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Abstract

This paper proposes a metric that we call the structured saliency

benchmark (SSBM) to evaluate importance maps computed for

automatic speech recognizers on individual utterances. These

maps indicate time-frequency points of the utterance that are

most important for correct recognition of a target word. Our

evaluation technique is not only suitable for standard classifi-

cation tasks, but is also appropriate for structured prediction

tasks like sequence-to-sequence models. Additionally, we use

this approach to perform a comparison of the importance maps

created by our previously introduced technique using “bubble

noise” to identify important points through correlation with a

baseline approach based on smoothed speech energy and forced

alignment. Our results show that the bubble analysis approach is

better at identifying important speech regions than this baseline

on 100 sentences from the AMI corpus.

Index Terms: importance map, saliency map, speech recogni-

tion, information bottleneck.

1. Introduction

Finding relevant information in input features X that is necessary

for an output/task y has seen a surge of interest in the computer

vision [1–5] and reinforcement learning communities [6–8]. [9]

proposed the information bottleneck approach to address the

problem and [10, 11] used the idea to improve model general-

ization. Our previous work proposed a correlational method

to find regions of speech spectrograms that are important to a

listener’s correctly identifying the words it contains, and we ap-

plied it to both humans and automatic speech recognition (ASR)

systems [12–14]. These “importance maps” or “saliency maps”

reveal how the ASR uses speech features to derive the recogni-

tion. In this paper, we propose a method to evaluate the quality

of predicted importance maps and apply them to saliency maps

estimated for an ASR “listener.”

The saliency map in speech has a similar meaning to the

saliency map in computer vision. However, unlike in vision,

where ground truth can be obtained from eye-tracking systems,

in speech, we do not have a corresponding “ear-tracking” system.

We thus propose a method to assess the quality of a predicted

speech saliency map. The main idea of our approach is that the

better the predicted saliency map, the higher the accuracy when

the ASR uses only information from the important regions of

the spectrogram. Similarly, if the important regions are removed

from an observation, the ASR should have low accuracy.

To the best of our knowledge, we are among the first, if

not the first, to propose a method to evaluate the saliency map

of running sentences, a structured prediction problem. In com-

puter vision, there is related work on evaluation methods for

saliency maps in simple classification problems without ground

truth. [15] proposed the MoRF method (Most Relevant First)

to evaluate saliency maps by measuring model performance

degradation when the n most relevant pixels are replaced by

random values. [5] introduced the complementary LeRF method

(Least Relevant First), where the least relevant features are re-

moved. [16] recommended evaluating with a score measuring

the area between the MoRF and LeRF curves created when the

number of pixels n is varied.

Inspired by [5, 15, 16], we propose here an evaluation met-

ric, the structured saliency benchmark (SSBM), that measures

accuracy degradation when the most or least important time-

frequency points are replaced with white noise in a structured

prediction setting. A fundamental difference between our ap-

proach and these others is that they evaluate the accuracy of a

single simple classifier, such as an image classifier, so they only

consider how a saliency map affects the classification of a single

object, not how it might affect other objects in the scene.

2. Method

The main idea of our method is to evaluate the quality of the

predicted time-frequency importance regions for an utterance.

Denote the predicted importance maps in the speech spectro-

gram from method M for word w as IwM ∈ {0, 1}F×T , a binary

matrix indicating whether time-frequency point IwM (f, t) is im-

portant for the recognition of w (1) or not (0). If the ASR can

correctly recognize word w and only word w using only the re-

gions where IwM = 1 instead of using all the spectrogram points,

and if it cannot recognize word w but can recognize all other

words when presented with only the regions where IwM = 0,

then we can conclude that method M has successfully identified

the important regions for recognizing w. To measure this, we

perform two tests. In the first case, we add noise everywhere in

a sentence except the predicted important regions of w, which

is equivalent to dropping the least relevant features (LeRF). In

the second case, we add noise to the predicted important regions

for w, equivalent to dropping the most relevant features (MoRF).

To encourage specificity, saliency maps that select less signal

energy as important are preferred to those that select more.

We define a new metric that we call the structured saliency

benchmark (SSBM) to evaluate the accuracy of the analyzed

words with respect to the accuracy of other words in the sentence

and the predicted important speech energies.

∆LeRF =
aw − ao

1− eLeRF

∆MoRF =
ao − aw

eMoRF

(1)

SSBM = ∆LeRF +∆MoRF (2)

where aw is the accuracy of analyzed word w, ao is the averaged

accuracy of the other words, eLeRF is the proportion of energy

that is dropped by the LeRF mask (dropped energy divided by

utterance energy), and eMoRF is the proportion of energy that

is dropped by the MoRF mask. Thus, ∆LeRF represents the

accuracy of the analyzed word per unit (proportion) of energy,
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