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Abstract

This paper proposes a metric that we call the structured saliency
benchmark (SSBM) to evaluate importance maps computed for
automatic speech recognizers on individual utterances. These
maps indicate time-frequency points of the utterance that are
most important for correct recognition of a target word. Our
evaluation technique is not only suitable for standard classifi-
cation tasks, but is also appropriate for structured prediction
tasks like sequence-to-sequence models. Additionally, we use
this approach to perform a comparison of the importance maps
created by our previously introduced technique using “bubble
noise” to identify important points through correlation with a
baseline approach based on smoothed speech energy and forced
alignment. Our results show that the bubble analysis approach is
better at identifying important speech regions than this baseline
on 100 sentences from the AMI corpus.

Index Terms: importance map, saliency map, speech recogni-
tion, information bottleneck.

1. Introduction

Finding relevant information in input features X that is necessary
for an output/task y has seen a surge of interest in the computer
vision [1-5] and reinforcement learning communities [6—8]. [9]
proposed the information bottleneck approach to address the
problem and [10, 11] used the idea to improve model general-
ization. Our previous work proposed a correlational method
to find regions of speech spectrograms that are important to a
listener’s correctly identifying the words it contains, and we ap-
plied it to both humans and automatic speech recognition (ASR)
systems [12—14]. These “importance maps” or “saliency maps”
reveal how the ASR uses speech features to derive the recogni-
tion. In this paper, we propose a method to evaluate the quality
of predicted importance maps and apply them to saliency maps
estimated for an ASR “listener.”

The saliency map in speech has a similar meaning to the
saliency map in computer vision. However, unlike in vision,
where ground truth can be obtained from eye-tracking systems,
in speech, we do not have a corresponding “ear-tracking” system.
We thus propose a method to assess the quality of a predicted
speech saliency map. The main idea of our approach is that the
better the predicted saliency map, the higher the accuracy when
the ASR uses only information from the important regions of
the spectrogram. Similarly, if the important regions are removed
from an observation, the ASR should have low accuracy.

To the best of our knowledge, we are among the first, if
not the first, to propose a method to evaluate the saliency map
of running sentences, a structured prediction problem. In com-
puter vision, there is related work on evaluation methods for
saliency maps in simple classification problems without ground
truth. [15] proposed the MoRF method (Most Relevant First)
to evaluate saliency maps by measuring model performance
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degradation when the n most relevant pixels are replaced by
random values. [5] introduced the complementary LeRF method
(Least Relevant First), where the least relevant features are re-
moved. [16] recommended evaluating with a score measuring
the area between the MoRF and LeRF curves created when the
number of pixels n is varied.

Inspired by [5, 15, 16], we propose here an evaluation met-
ric, the structured saliency benchmark (SSBM), that measures
accuracy degradation when the most or least important time-
frequency points are replaced with white noise in a structured
prediction setting. A fundamental difference between our ap-
proach and these others is that they evaluate the accuracy of a
single simple classifier, such as an image classifier, so they only
consider how a saliency map affects the classification of a single
object, not how it might affect other objects in the scene.

2. Method

The main idea of our method is to evaluate the quality of the
predicted time-frequency importance regions for an utterance.
Denote the predicted importance maps in the speech spectro-
gram from method M for word w as I3 € {0,1}7*7T, a binary
matrix indicating whether time-frequency point I3; (f, t) is im-
portant for the recognition of w (1) or not (0). If the ASR can
correctly recognize word w and only word w using only the re-
gions where I}y = 1 instead of using all the spectrogram points,
and if it cannot recognize word w but can recognize all other
words when presented with only the regions where I3; = 0,
then we can conclude that method M has successfully identified
the important regions for recognizing w. To measure this, we
perform two tests. In the first case, we add noise everywhere in
a sentence except the predicted important regions of w, which
is equivalent to dropping the least relevant features (LeRF). In
the second case, we add noise to the predicted important regions
for w, equivalent to dropping the most relevant features (MoRF).
To encourage specificity, saliency maps that select less signal
energy as important are preferred to those that select more.

We define a new metric that we call the structured saliency
benchmark (SSBM) to evaluate the accuracy of the analyzed
words with respect to the accuracy of other words in the sentence
and the predicted important speech energies.

Ay — Qo Ao — Qu
ALeRp = ——— AMorr = (D
1 — ererF €MoRF
SSBM = ALerr + AMoRrF 2)

where a.,, is the accuracy of analyzed word w, a, is the averaged
accuracy of the other words, ejcrr is the proportion of energy
that is dropped by the LeRF mask (dropped energy divided by
utterance energy), and emorr is the proportion of energy that
is dropped by the MoRF mask. Thus, Arerr represents the
accuracy of the analyzed word per unit (proportion) of energy,
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with the accuracy of other words as a penalty. We can see
that if the importance maps of w are correct, then when the
least important energy for w is removed, the accuracy of w, @,
should be high while the accuracy of other words, a,, should be
low. Additionally, for two different importance maps with the
same a., and a,, the map corresponding to higher e .rr (more
unimportant energy dropped) should be better as should the one
with the lower emorr (less important energy preserved).

2.1. Saliency maps

We analyze the importance maps of two different approaches.
The first is a bubble analysis method where a time-frequency
point is predicted to be important when its audibility in noise is
significantly correlated with speech intelligibility [12,13]. The
second is an energy-based baseline, where a time-frequency
point in the spectrogram is predicted to be important when its
energy is larger than a certain threshold. Future work will inves-
tigate methods based on feature gradients [2, 17-19], pertuba-
tion [4], etc., which are not straightforward to apply to structured
prediction problem in speech.

The bubble analysis method [12, 13] identifies important re-
gions by adding many instances of random noise to clean speech,
then finding the spectrogram points that are revealed when the
ASR recognizes the noisy speech correctly and hidden by noise
when the ASR fails to recognize the utterance. Specifically,
the noisy utterances are generated by adding many instances
of random white noise to the clean speech to make these utter-
ances inaudible. However, the noise level is decreased inside
randomly placed oval-shaped bubbles to reveal the speech in-
formation inside. Denote as y;; the intelligibility, which has
value one or zero (binary) when the ASR correctly or incorrectly
recognizes the kth word in the jth noisy mixture of the 7th clean
utterance. In addition, the audibility D;;(f,¢) is defined as a
continuous variable that represents the inverse of the amount of
noise added to a time-frequency point in a spectrogram, varying
between zero (maximum noise) and one (no noise). A point-
biserial correlation ¢, ( f, ¢) is computed between D;;( f,t) and
yi;k. The significance (p-value) of this correlation is examined
under a two-sided t-test for every time-frequency point in the
spectrogram [13]. The importance map is defined as the set of
time-frequency points that have positive correlation and p-values
smaller than a specific threshold.

We compare the bubble method with an energy-based base-
line in which a time-frequency point in the spectrogram is con-
sidered important when its energy in a smoothed version of the
spectrogram is greater than a certain threshold. Specifically, the
linear frequency spectrogram has pre-emphasis applied, is con-
verted to a mel spectrogram with 30 bins, and then is converted
back to a linear frequency axis. The importance map of a word is
then the set of high energy spectrogram points that are between
the start and end frame of the target word in the forced alignment
of the clean utterance produced by Kaldi.

2.2. LeRF and MoRF noise masks

The LeRF mask is created by adding maximum noise to unimpor-
tant regions while adding minimum noise to important regions.
There is a transition between the two as shown in the top plot of
Figure 1. The intention is that when maximum noise is added
outside the important regions of a specific word, then the ASR
should still be able to recognize this word, but should not be able
to recognize the other words in the sentence. The procedure is
slightly different for the two mask prediction algorithms, so each
is described separately below.
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Figure 1: Example mask transition functions for an arbitrary
threshold. Top: Bubble analysis. Bottom: Energy-based
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Figure 2: Bubble analysis approach. From top to bottom: (a)
Clean speech (b) LeRF mask created by dropping the least rele-
vant features for the word “actually” with threshold 4.64 x 10™"
(time-frequency points that have p-value > 4.64 x 107" have
a maximum amount of noise added to them). (c) Noisy mixture
created by adding the mask in (b) to the clean speech in (a).

The bubble analysis LeRF mask m? gy, at a single point is

b p— t
= —(di — d 3

Grere (D) (di O)oztft 3)
mﬁeRF(p) — 100405 clip(‘ZIlzeRF(P),dg,dl) (4)

where ¢ is the threshold, p is the p-value of time-frequency points
in the spectrogram, o < 1 is a parameter controlling the size of
the transition region while dy and d; control the minimum and
maximum value of the mask, respectively.

The green line in the top plot in Figure 1 illustrates mask
values for £ = 0.01, « = 0.5. In addition, dyp = —80,d1 = 0
leading to a minimum mask value of 0.0001 and maximum value
of 1. As shown in this figure, a time-frequency point with a p-
value larger than 0.01 has noise level 1 (maximum noise), while
a point with a p-value smaller than 0.0075 has noise level 0.0001.
Additionally, a visualization of a complete mask with threshold
t = 4.64 x 10~7 is shown in the second row of Figure 2.

The bubble analysis MoRF mask is derived in a similar way
as equations (3) and (4), however with ¢irrr(p) = — @Perr(D)-
The red line in the top plot of Figure 1 shows the MoRF mask
with the same parameters as the green line. In addition, a visu-
alization of the mask is shown in the top plot of Figure 3. The
MoRF and LeRF masks are almost complementary to each other,
but are not exactly because the masks always decay smoothly to-
wards O to mirror the logarithmic nature of intensity perception.
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Figure 3: Bubble analysis. Top: MoRF mask created by dropping
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Figure 4: Energy-based approach. Top: LeRF mask with tap
—20. Bottom: Noisy mixture

Similarly, the LeRF mask for the energy-based approach
is created by adding maximum noise to the time-frequency re-
gion with energy lower than a specific threshold #4g in decibels
(unimportant regions). The important regions have minimum
noise added, except the transition area. The mask m is defined
analogously to (4), but using

a—1
at —t

grerr(a) = (di — do) 5)

where « is the absolute magnitude of the time-frequency point in
the spectrogram and ¢ = 10°-°°% is the threshold in magnitude.
An example of the mask with a specific threshold {45 = —20 dB
is illustrated in the bottom plot of Figure 1 and Figure 4. The
energy-based MoRF mask is formed by adding maximum noise
to the time-frequency region with energy bigger than a specific
threshold. The mask is derived the same as equation (5) except
with q;[ORF(a) = 7quRF(a)'

To create the noisy speech, we multiply the spectrogram of
a white noise signal by the mask and add the masked noise to
the clean speech. Examples of the mask and the masked noisy
speech are shown in the second and third rows of Figure 2.

3. Experimental setup

We utilize the AMI dataset [20], which includes 100 hours of
English meeting recordings. We selected the Individual Headset
Microphone (IHM) channels for our experiment. We followed
the standard train/test split and chose 100 sentences (9 minutes)
from the test set where the recognizer achieved 100% accuracy
without additional noise added to be our set of clean speech. We
created 1000 noisy mixtures for every clean utterance, leading
to a dataset of 100,000 mixtures for the bubble analysis method.
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We use Kaldi [21] as the ASR to perform the experiments.
We choose the standard model in AMI recipe s5b with a time-
delay neural network (TDNN) acoustic model and an n-gram
language model from the SRI Language Modeling Toolkit
(SRILM) [22]. The TDNN is a modification of a feed-forward
neural network, where the hidden vector representation at a layer
is derived from several vectors (window of size n) from the pre-
ceding layer. The time-domain utterances are sampled at 16 kHz
and are transformed into the frequency domain using an STFT
with window length 64 ms, and hop length 16 ms.

For the bubble analysis technique, we choose dy = —80,
di = 0 and o = 0.5. We perform experiments with 25 differ-
ent values of threshold ¢ that are spaced evenly on a log scale
from 107 ® to 10”. For the energy-based technique, we use the
same values of dy, d1, &, however we use 21 different values of
thresholds ¢4z, spaced evenly on a linear scale from —80 to 20
with a step size of 5.

4. Results

Here, we compare the bubble analysis and the energy-based ap-
proaches according to LeRF and MoRF curves and SSBM scores.
Figure 6 allows a direct comparison between the two mask meth-
ods by characterizing each masked signal by the proportion of
speech energy in the entire utterance that it obscures. This pro-
portion could vary for different words at the same threshold,
so this plot averages over masks that have the same proportion
when rounded to the nearest percent.

The top plot of Figure 6 shows the accuracy of analyzed
words when the least important features are dropped, averaged
over the entire dataset. Perfect performance in this case would be
in the top right corner, obscuring almost all of the speech while
preserving recognition accuracy. In general, we can see that the
bubble analysis method (blue line) achieves approximately the
same accuracy as the energy-based method (orange line).

The bottom plot of Figure 6 shows the accuracy of analyzed
words when the most important features are dropped on all 100
sentences. A perfect MoRF mask would be in the bottom left
corner of the bottom plot, obscuring almost none of the speech
while destroying recognition accuracy. This plot demonstrates
that the bubble analysis method is better at reducing recognition
accuracy than the energy-based method when both drop the same
amount of important speech energy. In both plots, the orange
lines are shorter than the blue lines because the important regions
of a word are restricted to be between the start frame and end
frame in the energy-based approach.

Figure 7 shows the SSMB scores (green lines) at various
thresholds for both methods. For the bubble analysis method
in the top row, we can see that the threshold of 4.64 x 10™%
obtains the best SSBM score of 6.5. This means that the increase
in LeRF accuracy at higher thresholds is not worth the decrease
in MoRF accuracy. For the energy-based method in the second
row, the threshold of —65 dB achieves the highest SSMB score
of 4.7, which is worse than that of the bubble analysis method.
The spike in the corresponding LeRF curve at 15dB is caused by
a small denominator (0.001). Note that MoRF and LeRF are not
symmetric, and the SSMB considers both directions from the
least/most important features; thus, it is more robust to artifacts
and noises. Thus, the bubble analysis method produces better
importance maps than the energy-based approach according to
the LeRF and MoRF curves and the SSBM score.

First, we can see that the ASR does not need to observe
all of the speech energy of a word to correctly identify it. For
illustration, the ASR can recognize the word “actually” with a
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threshold as low as 4.64 x 107" on the bubble analysis LeRF
mask as in Figure 5 (blue line). This mask and its corresponding
noisy speech are illustrated in the second and third row of Fig-
ure 2. As we can see, the mask only spans 400 Hz to 3200 Hz.
Surprisingly, the clean speech lacks energy at those frequencies,
but this does not prevent the ASR from correctly identifying
the word. This saliency map achieves the same accuracy as the
energy based alternative, while requiring less of the spectrogram
to be audible, an efficiency reflected in its higher SSBM score.
Second, the threshold identifying which time-frequency
points are important is varied across word. For example, in
Figure 5 (blue line), the ASR needs to use all time-frequency
points with p-value < 4.64 x 107° to correctly identify the word
“but,” however, the ASR must use all spectrogram points with
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p-value < 0.1 to recognize the words “more.”

Figure 8 shows that word length may explain the variation in
threshold for correct recognition. It shows the threshold at which
a target words transitions from correct to incorrect recognition as
a function of word length in phonemes. We can see that longer
words typically require a higher LeRF threshold, meaning more
speech is revealed, while they typically require a lower MoRF
threshold, meaning less speech is obscured. Similar trends were
observed with word length measured in syllables and characters.

5. Conclusion and future work

In this paper, we proposed an evaluation metric for structured
saliency maps, where we measure the word accuracy when either
keeping or dropping the most important regions. A gap in this ac-
curacy is measured between the analyzed word and other words
in the sentence with respect to the predicted important speech
energies. Additionally, we compare saliency maps from a bub-
ble analysis method and an energy-based baseline on sentences
from the AMI meeting corpus. According to several metrics, the
bubble analysis approach achieves a better importance map than
its alternative. In the future, we will extend this evaluation to
measure generalization of these predictions across ASR systems
and use these importance maps to enhance speech recognition
robustness in noisy conditions. We also hope that this speech
saliency evaluation metric can facilitate a community evaluation
on the topic of speech saliency, similar to those that have been
organized around visual saliency [23].
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