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ABSTRACT

Fuzzers aware of the input grammar can explore deeper program
states using grammar-aware mutations. Existing grammar-aware
fuzzers are ineffective at synthesizing complex bug triggers due to:
(i) grammars introducing a sampling bias during input generation
due to their structure, and (ii) the current mutation operators for
parse trees performing localized small-scale changes.

Gramatron uses grammar automatons in conjunction with ag-

gressive mutation operators to synthesize complex bug triggers
faster. We build grammar automatons to address the sampling bias.
It restructures the grammar to allow for unbiased sampling from the
input state space. We redesign grammar-aware mutation operators
to be more aggressive, i.e., perform large-scale changes.

Gramatron can consistently generate complex bug triggers in
an efficient manner as compared to using conventional grammars
with parse trees. Inputs generated from scratch by Gramatron have
higher diversity as they achieve up to 24.2% more coverage relative
to existing fuzzers. Gramatron makes input generation 98% faster
and the input representations are 24% smaller. Our redesigned muta-
tion operators are 6.4× more aggressive while still being 68% faster
at performing these mutations. We evaluate Gramatron across three
interpreters with 10 known bugs consisting of three complex bug
triggers and seven simple bug triggers against two Nautilus variants.
Gramatron finds all the complex bug triggers reliably and faster. For
the simple bug triggers, Gramatron outperforms Nautilus four out
of seven times. To demonstrate Gramatron’s effectiveness in the
wild, we deployed Gramatron on three popular interpreters for a
10-day fuzzing campaign where it discovered 10 new vulnerabilities.

CCS CONCEPTS

• Software and its engineering → Software testing and de-

bugging; • Security and privacy→ Software and application

security.
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1 INTRODUCTION

Language interpreters like PHP, JavaScript (JS), or Ruby accept in-
put whose structure is defined as per a grammar. These interpreters
form the building blocks for complex application frameworks but
are themselves highly vulnerable to exploitation with 98 reported
bugs between January 2018 and January 2021 [16, 29, 30]. Hence,
they are lucrative targets for adversaries. Testing these building
blocks, i.e., the interpreters, is essential to ensure the safety of
software running on top of them such as web applications.

Fuzzing is an effective software security testing methodology.
However, current fuzzing approaches are ineffective at performing
deep testing of interpreters. A majority of the test inputs generated
by grammar-unaware fuzzers [41, 50] are rejected by the inter-
preter during parsing. Interpreters reject all inputs that violate the
grammar, and when fuzzers are unaware of the accepted grammar,
they will mostly create syntactically incorrect input. For example, a
common mutation operator is flipping random input bits. A fuzzer
unaware of the grammar may flip bits in input keywords, creating
invalid mutants that are rejected by the parser. The interpreter com-
ponents past the parsing stage corresponding to semantic analysis
remain untested if fuzzers are grammar-unaware.

Fuzzing the semantic analysis components requires generating
syntactically valid inputs. Existing grammar-aware fuzzers [15, 19,
43, 46] use: (i) a context-free grammar (CFG) to generate test inputs,
and (ii) parse trees to represent the syntactic structure of the input.
The fuzzer mutates the parse trees using the grammar to generate
syntactically valid inputs for testingÐgrammar-aware mutations.
We observe a twofold problem with the current methodology for
grammar-aware fuzzing:

• Biased sampling: Fuzzers when using existing grammars
perform biased sampling from the input state space. This bias
occurs due to how the production rules in the CFG are laid
out for generating inputs. This bias can make it harder for
the fuzzer to generate complex bug triggers which require
chaining multiple parts of the input state space.

• Small-scale mutations: Grammar-aware fuzzers employ
parse trees for input generation and mutation. Existing mu-
tation operators for parse trees perform localized small-scale
changes. This slows down the fuzzer while trying to discover
bugs with complex bug triggers if it wastes its time fuzzing
grammar parts not relevant towards triggering the bug.

We propose a two-fold solution to the above problem: (i) Re-
structuring the production rules in the grammar to eliminate the
sampling bias, and (ii) Redesigning mutation operators to perform
larger-scale changes. However, implementing these solutions on
top of inputs represented as parse trees imposes a performance
overhead. This overhead arises from a fuzzer having to maintain
metadata in the form of the input derivation structure for each
input as its being generated or mutated. To remove this overhead
and implement our solution in a performance-optimal way, we
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convert the input grammar to a finite state automaton (FSA), which
we refer to as grammar automatons.

Grammar automatons restructure the grammar to eliminate the
sampling bias. Furthermore, grammar automatons allow perform-
ing aggressive mutations (more terminals may be changed) effi-
ciently. Aggressive mutations ensure that the fuzzer does not get
stuck performing localized search of grammar parts that are not
relevant towards triggering bugs.

We present Gramatron, a proof-of-concept for our claim that
grammar automatons are an effective solution for performing grammar-
aware fuzzing. It represents inputs as automaton walks and uses
grammar-aware mutation operators that have been redesigned for
fast and aggressive mutations.

We evaluated using performance microbenchmarks if: (i) Gra-
matron resolves the sampling bias in a performant manner, and
(ii) redesigned mutation operators perform aggressive changes effi-
ciently. Gramatron generates higher diversity inputs as they achieve
up to 24.2% more coverage. This indicates that our generated inputs
cover richer semantics of the input grammar. Additionally, on aver-
age, inputs represented as automaton walks are 24% smaller and
input generation is 98% faster. Our redesigned mutation operators
are on an average 68% faster and 6.4× more aggressive in their
mutations.

To showcase that using conventional grammars coupled with
small-scale mutations can be a problem while trying to discover
complex bug triggers, we compared Gramatron against two variants
(detailed in ğ 6) of the current state-of-the-art grammar-aware
fuzzer Nautilus [2]. We evaluate all systems against a set of three
interpreters with 10 known bugs consisting of three complex bug
triggers and seven simple bug triggers. For the three complex bug
triggers, Gramatron outperforms one variant on all of them and
the other variant on two of them. Gramatron finds four out of the
seven simple bug trigger faster than one variant and three out of the
seven than the other variant. Furthermore, to prove its effectiveness
in the wild, we deployed Gramatron on three popular interpreters
for a 10-day fuzzing campaign. It discovered 10 new vulnerabilities.
Additionally, we discuss a bug found as a case-study to show how
Gramatron is effective at generating complex bug triggers.

The main contributions of Gramatron are:

• We leverage grammar automatons which restructures gram-
mars to allow generating highly diverse inputs reliably as an
effective methodology to synthesize complex bug triggers

• We redesign and optimize mutation operators for grammar
automatons to enable them to do aggressive mutations for
faster discovery of bugs with complex triggers.

• As a proof-of-concept, we build and evaluate Gramatron1,
an efficient grammar-aware fuzzer.

• Gramatron discovered 10 new vulnerabilities over a 10-day
fuzzing campaign, so far one CVE has been assigned.

1Source code of our framework is available at https://github.com/HexHive/Gramatron.

2 BACKGROUND

Gramatron transforms grammars to an automaton to resolve the
sampling bias and enable performing aggressive mutations effi-
ciently. This section introduces the necessary background for au-
tomaton generation. We also introduced the mutation operators
which are customized for this new representation.

2.1 Context-Free Grammars

Language interpreters define the input format accepted by them
using a Context-Free Grammar (CFG). Formally, a Context-free
Grammar (CFG) [48] is defined as: CFG = (T ,N ,R, S). T is a finite
set of terminals (characters in the generated string). N is a finite set
of nonterminal symbols (placeholders for patterns of T that can be
generated by N ). R is a finite set of rules for substituting N with T .
The rules are of the form A → a where A is always a nonterminal
symbol. However, a can be a permutation of symbols from both N

and T . S is the starting nonterminal symbol from which all strings
belonging to the grammar are derived.

In order to eliminate sampling bias, Gramatron restructures the
grammar using the normal form by enforcing certain rules. We
focus on two normal forms, used together by Gramatron to create
grammar automatons from a CFG: Chomsky Normal Form (CNF) [6]
and Greibach Normal Form (GNF) [14].

Both CNF and GNF are similar to CFG except they have con-
straints placed on their rules (R). For CNF, each nonterminal can
either generate a single terminal or two nonterminals. For GNF,
each nonterminal can either generate a terminal or a terminal fol-
lowed by any number of nonterminals.

2.2 Automaton Classes

We give formal definitions of different automaton classes that Gra-
matron employs to create grammar automatons. Additionally, we
detail the necessary background for the theoretical challenges in-
volved in creating grammar automatons.

Finite State Automatons. Gramatron creates grammar automa-
tons for performing fuzzing using finite state automatons (FSA).
This allows Gramatron to create lightweight input representations
that enable fast and aggressive mutations. Formally, a FSA is de-
fined asM = (Q, Σ,δ ,q0, F ) [40]. Here, Q is a finite set of states. Σ
is the finite set of terminals. δ defines the set of all transitions over
the automaton states. q0 is the start state in the automaton corre-
sponding to the start symbol of the grammar. F is the accepting
state in the automaton. A set of transitions from the start state to
the final state describe an input string that belongs to the grammar.

Pushdown Automatons. Gramatron leverages pushdown automa-
tons (PDA) to create grammar automatons. A PDA is a language
recognizer for a CFG. In the context of Gramatron, we will consider
the 1-state PDA that accepts inputs by an empty stack. Formally, a
PDA is defined asM = (Q, Σ, Γ,δ ,q0,Z , F ) [20]. Here, Q is a finite
set of states. Σ is the finite set of terminals. Γ is a set of symbols
that can be pushed and popped from the stack (referred to as stack
symbols). Z is the start symbol pushed to the stack. q0 is the start
state and F is the accepting automaton state. δ is the transition
function that governs the automaton behavior. It takes as argument
δ (q,a,X ) where, q ∈ Q , a ∈ Σ, and X ∈ Γ. The output of δ is a
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program → ' <?php ' phpBlock '? > '

phpBlock → s tmt |

s tmt phpBlock

s tmt → c a l l S tm t |

r e t S tm t

c a l l S tm t → func ' ( ) ; '

r e t S tm t → ' r e t u r n ; '

func → ' rand ' |

'mt_rand '

Listing 1: Subset of PHP grammar.

program → ' <?php ' phpBlock C

phpBlock → ' rand ' A |

'mt_rand ' A |

' rand ' A phpBlock |

'mt_rand ' A phpBlock |

' r e t u r n ; ' phpBlock |

' r e t u r n ; '

A → ' ( ) ; '

C → '? > '

Listing 2: The same PHP grammar in GNF.

Program

<?php phpBlock

stmt

callStmt

?>

( );func

rand

phpBlock

phpBlock

stmt

retStmt

return;

Figure 2: Parse tree for the input

<?php rand (); return; ? >.
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Figure 3: FSA for the grammar in

Listing 2.

Gramatron mutates until the end of the string relative to the muta-
tion point. Automatons have a design that is more conducive for
performing such changes as compared to parse trees.

To understand why automatons are more optimal, lets assume
we have a sample program <?php rand(); return; ?>. Figure 2
shows the parse tree for this program. From Figure 3, Gramatron
would represent this input as a sequence of automaton transitions.
This would be [0_1, 1_4, 4_1, 1_3, 3_1]. Lets assume we chose the
return; statement as the mutation point.

If we wanted to make an aggressive change relative to the non-
terminal node stmt, we would need to maintain a parse stack while
performing the mutation. The parse stack keeps track of the un-
expanded nonterminal nodes as the input is being generated. The
overhead of maintaining this stack has a worst case complexity of
O(n) where n is the number of parse tree nodes.

This overhead of maintaining a parse stack can be completely
avoided by performing this mutation on an automaton-based rep-
resentation. This is because the parse stacks are implicitly encoded
in the automaton states. Therefore, just by diverging the walk from
a state, we can perform an aggressive mutation.

4.2 Automaton Construction

We first describe the automaton construction algorithm used by
Gramatron. Thenwewill go over the challenge facedwhile applying
this algorithm and the insight we used to solve that challenge.

Construction Algorithm. Gramatron performs a two-step proce-
dure to transform a grammar into its corresponding automaton is:
(i) transforming the grammar to its GNF and (ii) converting the
transformed grammar into an automaton. First, Gramatron converts
a grammarG to its CNF [6] and then performs fixed point iterations

over its CNF to convert it into its GNF. Gramatron performs its
grammar construction by first specifying the transition function of
the PDA for each CFG production rule. For a grammar in GNF, the
transition function is: δ (q, t ,A) = {(q,W )|A → tW ∈ R}. Here, t is
a terminal, A is a nonterminal andW corresponds to a nonterminal
set. Gramatron uses this transition function to build the grammar
automaton. It does so by enumerating (if possible) all valid PDA
stack states belonging to the CFG. The final state in the grammar
automaton corresponds to an empty stack. For each stack state,
there exists a state in the grammar automaton.

Gramatron uses a worklist-based algorithm to build the automa-
ton. It initializes the worklist with a tuple consisting of the initial
automaton state and its parse stack with the start symbol of G.
It iterates over the worklist until it is empty. For each iteration,
it: (i) pops an element from the worklist, (ii) from the parse stack
(P ) of the element, pops the topmost stack symbol (S) to create a
new P ′. For the stack symbol, finds all possible transitions as per
the transition function, (iii) for each transition, computes the new
stack P ′′ from P ′ by pushing the stack symbols (if any) in reverse,
(iv-a) if P ′′ is equivalent to a parse stack for a previously generated
automaton state, then creates a transition from current state using
the terminal t to that state, and (iv-b) if P ′′ is a new stack state, then
creates a transition from current state using terminal t to a new
automaton state with stack P ′′ and add the new automaton state
along with its parse stack to the worklist. Performing an automaton
walk on the FSA creates a new seed input.

Construction Challenge/Insight. It is theoretically impossible to
create an algorithm that converts any arbitrary CFG into a FSA.
The impossibility arises out of a specific grammar type called self-
embedding grammars with infinite automaton states. A CFG is
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self-embedding if it contains a production rule of the form: ω
∗
=⇒

uωv [42]. Here {u,v} ∈ T+ and ω ∈ N , as specified in ğ 2.1.
However, a key insight we had is that grammar-aware fuzzers im-

pose an upper-bound on the generated input size. This ensures that
they do not generate arbitrarily large inputs. Hence, they instan-
tiate a subset (under-approximation) of the language specified by
the CFG. Here, language refers to the (possibly) infinite state space
of inputs that can be generated from a CFG. Gramatron leverages
this insight to address the theoretical impossibility while creating
grammar automatons. It approximates the CFG with a regular lan-
guage [8, 25, 33]. This regular approximation is then transformed
into grammar automata.

In order to perform this regular approximation, Gramatron limits
the size of the parse stack (denoted by P in the algorithm ) to an
upper bound while generating the automaton [4, 22]. Hence, the
construction algorithm terminates and an automaton is constructed.
The trade-off incurred is that the generated automaton can express
only a subset of the language specified by the self-embedding gram-
mar. In the context of programming language grammars, it implies
that constructs from self-embedding rules can only be nested up
to a static depth. This depth is directly proportional to the allowed
stack size as specified by the user and can be tuned accordingly.

However, this tradeoff is not detrimental in the context of fuzzing.
Grammar-aware fuzzers already limit the input size to prevent
generating arbitrarily large inputs. Hence, grammar automatons
allow Gramatron to be as expressive as existing grammar-aware
fuzzers while being more performant.

An exception to the above discussion of generating an under-
approximation of the language are non-self-embedding grammars.
They do not contain any self-embedding rules. Such grammars have
a finite number of possible states and transitions [1]. Therefore
Gramatron can generate a grammar automaton that can generate
the exact language as specified by the non-self-embedding CFG.

4.3 Automata-Based Mutation

In Gramatron, the mutation operators (splicing, random mutation,
and random recursive) operate on grammar automaton walks. To
address the risk of getting stuck in a local subtree, we enable the
splice and random mutation operator to perform more aggressive
changes. Given an input string and a target mutation point in it,
Gramatron mutates it until the end of the string. For each mutation
operator, let an input I be mutated. Its corresponding representation
in the form of a walk isW = [T1, ..TN ], consisting of N transitions
to go from the start state of the FSA to its final accepting state. Let
the visited automaton states be S = [S1, ..SN+1].

Splice. Let there be two inputs represented as automaton walks,
W1 andW2. A random transition fromW1 is chosen as the point to
splice it withW2 Ð TC where 1 ≤ C ≤ N . The subwalk originating
from this point is replaced with a fitting subwalk fromW2, one
that originates from the same state asTC , which is SC . Automatons
outperform parse trees for splicing, as parse trees require heavy-
weight restructuring of parse tree nodes. The operator is not only
changing the subtree rooted under the chosen splice point but also
everything to the right of the subtree as well. For automatons, the
same mutation simply requires concatenating two lists.

RandomMutation. Gramatron undertakes a three-step procedure
to perform this mutation. First, it chooses a random transition in the
walkW ,TC to diverge the walk. Second, it generates the unmutated
part of the input verbatim using the C − 1 transitions. Third, from
the divergent state, Gramatron performs a random walk over the
automaton until it reaches the final state to generate the mutant.
This operator becomes faster at generating inputs represented as
automaton walks. This is because it requires generating a new sub-
string for the mutant from the provided grammar. Since grammar
automatons make input generation faster, substring generation for
the new mutant is also faster.

Random Recursion. Without preprocessing, finding recursions
in a parse tree has the runtime complexity of O(n logn) where n
is the number of tree nodes. This is because for each node you
have to traverse its parents recursively to find all recursive features.
Gramatron limits the runtime complexity for finding recursive
features to O(m) wherem is the number of terminals in the input
andm << n. Grammar automatons enable Gramatron to traverseW
only once to log all recursive features. It then replicates the subwalk
corresponding to a randomly picked recursive feature upto n times.
In the current implementation n = 5.

5 IMPLEMENTATION

Gramatron is implemented in C and Python: the (ahead of time)
grammar preprocessor is implemented in Python and the (perfor-
mance critical) input generator and mutator are implemented in C.
It takes as input a grammar accepted by the fuzz target. Gramatron
modifies AFL++ [9] to leverage grammar automatons to perform
input generation and mutation while fuzzing. Furthermore, it uses
code coverage feedback from the fuzz target to guide its mutation.

5.1 Fuzzing Workflow

Gramatron is a coverage-guided grammar-aware fuzzer. There are
three main stages to performing coverage-guided fuzzing [23, 47]:
(i) seed scheduling, picking a seed from a set of seeds for generat-
ing mutants, (ii) seed mutation, generating mutants from the seed,
and (iii) seed selection, selecting seeds as interesting candidates for
further fuzzing based on feedback. Gramatron extends the seed
mutation of AFL++ making it grammar-aware to generate syntac-
tically valid inputs. To prevent mutants from growing arbitrarily
large, Gramatron deprioritizes (but does not prohibit) inputs that
have reached a size greater than 2048 bytes.

Gramatron proceeds in two stages: corpus generation and the
fuzzing stage. During corpus generation, Gramatron generates a
predefined number of syntactically valid seed inputs by perform-
ing random walks over the grammar automatons. In the current
implementation, Gramatron generates 100 seed inputs. Using this
seed corpus, Gramatron transitions to the fuzzing stage.

A fuzz iteration consists of four steps: (i) choose a seed from the
queue, (ii) pass the seed through each of the mutation operators, and
(iii) test generated mutants on the fuzz target, (iv) select candidates
for further testing based on the coverage feedback. Furthermore,
to prohibit the fuzzer from getting stuck in a local coverage mini-
mum, it also generates a candidate through random walk over the
grammar automaton for each fuzz iteration.
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6 EVALUATION

Our evaluation answers the following research questions:

• RQ1: Do grammar automatons perform unbiased sampling
from the input state space?

• RQ2: Does Gramatron perform aggressive mutations effi-
ciently?

• RQ3: Can Gramatron discover complex bug triggers faster?
• RQ4: Can grammar automatons find new vulnerabilities?

We compared Gramatron against two Nautilus variants, the state-
of-the-art grammar aware fuzzer that uses parse trees: NautilusP:
the prototype presented in the paper [2] with AFL-style mutation
operators that may generate syntactically invalid inputs [27], and
NautilusGH: the performance-optimized version released recently
that removed AFL-style mutation operators [28].

For RQ1śRQ2, we performed the following experiments by
comparing Gramatron against NautilusGH, since it is performance-
optimized: (i) measure complexity and diversity of inputs gener-
ated from scratch using grammar automatons against conventional
grammars (RQ1), (ii) performance evaluation of input generation,
mutation, and mutation aggressiveness (RQ2). To answer RQ3, we
evaluated the elapsed time to discover known bugs of varying com-
plexity in three fuzz targets against both NautilusP and NautilusGH.
Finally, for RQ4, we deployed Gramatron for 10 days on three
popular and well-fuzzed interpreters to find new vulnerabilities.

We performed the evaluation on an Intel Xeon Bronze 3106
1.7GHz processor with 45GB RAM running Debian 9.3. For a fair
comparison, we ran all tools in single-threaded mode on a single
core. Gramatron was compiled with Clang-8.0 at Ofast optimiza-
tion. NautilusP and NautilusGH are implemented in Rust and use
its nightly branch. We used the optimized build (i.e., the release

build [39]) for our evaluation.

6.1 Performance Microbenchmarks

We compare inputs generated using grammar automatons against
conventional grammars using parse trees along three axes: (i) com-
plexity and diversity of the inputs generated (RQ1), (ii) length of
mutated substrings (RQ2), and (iii) time taken to generate and
mutate these representations (RQ2).

However, fuzzing consists of auxiliary stages apart from input
generation and mutation. While testing NautilusGH, we observed
these stages intertwined with each other. This introduced noise
in the performance measurements. To avoid this noise during per-
formance measurement, we created seven microbenchmarks each
taking in as input a CFG to answer RQ1śRQ2. For a fair compari-
son, we crafted our evaluation grammars from the same grammars
used by the Nautilus authors in their evaluation. Table 1 lists the
number of rules in each grammar. The average time taken to build
grammar automatons per grammar was 2.09s, i.e., the automaton
construction itself is lightweight.

We also performed statistical tests for each run to: (i) quantify
the performance gain and (ii) check whether the improvement is
statistically significant. For magnitude quantification, we performed
Cohen’s-D Effect Size [38] and for significance testing we used the
Mann-Whitney U-Test [23]. As per the Mann-Whitney U-test , a
result is significant if p-value < 0.05. All results reported for the
microbenchmarks are statistically significant.

RQ1: Unbiased Sampling. In this experiment, we validatedwhether
generating inputs using grammar automatons enable unbiased sam-
pling from the input state space. Unbiased sampling creates inputs
with higher diversity. Hence, we use input diversity as a proxy to
validate if Gramatron performs unbiased sampling. We quantify
input diversity using branch coverage. The intuition is that input
diversity is directly proportional to the branch coverage obtained.
To account for the inherent randomness incorporated by fuzzers
during input generation, we generated a large (105) number of
inputs each over five different trials.

We performed the input diversity comparison against NautilusGH
and a baseline input generator. Both the baseline and NautilusGH
employ parse trees along with conventional grammars. However,
a key difference between them is the strategy employed while
picking which grammar rules to exercise during input generation.
The baseline generator picks rules at random while NautilusGH tries
to bias its generation towards larger inputs through probabilistic
weighting of the grammar production rules. Additionally, since
Gramatron restructures the grammar by leveraging its GNF to
perform unbiased sampling from the input state space, we wanted
to see if NautilusGH could become as performant as Gramatron if
we just supplied the GNF of the grammar to it (NautilusGH-G).

As evident from the branch coverage results in Table 1, Gra-
matron outperformed all other approaches across all grammars
with respect to generating higher diversity inputs. It obtained up
to 24.2% more coverage compared to the other approaches. This is
because grammar automatons enable unbiased sampling from the
input state space, increasing test coverage.

The baseline coverage and observed improvement are low for
two reasons. First, Nautilus authors manually designed the gram-
mars to focus on specific target functionality which is common
while performing grammar-aware fuzzing. Second, we generated in-
puts from scratch using the grammar without leveraging coverage
feedback or mutation operators. We did this to perform an evalu-
ation of the performance improvement solely from the grammar
restructuring as performed by Gramatron.

Another interesting observation is that NautilusGH-G variant
outperforms NautilusGH (which uses conventional grammars) but
does not perform on par with Gramatron. This happens because
when NautilusGH biases its generation it ends up biasing towards
specific kind of syntactical constructs (e.g., single function invoca-
tions with a large number of arguments). These inputs, while still
interesting are not helpful towards expanding the test coverage of
the fuzzer. Hence, this experiment showed that Gramatron, through
grammar automatons, removes sampling bias most optimally.

RQ2: Aggressive mutations. In this experiment, we validated if
the mutation operators adopted by Gramatron are indeed aggres-
sive (i.e., perform large-scale changes). We did so by comparing
the mutation operators of Gramatron against those of NautilusGH
(that perform small-scale changes). We generated inputs over 8
length buckets at intervals of size 10. Here, length corresponds
to the number of terminals in the input. Each microbenchmark
generated 1000 inputs for each bucket creating a sum total of 8000
inputs. We used this length threshold because, for the evaluation
grammars, NautilusGH did not generate inputs with more than 80
terminals frequently with random walks. This occurred because
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more aggressive mutations. The average effect size across the dif-
ferent grammars is reported in Table 2. We see a large effect size
for mutator aggressiveness in Gramatron.

However, for the mruby grammar, the observed effect size is
minimal. This occurred due to the effect size not being robust to
outliers. For this grammar, we observed the anomalous behavior
that NautilusGH generated larger-scale mutations than Gramatron
only for the smallest inputs with < 10 terminals. This occurred
because for the smallest inputs built from this mruby grammar,
the probability of NautilusGH extending the input further was sig-
nificantly higher due to lack of nonterminal nodes for mutation.
However, for inputs of all other sizes in the mruby grammar, Gra-
matron outperformed NautilusGH. This is evident from the fact that
Gramatron still generated on average 134.17% larger mutations as
compared to NautilusGH. Hence, we can conclude that the negligi-
ble effect size for mruby grammar is due to the outlier behavior of
NautilusGH for small inputs.

RQ2: Generation/Mutation Efficiency. Finally, we validatedwhether
our adopted methodology to remove the sampling bias from in-
put distribution and perform aggressive mutations was efficient
in terms of space and time. To do so, we evaluated two aspects of
Gramatron: (i) space and time efficiency of automaton-based input
representations, and (ii) time efficiency of the mutation operators.
The evaluation methodology for these set of microbenchmarks was
the same as that for evaluating aggressive mutations. From Table 2,
we observe that Gramatron improved over all measured aspects.
We see a large effect size along all evaluated components except
space for which we see a close to medium effect.

To evaluate space efficiency, we compared the disk space size of
their JSON-serialized representation size across inputs belonging to
different length intervals, showing that our representation is more
lightweight. Then, Figure 4c visualizes the time taken to perform
input generation using grammar automatons and parse trees. Gram-
mar automatons provide a significant runtime improvement. This
is due to the fact that when a fuzzer is performing an automaton
walk to generate an input, it does not need to keep track of the
parse stack since its implicitly encoded in the automaton itself.

For performance evaluation of mutation operators, we designed
the microbenchmarks to perform a three-step task: (i) create any
metadata necessary for mutation, (ii) mutate the input and (iii) un-
parse the mutated input, i.e., from the input representation create a
concrete test input. These three tasks together correspond to creat-
ing a mutant. The total time taken for these tasks was recorded and
then bucketed based on the number of terminals in the generated
mutant. We will now go over each of the mutation operators.

For randommutation, our intuition is that if the input generation
is fast, this mutation will be fast too since it requires generating a
new input part. Figure 4e validates our intuition empirically where
we can see the time taken to generate mutants using Gramatron is
much lesser than NautilusGH.

When evaluating the random recursive operator, we removed
randomness introduced from the number of times chosen by both
tools to multiply a recursive feature. To do so, we fixed the recur-
sive feature multiplication, to be performed 5 times by both tools.
Furthermore, inputs with less than 10 terminals did not have any

recursive features. Hence, for this bucket the random recursive mu-
tation operator performed no operations and we marked the time
as zero for both tools. From Figure 4f, we observe a performance
gain when this mutation is done on grammar automaton walks. The
primary reason Gramatron is faster because finding all recursive
features in an input ends up being more expensive when done on
parse trees as opposed to grammar automaton walks.

The splice mutation operator requires two inputs. Hence, for
each iteration we first generate two random inputs: base input and
the candidate. For the base input, we generate the metadata struc-
ture corresponding to each tool. Then, we perform splicing with the
candidate. Gramatron drastically outperforms NautilusGH as shown
in Figure 4d. The overhead of NautilusGH comes primarily from
creating metadata for the base input for performing the splice oper-
ation. Their metadata creation is more heavyweight because their
mutation operator is designed to splice the candidate by searching
through a corpus of base inputs rather than a single base input.

6.2 Faster Bug Discovery

Gramatron can find bugs with complex triggers faster in fuzz targets
by using grammar automatons with aggressive mutation operators.
In order to validate this claim, we created a corpus of three fuzz
targets with 10 known bugs in them acting as ground truth. We
created this corpus using the bugs discovered by Nautilus [2], Gram-
marinator [18] and from bug trackers of the fuzz targets [36]. We
evaluated NautilusP, NautilusGH, and Gramatron on this corpus and
compared the time taken to find each bug across ten fuzzing trials
with ASan enabled and a time budget of 24 hours each.

The bug corpus used is detailed in Table 3; we will be referring
to the bugs by their listed Bug-ID. For PHP, we used two different
versions 7.2.6 [34] and 7.4.0 [35]. We sourced each of the bugs
in mruby and JerryScript from six different git commits. All these
bugs have syntactically valid proof-of-concept (PoC). Therefore,
they all lied beyond the parser of the fuzz target.

The input state space covered by the grammar highly influences
the time taken to discover a bug. Therefore, for this experiment,
the grammar should challenge the fuzzer while also ensuring that
the input state space is not so large that it makes it infeasible for
the fuzzer to find the bug in a reasonable amount of time.

We built the input grammars using the subset of the grammars
from the Nautilus repository [28]. For each bug in the corpus, we use
a separate grammar. A single grammar for each target is not enough
as some of our targets contain multiple bugs. A generic grammar
that covers all bugs may cause the fuzzer to get stuck at finding
alternate paths to a single bug hindering progress. Having different
grammars for each bug allows a fair evaluation that enables the
fuzzers to search for a particular bug without being distracted by
other potential bugs. The only exception to this rule were PHP-3
and PHP-4. These can be triggered from the same grammar. We
encountered difficulties in decoupling the bug triggers for both so
we post-processed results to infer when each bug triggered.

Based on the bug PoC, each grammar consists of required built-

in language features to trigger the bug along with non-required
features to expand the input state space. Non-required features are
primitives that are not in the PoC. Each grammar had the ability
to build different statement types such as assignments, or function
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invocations. Hence, we argue that these subsetted grammars are
representative of the core functionality exercised by the fuzz targets.

Note, that our tailoring primarily reduced the set of keywords
to keep bugs discoverable. If we forced the fuzzers to explore thou-
sands of different keywords with all the statement constructs, the
time budget for each fuzzing campaign would exceed 24 hours by
orders of magnitude. Restricting the grammars enables us to per-
form exhaustive testing on our bug corpus. We believe this is a fair
comparison since for each bug, all fuzzers are provided exactly the
same input space to explore, hence allowing us to evaluate how
efficiently they search the input space to find the bug.

To evaluate bug discovery performance, we calculate the median
time to discover the bug across ten fuzzing trials. We allowed all
tools to generate their own seed corpus for each trial because of
two reasons. First, at the start of each campaign, both NautilusP
and NautilusGH build a corpus of seed inputs from scratch from the
grammar. Hence, we did not change their default design by giving
it a pre-existing seed corpus to prevent introducing unintended
side-effects. Second, the seed corpus plays a pivotal role in deciding
the time taken to find a bug [23]. Hence, by using a randomly gen-
erated seed corpus for each trial, we ensure an unbiased evaluation.
However, a side-effect of this evaluation choice is that we could not
establish statistical significance for this experiment.

Table 3 shows the experimental results. The PoC complexity

column specifies the number of branching rules to trigger in the
original CFG to generate the PoC. The original CFG here refers
to the grammar used by Nautilus variants as-is and from which
Gramatron generates automatons. We classify a rule as branching if
its RHS contains more than one possible rewrite rule. We use this as
a metric to quantify bug trigger complexity. The Effect Size column
showcases the magnitude difference between results of Gramatron
and Nautilus variants. The higher the number, the better is Gra-
matron and vice-versa. Nautilus did not find several bugs within
the 24-hour time budget. Hence, we had incomplete data for those.
We calculated effect size in such instances by only considering the
trials for which we had data for both Nautilus and Gramatron. We
did this to ensure we did not incorrectly estimate time-to-discovery
for the Nautilus variants, potentially over-estimating Nautilus per-
formance.

Gramatron finds all bugs consistently across all fuzzing cam-
paigns. However, NautilusP and NautilusGH can only find seven
and eight bugs out of the 10 respectively. Notably, NautilusP is un-
able to discover mruby-1, JS-1, and JS-2 while NautilusGH fails to
find mruby-1 and JS-2 within the 24-hour time budget for certain
fuzzing campaigns.

We divide the discussion based on the bug trigger complexity: (i)
complex bugs: triggers with > 20 branching rules, and (ii) simple
bugs: triggers with ≤ 20 branching rules. Branching rules are ap-
propriate to quantify the complexity for generating a bug trigger.
For each branching rule, the fuzzer must make a set of choices (e.g.,
function invocations, or utilized variable names). Increasing the
number of required branching rules to generate a trigger increases
the risk that a fuzzer makes mistakes (e.g., by adding incorrect
function invocations, or using undefined variables).

Complex Bugs. From our ground truth corpus, mruby-1, JS-1 and
JS-2 can be categorized as complicated bugs. Gramatron outper-
forms NautilusP in finding them and NautilusGH in finding mruby-1
and JS-2. NautilusP fails to find these complex bugs consistently
within the given time budget. This is due to the use of both AFL
mutators and grammar-aware mutation operators. For the failed
fuzzing campaigns where NautilusP did not discover the bug, we
observed that the paths discovered by the AFL-mutators were dis-
proportionately higher than other mutation operators. We attribute
this to the cascading effect caused by AFL mutators generating
syntactically invalid mutants. These mutants give shallow coverage
in the parser but are still added to the corpus which biases NautilusP
towards performing shallow fuzzing.

NautilusGH tries to remediate the above problem by removing the
AFL-mutation operators. However, we observe that NautilusGH still
has difficulty in discovering complex bug triggers. This difficulty
arises because its mutation operators perform spot mutations (as
discussed in ğ 4.3). Thus, on finding an interesting input, NautilusGH
performs localized search around the grammar parts corresponding
to the input. This can be detrimental when grammar parts being
explored are not relevant to the bug. Hence, this mutation policy
slows down its advance towards complex bug triggers.

Gramatron outperformsNautilusP by performing purely grammar-
aware mutations. It also outperforms NautilusGH due to its aggres-
sive mutation policy. As per this policy, on finding an interesting
input, Gramatron does not fixate on performing localized search
around the grammar parts corresponding to the input. Instead, it
biases towards performing a more global search with its aggres-
sive mutations. Hence, it rapidly progresses towards discovering
complex bug triggers.

JS-1 is the only complex bug in which NautilusGH outperforms
Gramatron. On closer inspection of the bug trigger, we noticed that
even though it requires triggering 26 branching rules, all of them
were localized within a specific part of the grammar. This made it
ideal for the spot mutators used by Nautilus variants to discover
this bug faster.

Simple Bugs. From our ground truth corpus, all other bugs apart
from mruby-1, JS-1, and JS-2 can be classified as simple bugs. From
the results, its evident that Gramatron outperforms NautilusP in
finding simple bugs except mruby-2, PHP-3, and PHP-4. The mruby-
2 effect size is 0.02 hence the magnitude of performance difference is
close to negligible. In the case of NautilusGH, its able to outperform
Gramatron in finding the simple bugs except PHP-1, PHP-2, and
JS-3.

The root cause as to why NautilusP fails at finding simple bugs
faster than Gramatron can be attributed to its use of AFL-style mu-
tation operators. An exception to this trend were mruby-2, PHP-3,
and PHP-4 where both the Nautilus variants outperformed Grama-
tron. Upon inspection, we observe that their generation was highly
localized to a specific part of the grammar and hence Nautilus
variants were able to find it faster than Gramatron.

NautilusGH outperforms Gramatron in finding simple bugs. This
performance gain can be attributed to the spot mutators utilized
by NautilusGH. They are better at finding simple bugs for the same
reason they were worse at finding complex bugs. The localized
mutations allow NautilusGH to find simple bugs faster.
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Table 3: Performance breakdown of time to bug discovery across 10 fuzzing campaigns. G: Gramatron, (NP, NGH): NautilusP
and NautilusGH.

Bug-ID Bug Type PoC Complexity Successful Campaigns Median Time (s) Effect Size
(Branching rules) NP NGH G NP NGH G G v/s NP G v/s NGH

PHP-1 Segmentation Fault Simple (15) 10/10 10/10 10/10 1217 894 472 0.93 0.71
PHP-2 Division by Zero Simple (15) 10/10 10/10 10/10 505 164 61 1.64 1.58
PHP-3 Segmentation fault Simple (12) 10/10 10/10 10/10 1616 659 2288 -0.97 -2.06
PHP-4 Null-pointer-deref Simple (17) 10/10 10/10 10/10 2509 1065 6074 -2.79 -4.30
mruby-1 Use-after-free Complex (27) 3/10 8/10 10/10 2269 17341 4346 0.53 1.15
mruby-2 Segmentation Fault Simple (8) 10/10 10/10 10/10 725 268 889 -0.02 -0.46
JS-1 Heap buffer overflow Complex (26) 5/10 10/10 10/10 3866 335 1450 0.85 -0.67
JS-2 Failed assertion Complex (23) 4/10 9/10 10/10 2527 1620 1199 0.60 0.71
JS-3 Failed assertion Simple (12) 10/10 10/10 10/10 118 47 19 1.40 0.19
JS-4 Floating point error Simple (12) 10/10 10/10 10/10 481 33 78 0.67 -0.60

Table 4: Fuzz targets with types of bugs discovered. Key:

OOB: Out-of-bounds read, (H)BO: (Heap) Buffer Overflow,

AV: Assertion Violation, and UAS: Stack use-after-scope.

Target Version Rules Bugs Bug Type

mruby 9840d6, 96bae1 1177 3 2 OOB, 1 (H)BO
PHP 7.4.8, 7.4.9 8712 4 1 UAS, 3 OOB
Jerryscript 04f0a7 589 3 3 AV

6.3 Bug Discovery Performance in the Wild

To demonstrate that grammar automatons preserve bug-finding
capabilities of grammar-aware fuzzers, we deployed several fuzzing
campaigns against three interpreters: mruby, PHP, and Jerryscript.
We chose these targets for two reasons: (i) they are widely used,
which makes security bugs in them relevant, (ii) they are well-tested
and have been fuzzed previously by grammar-aware fuzzers like
Nautilus and Grammarinator [18], this ensures that bugs found by
Gramatron are not low-hanging fruits due to lack of testing.

For each of these targets, we created grammar automatons for
Nautilus grammars which are self-embedding. Hence, the grammar
automatons expressed a subset of the language specified by the
CFG as discussed in ğ 4.2. To quantify their size, the number of rules
in each of these grammars is present in Table 4. The same table lists
the commit ID and versions fuzzed for each of these targets.

Gramatron fuzzed these targets for 10 days. During this cam-
paign, it found 10 new vulnerabilities, so far one CVE (CVE-2020-
15866) was assigned. Four of these have been responsibly disclosed
to the affected vendors who have acknowledged and rolled out
patches for the same. For the remaining six we are in the process
of reporting them to the affected vendors. The vulnerability type
breakdown and the affected applications are presented in Table 4.
For Jerryscript, the assertion violations causes it to crash.

Bug Case Study. Here we showcase the effectiveness of Gra-
matron at synthesizing complex bug triggers. The bug is an out-
of-bounds (OOB) read in the mruby interpreter (which has now
been patched). Its root cause existed in rehash, an API provided
by mruby for rebuilding a hash data structure. An OOB read was

Table 5: Median standard deviation of the time taken to

find different bug triggers.

Bug Trigger Std Deviation Median (h)

NautilusP NautilusGH Gramatron
Simple 0.14 0.07 0.18
Hard 2.72 5.75 1.15

triggered if a hash made empty was rehashed and manipulated.
The reason is that the internal metadata structure for the newly
generated hash would point to stale metadata. This in turn caused
any operations on the new hash to cause an OOB read. This vul-
nerability is only triggered if the original hash structure had been
emptied, not if it was empty from the beginning.

To synthesize the bug trigger, Gramatron overcame two chal-
lenges: (i) emptied a populated hash and (ii) performed the correct
sequence of operations on the emptied hash. The supplied grammar
did not express how to add to an existing hash . So, Gramatron
solved the first challenge by using another API to get a populated
hash. After that, it learned how to empty it by performing the cor-
rect number of eviction operations. From there, it synthesized the
API to perform the operations needed for the second challenge,
which in turn triggered the vulnerability.

7 DISCUSSION AND FUTUREWORK

Trade-off between Aggressive and Spot mutators. Aggressive mu-
tators (as used by Gramatron) primarily generate mutants that are
significantly different from the source input owing to the large-scale
changes. Spot mutators (as used by Nautilus) primarily generate
mutants with smaller changes compared to the source input. Con-
sequently, aggressive mutators sample from a more diverse set of
mutants while spot mutators sample from a more localized set of
mutants corresponding to the source input.

Since spot mutators perform local search, they have a higher
chance of getting stuck in local coverage minima while trying to
synthesize complex bug triggers. To validate this, we calculated the
median standard deviation for different types of bug triggers used
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in ğ 6.2. As evident in Table 5 spot mutators have a higher standard
deviation when trying to synthesize complex bug triggers.

We showed in ğ 6.2 that both mutator types have their own mer-
its. The spot mutators used by Nautilus are better at uncovering
bug triggers which require exercising a specific part of the gram-
mar. However, aggressive mutators excel at synthesizing complex
bug triggers that require triggering multiple different grammar
parts. A promising avenue to explore would be how a fuzzer can
schedule these different mutators efficiently by crafting this as an
optimization problem [24].

Augmentations to Regular Approximation. In Gramatron, we used
grammar automatons to generate an under-approximation of the
language specified by the CFG. An interesting avenue to explore
would be generating grammar automatons that accept an over-

approximation of the language specified by the CFG [22, 33]. Here,
over-approximation refers to a superset of the language. This allows
the fuzzer to generate inputs that can test both the syntactic and
semantic stages of the parser simultaneously.

In the presence of self-embedding rules in the grammar, the ex-
pressiveness of the grammar automaton directly depends on the
user-provided stack depth. The larger the stack depth the more ex-
pressive Gramatron can be during input generation. As a trade-off,
larger stack depth increases the final automaton which is generated
in terms of number of states and transitions. Consequently, the
one-time cost of generating the automaton itself is larger. However,
the size of the automaton will not affect the time taken to generate
or mutate inputs since those operations depend on the size of the
inputs themselves. As future work, we plan to explore alternative
strategies for regular approximation to make more concise automa-
tons. One alternative could be to convert grammars into GNF form
in a more efficient manner [5].

8 THREATS TO VALIDITY

Here we discuss potential threats to validity of our evaluation and
the steps we take to mitigate them.

External Validity. The external validity (i.e, the generalizability of
our results) primarily depends on how representative our evaluation
targets are of a real-world testing scenario. To address this threat,
we chose widely-used, large, and well-tested software accepting
different languages as our fuzz targets. Furthermore, our in-the-
wild testing experiment (described in ğ 6.3) showcases the ability
of Gramatron to find previously undiscovered bugs. We do note
that while our evaluation focuses on language interpreters (since
related work evaluates those), Gramatron can be applied to any
software that accepts inputs as defined by a context-free grammar.

Internal Validity. Fuzzers are composed of multiple modules that
intertwine with each other during a fuzzing campaign. Therefore,
a potential threat to our internal validity is the measurement noise
that is introduced from auxiliary stages (i.e., stages that do not
correspond to input generation or mutation). To minimize this
noise, we built microbenchmarks that isolate the stages that we
are interested in for our measurements. Another potential threat
specifically pertaining to our ground-truth bug experiment was the
presence of multiple bugs in our fuzz targets. This can introduce
noise in the evaluation if a fuzzer finds alternate bugs before the

targeted one, causing the fuzzer to tunnel-vision on that specific
bug and input space around it. To eliminate this noise, we crafted
grammars that discover the bugs of interest mixed with benign
functionality to make it non-trivial for the fuzzers to find these bugs.
Furthermore, for all our experiments against Nautilus we followed
the guidelines as laid down by Klees et.al. [23] to eliminate effects
of randomness while evaluating fuzzers.

Construct Validity. There is only a single threat to construct
validity (i.e., we are measuring what we claim to be measuring [12])
in our experiments. This manifests when evaluating the unbiased
sampling of Gramatron. In this case, a potential threat to construct
validity arises out of using code coverage as a proxy metric for
input diversity. However, we claim that in the context of fuzzing,
we are primarily interested in higher input diversity corresponding
to richer semantics. Hence, for evaluating this goal, branch coverage
is the most appropriate metric as higher branch coverage directly
corresponds to inputs with richer semantics.

9 RELATED WORK

Fuzzing approaches can be broadly divided into two categories:
mutational and generational. Gramatron is a generational fuzzer
that use code coverage feedback to guide its fuzzing. We will discuss
mutational fuzzing and the challenges it faces while fuzzing soft-
ware that accepts structured input. Then, we will discuss existing
generational fuzzers in detail and how they differ from Gramatron.

Off-the-shelf mutational fuzzers such as AFL [41, 50] use opera-
tors such as bitflips to drive the input generation from a seed input
corpus. However, such mutational operators may often create syn-
tactically invalid mutants. This leads to such fuzzers being unable
to fuzz past the parser of applications that accept structured input.
Gramatron uses the input grammar to overcome this limitation.

Generational fuzzers use an input model for input generation
during fuzzing. This model can either be user-provided as a CFG [2,
11, 19, 43, 44, 49] or inferred from the application [3, 21]. Genera-
tional fuzzers that leverage a user-provided model can be broadly
divided into two categories: (i) language-specific: Designed for fuzz
targets that accept a specific language, (ii) language-agnostic: De-
signed to fuzz any type of fuzz target regardless of the type of
language that it accepts. We will discuss each of these below.

Language-specific Fuzzers. These fuzzers are designed and opti-
mized to fuzz targets that accept a specific language (e.g., for C [26,
49], or JS [15, 17, 32]). Language-specific fuzzers are customized to
address language idiosyncrasies for deeper testing. C-smith [49]
generates programs that avoid exercising undefined behavior as
specified in the C standard. CodeAlchemist [17] employs JS-specific
analysis techniques to generate semantically valid programs. DIE
performs structure and type-preserving mutations to inputs by
using custom-annotated Abstract Syntax Trees [32]. All such cus-
tomizations come at the cost of generalizability to other languages.
In contrast to these tools, Gramatron is designed as a grammar-
aware but language-agnostic, generational fuzzer.

Language-agnostic Fuzzers. Language-agnostic fuzzers [2, 19, 32,
43] use techniques that do not assume anything about the target
language. This enables wider applicability while still allowing for
deep testing. LangFuzz [19] creates a set of code fragments from a
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pre-existing input corpus sourced from a test suite using the gram-
mar. It then recombines different fragments together to create more
failing inputs. IFuzzer [43] has a similar design but instead it adopts
a genetic algorithm to perform the input recombination. Gramatron
instead uses coverage feedback to guide its input generation and
aggressive mutations using the restructured grammar.

Recent work has explored incorporating coverage feedback into
grammar-aware fuzzing. Nautilus used coverage feedback in con-
junction with grammar-aware and AFL-like mutation operators.
After a year, the authors released another performance-optimized
version, removing the AFL-style mutation operators [28]. Grama-
tron differs from both variants in two ways: (i) it restructures the
grammar to perform unbiased sampling from the input state space,
and (ii) it introduces novel grammar-aware mutation operators
to synthesize complex bug triggers faster and more reliably. Su-
perion [46] (released simultaneously with Nautilus) implements
the same functionality as Nautilus; specifically, coverage-guided
feedback in conjunction with grammar-aware fuzzing. Therefore,
Gramatron differs from it in the same way as Nautilus. Zest [31]
performs coverage-guided fuzzing using user-specified Quickcheck-
like [7] input generators. Our approach is orthogonal to that em-
ployed by Zest in two ways: (i) we use context-free grammars mod-
eled as grammar automatons instead of generators to perform input
generation, and (ii) Gramatron performs large-scale changes using
aggressive mutators while the structural mutations performed by
Zest are analogous to the spot mutators used in existing grammar-
aware fuzzers. While the Zest algorithm itself is language-agnostic,
its current implementation is designed to test Java-based programs
specifically. This constraint does not apply to Gramatron since its
implementation is language-agnostic.

There have also been research efforts directed towards exploring
how to make input generation from the grammar effective. Sky-
fire [45] is a data-driven input seed generator for fuzzers. It learns a
probabilistic model for the grammar that specifies the likelihood of a
production rules being triggered. This enables it to perform smarter
input seed generation. Other approaches such as Dharma [10], and
F1 [13] have focused on optimizing the process of input generation
from the grammar itself. Gramatron adopts an approach that is
orthogonal to these tools. It uses coverage feedback to guide its
fuzzer that uses the grammar in conjunction with grammar-aware
mutation operators to generate new inputs.

10 CONCLUSION

Fuzzing interpreters past the parsing stage is notoriously challeng-
ing, since it requires generating syntactically valid inputs. We made
the observation that grammar automatons coupled with aggressive
mutations enable a fuzzer to reach and trigger complex bugs in
interpreters effectively. Our prototype implementation, Gramatron,
uses grammar automatons which restructure the grammar to per-
form unbiased sampling from the input state space. The unbiased
sampling coupled with aggressive mutations allows Gramatron
to find deep bugs with complex triggers. In addition to discov-
ering all 10 bugs in our benchmark, Gramatron also discovered
10 new bugs in popular interpreters. Gramatron is available at
https://github.com/HexHive/Gramatron.
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