Since Sp(x) has the support

of the vertex-edge incidence matrix of Ky ¢41, we can consider Kj41 ¢4+1 to be a bipartite graph on the

. Upte+2 be the vertices of P and Fi,.
vertices vy, ..., Ugtet2 where each edge {v;,,v;, } corresponds exactly to the facet F; of P containing neither
v;, nor v;,. Notice that the non-incidence graph Gp can be obtained by subdividing each edge {v;,,v;, } of
Ki1,041 into two edges {v;,, F;} and {F}, v, }.

Now, let C be a simple cycle of size ¢ in Kj4q 041 with vertices v;,,vi,,...,v;, and assume that
F;,, Fj,, ..., Fj, are the facets corresponding to the edges of C. Then in Gp there is a cycle D of size

2c on vertices vy, , Fj,, viy, Fy,, ..., Fj,_,,vi,, Fj.. In fact, one can see that the subgraph induced by these
vertices is exactly a chordless cycle in Gp. This is because from the support of Sp we know each facet in
P corresponds to a vertex of degree 2 in Gp; furthermore, every edge in Gp must be between a vertex and
a facet, but since every facet already has degree 2 in the cycle D, this subgraph must consist only of this
cycle. Hence from a simple cycle C' in Kj41 ¢41, we get a chordless cycle D in Gp, as desired. The reverse

correspondence is analogous. O
The class of polytopes for which Ip = T'p is larger than those with d + 2 vertices or facets.

Example 4.2. For the polytope given in Example 3.4, which was 4-dimensional but with 7 vertices and 7
facets, one can check that Ip is the toric ideal Tp.

In R? the only projectively unique polytopes are triangles and squares. In R3 there are four combinatorial
classes of projectively unique polytopes — tetrahedra, square pyramids, triangular prisms and bisimplices.
The number of projectively unique 4-polytopes is currently unknown. There are 11 known combinatorial
classes, attributed to Shephard by McMullen [16], and listed in full in [1]. Beyond the 4-polytopes with
4+ 2 = 6 vertices or facets, this list has three additional combinatorial classes. One of them is the polytope
seen in Example 4.2. It was shown in [10] that all of the 11 known projectively unique polytopes in R* have
toric slack ideals. This discussion suggests that there might be a connection between projective uniqueness
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of a polytope and its slack ideal being toric. In this section we establish the precise result. The toric ideal
Tp of the non-incidence graph G p will again play an important role.

Definition 4.3. We say that the slack ideal Ip of a polytope P is graphic if it is equal to the toric ideal Tp.

Theorem 4.4. The slack ideal Ip of a polytope P is graphic if and only if P is projectively unique and Ip is
toric.

Proof. Suppose that Ip is graphic. Then, Ip is toric, so we only need to show that P is projectively unique.
Pick a maximal spanning forest F' of the bipartite graph Gp. By Lemma 5.2 we may scale the rows and
columns of Sp so that it has ones in the entries indexed by F. Take an edge of Gp outside of F' and
consider the binomial corresponding to the unique cycle this edge forms together with F. Since Ip = Tp,
this binomial is in Ip, therefore it must vanish on the above scaled slack matrix of P. This implies that
the entry in the slack matrix indexed by the chosen edge must also be 1. Repeating this argument we see
that the entire slack matrix has 1 in every non-zero entry which implies that there is only one possible
slack matrix for P up to scalings, hence only one polytope in the combinatorial class of P up to projective
equivalence.

Conversely, suppose that P is projectively unique and Ip is toric, say Ip = I 4 for some point configuration
A. Let x" —xV be a generator of Tp. Notice this generator vanishes when each x; = 1, and by Lemma 3.3,
x% —x¥ =xC" —x for some chordless cycle C' of Gp. Now, since Ip is toric, by Corollary 3.6 we have
that Ip C Tp, and then by Theorem 3.10, Sp(1) € V(Ip). Since P is projectively unique, every element of
V4 (Ip) is obtained by positive row and column scalings of Sp(1). Therefore, ¢ 4(R%,) C V,(Ip) consists
of row and column scalings of Sp(1). Since a binomial of the form xC" — xO | where C is a chordless
cycle, contains in each of its monomials exactly one variable from each row and column of Sp(x) on which
it is supported, it must also vanish on all row and column scalings of Sp(1). It follows that the generator
x" — xV vanishes on ¢ 4(R%,). By Lemma 3.1, this means that x* —x¥ € Ip, thus all generators of Tp are

contained in Ip, which completes the proof. O

Theorem 4.4 naturally leads to the question whether P can have a toric slack ideal even if it is not
projectively unique and whether all projectively unique polytopes have toric slack ideals. In the rest of this
section, we discuss these two questions.

All d-polytopes with toric slack ideals for d < 4 were found in [10]. These polytopes all happen to be
projectively unique, and hence have graphic slack ideals. Therefore the first possible non-graphic toric slack
ideal has to come from a polytope of dimension at least five. Indeed, we saw that the polytope in Example 3.7
has a toric slack ideal but is not graphic. Hence, this polytope is not projectively unique by Theorem 4.4,
recovering a result implied by a theorem of McMullen [16, Theorem 5.3].

In the next section we will see a concrete 8-polytope that is projectively unique but does not have a toric
slack ideal. However, this is not an isolated instance as there are infinitely many such examples in high
enough dimension.

Proposition 4.5. For d > 69 there exist infinitely many projectively unique d-polytopes that do not have a
toric (even pure difference binomial) slack ideal.

Proof. In [1], Adiprasito and Ziegler have shown that for d > 69 there are infinitely many projectively unique
d-polytopes. On the other hand, it follows from results in [10] concerning semidefinite lifts of polytopes that
in any dimension, there can only be finitely many combinatorial classes of polytopes whose slack ideal is a
pure difference binomial ideal. O
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c D

A E F B

Fig. 2. The Perles Gale diagram.

5. The Perles polytope has a reducible slack ideal

We now consider a classical example of a projectively unique polytope with no rational realization due
to Perles [12, p.94]. This is an 8-polytope with 12 vertices and 34 facets with the additional feature that
it has a non-projectively unique face. It is minimal in the sense that every d-polytope with at most d + 3
vertices is rationally realizable. We will show that the Perles polytope does not have a toric slack ideal and
that in fact, its slack ideal is not prime, providing the first such example.

The non-existence of rational realizations of a polytope immediately implies that its slack ideal is not
toric. This is a corollary of Theorem 3.10.

Corollary 5.1. Let P be a polytope in R% with no rational realization. Then Ip cannot be a pure difference
binomial ideal and, in particular, cannot be toric.

Proof. If P has no rational realization, then Sp(1) does not lie in the slack variety of P, since a rational
point in V4 (Ip) yields a rational realization of P by [9, Lemma 4.1]. Therefore, by Theorem 3.10, Ip is not
contained in Tp. Now applying Corollary 3.6, we can conclude that Ip is not a pure difference binomial
ideal and, in particular, is not toric. O

The Perles polytope P is constructed in [12, p.95] from its affine Gale diagram shown in Fig. 2. This
planar configuration stands in for the vector configuration in R? (Gale diagram) consisting of 12 vectors
— the eight vectors A, B,C, D, E, F,G, H indicated with black dots that have x3 = 1 and the four vectors
—F,—G,—H, —1I indicated with open circles that have x5 = —1. This means that P has 12 vertices and is
of dimension 12 — 3 — 1 = 8. The facets of P are in bijection with the 34 minimal positive circuits of the
Gale diagram. Computing these, we get the support of the slack matrix Sp shown below.

(0000000000 ++*xx%xxxx0000000000000]
000«*00«*+«*+x«0000xxxx%x%x0000x%xx%xxxx000000000
000000+x*00x*«*00=xx00xx00x000x*x=x0000000
0000«000000«*«x00xx00x00x%xxx000=*2s=*x=x0000
0000000«0x0x000000000x%xx%x002=%x0=%2=x*x0=x*2=x*x2x00
+000000000x0«x0000«x0x000000=%*x00=%000 =«
0«000000x00000000000000%x%x0000=x%2=x%x00 x
00«*00«x000000000000x0x0000=%x0000 % % % x
*+00x*x000x000000000000x000x%x00=x*x000=*3=x2O0
0x00«x0000x000x000=*xx0x«x00000=%x=x=*=00=x%00
00«000x00000x00x000000x*xx*xx*x0x%x0=x00000
100000 x00+x0x*x00x0x00x0x000xx000=x%x20x* x|
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Tt is straightforward to obtain Sp(x) from the above matrix, but a direct calculation of the slack ideal of
this example is challenging. Therefore, we resort to a scaling technique that makes slack ideal computations
easier. The idea is to work with a subvariety of the slack variety that contains a representative for every
orbit under row and column scalings. We do this by fixing as many entries as possible in Sp(x) to one.
Having less variables, the slack ideal becomes easier to compute. The non-incidence graph Gp from Section
3 provides a systematic way to scale a maximal number of entries in Sp(x) to one.

Lemma 5.2. Given a polytope P, we may scale the rows and columns of its slack matriz so that it has ones
in the entries indexed by the edges in a maximal spanning forest F' of the graph Gp.

Proof. For every tree T in the forest, pick a vertex to be its root, and orient the edges away from it. Now
for each tree, pick the edges leaving the root and set to one the corresponding entry of Sp by scaling the
row or column corresponding to the destination vertex of the edge. Continue the process with the edges
leaving the vertices just used and so on, until the trees are exhausted. Notice that once we fix an entry, the
only way for us to change it again is by scaling either its row or column, which would mean in the graph
that we would revisit one of the nodes of its corresponding edge. But this would imply the existence of a
cycle in F', so by the time this process ends we have precisely the intended variables set to one. O

Even after the above scaling trick, the symbolic slack matrix of the Perles polytope has 75 variables
which is challenging to work with. Therefore, we will work with a subideal of Ip.
Consider the following submatrix of Sp(x) coming from its first 13 columns.

000 0 2 22 23 0 0 0 0 0 0 0|
0O 0 0 =z, 0 0O 25 2z¢ z7 O O O O
0 0 0 0 0 0 28 0 0O 29 710 O O
0 0 0 0 iz O 0 0 O O O =2 213
0 0 0 0 0 0 O zi4 0 215 0 26 O
zi7 0 0 0 0 O O O O O =8 0 zi9
0 z90 0 0 0 O O O 2297 O 0O O O
0 0 222 0 0 223 0 0 0O O O O O
o4 0 0 Za5 0 0 0 T26 0 0 0 0 0
0 To7 0 0 T28 0 0 0 0 X929 0 0 0
0 0 30 0 0 0 r31 0 0 0 0 0 32
L 0 0 0 0 0 33 0 0 T34 0 I35 T36 0 ]

The ideal of 10x 10 minors of this submatrix, saturated by all its variables is clearly a subideal of Ip. Using
the scaling lemma we first set x; = 1 for i = 1,4,5,6,7,8,9,10,13,15,16,17, 18,21, 22, 26, 27, 28, 29, 30, 31,
32,33, 35. The resulting scaled slack subideal is:

2
(36 + T36 — 1,734 — 36 — 1,025 — X36, T2a — T36, T2z — 1,20 — Z36,

T1g — 36,214 — T36 — 1,012 — T36, 211 — 1,03 — 1,29 — 236 — 1).

This means that after scaling, the first 13 columns of every matrix Sp(s) obtained from s € V(Ip) with full
support must have the form
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0001a+110 0 0 0000
0001 0 01 1 1 0000
0000 0 01 0 0 1100
0000 1 00 0 0 00al
0000 0 00a+1 0 1010
1000 0 00 0 0 010a @
0000 0 00 0 1 0000
0010 0 10 0 0 0000
@00a 0 00 1 0 0000
0100 1 00 0 0 1000
0010 0 01 0 0 0001
(0000 0 10 0 a+101a0)

—1+V5
2

12 x 13 matrix to a 12 x 34 matrix with rank nine and the support of the Perles slack matrix, provided we

where a = is a root of 2 4+ = — 1. One can check that there is a unique way to extend the above

scale one variable to one in each of the new columns, as allowed by Lemma 5.2. The resulting parametrized
matrix is shown in Fig. 3. Up to scaling, the two matrices corresponding to the two values of « are therefore
the only elements in the slack variety.

Theorem 5.3. The slack ideal of the Perles polytope is not prime.

Proof. Let us consider the polynomial

f(X) = ($10»Tl55536)2 + (501050159036)($93316CU35) - (55933165535)2

= (T10%15%36 — 1 T9T16X35)(T10T15T36 — X2T9T16L35),

—1+v5 —1-v5
2

y k2 = D)
oy will not vanish on the submatrix (4) when we set @ = aa, and vice versa. Therefore neither of the linear

where o; = are the roots of 2+ x — 1. We see that the linear factor of f(x) containing
factors will vanish on the slack variety. On the other hand, one can check that evaluating f(x) on the matrix
in Fig. 3 reduces it to o + a — 1 which is zero. Since f(x) is homogeneous with respect to each row and
column of the matrix, it will also vanish on the whole slack variety. Therefore, the vanishing ideal of the
slack variety is not prime which implies that Ip is not prime. O

6. Conclusion

We have shown that the slack ideal of a polytope P may not be prime. However, the following question
remains.

Problem 6.1. Is Ip a radical ideal? If not, what are the simplest counterexamples?

We have seen in Section 5 that V4 (Ip) need not be Zariski dense in the slack variety V(Ip), and hence
Ip is not always the vanishing ideal of V, (Ip). In the case that Ip is toric, we know that Ip is indeed the
vanishing ideal of V, (Ip), providing a perfect correspondence between algebra and geometry. Many further
questions remain. In particular, what sort of polytope combinatorics lead to simple algebraic structure in
slack ideals?

Problem 6.2. What conditions on P make its slack ideal toric, or pure difference binomial, or binomial?
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In fact, so far, we have not been able to find any slack ideal that is in one of these classes but not in the
others.

Problem 6.3. Is any of the inclusions
toric C pure difference binomial C binomial
of classes of slack ideals strict?

We also characterized the toric slack ideals that come from projectively unique polytopes as being Tp,
the toric ideal of Gp, the graph of vertex-facet non-incidences of P. Such slack ideals were called graphic.
The fact that testing and certifying projective uniqueness is easy for toric slack ideals is very interesting,
as that is in general a hard problem. This raises the question of finding other classes of polytopes for which
one can certify projective uniqueness easily.

Problem 6.4. Is there another class of polytopes, beyond those with graphic slack ideals, for which one can
characterize projective uniqueness?

Apart from these concrete questions, many others could be formulated. There are, in particular, two
general directions of study that can potentially be very fruitful: strengthening the correspondence between
algebraic invariants and combinatorial properties, and revisiting the literature on realization spaces in our
new language to see if further insights can be gained or open questions can be answered.
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