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ABSTRACT

Modernsoftware (bothprogramsand libraries)provides largeamounts
of functionality, vastly exceeding what is needed for a single given
task. This additional functionality results in an increased attack sur-
face: first, an attacker can use bugs in the unnecessary functionality
to compromise the software, and second, defenses such as control-
flow integrity (CFI) rely on conservative analyses that gradually lose
precision with growing code size.

Removing unnecessary functionality is challenging as the de-
bloating mechanismmust remove as much code as possible, while
keeping code required for the program to function. Unfortunately,
most software does not come with a formal description of the func-
tionality that it provides, or even a mapping between functionality
and code. We therefore require a mechanism thatÐgiven a set of
representable inputs and configuration parametersÐautomatically
infers the underlying functionality, and discovers all reachable code
corresponding to this functionality.

We propose Ancile, a code specialization technique that leverages
fuzzing (basedonuser provided seeds) to discover the codenecessary
to perform the functionality required by the user. From this, we re-
move all unnecessary code and tailor indirect control-flow transfers
to the minimum necessary for each location, vastly reducing the
attack surface.We evaluate Ancile using real-world software known
to have a large attack surface, including image libraries and network
daemons like nginx. For example, our evaluation shows that Ancile
can remove up to 93.66% of indirect call transfer targets and up to
78% of functions in libtiff’s tiffcrop utility, while still maintaining its
original functionality.
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1 INTRODUCTION

Similar to the second law of thermodynamics, (software) complex-
ity continuously increases. Given new applications, libraries grow
to include additional functionality. Both applications and libraries
becomemore complex based on user demand for additional function-
ality. The Linux kernel is an important example of this phenomenon:

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CODASPY ’21, April 26ś28, 2021, Virtual Event, USA

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8143-7/21/04. . . $15.00
https://doi.org/10.1145/3422337.3447844

its code base has grown substantially over the last 35 years (from
176K LoC to 27.8M LoC [10, 11]). Yet, given a single task, only a
small subset of a program (or library) is required to be executed
at runtime. This increase in code size can also be seen in network
facing applications such as nginx or tcpdump, which deal with, e.g.,
IPv4, IPv6, or proxy settings, as well as image processing libraries,
which face increasingly complex file formats as standards expand to
supportmore features. This feature bloat results in amassive amount
of unneeded complexity and an ever-growing attack surface. Ideally,
applications would be customized with the minimal set of features
required by the user, and only the minimum amount of code inlined
from imported libraries.

Software complexity results in a flurry of challenges rooted in
security, performance, and compatibility concerns. In our opinion,
security is themost pressing of these challenges as security flaws can
lead to potentially irreversible losses from adversarial exploitation.
While functionalitymay not be required for a given task, adversaries
may still find ways to exercise it, increasing the attack surface of
a program [12, 19, 32, 33]. Additionally, the precision of popular
mitigations such as control-flow integrity (CFI) degradeswhenmore
code is introduced. Deployed CFI mechanisms [5] leverage function
prototypes to disambiguate the target sets of valid targets.Additional
complexity increases the probability that functions with the same
signature pollute the same target set.

Removing unnecessary functionality is extremely challenging, as
the majority of programs and libraries do not come with a formal
description of their functionality. Even worse, there is no clear map-
ping between functionality (i.e., an exposed API) and the underlying
code. Reducing the attack surface and removing unnecessary code
requires a mechanism to infer this functionality to code mapping
based on an informal description of the necessary functionality.

Debloating removes unnecessary code at various levels of gran-
ularity [14, 29, 40, 41, 43]. Removing dead code reduces the number
of gadgets and (potentially buggy) unreachable functionality. Due to
the lack of formal descriptions of functionality, these approaches all
remain conservative and must include potentially unneeded func-
tionality. Unfortunately, debloated code may still contain vulnera-
bilities and sufficient targets for an attacker [16].

Our core idea is to enable the user to select theminimum required
functionality (by providing a set of example seeds), thus establish-
ing an informal description of functionalities in a program.While
this approach was previously used to reverse engineer and extract
functional components [37], we are the first to leverage user help to
specialize complex software. The user provides a set of inputs that ex-
ercise the required functionality and a configuration of the software
(as part of the environment). Our approach, Ancile, then special-
izes the program in three steps. First, Ancile infers the required
functionality and code through seed demonstrated fuzzing (fuzzing
based on user-provided seeds that exercise the desired functionality).
Second, Ancile removes all unnecessary code in a compilation pass.



Third, Ancile computesminimal CFI target sets (based on individual
indirect call locations instead of over-approximation on function
prototypes) to enforce strong security properties. The third step is
essential as a sufficient number of gadgets may remain in the code
even after debloating to enable arbitrary code reuse attacks. By gen-
erating per-control-flow transfer location target sets, we minimize
the reachable locations and increase the precision of fine-grained
CFI to a per-location basis, the highest possible precision for a static
CFI approach. Type-based CFI (the current standard) uses one target
set per function type, i.e., all indirect call locationswith the same call
signature allow the same set of targets. Ancile specializes this set for
each indirect call location to only targets that are observed during
the analysis phase, strictly increasing the precision. Improving pre-
cision via specialization comes with the challenges of introducing
false positives and false negatives, we discuss those Section 3.

Note that, we propose fuzzing not primarily as a bug finding tool
(although Ancile may discover bugs during focused fuzzing that
can be reported to the developer) but as a tool for analyzing exer-
cised code. Coverage-guided greybox fuzzing uses code coverage
as a feedback to map code to inputs. We use this insight to discover
the exercised functionality and to map the corresponding code to
user-selected inputs. The contributions of our approach are below:

• We design a code specialization technique that repurposes
fuzzing to reduce a program to the minimal amount of code
required for a given functionality. Our technique not only
removes unnecessary code, but also specializes control-flow
checks by creating a reduced target set.

• We present a comprehensive analysis of Ancile on real-world
applications to show the effectiveness of fuzzing as a way to
generate precise path information.

2 BACKGROUND

We provide a brief introduction of debloating and CFI, both of which
seek to minimize the attack surface of applications. We also describe
fuzzing and sanitization as these concepts are integral to our ap-
proach.

2.1 Attack Surface Debloating

As software has expanded its functionality to serve more users, the
size and complexity of libraries and applications has grown dramat-
ically over time, resulting in software bloat. For example, a recent
study showed that most applications only use 5% of libc [41]. Code
bloat imposes a cost: increased attack surface for adversaries. Soft-
ware debloating is a technique that helps prune the program’s attack
surface by removing extraneous code. Several approaches have been
proposed such as debloating via reinforcement learning [29] or trim-
ming unused methods [35]. However, trimming unused or rarely
used features cannot alone prevent Control-Flow Hijacking (CFH).
By manipulating remaining indirect call sites, an attacker can still
launch code-reuse attacks.

Code debloating improves security along two dimensions: code-
reuse reduction and bug reduction. First, code debloating reduces
the amount of available code, making it harder for an attacker to
find gadgets for a code-reuse attack. Second, feature based code de-
bloating approaches reduce attack surface by removing potentially
reachable buggy functionality, making it harder for the attacker

to find an exploitable bug. Unfortunately, security effectiveness of
existing code debloating is inherently limited by the amount of code

that remains. Any functionality in the program requires code, and
even tiny programs [30] provide enough code for full code-reuse
attacks. While code debloating may be effective in removing some
reachable bugs, it is not effective in stopping code-reuse attacks as
any remaining code will be sufficient for such attacks.

2.2 Control-Flow Integrity

Anotherprominentmechanismforreducingattacksurface isControl-
Flow Integrity (CFI), the state-of-the-art policy for preventing code-
reuse attacks in C and C++ programs. Its key insight is that to per-
form a control-flowhijacking attack, attackersmustmodify the code
pointer used for an indirect control-flow transfer (direct control-flow
transfers are protected as the target is encoded in read-only code).
CFI builds, at compile time, a set of legitimate targets for each indirect
and virtual call, and, at runtime, validates that the observed target
is in the allowed set. By verifying the target, CFI prevents the use
of any corrupted code pointer.

In contrast to debloating which restricts attack surface by remov-
ing unneeded code, CFI does so by allowing only valid targets for
each indirect control-flow transfer. In other words, CFI removes ex-

traneous targets from indirect branches. Code debloating by itself, i.e.,
without CFI, may remove large amounts of executable code but the
remaining code could still be used for arbitrary code reuse attacks.
An adversary only needs a single usable target but a defense must
prohibit all reachable targets to be effective. Partial target reduction
through debloating is insufficient to stop an attack.

State-of-the-art CFI mechanisms [17] focus on a conservative
static analysis for building target sets, including more targets than
just the valid ones. While this approach has no false positives, it
over-approximates the targets. It is also possible to use dynamic
analysis to construct the target sets, potentially introducing false
positives, but greatly improving the precision of the analysis. Here,
we discuss both analysis techniques and their trade-offs.

Static Analysis-Based CFI. Static analysis-based CFI mechanisms
compute the allowed target sets at compile time. The analysis dis-
covers the set of functions that the programmer intends to target at a
given indirect call site. In compiler terms, the analysis is looking for
every reaching definition of the function pointer used at the indirect
call site. Implementations of the analysis quickly run into the alias
analysis problem, and so have to fall back to more tractable, albeit
over-approximate, techniques. Early mechanisms reverted to allow-
ing any address taken function [13] to be targeted at any indirect call
site. Subsequent mechanisms improved this to any function with
a matching prototype [52]. Recent work has even looked at using
a context-sensitive and flow-sensitive analysis to further limit the
target sets [25, 26]. While such works increase the precision of the
analysis, aliasing prevents achieving full sensitivity.

Dynamic CFI. Compared to static CFI, dynamic CFI mechanisms
modify the target sets of the control-flow transfers during the exe-
cution of the program. Dynamic CFI is generally more precise than
static CFI as it starts offwith a static target sets but then uses runtime
information to further constrain the target sets.

Several works have leveraged hardware support to restrict the tar-
get sets during runtime.πCFI [38] beginswith an empty control-flow



graph and activates control transfers as required by specific inputs.
However, this approach does not execute any address deactivation
which may degenerate to the full static control-flow graph (CFG).
PathArmor [53] takes advantage of hardware support, specifically
the 16 Last Branch Record (LBR) registers to effectively monitor
per-thread control-flow transfers. It limits the verification process to
only security critical functions, and verifies the path to these critical
functions by using a path cache. PittyPat [21] improves on this by
collecting runtime traces via Intel PT, and verifies them in a separate
process, halting execution at system calls to synchronize with the
verification process. While it is precise (assuming the entire execu-
tion is traced), PittyPat consumes significant additional resources,
e.g., another core for the verification process. µCFI [31] improves
PittyPat by recording execution contexts using Intel PT, and observ-
ing unique code targets for each indirect control-flow transfer. As
PittyPat, it relies on a separate monitoring process.

CFI Security. CFI does not protect against data-only attacks. An
attacker that compromises the data of a process can bend execution
[19, 32, 33] to any allowed functionality and, if a path in the original
CFG exists, CFI will allow execution of that path. While CFI limits
code execution to legitimate targets under some execution of the
program, it does not remove unneeded functionality.

CFI prohibits rogue control flow to unintended locations while
code debloating removes unnecessary code. In combination, CFI
and code debloating can reduce the exposure of a program but are
limited by the remaining code as both approaches are conservative,
resulting in an over-approximation of the required functionality.

2.3 Fuzzing

Fuzzing[1]automaticallygenerates test cases.Coverage-based fuzzers
such as American Fuzzy Lop (AFL) [2] create a new test case by mu-
tating interesting inputs that trigger new code paths. Theirmutation
based strategy leads them to test many inputs that cover the same
code paths, causing them to explore the possible data-flows of the
application as well. Fuzzers operate from a seed input, mutating it
in their search for new code-paths while simultaneously exploring
data paths as a result of their search.

Ancile relies on extensive path coverage to generate comprehen-
sive target sets for indirect call-transfers of the selected functionality.
Guided fuzzing [6] facilitates finding new code paths from an indi-
rect call site. With the knowledge of deeper path information, target
discovery has become more efficient.

2.4 Sanitization

Sanitization is a dynamic testing technique that effectively detects
policy violations at runtime [50]. A sanitizer generally instruments
the program during compilation to enforce some security policy.
The instrumentation collects metadata about the program execution
and continuously checks if the underlying policy is violated.

AddressSanitizer (ASan) [34, 48] employs a specialized memory
allocator, and instrumentsmemory accesses at compile time todetect
out-of-bounds accesses to heap, stack, and global objects, as well
as temporal bugs. ASan is a tripwire-based approach that creates
redzones, and checks each memory access to detect memory safety
violations. Fuzzing then triggers memory access bugs and ASan
detects them. Other well-known sanitizers are memory Sanitizer

(MSAN) [51] to detect accesses to uninitialized memory, Undefined-
BehaviorSanitizer (UBSan) [9] to catch various types of undefinedbe-
havior, or LowFat [22, 23] to detect out of bounds accesses efficiently.

As Ancile uses fuzzing for functionality inference, we must dis-
tinguish between correct functionality and potential bugs. To avoid
memory corruption bugs in our allowed functionality, we compile
target programs with ASan during the inference phase. Ancile en-
sures all the explored targets via fuzzing are indeed valid targets.

3 CHALLENGES ANDTRADE-OFFS

Code specialization is a technique used to generate more efficient
code for a specific purpose from generic code [36]. The core issue
of code specialization is the prediction of effective code-behavior
in order to generate precise control-flows. Specializing an applica-
tion allows us to apply both attack surface reduction techniques at
once, by removing code unused by the deployment scenario, and
restricting targets to exactly the purposefully valid sets. However,
automatically specializing code to only support a user specified con-
figuration is challenging. Static analysis quickly degenerates to the
aliasing problem [42], and has difficulty determining if a function
is required for a particular functionality. Dynamic analysis is an
attractive alternative, however, it requires that all valid code and
data paths for a particular configuration are explored.

Dynamic analysis has been made practical by recent advances in
automatic testing, and in particular coverage-guided fuzzing [2, 6,
39, 44]. Given a minimal set of seeds that cover the desired behavior,
fuzzers are capable of quickly and effectively exploring sufficient
code and data paths through a program to observe the required indi-
rect control-flow transfers for a given configuration. CFI target sets
are then restricted to the observed targets for the desired functional-
ity of the application, e.g., an IPv4deploymentofnginxwithnoproxy.
Note that thedynamicanalysiscanoccuroffline,withonly traditional
CFI set checks,which incurminimal performanceoverhead, required
at run time. Ancile leverages fuzzing to correlate functionality with
code. Fuzzing’s code exploration serves as a mapping process from
functionalities to relevant code-regions. The coverage information
from fuzzing enables us to effectively specialize software by replac-
ing conservative analysis of valid cases with a more precise analysis
of what states are reachable in practice. The correctness of the spe-
cializationprocedure depends on successfullymapping functionality
to functions. Ancile maps code at function level granularity. When
executing the programwith the desired functionality, Ancile marks
and includes all executed functions and prunes functions that are
not exercised. Hence, mitigating challenges of partial code removal.

However, using fuzzing as a path exploration technique intro-
duces its own set of challenges: (i) generating a dynamic control-
flow graph (CFG) for user-selected functionality, (ii) projection of
dynamic CFG in functionality-based debloating, (iii) precision vs
soundness inCFI target analysis, and (iv) the risk of introducing false
positives/negatives due to inherent randomness in fuzzing. We now
discuss each of these challenges in turn and howwe address them.

Challenge i. Generating a dynamic CFG.Given a programwith a
set of functionalities f1,f2,f3,...,fn and a user-specified functionality
fs ⊂ {f1,f2,f3,...,fn }, we must discover the code required by that
particular functionality, fs . For example, a user may only require
the tiffcrop functionality from the image library libtiff. To generate



a dynamic CFG for a given functionality, we need to explore all
required and valid control-flows exercised by that functionality
within the program. In the CFG, we need to include only the targets
originated from exercising the desired functionality and exclude any
potential targets that are not relevant. Hence, if a control-flow has a
target set S = t1,t2,t3,...,tx and theCFG should have only the subset of
the target set S ′ = t1, t3,... coming from the desired functionality. We
also have to ensure thatS -S ′ targets are not included in the dynamic
CFG. Ancile addresses this challenge by taking as input a set of seeds
and configuration demonstrating the required functionality (fs ), and
thenuses these to fuzz the application inorder to retrieve the relevant
control flows and record the valid targets. For instance, if the desired
functionality of the application tcpdump is to read only pcap files, the
user needs to provide pcap files as seed. Ancile starts with an empty
CFG and adds edges in the dynamic CFG only if their execution is
observed in the set of valid executions of reading pcap files.

Challenge ii. ProjectionofdynamicallygeneratedCFGin functionality-

based debloating. To prune unneeded functionality, we need to map
the control-flow information into relevant code. In order to do so, we
guide fuzzing by carefully selecting inputs to explore the intended
functionality. Similar to Razor [40] and binary control-flow trim-
ming [28], Ancile utilizes test cases to trace execution paths. Ancile
also takes advantage of the power of coverage-guided fuzzing to
explore deeper code paths pertinent to the desired functionality. To
ensure that the fuzzed functionality has covered all possible paths,
we evaluate the targeted utility with a different set of test cases.
Ancile then removes any not-executed functions.

Challenge iii. Precision vs soundness.Ancile trades soundness for
precision when constructing CFI target sets. State-of-the-art CFI
mechanisms have focused on a conservative static analysis for build-
ing the CFG, resulting in a conservative over-approximation of indi-
rect control-flow targets. TheseCFImechanisms quickly run into the
alias analysis problem, and somust fall back to more tractable, albeit
over-approximate, techniques. Recent approaches have looked at
using context-sensitive and flow-sensitive analyses to further limit
the target sets [25, 26]. While such works increase the precision of
the analysis, aliasing prevents achieving full sensitivity.

It is also possible to use dynamic analysis to construct target sets,
potentially introducing false positives, but greatly improving the pre-
cision of the analysis. Several works [21, 38, 53] introduce hardware
requirements to restrict the target sets during runtime. Both static
and dynamic approaches inherently over-approximate as existing
CFI solutions are oblivious to aminimal, user-specified functionality.
Static analysis-based approaches leverage only information avail-
able during compilation, while dynamic analysis-based approaches
use runtime information to further constrain the target sets. Still,
existing dynamic mechanisms result in over-approximation in the
target set. Ancile extensively fuzzes the desired functionality to in-
fer the required control-flow transfers. Fuzzing’s efficiency comes
from its fundamental design decision: to embrace randomness and
practical results rather than theoretical soundness. Consequently,
fuzzing gives no guarantees about covering all possible code or data
paths, but covers themwell in practice.

Challenge iv. False positives and false negatives.Our goal is tomini-
mize the number of targets for individual CFI checks. Ancile restricts
per-location CFI targets by combining per-function removal along
with CFI-based target removal.

An unintended function included in the target set is a false neg-
ative. This can happen in two scenarios, (i) a fuzzing campaign per-
forming invalid executions; and (ii) exploring traces outside of the
desired functionality. Ancile guarantees valid executions by using
Address Sanitizer (ASan) along with fuzzing. By selecting relevant
seeds,we prime fuzzing to only explore relevant code regions. For ex-
ample,whenusing aPNGas seed,we aremuchmore likely to explore
PNG code features than tomutate the seed into a valid JPG image. To
improve the confidence in our discovered targets, we use two sepa-
rate fuzzers to cross check all discovered targets. We have tuned our
fuzzing campaign timeline and observed that neither increasing the
duration beyond 24 hours nor repeating the fuzzing campaign mul-
tiple times does discover more targets. We also performed manual
static analysis with 40 test cases to verify these results.

False positives occur if valid and intended targets are not included
in the generated set through lack of fuzzing coverage. Ancile starts
with the minimum set of seeds that exercise the intended functional-
ities, giving a lower-bound of targets. Next, fuzzing discovers targets
that were not previously included. Moreover, to increase confidence
in the discovered target set, we repeat each fuzzing campaign mul-
tiple times. We discuss false positives/negatives in Section 6.

4 ANCILE DESIGN

Based on the user-selected functionality (through provided seeds),
Ancile generates specialized binaries. The design of Ancile is moti-
vated by the need for precise control-flow information so that this
information can be used to debloat the target program, reducing
its exposed attack surface. The user informally specifies the desired
functionality by providing seed inputs that explore that function-
ality. Ancile operates in three distinct phases, as shown in Figure 1.
First, Ancile performs targeted fuzzing (using the seeds provided by
the user) to infer the CFG and to explore code associated with the
required functionality (including error paths). This step infers all
of the necessary information for the next two steps. Second, Ancile
removes any unnecessary code using a compiler pass, reducing the
program’s attack surface. Third, Ancile leverages the precise CFG
to customize CFI enforcement to the observed CFG. This customiza-
tion increases the precision of CFI to only observed targets. These
observations result in the following requirements:

Desired Functionality. Every application has its own set of fea-
tures. By desired functionality, we mean one or more features of the
application that theuser intends toexercise. For example, in tcpdump,
the user may only want to exercise the feature that reads pcap files.

Seed Selection. The minimum number of inputs required to ex-
ercise the desired functionalities is selected. For example, to exercise
the feature of reading a pcap file, the user only needs to provide a
captured pcap file.

User Involvement. Ancile requires two sets of input from the
user, (i) necessary command line arguments to select the functional-
ity; and (ii) aminimumsetof seeds that exercise this functionality. For
reading a pcap file, the usermust provide (i) the -r command-line ar-
gument, and (ii) a pcapfile as an input seed.Ancile results in lowuser
burden. The user only needs to specify input configurations for their
chosen functionality. The user does not have to carry out any form
of source code annotations or code changes and does not require any
knowledge of the source code. Applying Ancile is as easy as building





part of the user-selected functionality. While debloating at the basic
block level would be more precise, ensuring that the fuzzer executes
all possible paths through each function is currently an unsolved
open challenge, we therefore opted for function level granularity.
Hence, the correctness of Ancile’s debloating mechanism depends
on the exercise of only the required functions pertaining to the spec-
ified functionality. Seed demonstrated fuzzing along with proper
sanitization can ensure the execution of the necessary functions.

Ancile keeps only the functions that are observed during the anal-
ysis phase. Depending on the underlying platform and instruction
set, exceptions are implemented differently. On Linux/x86-64 excep-
tions are using the ItaniumABI and comewith a zero cost abstraction
on top of DWARF4. We include the reachable exception handlers in
the final binary, as they can be triggered through DWARF4-based
exception handling.

4.3 CFI Target Analysis

Although, debloating restricts a program’s attack surface by remov-
ing unneeded code, it is still possible that vulnerabilities remain in
non-bloated code. To ensure tighter security in the specialized bi-
nary, Ancile removes extraneous targets from indirect control-flow
transfers in the remaining code.

The main goal of Ancile’s CFI target analysis is to achieve min-
imal target sets for indirect branches. It does so by only allowing
targets that are required for the specified functionality and actu-

ally observed at runtime. For each target, we ensure that there is at
least one dynamic witness, i.e., a valid execution trace that includes
the indirect call. Hence, Ancile solves the aliasing problem of static
analysis based approaches and increases precision.

Based on the inferred CFG that is tied to the actual execution of
the desired behavior, Ancile learnsÐfor each indirect control-flow
transferÐthe exact set of targets observed during execution. This set
is strictly smaller than the set of all functions with the same proto-
type. Once the target sets are created, we recompile the application
to a specialized form, which enforces the target sets derived from
our functionality analysis.

Since we focus on static CFI enforcement mechanisms, deciding
if a target is allowed depends purely on the information known at
compile time, regardless of how that information was obtained. For
example, if two paths in a program result in two different targets at
a location then the most precise static mechanism will always allow
both targets (as it cannot distinguish the runtime pathwithout track-
ing runtime information). In contrast, dynamic enforcement mecha-
nisms can modify the target sets depending on runtime information
(e.g., data-flow tracking). Unfortunately, dynamicmechanisms result
in additional runtime overhead (e.g., to update the target sets), in-
creased complexity (for ensuring that the target sets remain in sync),
and compatibility issues (e.g., the runtimemetadata for theCFImech-
anismmust be protected against an adversary during the updates).
For as long as no hardware extension exists for protecting metadata
(e.g., to protect attacker-controlled arbitrary writes from the buggy
program), realistically deployableCFImechanismswill remain static.

5 IMPLEMENTATION

Ancile is implemented on top of the LLVM compiler framework,
version 7.0.0. The LLVM-CFI framework has entered mass deploy-
ment [15, 20], and its set checks are highly optimized. Consequently,

building on top of LLVM-CFI guarantees that our enforcement
scheme is efficient, and ready for wide-spread adoption. As men-
tioned in the design, the Ancile implementation constitutes three
parts: (i) dynamic CFG generation, (ii) debloating and (ii) CFI en-
forcement, following the description in Section 4.

Dynamic CFGGeneration. This functionality analysis phase is im-
plemented as a combination of an LLVMcompiler pass and a runtime
library. Our instrumentation takes place right after the clang front-
end and modifies the LLVM IR code. Ancile is enabled by specifying
our new fsanitize=Ancile flag.

C/C++ source files are first passed to the clang front-end. The
compiler pass adds instrumentation to log all indirect calls and their
targets. At the IR level, Ancile adds a call to the logging function in
our runtime library before every indirect call. The logging function
takes two arguments: location of the indirect call in the source, as
well as the address of the targeted function. Additionally, the pass
logs all the address taken functions to facilitate the remapping of the
logged target addresses to corresponding functions. The runtime
library ofAncile generates a hashmap to store target set information
per call site. To remove extraneous code, Ancile collects information
during profiling about function invocations via direct control-flow
transfers. This procedure follows the same mechanism described
above for indirect control-flow transfers. Hence, Ancile generates
a dynamic CFG accommodating all the observed control flows that
reflect the user specified functionality.

The challenge associated with fuzzing is to guarantee that paths
taken during fuzzing are valid code and data paths. To address such
challenges, we leverage AddressSanitizer (ASan) [48], a widely-used
sanitizer that detects memory corruptions (e.g., use-after-free or
out-of-bounds access). Only non-crashing executions are recorded.
Hence, Ancile ensures all the recorded control-flow transfers are
from valid execution traces and generates the dynamic CFG.

Debloating. To prune unnecessary code, Ancile utilizes the dy-
namicCFGtoconstruct the list ofobserved functions. It then removes
any functions that are not in our observed white list, thereby ensur-
ing a custom binary incorporating only the user specified features.
It relies on a compiler pass to remove any unintended function.

CFI Mechanism.Ancile enforces the strict targets for the indirect
calls based on the dynamic CFG. Despite relying on dynamic pro-
filing, Ancile still enforces target sets statically (i.e., relying only on
information available at compile time to embed the target sets in
the binary). We have customized LLVM-CFI to adopt Ancile’s strict
target set at each individual indirect control transfer check points.
Our target-set sizes are smaller in most cases and equal to the size
of the LLVM analysis in the worst case. In contrast to Ancile, vanilla
LLVM-CFI relies on static analysis for target generation and thus
fails to solve aliasing, resulting in an over-approximate target sets.
The main advantage behind adapting LLVM-CFI is that it is highly
optimized and incurs only 1% overhead [5]. Our framework for using
LLVM-CFI to enforce user-specified target setswill help the research
community to advance control-flow hijacking mitigation by serving
as an enforcement API for any analysis that generates target sets.

Note that, Ancile executes its analysis phase during software
compilation. No (additional) analysis is required during runtime, i.e.,
when the program is executed. Hence, the customization procedure
is an one-time effort during compilation.











In future work, we will evaluate how a user can select negative
functionality they want explicitly excluded. We refer to existing
work that focused on similar challenges [37].

6.4 RQ4: Performance Overhead

Performance overhead is crucial for mitigations. We analyzed the
performance of Ancile on SPEC CPU2006 and compared it with
LLVM-CFI. Table 3 presents a comparison of runtime performance
of Ancile and LLVM-CFI. Ancile’s enforcement mechanismmainly
reuses the enforcement part of LLVM-CFI with a tighter target set,
and as the table shows, has equivalent runtime performance. As is
standard, we report results for three SPEC CPU2006 iterations. Note
that we require no additional system resources, such as additional
processes, cores, virtual address space, or hardware extensions, un-
like other works aimed at increasing the precision of CFI [21, 27, 53].

7 RELATEDWORK

Software Debloating is a well-known attack mitigation scheme
which reduces code size and complexity. Rastogi et al. introduced
Cimplifier [43], an approach for debloating containers by using dy-
namic analysis for necessary resource identification. Chisel [29]
debloats programs at a fine-grained level through reinforcement
learning. Trimmer [49] eliminates unused functionality based on
user-provided configuration data. Quanch et al. [41] debloat pro-
grams via piece wise compilation and loading. They analyze the
program to build a dependency graph of external functions and then
only load the required functions as well as remove any library code.
Nibbler [14] performs similar library specialization at the binary
level. BinTrimmer [45] utilizes abstract interpretation to recover a
precise CFG as well as to identify unreachable code and then remov-
ing it. Unfortunately, software debloating is not enough to stop CFH.
An attacker can still exploit bugs in the remaining code segments
and launch code-reuse attacks.

Razor [40] is another post-deployment debloating framework
which works at the binary level. It has three components: Tracer,
Path finder and Generator. It debloats the binary by utilizing test
cases to trace executionpaths, thenuses fourheuristics tofindnearby
code-paths. Finally, the generator rewrites the binary. Similar to Ra-
zor, Binary Control-Flow Trimming[28] uses test traces and later
machine learning to explore relevant control-flows. Both of these
works are binary based and utilize test traces, where as Ancile works
primarily on source code and it depends on the user given seeds to
map functionality into code. The main distinction of Ancile over
these twoworks is it introduces seeddemonstrated fuzzing toexplore
relevant code regions. It strengthens the security of an application
by not only debloating unused functionalities, but also eliminating
invalid targets from the remaining control transfers.

Control-Flow Integrity reduces attack surface by prohibiting
illegal control flow transfers from the CFG. After the introduction
of the CFI mechanism by Abadi et al. [13] in 2005, the mechanism
saw a diverse set of improvements along performance, security, and
precision. For a full survey see Burow et. al [17].

LLVM-CFI [5] is a static analysis based CFI approach that is imple-
mented in production compilers with negligible overhead (approx-
imately 1%) [4]. In this approach, each indirect call along with asso-
ciated targets are clustered into equivalence classes where each indi-
rect call can target any of the addresses within the associated equiva-
lence class.However, due to the reliance on the static analysis, LLVM-
CFI struggleswith aliasing that results in an over-approximation. An
attacker can perform attacks [19, 24, 33, 47] by leading an indirect
control flow to a different targetwithin the equivalence classwithout
violating the CFG. LLVM-CFI is seeing wide deployment by Google
in Chrome [20] and Android [15].

Recent research efforts improved the precision, and thus security,
of CFI. PittyPat [21] presents a path-sensitive approach combin-
ing hardware-based monitoring and runtime points-to-analysis. It
improves preciseness with the cost of additional hardware and per-
formance overhead. In particular, it requires a separate process to
monitor and validate the execution traces of the protected process.
πCFI [38] starts enforcement of a process with an empty CFG and
adds edges dynamically by activating addresses as needed. The se-
curity of πCFI depends on an attacker’s inability to activate certain
edges, otherwise it would provide the same guarantees as a static
CFI policy (modulo the complexity of activating the target). VIP [25]
adds a measure of control and data-flow sensitivity to the static
analysis used by CFI. Ancile achieves greater precision than πCFI or
VIP through its functional analysis, and does not require additional
system resources like PittyPat.

Existingsolutions forcontrol-flowhijackingcannotprotectagainst
data-flow attacks and leave the attacker some room. Ancile restricts
the application to the bare minimum code required to run the speci-
fied functionalityand therebyrestricts thepowerofdata-onlyattacks
to this exposed functionality. If there is no path to, e.g., execve then
no modification of the program’s memory can bend the control flow
to the sensitive function.

8 CONCLUSION

We present Ancile, a code specialization technique through fuzzing.
Our case studies show that seed demonstrated fuzzing can be used
to effectively map user-intended functionalities into relevant code
regions. We can then leverage this information to guide debloating
and program specialization, reducing the program’s attack surface
and improving the precision of defenses such as CFI.

We believe that automatically specializing code for particular us-
age scenarios via fuzzing is a promising new technique for software
security. It can achieve greater security than static analysis without
requiring extra system resources.
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