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ABSTRACT
The physical data layout significantly impacts performance when

database systems access cold data. In addition to the traditional

row store and column store designs, recent research proposes to

partition tables hierarchically, starting from either horizontal or

vertical partitions and then determining the best partitioning strat-

egy on the other dimension independently for each partition. All

these partitioning strategies naturally produce rectangular parti-
tions. Coarse-grained rectangular partitioning reads unnecessary

data when a table cannot be partitioned along one dimension for

all queries. Fine-grained rectangular partitioning produces many

small partitions which negatively impacts I/O performance and

possibly introduces a high tuple reconstruction overhead.

This paper introduces Jigsaw, a system that employs a novel parti-

tioning strategy that creates partitions with arbitrary shapes, which

we refer to as irregular partitions. The traditional tuple-at-a-time or

operator-at-a-time query processing models cannot fully leverage

the advantages of irregular partitioning, because they may repeat-

edly read a partition due to its irregular shape. Jigsaw introduces a

partition-at-a-time evaluation strategy to avoid repeated accesses

to an irregular partition. We implement and evaluate Jigsaw on the

HAP and TPC-H benchmarks and find that irregular partitioning is

up to 4.2× faster than a columnar layout for moderately selective

queries. Compared with the columnar layout, irregular partitioning

only transfers 21% of the data to complete the same query.
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1 INTRODUCTION
Optimizing the physical layout of a database can significantly ac-

celerate the performance of query processing. Prior work has ex-

tensively evaluated the trade-offs between row store and column

store designs [1, 15, 16, 37]. The benefit of column stores for OLAP

workloads is higher I/O efficiency: a row store reads unnecessary

data when a query does not access all the attributes in a tuple.

I/O efficiency can further improve by partitioning the table and

determining the best storage option independently for each parti-

tion. The partitioning strategies in prior work focus on partitioning

either tuples (horizontal partitioning [8, 11, 43]), attributes (verti-

cal partitioning [5, 13, 42]), or first on one dimension and then on

the other (hierarchical partitioning [7, 40]). By co-locating tuples

(attributes) that are often accessed together, horizontal (vertical)

partitioning improves I/O efficiency by not accessing redundant

data when evaluating queries. Careful partitioning is particularly

effective in queries with low selectivity (projectivity).

The partitioning strategies in prior work produce rectangular

partitions, which have some disadvantages. First, queries will still

read redundant data when the access pattern cannot be naturally

partitioned in one dimension for all queries. (For example, when

partitioning vertically and the most recently added tuples in the

table are accessed differently than the rest of the table.) Second,

even when queries access disjoint parts of a table, rectangular par-

titioning will inevitably read some redundant data when accesses

to one column are conditional on the value in another column.

Hierarchical partitioning can reduce redundancy if it creates small

partitions. However, small partitions can lead to worse I/O perfor-

mance and possibly higher overhead to reconstruct each tuple if

data is scattered in different blocks in cold storage.

This paper describes Jigsaw, a system that uses a novel table par-

titioning strategy, irregular partitioning, that creates and manages

partitions of arbitrary shapes. Jigsaw first creates fine-grained seg-

ments to match the access pattern of the query workload and then

reorders and merges these segments into partitions to optimize I/O

performance. The partitioning algorithm is a top-down method,

which recursively partitions the table into segments. Smaller seg-

ments are created by splitting either horizontally or vertically, based

on the expected I/O benefit. The algorithm splits segments until

finer partitioning will not reduce the need to read unnecessary data

any further. After partitioning into segments, the algorithm merges

segments with a similar access pattern into partitions. Merging

segments with different schemas produces the distinctive irregular

shapes of partitions in Jigsaw.

To fully leverage irregular partitioning, Jigsaw uses a partition-

at-a-time query evaluation strategy. This evaluation strategy avoids
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repeatedly accessing partitions due to their irregular shape, which

is an issue when employing traditional query processing methods,

such as the tuple-at-a-time [12] and operator-at-a-time [18] strate-
gies which assume that the tuple or attribute order is the same

across partitions. Jigsaw uses two parallelization strategies for the

partition-at-a-time method: one based on locking (Jigsaw-L) and

the other based on shared scans (Jigsaw-S).

Experiments with Jigsaw on the HAP [8] and TPC-H [41] work-

loads show that Jigsaw speeds up query processing by up to 4.2×

compared to columnar partitioning for moderately selective queries.

The speedup is due to the reduced I/O volume: columnar partition-

ing needs to read 4.7× more data than irregular partitioning to

answer the same query.

The main contributions of this paper are:

(1) Introducing irregular partitioning and formulating the irregular

partitioning problem as an optimization problem.

(2) Designing a top-down partitioning algorithm that simultane-

ously considers horizontal and vertical partitioning and then

merges segments based on the similarity of their access pattern

to eliminate small partitions.

(3) Developing a query processing strategy, partition-at-a-time eval-
uation, which is tailored to irregular partitioning and avoids

repeated accesses to partitions. Two parallelization strategies

process irregular partitions with multiple CPU cores.

(4) Implementing irregular partitioning in a system prototype, Jig-

saw, and conducting an extensive experimental evaluation using

the HAP and TPC-H benchmarks.

The remainder of the paper is structured as follows. Section 2

presents the table partitioning and query processing in previous

works and analyzes the limitations. Section 3 describes the Jigsaw

architecture. Section 4 formulates the partitioning problem and pro-

poses a top-down partitioning algorithm which generates irregular

partitions. Section 5 follows with more details about the data stor-

age and partition-at-a-time query processing. Section 6 describes

the experimental setup and evaluates the query performance and

the partitioning algorithm performance. Section 7 presents related

work and Section 8 concludes.

2 BACKGROUND AND MOTIVATION
2.1 Storage Models
The principle of data independence gives relational database sys-

tems flexibility in determining how data will be physically stored

on the disk. Two orthogonal questions arise when determining how

to best store a table: what is the data order and the data layout.
Table 1 summarizes different storage choices from prior work.

Layout Row order Column order

Natural PostgreSQL [32]

Sybase IQ [27],

MonetDB [9]

Horizontal Schism [11]

Casper [8],

Parquet [6]

Vertical

Hyrise [13] –

H2O [5]

Hierarchical Peloton [7], GSOP [40]

Table 1: Data order and layout in prior work.

The data order determines which values will be stored contigu-

ously in a page. Data is either stored in row order that serializes
a table row by row or in column order such that one attribute is

stored contiguously. Row store designs are superior for OLTP sys-

tems such as Microsoft Hekaton [24] and column store designs are

superior for data warehouses such as MonetDB [9].

The data layout question determines how data is split into

different pages. A number of strategies have been explored:

(1) Natural order layout: Data is sequentially stored in their natural

order (row or column) and segmented into pages.

(2) Horizontal layout: Partition the table horizontally. Horizontal

partitioning can be done by applying a hash or range function

on a specific attribute [17] or can be based on access frequen-

cies of the query workload [11]. Schism [11] partitions horizon-

tally and stores partitions in row order, so that tuples that are

frequently accessed together will be retrieved in a single I/O.

Apache Parquet [6] partitions horizontally to row groups and
stores partitions in column order.

(3) Vertical layout: Partition the table vertically by grouping fre-

quently co-accessed columns together in a column group [5]

(also container [13] and projection [23]). Columns in the same

vertical partition are retrieved in a single I/O operation. H2O

determines vertical partitions and picks the optimal data order

independently for each partition [5].

(4) Hierarchical layout: These designs first partition on one dimen-

sion and then on the other. Peloton implements a hierarchical

storage engine [7] that horizontally partitions the table first,

and then vertically partitions each horizontal partition. This

allows different vertical partitioning strategies for each hori-

zontal partition. Individual tiles in Peloton store data in either

row or column order. GSOP [40] takes the opposite approach:

it first determines the column grouping (vertical partitions) and

then determines how to partition column groups horizontally

to maximize the benefit of data skipping.

Limitations. Consider the table T shown in Figure 1a and the

queries Q1,Q2,Q3 shown in Table 2. Assume that evaluating predi-

cates requires a full scan without index. Different shades of gray in

Figure 1 indicate which values a query accesses.

The horizontal layout (shown in Figure 1b) places tuples accessed

by the same query in one partition, such as t1, t2, t4 to benefitQ1. Re-

dundant attributes are retrieved if partitions are stored in row-major

order. Storing a partition in column-major order avoids reading

redundant attributes but a partition may need to be visited multiple

times to access additional columns: Q1 will need to read a1 in its

entirety to evaluate the predicate in the query. Finally, note that

grouping tuples in a certain way favors some queries at the expense

of others: in the example shown in Figure 1b, although bothQ1 and

Q2 can skip one redundant partition when accessing a2 and a3, Q3

needs to access both partitions to return the relevant values of a5.
In summary, the core limitation of the horizontal layout is that it

cannot place attributes of one tuple to different partitions.

The vertical layout (shown in Figure 1c) places attributes ac-

cessed by the same query in one partition. However, a query may

still need to read some redundant cells: for example,Q1 reads a2,a3
of t3, t5, t6. Second, queries may read multiple partitions because



(a) Logical table (b) Horizontal layout (c) Vertical layout (d) Hierarchical layout (e) Irregular layout

Figure 1: Example table T with different storage layouts.

Q1 SELECT a2,a3 FROM T WHERE a1 ≤ 1000

Q2 SELECT a2,a3 FROM T WHERE 4000 ≤ a4
Q3 SELECT a5 FROM T WHERE 64 ≤ a6 ≤ 65

Table 2: Example queries on T .

vertical partitioning cannot always store all attributes of a query

together: in the example shown in Figure 1c, Q2 accesses two parti-

tions to retrieve a2,a3,a4. Producing the final output in this case

requires reconstructing rows from multiple partitions during query

evaluation (see Section 2.2 for more details).

The hierarchical layout splits tuples and attributes into different

partitions. Figure 1d first horizontally splits tuples into two par-

titions (same as Figure 1b) and then vertically splits attributes in

each partition independently. This two-dimensional partitioning

approach improves I/O efficiency by minimizing the redundant data

each query reads. The main weakness of hierarchical partitioning

is that it generates too many small partitions. Whereas the horizon-

tal layout (see Figure 1b) issues large sequential I/O requests, the

hierarchical layout issues much smaller I/O requests and accesses

different partitions a lot more frequently. Generating the hierarchi-

cal layout by splitting along one dimension at a time means that the

partitions are still regular (that is, either horizontally or vertically

aligned), which inherits the limitations of horizontal or vertical

layouts albeit at a smaller scale.

Irregular partitioning. In order to overcome the limitations of

the existing layouts, we propose to partition a table into irregularly-

shaped fragments. Figure 1e shows the layout of table T with irreg-

ular partitioning. Irregular partitioning can store different schemas

in the same partition: the top left partition in Figure 1e stores at-

tributes a1,a2,a3 for t4 but only a1 for t3. Note how Jigsaw reorders

tuples to avoid unnecessary schema changes within a partition: for

example, the top left partition stores t4 before t3. As a result, the
irregular layout matches the efficiency of the hierarchical layout in

terms of data redundancy, but without creating the small partitions

of the hierarchical layout which underutilizes I/O bandwidth.

Within an irregular partition, Jigsaw stores data in row-major

order to avoid materializing intermediate data when queries ac-

cess a single partition. (The irregular partitioning algorithm that

is described in detail in Section 4 strives to make accesses to mul-

tiple partitions a rare occurrence.) Column-major ordering would

require processing data attribute by attribute and materializing

intermediate results: computing a1 + a2 + a3 in the column-major

MonetDB system, for example, materializes the result of a1+a2 and
then adds it to a3. Section 6.3.2 experimentally shows the benefit

of row-major ordering when processing in-memory data.

2.2 Query Evaluation
The tuple-at-a-time and operator-at-a-time are two query evalua-

tion strategies that are tailored for row stores and column stores,

respectively. The tuple-at-a-time strategy evaluates predicates and

projects attributes as a tuple passes through different operators [12].

Processing a batch of tuples at a time can amortize the cache misses

and branch mispredictions associated with switching between oper-

ators [9]. The operator-at-a-time model in column stores completes

one operation at a time: the selection operator only tracks which

tuples satisfy the predicate and the projection operator materializes

the result [18].

Limitations. With irregular partitioning, both the tuple-at-a-

time and operator-at-a-time query evaluation strategies may read

a partition by multiple times; in the worst case, a partition may

need to be revisited as many times as the number of tuples in the

partition. The fundamental reason is that irregular partitioning

may naturally change the ordering of tuples across attributes in

different partitions. For example, the irregular layout shown in

Figure 1e stores attribute a6 in one partition, while the attribute

a2 is located in two different partitions in different tuple orders. If

a query plan accesses tuples in the storage order of attribute a6,
adjacent attributes in the same order may be scattered in other

partitions. As an example, consider the evaluation of the query

SELECT a2 FROM T WHERE 62 ≤ a6 ≤ 65 on the irregular layout in

Figure 1e. Evaluating the predicate on a6 would require accessing

the tuples in the order of t2, t3, t4, t5 for attribute a2, which would

require four I/O operations each for a single value. Both the tuple-at-

a-time and operator-at-a-time evaluation strategies would require

repeated random accesses to the other partitions, which would be

prohibitively expensive if the memory is not large enough to hold

all accessed partitions in their entirety.

Partition-at-a-time evaluation. To avoid repeated accesses

to a partition, Jigsaw adopts a partition-centric evaluation strategy

that exhausts one partition before moving to the next partition.

This evaluation strategy is crucial to fully realize the benefits of

irregular partitioning. We refer to this strategy as a partition-at-a-
time strategy, and describe it in detail in Section 5.2.

3 SYSTEM ARCHITECTURE
We design a prototype engine, Jigsaw, that partitions a table ir-

regularly and evaluates queries by reading one partition at a time.

Figure 2 shows the system architecture. Jigsaw has three main com-

ponents, the query processor, the partition tuner and the partition
manager. Given a set of queries, the partition tuner generates a



Figure 2: The Jigsaw system architecture.

partitioning plan P that minimizes the estimated execution time of

a query workload Q. The partition manager physically partitions

the table and generates indexes to locate tuples and attributes in

the physical partitions. The query processor evaluates a query by

accessing partitions the partition manager has already loaded. The

description of the algorithms assumes the evaluation of the con-

junction of predicates p1, ..., pn on table T . This query pattern is

very common: 20 out of 22 queries in the TPC-H workload include

a WHERE clause of the form p1 AND ... AND pn .
The partition manager stores a partition in one file. It constructs

two indexes, a tuple-level index and an attribute-level index, to
identify partitions storing a tuple or an attribute respectively. The

query processor can access a partition by either specifying the ID of

a tuple or an attribute; the partition manager will load the relevant

partition in memory, if necessary.

The query processor evaluates queries on the irregularly parti-

tioned table partition-by-partition. The query processor implements

a select operation and a project operation. The select operation

reads a partition, evaluates the relevant predicates and extracts

the attributes projected by the query. The project operation then

reconstructs tuples, possibly from multiple partitions.

4 PARTITIONING PROBLEM
4.1 Preliminary Definitions

Table. We represent a table T by its metadata: (i) T .A, the set
of attributes in T ; (ii) T .t , the number of tuples in T ; (iii) T .ranдe ,
the minimal and maximal values [mina ,maxa ] for each attribute

a ∈ T .A. Storing this metadata avoids accessing the partition for

tuple-level information.

Segment. A segment S contains a subset of tuples and attributes

of the table. We use the same notation to represent a segment, i.e.

the attributes in the segment are S .A, the number of tuples in the

segment are S .t and the value ranges of tuples in S are S .ranдe . It is
worth noting that S .ranдe contains the value ranges of all attributes
in the table, including the attributes not in S .A. S .Q is the set of

training queries that access the segment. Algorithm 1 shows the

data structure of a segment.

Partition. A partition is a set of segments of a table. Each segment

is contained entirely in one partition.

Query. Algorithm 1 shows the metadata of a query q. Aσ is the

set of attributes in the predicates of q.Aπ is the set of attributes that

are projected by q. (For example, queryQ1 in Table 2 hasAσ = {a1}
and Aπ = {a2,a3}.) The ranдe contains the [mina ,maxa ] for each
attribute a in the table. If a is in Aσ , themina andmaxa are the

boundaries specified in predicates; otherwisemina andmaxa are

Algorithm 1: Structure of Segment and Query

1 Struct Segment S contains
2 A // attributes in S

3 t // number of tuples in S

4 ranдe ← {[mina ,maxa ] | ∀ attribute a in the table}

5 Q // set of queries that access S

6 Struct Query q contains
7 Aσ // attributes in the WHERE clause

8 Aπ // attributes in the SELECT clause

9 ranдe ← {[mina ,maxa ] | ∀ attribute a in the table}

the range of a in the table. (For example, Q1.ranдe = {a1:[11, 1000],
a2:[21, 26], a3:[31, 36], a4:[41, 4046], a5:[51, 56], a6:[61, 66]}.

Previous horizontal partitioning algorithms [8, 11, 39] formulate

the partitioning problem at the tuple level. (For example, a node

in the graph of Schism [11] is a tuple.) Instead, we use the value

ranges to represent partitions and queries. The space consumption

is proportional to the number of segments, which is significantly

smaller than the tuple-level representation.

4.2 Problem Definition
Given a set of partitions P = {P1, · · · , Pn } and a set of queries

Q = {q1, · · · ,qm } on a table T , we define cost function cost(P,Q)
to estimate the I/O time to evaluate these queries on the given

partitions. The partitioning problem is finding a valid partitioning

P over T that minimizes the cost function. The query processor

only accesses a partition once for each query, thus the I/O time of a

query is the sum of the I/O time of partitions accessed by the query.

The total cost is the sum of the I/O time for each query. Hence, the

cost function that estimates the total I/O time is:

cost(P,Q) =
∑
q∈Q

∑
P ∈P

io(sizeo f (P)) × access(P ,q) (1)

The function sizeo f (P) returns the size of partition P in bytes:

sizeo f (P) =
∑
S ∈P

S .t × (BID +
∑

a∈S .A
Ba ) (2)

where BID and Ba is the size of the tuple ID and attribute a.
The io(x) function in Formula 1 estimates the I/O time ŷ to read

a partition that is x bytes big, and is a linear prediction of the

form ŷ = αx + β . Jigsaw derives the constants by profiling the file

system: it measures the time (y) to read files of different sizes (x)
and calculates the α and β parameters through linear regression.

In general, we have observed that linear prediction is a reasonable

estimation of the actual I/O time for both hard drives and SSDs as

long as the partition sizes are at least a few MBs big to amortize

the overhead of issuing one I/O request. Jigsaw uses a configurable

lower limit on the partition size, referred to as MIN_SIZE, to ensure
that the generated partitions are not too small.

The access(P ,q) function in Formula 1 returns 1 if the query

q reads any segment in partition P or 0 if not. Query q accesses

segment S if S contains any attributes in Aσ , or if S contains any

attribute in Aπ and S .ranдea intersects with q.ranдea for each

attribute a. Hence:



access(P ,q) =

{
1, ∃S ∈Paccess(S,q) = 1

0, otherwise

(3.1)

access(S,q) =


1, S .A ∩ q.Aσ , ∅

1, S .A ∩ q.Aπ , ∅∧∀a∈T .AS .ranдea ∩ q.ranдea , ∅

0, otherwise

(3.2)

The partitioning problem is to find a valid partitioning P on a

table T to minimize the cost(P,Q) for a given query set Q. A valid

partitioning must meet certain constraints. First, the segments must

be partitions of T , that is each cell must belong to one segment.

Mathematically, this means that any two segments in P do not

intersect and that the union of all the segments is the table. The

final constraint is that a segment only belongs to one partition of P.
Irregular Partitioning Problem. Given a set of queries Q on a

table T , find a valid partitioning P on T that minimizes cost(P,Q):

argmin

P
cost(P,Q)

subject to Si .A ∩ Sj .A = ∅ ∨ Si .ranдe ∩ Sj .ranдe = ∅

∪a∈S .A S .ranдe = T .ranдe, ∀a ∈ T .A
S < Pj , ∀S ∈ Pi ∧ i , j

(4)

4.3 Partitioning Algorithm
4.3.1 Algorithmic framework. Enumerating all the possible par-

titions of a table is infeasible. Algorithm 2 shows a hill-climbing

algorithm to find a partitioning that locally minimizes the cost func-

tion. The inputs of the algorithm are the tableT and training query

set Q on the table. The algorithm is composed of the partitioning
phase (lines 1–12), resizing phase (lines 13–25) and selection phase

(lines 26–27). The first two phases minimize the cost(·) function
that was defined in Formula 1.

The partitioning phase runs a top-down algorithm to partition

the table into segments. Initially, the first segment is the entire table

which is marked as active. In each step, the algorithm partitions

an active segment by the function partitionSeдment(·) which re-

turns the resulting segments after partitioning (children) and an

estimation of the I/O savings from this split (bene f it ). (Segment

partitioning is described in Section 4.3.2.) If the split is not projected

to reduce I/O time further, the segment is frozen. The partitioning
phase stops when finer partitioning will not reduce I/O time further

(bene f it ≤ 0) and all segments are frozen.
The resizing phase splits or merges segments such that all parti-

tions have sizes in a user-defined range [MIN_SIZE,MAX_SIZE].
The partitioning phase will split segments larger thanMAX_SIZE
to reduce redundant I/O when queries are encountered which do

not look like the training queries. Conversely, segments that are

smaller thanMIN_SIZE will be merged accordingly to their access

pattern similarity. Merging segments with a similar access pattern

increases I/O performance by reducing I/Os to small partitions.

The final selection phase picks the more efficient layout between

the irregular and the columnar layout based on the estimated tuple

reconstruction cost. The irregular partitioning algorithm stores

tuples that appear in multiple partitions in an in-memory hash

table during tuple reconstruction (see Section 5.2). The algorithm

checks whether the I/O cost of the chosen irregular partitioning

Algorithm 2: Partitioning algorithm
input :T , a table

Q, training query set on T
output :P, the partitions of T

1 s0 ← initialize a segment to be the entire table T

2 s0.Q ← Q

3 active, f rozen ← two empty lists to store segments

4 Add s0 to the end of active

5 repeat
6 s ← Remove the first segment in active

7 children, benefit← partitionSeдment(s)

8 if benefit > 0 then
9 Push children to active

10 else
11 Push s to f rozen

12 until active is empty
13 repeat
14 s ← Remove the first segment in f rozen

15 if sizeo f (s) > MAX_SIZE then
16 a ← the most frequent attribute in the predicates of

queries in s .Q

17 children← horizontal

(
s,a,

s .maxa + s .mina
2

)
18 Add children to the end of f rozen

19 else if sizeo f (s) < MIN_SIZE then
20 S ← {s ′ |s ′ ∈ f rozen and s .Q = s ′.Q}

21 p ← merge s in S until sizeo f (p) ≥ MIN_SIZE

22 Add p to P

23 else
24 Create a partition for s and add to P

25 until f rozen is empty
26 if cost(P,Q) + costr econs (P,Q) > costcolumn (Q) then
27 P← columnar layout

28 return P

plan (cost ) including the anticipated overhead of maintaining the in-

memory hash table for irregular partitioning (costr econs ) is greater
than the I/O cost of the simpler columnar layout (costcolumn ) that

does not require maintaining a hash table. The total reconstruction

cost costr econs for the query set Q with irregular partitioning is:

costr econs (P,Q) =
∑
q∈Q

mem

( ∑
S ∈P

survived_tuple_num(S,q)

)
(5)

where survived_tuple_num(·) is the number of tuples in a segment

S that satisfy the query q, as estimated by S.range ∩ q.range. The
mem(x) function estimates the time to insert x tuples to the hash

table based on the memory throughput (writes per second) of a

microbenchmark that writes to random memory locations. The

function costcolumn estimates the I/O cost of the columnar layout

as follows:

costcolumn (Q) =
∑
q∈Q

∑
a∈q .Aσ ∪q .Aπ

io(paдe size) ×
sizeo f (a)

paдe size
(6)



Algorithm 3: partitionSegment()
input :S , a segment

output : children, the children segments of S
benefit, the saved I/O time after partitioning

1 Cinit ial ← cost(S, S .Q)

2 foreach q ∈ S .Q do
3 Sσ ← Seдment(S .A ∩ q.Aσ , S .t , S .ranдe)

4 Sπ ← Seдment
(
(S .A ∩ q.Aπ ) − q.Aσ , S .t , S .ranдe

)
5 Sr ← Seдment(S .A − Sσ .A − Sπ .A, S .t , S .ranдe)

6 foreach a ∈ q.Aσ and v ∈ {q.mina ,q.maxa } do
7 Sπ 1, Sπ 2 ← horizontal(Sπ ,a,v)

8 foreach q′ ∈ S .Q do
9 foreach s ′ ∈ {Sσ , Sπ 1, Sπ 2, Sr } do
10 if access(s ′,q′) then
11 s ′.Q .add(q′)

12 childrenq,a,v ← {Sσ , Sπ 1, Sπ 2, Sr }

13 children← argminchildrenq,a,v cost(childrenq,a,v , S .Q)

14 return children,Cinit ial − cost(children, S .Q)

4.3.2 Segment partitioning algorithm. Algorithm 3 defines the func-

tion partitionSeдment(·) which horizontally and vertically parti-

tions a segment S . It outputs the resulting segments and the ex-

pected I/O time benefit after partitioning (which may be negative

if evaluating the queries on the resulting segments is estimated

to take longer). Given a query q ∈ S .Q , the algorithm first verti-

cally partitions S into three segments, Sσ , Sπ , and Sr (lines 3–5). Sσ
stores the attributes of S which are in predicates of q, Sπ stores the

attributes projected by q but not in Sσ , and Sr stores the remaining

attributes of S . A query q reads all tuples in Sσ , some tuples in

Sπ and nothing in Sr . The segment Sπ is further partitioned hori-

zontally into two segments (lines 6–7) on the boundaries of each

attribute. Algorithm 3 updates the queries that access each segment

according to Formula 3.2 (lines 8–11). Finally, line 13 returns the

partitioning with the minimal I/O cost.

Algorithm 4 describes the horizontal(·) function. The function
horizontally partitions a segment on an attribute a by setting the

min andmax values of a in the children segments. The function

estimates the size of children segments, assuming that the distribu-

tion of each attribute is uniform and independent. Other cardinality

estimation techniques can be used for more accurate results.

Algorithm 4: horizontal()
input :S , a segment

a, an attribute

v , the partitioning point on a
output :S1, S2, two children segments of S

1 t1 ← S .t × v−S .mina
S .maxa−S .mina

2 S1 ← Seдment(S .A, t1, S .ranдe)

3 S2 ← Seдment(S .A, S .t − t1, S .ranдe)

4 S1.maxa , S2.mina ← v

5 return S1, S2

5 SYSTEM PROTOTYPE
The Partition Manager physically reorganizes the table according to
the logical partitioning generated by the Partition Tuner. The Query
Processor evaluates queries on the partitions. Section 5.1 describes

the physical storage organization in Partition Manager and Section

5.2 describes the query evaluation algorithm.

5.1 Partition Manager
The partition manager stores each partition in a separate file. A

partition is composed of multiple physical segments. A physical seg-

ment stores tuples with the same attributes in this partition. Figure

3a shows the two logical segments, as generated by the partitioning

algorithm, for the upper left partition in Figure 1e. Figure 3b shows

the physical storage for the same partition. Note that tuples t1, t2, t4
are stored sequentially in the same physical segment because they

contain the same attributes.

t1

(a) Logical segments.

t1

(b) Physical segments.

Figure 3: Logical and physical representation of a partition.

Cells in a physical segment are serialized in row-major order. A

physical segment also stores the tuple IDs and a bitmap to record the

attributes in the segment. (A tuple ID is stored once in a partition.)

Figure 4 shows the disk layout of the partition.

Figure 4: Physical layout of a partition on disk.

Finally, the partition manager builds two indexes, the attribute-
level index and tuple-level index to find the partitions storing an

attribute or a tuple. The indexes are hash tables, where the keys are

the attribute name and tuple IDs, respectively. Given an attribute

name and a tuple ID, the partition manager consults the indexes

and returns the partition storing the specific cell.

5.2 Query Processor
As discussed in Section 2.2, the tuple-at-a-time and operator-at-
a-time methods may read a partition repeatedly when the table

is irregularly partitioned due to the different tuple orders in dif-

ferent partitions. Jigsaw proposes the partition-at-a-time method

(Algorithm 5) to process a query. Jigsaw exhausts a partition before

moving to the next one to avoid repeated accesses.

The method consists of the selection phase (lines 3–16) and the

projection phase (lines 17–23). The inputs of the algorithm are a

query and the indexes described in Section 5.1, and the output is

a hash table storing the query result. The hash table stores the

projected attribute values indexed by their tuple ID.



Algorithm 5: Partition-at-a-time query evaluation

input :Aproj , the projected attributes in the SELECT clause

Preds , the query predicates

Indext , the tuple-level index
Indexa , the attribute-level index

output :ret , a hash table storing results

1 ret← an empty hash table

2 status← set NOT_CHECKED for each tuple in the table

3 Apred ← the attributes in Preds

4 Ppred ← retrieve partitions containing Apred from Indexa
5 foreach partition p ∈ Ppred do
6 foreach tuple t ∈ p such that status[t] , INVALID do
7 At ← the attributes of t stored in p

8 if At cells in t do not satisfy Preds then
9 if status[t] = VALID then
10 delete ret[t]
11 status[t]← INVALID

12 else
13 if status[t] = NOT_CHECKED then
14 ret[t]← allocate one row for t

15 status[t]← VALID

16 add At ∩Aproj cells of t to ret[t]

17 foreach tuple t ∈ ret do
18 Amiss ← Aproj attributes missing in ret[t]

19 Pproj ← Pproj ∪ partitions containing Amiss of t

20 foreach partition p ∈ Pproj do
21 foreach tuple t ∈ p such that status[t] = VALID do
22 At ← the attributes of t stored in p

23 add At ∩Aproj cells of t to ret[t]
24 return ret

The selection phase scans the partitions that contain attributes

that match the predicates of the query. During processing, a tuple is

either NOT_CHECKED, VALID or INVALID. The status is initialized as

NOT_CHECKED (line 2). The selection phase starts by reading a parti-

tion that contains an attribute that appears in the query predicates.

Each tuple is evaluated against the predicate and becomes VALID
if it satisfies the predicates (lines 13–15). Any projected attributes

of VALID tuples that are stored in this partition are added to the

hash table (line 16) to avoid accessing this partition again in the

projection phase that follows. A tuple becomes INVALID if it does
not satisfy a predicate, in which case it is removed from the hash

table (lines 8–11). The algorithm then proceeds to the next partition

in Ppred . At the end of the selection phase, the hash table stores

the projected attributes that are stored in the partitions that were

accessed when evaluating the WHERE clause of the query, indexed
by their tuple IDs.

The projection phase scans the hash table to fill missing attributes

from the selection phase. The algorithm first identifies the partitions

containing missing cells (lines 18–19) and loads them using the

tuple-level index Indext . (Note thatAmiss may be the empty set, in

which case PProj will not grow.) For each partition, the algorithm

iterates over the VALID tuples of the partition and fills the missing

cells in the hash table (lines 20–23).

Algorithm 6: Parallelization based on locking

1 Phase Selection
2 foreach thread th do in parallel
3 repeat
4 p ← pop Ppred and load the partition

5 foreach tuple t ∈ p do
6 lock the bucket with bucket ID hash(t)

7 process t // lines 6–16 in Algorithm 5

8 unlock the bucket

9 until Ppred = ∅
10 wait for all threads to complete

5.2.1 Parallelization. There are two ways to parallelize Algorithm

5, one based on locking and another based on shared scans [22].

Threads in the lock-based strategy process different partitions. The

shared scan strategy uses all threads to process one partition but

assigns a part of the hash table to each thread using range partition-

ing. The two strategies differ in how they resolve conflicts across

multiple threads.

The lock-based strategy assigns locks to hash table buckets so

that two threads will not concurrently access the same bucket.

Algorithm 6 describes the selection phase in the lock-based strategy.

A thread reads a partition in Ppred and iterates over the tuples in the

partition. The thread locks the target bucket when it processes each

tuple. All threads wait at the end of the selection phase in a barrier

and then proceed to the projection phase. The projection phase

does not need hash table locks, because threads do not update the

status array and only fill missing cells of tuples that have already

been allocated in the hash table (see Alg. 5, line 14).

The strategy based on shared scans is a lock-free algorithm,

where a thread scans all the partitions and only processes tuples

for the buckets this thread is responsible for. Algorithm 7 describes

the selection and projection phases in this method. In the selection

phase, threads load partitions in Ppred and wait for loading to

complete. Each thread then iterates over all the loaded partitions

and processes tuples which should be stored in the buckets assigned

Algorithm 7: Parallelization based on shared scans

1 Phase Selection
2 foreach thread th do in parallel
3 Bth ← the buckets assigned to th

4 pth ← pop Ppred and load the partition

5 wait for all threads to complete

6 foreach thread i do
7 foreach tuple t ∈ pi do
8 if hash(t) ∈ Bth then
9 process t // lines 6–16 in Algorithm 5

10 Phase Projection
11 foreach thread th do in parallel
12 foreach partition p ∈ Pproj do
13 foreach tuple t ∈ p do
14 if hash(t) ∈ Bth and status[t] = VALID then
15 process t // lines 22–23 in Algorithm 5



to this thread (line 7). The selection phase stops when all partitions

in Ppred have been scanned by all threads. In the projection phase,

each thread scans all the partitions in Pproj and processes the

assigned tuples (lines 12–13). In this strategy, threads do not conflict

because they process distinct bucket ranges in the hash table.

6 EXPERIMENTAL EVALUATION
This section evaluates the partitioning algorithm and the query pro-

cessor in Jigsaw. We perform all experiments on three servers with

different compute and I/O capabilities: an on-premises server named

balos, and the t2.2xlarge and c5.9xlarge instances on Amazon

AWS. The on-premises server stores data in a locally attached HDD;

the t2.2xlarge and c5.9xlarge instances store data on two EBS SSD

volumes, gp2 and io1, respectively. (The io1 volume is the highest-

performing EBS volume and is recommended for database work-

loads.) The typical throughput is 75 MB/s for the local HDD, 125

MB/s for the gp2 volume and 1 GB/s for the io1 volume. Table 3

shows the configuration of the three servers. The experiments use

all the CPU cores on each server. Because irregular partitioning is

an I/O optimization that is designed for cold storage, we clear the

OS cache before evaluating each query to force the query processor

to read all data from the underlying storage device. We repeat each

experiment at least three times and report the median response

time. The evaluation considers the following questions:

• Parallelization performance:When and why is shared scan-

based parallelization faster than lock-based parallelization, and

vice versa?

• Query evaluation performance: What is the relative perfor-

mance of Jigsaw compared with the state-of-art baselines? Does

irregular partitioning read less redundant data?

• Partitioning time: How does the partitioning algorithm in Jig-

saw compare with the existing partitioning algorithms in terms

of the partitioning time?

6.1 Benchmarks and Baselines
6.1.1 Benchmarks. We use two benchmarks: HAP and TPC-H.

HAP: The benchmark has two tables, a narrow table with 16

columns and a wide table with 160 columns. Our experiments use

the wide table with 100M tuples. Each attribute is a 4-byte uni-

formly distributed integer. We use the read-only queries in the

HAP benchmark for evaluation, which are of the form SELECT ai ,
... ,aj , ... ,ak FROM T WHERE C1 < aj < C2. The query workload is

configured by 4 parameters: selectivity, projectivity, the number of

query templates and the number of queries.

We create a workload by first generating query templates. Given

a desired projectivity, a query template projects a randomly se-

lected set of attributes and uses one of the projected attributes, aj ,
in predicates. We then randomly pick a query template to populate

a query. The constants C1 and C2 are set randomly but meet the

Name balos t2.2xlarge c5.9xlarge

CPU

Xeon E-2246G

(6 CPU cores)

Xeon E5-2676v3

(8 vCPUs)

Xeon P-8124M

(36 vCPUs)

Memory 62GB 32GB 72GB

Storage HDD (75 MB/s) gp2 (125 MB/s) io1 (1 GB/s)

Table 3: Experimental environment.

selectivity requirement. Random queries are not a realistic bench-

mark but represent a difficult case for Jigsaw because the workload

does not have frequently co-accessed columns or tuples, hence it is

more challenging to find an optimal partitioning across all queries.

Previous work, such as Mosaic [42], follows the same procedure to

create and run a query workload for evaluation purposes.

TPC-H:We generate a TPC-H database with a scale factor of 30.

We adopt the evaluation strategy of GSOP [40]: we denormalize the

database and evaluate 5 TPC-H query templates,Q3,Q6,Q8,Q10 and

Q14, on the denormalized lineitem table. (In total, we materialize

19 attributes in the denormalized table.) We generate 500 training

queries and 10 evaluation queries at random, equally distributed

among the 5 query templates.

6.1.2 Baselines. We compare Jigsaw with six partitioning base-

lines: Row, Row-H, Row-V, Column, Column-H, and Hierarchical.

• Row. The Row baseline stores the table in row order, tuple by

tuple, in multiple file segments. The Row baseline stores tuples

in their natural order.

• Row-H. The Row-H baseline horizontally partitions a table by

the graph partitioning algorithm in Schism [11]. A tuple is a

node in the graph; two nodes are connected if the two tuples

are accessed by the same query. We sample 160K tuples to build

the graph and assign the remaining tuples to the partitions. The

algorithmic complexity is O(N 2 ·Q) where N is the number of

tuples in the table and Q is the number of training queries. Fig-

ure 1b shows a possible partitioning by the Row-H baseline. After

partitioning, Row-H serializes tuples in row order. Horizontal

partitions in Row-H are sized to fill an entire file segment.

• Row-V. The Row-V baseline uses the greedy algorithm in Pelo-

ton [7] to partition columns. The algorithm sorts the query tem-

plates by descending order of evaluation time, iterates over the

templates, and groups columns in each template as one vertical

partition. The algorithmic complexity is O(Q · A) where A is the

number of attributes. Figure 1c shows a possible partitioning by

the Row-V baseline. Within a vertical partition, Row-V stores a

partition tuple by tuple in the natural order the tuples appear in

the table. A partition in Row-V spans multiple file segments.

• Column. The Column baseline serializes a table in column order,

attribute by attribute. Within each column, tuples are stored in

their natural order. A column spans multiple file segments.

• Column-H. The Column-H baseline horizontally partitions tu-

ples by the same algorithm as Row-H. Columns in the resulting

partitions are then stored as separate file segments. The partition-

ing in Column-H is coarser than in Row-H: horizontal partitions

are sized such that each column fills an entire file segment.

• Hierarchical. The Hierarchical baseline horizontally partitions

the table by the partitioning algorithm in Row-H and then in-

dependently splits each horizontal partition vertically by the

partitioning algorithm in Row-V, as shown in Figure 1d. In the

Hierarchical baseline, each partition becomes a file segment.

We do not consider the Column-V variant, which first vertically

partitions a table and then stores each partition in columnar order,

because it would have the same disk layout as Column. For all

baselines, a file segment is at least 4MB big and is accessed in its

entirety. For irregular partitioning, the MIN_SIZE and MAX_SIZE in
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Figure 5: Breakdown of CPU cycles with shared scan-based
and lock-based parallelization.

Algorithm 2 are set to 4MB and 32MB respectively. Therefore, the

file segments that are irregular partitioning reads are no smaller

than the file segments of the other partitioning strategies. We im-

plement all partitioning strategies in a multi-threaded data storage

and query processing engine that is written in C++ and is based on

an earlier prototype [25, 26].

6.2 Microbenchmarking
In this section, we first compare the lock-based and shared scan-
based parallelization methods. Then we report the query evaluation

performance and how much data is read from disk with Jigsaw and

the baselines on the HAP benchmark when varying query workload

parameters, specifically selectivity, projectivity and the number of

query templates.

6.2.1 Parallelization strategies. We compare the lock-based paral-

lelization (Irregular-L) and shared scan-based parallelization (Irreg-

ular-S) by running a HAP query on the c5.9xlarge node. We vary

the number of threads from 8 to 36. Figure 5 shows the breakdown

of CPU cycles in the select operator for the two parallelization

strategies. The CPU cycles are decomposed to I/O, computation

and waiting cycles, and are averaged over the active threads.

Looking at the computation cycles, Irregular-L is faster than

Irregular-S when there are 8 threads. This is because a thread in

Irregular-S has to process all partitions while a thread in Irregular-L

only processes a subset of the partitions. The second reason is that

Irregular-S threads concurrently process the partitions after the bar-

rier, while threads in Irregular-L process partitions independently.

With more threads, Irregular-S becomes faster but Irregular-L be-

comes slower. An Irregular-L thread may access any bucket in the

hash table to process a partition, leading to false sharing. Irregular-

S does not have the false sharing problem because threads are

responsible for different bucket ranges in the hash table.

Irregular-S spends more cycles doing I/O when we increase the

number of threads because more threads concurrently read from

the disk. The I/O cycles do not change significantly for Irregular-

L because the Irregular-L threads read partitions independently

and few threads concurrently read from the disk. In the following

experiments, we use Irregular-S to represent irregular partitioning

due to its good and stable performance with many threads.

6.2.2 Selectivity. In this experiment, the query workload uses 2

query templates, each of which projects 16 out of the 160 attributes.

We tune the selectivity of the query workload from 1% (1M selected

tuples) to 100% (100M selected tuples). We do not consider queries

that are more selective because a query would likely access the data

through an index, which our current prototype does not support.

Figure 6 shows the result when we vary the query selectivity

for each server. The Jigsaw mark (a triangle) shows the layout that

Algorithm 2 picks (between Irregular or Column) after considering

the tuple reconstruction cost. Figure 6d shows how much data was

accessed to complete the query (same for all servers).

Evaluating queries on irregular partitions is 4.2× faster than

Column when the selectivity is low. Row and Row-H are the slow-

est because they store all attributes together so that they have to

scan the entire table for each query to evaluate predicates. As the

selectivity increases, the performance gap between Irregular and

the baselines shrinks, because the data Irregular partitioning ac-

cesses increases from 13.5GB to 74.5GB. (Recall that in addition to

the data, Irregular partitioning needs to read the tuple IDs that are

stored with the projected attributes.) When the selectivity is 100%,

Irregular has the same performance as Column on t2.2xlarge and

balos because of the similar I/O volume. The Row-V and Hierar-

chical baselines read the same amount of data because the vertical

partitioning algorithm stores the attributes of the SELECT and the

WHERE clauses of the query in the same partition. Thus, Hierarchical

reads redundant attributes when it evaluates predicates.

When the selectivity is 40%, Irregular is as fast as the baselines

on c5.9xlarge but 1.7× faster than baselines on balos. Irregular has

better speedup on the slower storage of balos and t2.2xlarge than

the faster storage of c5.9xlarge because Irregular transfers less data

but spends more time to reconstruct tuples in memory.

6.2.3 Projectivity. In this experiment, the workload consists of 2

query templates with a selectivity of 20%. The number of attributes

each query projects varies from 1 to 80 out of the 160 attributes.

Figure 7 shows the results. The execution time of Irregular increases

from 184 seconds to 909 seconds on balos, while the time of Column

increases from 103 seconds to 4337 seconds. Irregular reads 1.5×

more data than Column when the query projects 1 attribute but 74%

less data when the query projects 80 attributes. The I/O overhead in

the baselines is that they either read redundant tuples because they

do not horizontally partition the table (Column and Row-V), or the

horizontal partitioning is not optimal (Column-H and Hierarchical).

This I/O overhead increases as the query reads more attributes.

Similar to the selectivity experiment, Irregular has better speedup

on balos and t2.2xlarge than on c5.9xlarge.

6.2.4 Number of query templates. This experiment fixes the selec-

tivity to 20% and projectivity to 16 out of the 160 attributes but

varies the number of query templates in the query workload from

2 to 8. As the workload contains more templates that randomly

pick what to read, the attributes are more finely fragmented into

partitions. Figure 8 shows the results as we increase the number of

query templates. The performance gap between Irregular and Col-

umn on t2.2xlarge shrinks from 257 seconds to 126 seconds, while

the I/O volume for Irregular increases from 24.2GB to 40.5GB. This

is because the table is vertically partitioned more finely and tuple

IDs are replicated when Irregular vertically splits a partition, so

Irregular reads more tuple IDs overall. Row-V reads more redundant

attributes when there are more query templates because the greedy

algorithm in Row-V scatters attributes in low-cost query templates

into the vertical partitions generated by high-cost query templates.

The speedup of Column-H over Column decreases from 1.5 to 1 on

c5.9xlarge as templates filter tuples by different attributes.
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Figure 6: Vary the selectivity from 1% to 100%. Irregular is at most 4.2× faster than Column and reads 79% less data.

Irregular Column Column−H Row Row−H Row−V Hierarchical JigsawIrregular Column Column−H Row Row−H Row−V Hierarchical Jigsaw

Projectivity (#attributes)

E
xe

cu
tio

n 
tim

e 
(s

ec
on

ds
)

10

100

1K

10K

30

300

3K

1 4 16 80

(a) balos

Projectivity (#attributes)

E
xe

cu
tio

n 
tim

e 
(s

ec
on

ds
)

10

100

1K

10K

30

300

3K

1 4 16 80

(b) t2.2xlarge

Projectivity (#attributes)

E
xe

cu
tio

n 
tim

e 
(s

ec
on

ds
)

1

10

100

1K

3

30

300

1 4 16 80

(c) c5.9xlarge

Projectivity (#attributes)

I/O
 s

iz
e 

(G
B

)

1

10

100

1K

3

30

300

1 4 16 80

(d) I/O size

Figure 7: Vary the number of projected attributes. Irregular is at most 3.4× faster than Column and reads 74% less data.
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Figure 8: Vary the number of query templates. Irregular is at most 2.1× faster than Column and reads 62% less data.

6.3 End-to-end Performance
6.3.1 TPC-H. This experiment evaluates Jigsawwith TPC-H queries

that more realistically mimic real applications because they incorpo-

rate business logic instead of returning random ranges of tuples as

in HAP. (For example, TPC-H Q8 selects tuples with O_ORDERDATE
between [1995-01-01, 1996-12-31].)

Figure 9 shows the total execution time and the data transferred

from the disk with the TPC-H query workload. Irregular is 2× faster

than the fastest baseline Column-H on balos, and at least 86% of

the execution time is I/O. Irregular and Column-H transfer 72.5GB

and 125GB data, respectively, whereas the absolutely necessary
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Figure 9: TPC-H. Irregular is 2.9× faster than Column.

data for query evaluation is 43.8GB for this experiment. Column-H

horizontally partitions attributes the same way, regardless of the

attribute access pattern, and produces rectangular partitions with

an average file segment size of 10MB. Inadvertently, rectangular

partitions require reading some unnecessary data. Irregular trans-

fers less data because its partitions are neither horizontally nor

vertically aligned: for this workload, Irregular generates 80 irregu-

lar partitions, each of which stores multiple segments of the table

(the average file segment size is 22MB). The storage overhead of

Irregular is 28.7GB, most of which (27.4GB) is reading tuple IDs.

Breaking I/O volume by query, the data read by Irregular and

Column-H is similar for Q3, but Irregular reads 84% less data for

Q10. This is because Q3 filters by more attributes but projects less

data from each tuple thanQ10. Specifically,Q3 filters by 3 attributes,

which Irregular stores in different partitions, and projects 36 bytes

(5 attributes). Q10 filters by 2 attributes, which Irregular stores to-

gether, and projects 254 bytes (9 attributes). As a result, Irregular

reads fewer tuple IDs forQ10 than forQ3, and this overhead is amor-

tized over more projected attributes. Hierarchical reads more data

than Column-H because attributes that are stored together are not

always co-accessed. For example, some partitions in Hierarchical

store C_COMMENT and L_EXTENDEDPRICE together but 4 out of the
5 query templates only access L_EXTENDEDPRICE.
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6.3.2 Evaluation with in-memory data. This experiment compares

Jigsaw and MonetDB, an open-source columnar database, when the

database fits in memory. The experiment uses the HAP table and the

arithmetic query SELECT max( ai+ ... +aj+ ... +ak ) FROMT WHERE
C1 < aj < C2. (Returning the maximum minimizes the communi-

cation overhead between the server and the client of MonetDB.)

Figure 10 reports the execution time as we vary the selectivity.

Algorithm 2 picks the columnar layout, denoted as Jigsaw-Mem,

while Jigsaw-Disk denotes the irregular partitioning.

When the selectivity is 1%, Jigsaw-Disk is slower than Jigsaw-

Mem and MonetDB, primarily because Jigsaw-Disk requires sig-

nificant random memory accesses in the hash table to insert and

update cells for tuple reconstruction. However, MonetDB becomes

the slowest engine as selectivity increases: Because MonetDB eval-

uates arithmetic operators attribute by attribute, it materializes

intermediate columns. (Adding attributes spends 94% of the exe-

cution time when the query selectivity is 100%.) Jigsaw-Mem does

not materialize intermediate columns because it reconstructs tu-

ples before evaluating arithmetic. Jigsaw-Disk stores a partition in

row-major order and reconstructs tuples in the hash table before

evaluating arithmetic. This result supports the design decision to

store data in row-major order inside irregular partitions in Jigsaw.

6.3.3 Impact of database size. An important question is what is the

performance of irregular partitioningwhen the data is not cold. This

experiment does not flush the OS cache and excludes the execution

time of the first query for each template, hence the reported results

reflect the performance one can expect if queries access warm data.

This experiment uses HAP with 2 query templates, fixes selectivity

to 10% and projects 16 attributes out of 160. The experiment runs on

balos that has 62GB of usable memory. Multiple tables are generated

for this experiment with different cardinalities, ranging from 25M

tuples (16GB of data) to 1,600M tuples (1TB of data). A cardinality

of 100M tuples means that the table no longer fits in memory;

a cardinality of 400M tuples means that the columns the query

workload accesses no longer fit in memory.

Figure 11 plots the execution time of Irregular partitioning and

the Column baseline. Column is about 11× faster than Irregular

for the smallest table (25M tuples). When the table has up to 200M

tuples, the execution time of Irregular and Column grows propor-

tionally to the number of tuples. When the table has 200M tuples,

Column reads 25GB of data in total, so the accessed columns com-

fortably fit in memory where the file segments have been cached

by the OS. Although Irregular reads less data, the reconstruction

cost dominates the execution time for small tables. When the table

has 400M tuples, the data transferred by the query workload for
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Figure 12: Partitioning time for different cardinalities and
number of queries. Jigsaw is up to 290× faster than the graph-
based partitioning in Schism.

the Column baseline reaches the memory capacity of balos. Access-

ing cold partitions then starts to dominate the execution time, and

Irregular becomes faster as it reads less data: when the table has 1.6

billion tuples, Irregular partitioning is 3.5× faster than the Column

baseline.

6.4 Partitioning performance
This section evaluates the partitioning performance of different

algorithms. Assume that a table has N tuples, A attributes and

the workload has Q queries. The Row-V baseline uses the greedy

algorithm in Peloton [7] to partition attributes that has a time

complexity of O(Q · A). Column-H uses the graph partitioning

algorithm in Schism [11] to partition tuples. The time complexity

of the Schism algorithm is O(N 2 ·Q).
The experiments in this section use the HAP table and vary the

number of tuples and the number of queries in the workload. The

query selectivity is 20%, projectivity is 16 attributes (out of 160)

and 2 query templates are used. Figure 12 reports the partitioning

time for Jigsaw, and our implementations of the Schism (Row-H

and Column-H) and Peloton (Row-V) partitioning algorithms. The

figure also shows the number of partitions generated by Jigsaw. The

partitioning time does not include the time to load the data or write

the partitions, as the performance of these phases is determined by

the I/O bandwidth and not the partitioning algorithm.

6.4.1 Sensitivity to cardinality. Figure 12a shows the performance

as we increase the number of tuples in the table. Jigsaw partitions

the table up to 290× faster than Schism while Peloton is 25K× faster

than Jigsaw. Jigsaw and Peloton are faster than Schism because

they are tuple-agnostic: While Schism partitions the table tuple by

tuple, Peloton only partitions vertically and Jigsaw horizontally

partitions based on the value ranges of the attributes.

The performance gap between Jigsaw and Schism increases qua-

dratically with the number of tuples. The partitioning time of Jigsaw

increases linearly as we double the number of partitions because

Jigsaw partitions the space, whereas the graph-centric partitioning

in Schism takes almost 4× as the number of tuples doubles.

Jigsaw maps tuples to logical partitions and then materializes

partitions on the disk. Jigsaw writes more data than the baselines,

as it needs to store the tuple IDs and the index. For the 100M table,

Jigsaw spends 78 seconds to write data while Column-H spends 90

seconds because Jigsaw generates fewer, larger partitions.



6.4.2 Sensitivity to the number of queries. Figure 12b shows the

performance as we increase the number of queries. Jigsaw partitions

the table 97× faster than Schismwhen there are 100 queries and 12×

faster with 400 queries. The partitioning time of Schism is linearly

proportional to the number of queries, while the partitioning time

of Jigsaw increases by 4.6× as we double the number of queries.

This is because Jigsaw generates a partitioning candidate for each

query and then compares all candidates. As a result, the Jigsaw

partitioning time is quadratic to the number of queries.

7 RELATED WORK
Storage Models. Row- and column-major storage models opti-

mize for different workloads. The row-major storage model, the de
facto standard for many commercial and open-source databases,

serializes a table tuple by tuple. The column-major storage model,

in systems such as C-Store [37], MonetDB [9] and DB2 BLU [34],

serializes a table column by column. Prior work [1, 15, 16, 37] com-

pares the two storage models on various workloads. Prior work

has also explored ways to benefit from both storage options in one

DBMS. Fractured mirrors [33] store replicas of a table in different

models. Peloton [7] uses the hybrid storage model that partitions

a table into rectangular tiles. Each tile contains a subset of tuples

and attributes and can be stored in any storage layout.

Partitioning. Partitioning is a technique to physically split a

table or a database. It helps maximize intra-query parallelism for

OLAP workloads [30, 35] and minimize the number of distributed

transactions for OLTP workloads [11, 29, 31]. The SQL Server Au-

toadmin [3, 10, 29] and DB2 Database Advisor [35, 47] are two

industrial tools to partition databases. Prior work horizontally par-

titions tuples, vertically partitions attributes, or partitions both.

The range and hash partitioning [35, 43, 44] partitions tuples

by applying range or hash functions on a specific attribute. Yang

et al. [43] use reinforcement learning to construct a tree, where

each node is a “cut” on an attribute. Other work [11, 39] partitions

tuples based on the access pattern. Schism [11] models the access

pattern in a graph. A node in the graph is a tuple and two nodes

are connected if the corresponding two tuples are accessed in the

same query. Sun et al. [39] have also explored how to recursively

merge tuples with similar access patterns.

Vertical partitioning splits attributes to avoid reading redundant

attributes. Both bottom-up and top-down methods have been em-

ployed to automatically partition attributes. The bottom-up method

[5, 13, 14, 21, 30] recursively merges small partitions with similar

access patterns into larger partitions. The top-down method [28]

recursively breaks large partitions into smaller partitions, starting

from a complete table. Jindal et al. [20] compare the performance

of vertical partitioning methods for a column store.

Partitioning a table in one dimension is suboptimal when a query

only reads a subset of tuples and attributes. Prior work has pro-

posed to partition on both dimensions in separate phases. Peloton

[7] and Autopart [30] first horizontally partition tuples and then

vertically partition attributes independently for each horizontal

partition. However, this two-phase partitioning approach inher-

its the limitations of horizontal or vertical partitioning, albeit at a

smaller scale. In contrast, Jigsaw generates irregular partitions by

partitioning both dimensions simultaneously.

Comparing with materialized views. The partitioning algo-
rithm in Jigsaw has intellectual similarities with materialized views,

as Jigsaw aims to partition the input table such that it can be directly

used to answer a query. One difference is that materialized views

can encode additional computation, such as aggregation, whereas

Jigsaw only aims to optimize the storage layout. This means that

Jigsaw is limited to identifying common data access patterns, while

materialized views target common sub-trees in query plans [19, 36].

Another key difference is that materialized views can replicate cells

that are frequently accessed by several queries, whereas Jigsaw

will store each cell in one partition. Neither decision is optimal:

Jigsaw incurs a reconstruction cost that could have been avoided

through replication, but replicating cells requires more disk space

and complicates updates. Prior work in the materialized view litera-

ture [2, 4, 45] has proposed merging materialized views in a similar

manner as the merge algorithm in Jigsaw.

Query processing. The tuple-at-a-time and operator-at-a-time
are two query evaluation methods for row stores and column

stores respectively. MySQL and PostgreSQL [38] read the needed at-

tributes tuple by tuple [12] when they evaluate queries. In order to

amortize the overhead of a function call per tuple, the block-iterator

model [46] extends the tuple-at-a-time method by returning blocks

of tuples to the upstream operators. The Row, Row-H, and Row-

V baselines in the experiments use the block-iterator model. In

the operator-at-a-time method, an operator must complete before

its subsequent operators start [18]. The Column and Column-H

baselines adopt the operator-at-a-time method.

8 CONCLUSION
The partitioning strategies in prior work produce rectangular parti-

tions. We present Jigsaw, a prototype system that allows partitions

with arbitrary shapes. Jigsaw recursively splits a table until finer

partitioning will not transfer less data for a given query workload

and then merges small segments into larger, irregular partitions.

Jigsaw introduces a partition-at-a-time query processing strategy to

avoid accessing partitions multiple times during query evaluation

due to their irregular shape. Experimental results show that Jigsaw

speeds up query processing by up to 4.2× compared to columnar

partitioning for moderately selective queries. The speedup is be-

cause irregular partitioning transfers less data from cold storage:

columnar partitioning reads 4.7× more data than irregular parti-

tioning to answer the same query.

Jigsaw currently only considers how to split cells into different

partitions. Allowing for limited replication of certain cells could

reduce the tuple reconstruction cost when accessing multiple parti-

tions. In addition, the partitioning algorithm in Jigsaw is currently

single-threaded. Parallelizing the compute-intensive partitioning

phase has the potential to significantly accelerate the algorithm.

Furthermore, Jigsaw is currently limited to full scans and optimizes

accesses independently for each table. Investigating how irregular

partitioning can benefit from indexing and how queries with com-

plex joins can better leverage irregular partitioning are promising

avenues for future work.
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