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Abstract— We consider the problem of optimizing the cost of
procuring electricity for a large collection of homes managed
by a load serving entity, by pre-cooling or pre-heating the
thermal inertial loads in the homes to avoid procuring power
during periods of peak electricity pricing. We would like to
accomplish this objective in a completely privacy-preserving
and model-free manner, that is, without direct access to the state
variables (temperatures or power consumption) or the dynami-
cal models (thermal characteristics) of individual homes, while
guaranteeing personal comfort constraints of the consumers.
We propose a two-stage optimization and control framework
to address this problem. In the first stage, we use a long short-
term memory (LSTM) network to predict hourly electricity
prices, based on historical pricing data and weather forecasts.
Given the hourly price forecast and thermal models of the
homes, the problem of designing an optimal power consumption
trajectory that minimizes the total electricity procurement cost
for the collection of thermal loads can be formulated as a large-
scale integer program (with millions of variables) due to the
on-off cyclical dynamics of such loads. We provide a simple
heuristic relaxation to make this large-scale optimization prob-
lem model-free and computationally tractable. In the second
stage, we translate the results of this optimization problem into
distributed open-loop control laws that can be implemented at
individual homes without measuring or estimating their state
variables, while simultaneously ensuring consumer comfort
constraints. We demonstrate the performance of this approach
on a large-scale test case comprising of 500 homes in the
Houston area and benchmark its performance against a direct
model-based optimization and control solution.

I. INTRODUCTION
In traditional power grids, uncertainties typically arise in

the demand-side and are countered by an increase or decrease
in the generation of power using operating reserves. How-
ever, the large-scale integration of renewables has introduced
additional uncertainties into the supply-side, due to the vari-
ability of renewable energy resources. Since generation from
renewable energy resources cannot be directly controlled,
this new uncertainty in the supply-side will need to be offset
by tuning the demand via controllable loads [1]-[3]. This
approach, known as demand response, is a rapidly emerging
operational paradigm in the modern power grid, wherein an
aggregator or load serving entity (LSE) manages a collection
of controllable loads that function as a new type of operating
reserve, albeit one that is now on the demand-side [4].

Thermal inertial loads such as air conditioners (ACs),
heaters and refrigerators comprise nearly half of the resi-
dential demand in the United States [5], and are attractive
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candidates for demand response due to their ability to store
energy and alter (delay or advance) consumption without
causing significant discomfort to the consumer [6][7]. This
demand response potential can be exploited by LSEs to
provide ancillary services to the grid, while simultaneously
reducing energy costs for individual consumers [8]-[10].
Early instances of demand response from thermal inertial
loads typically employed coarse models of the duty cycles
of the loads to compute pre-defined trajectories for load
curtailment during periods of peak pricing [11]-[13]. More
recent approaches involve estimating the models and states of
the loads, and utilizing this information to design and track
a desired power trajectory that minimizes costs or provides
operational support to the grid [14]-[16].

In this context, it is desirable to develop model-free
privacy-preserving approaches for thermal inertial load man-
agement, for three reasons. First, thermal models can be used
to infer information about the size, layout and construction
of the consumers’ homes, which may constitute a violation
of consumer privacy. Second, it is challenging to obtain
such models for demand response programs involving large-
scale participation from thousands of homes, even with
intrusive measurement and monitoring. Finally, for privacy
reasons, it is not desirable to measure the temperatures or
power consumption of individual homes. Recently, learning-
based model-free approaches for the optimization and control
of thermal loads have been proposed [17][18]; however,
these approaches are typically not privacy-preserving in that
they still involve measuring the internal temperatures and
power consumption profiles of homes. Alternatively, privacy-
preserving approaches to thermal inertial load management,
wherein the power consumption of individual homes is
not directly measured have been proposed [19]-[21]. How-
ever, all of these approaches still utilize thermal models of
homes to compute and implement optimal control actions
for electricity cost minimization. The aim of this paper is to
bridge this gap by proposing a model-free privacy-preserving
approach for the management of thermal inertial loads.

Specifically, we consider the problem of minimizing the
cost of procuring electricity for a large collection of homes
managed by an LSE. The objective is to pre-cool (or pre-
heat) homes by controlling residential thermal loads, in
order to avoid procuring power during periods of peak
electricity pricing. Further, we would like to accomplish this
objective in a completely privacy-preserving and model-free
manner, that is, without direct access to the state variables
(temperatures and power consumption) or models (thermal
characteristics) of individual homes.
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We propose a two-stage optimization and control frame-
work to address this problem. In the first stage, we use
a long-short term memory (LSTM) based recurrent neural
network architecture to forecast hourly electricity prices
from historical price data and weather forecasts. Given the
hourly price forecast and the thermal models of the homes,
the problem of designing an optimal power consumption
trajectory that minimizes the total electricity procurement
cost can be formulated as a large-scale integer program (with
millions of variables) due to the on-off cyclical dynamics of
such loads. This integer program has typically been solved
using linear relaxations or dynamic programming [19][22],
with explicit closed-form solutions available in special cases
where prices are assumed to be monotone [23]. In this paper,
we propose a simple heuristic relaxation to convert this large-
scale optimization problem into a model-free optimization
problem that can be solved in an explicit and computationally
tractable manner. In the second stage, we translate the results
of this optimization problem into distributed open-loop con-
trol laws that can be implemented at the individual homes
without measuring or estimating their state variables, while
respecting consumer comfort constraints. We demonstrate
the performance of this approach on a large-scale test case
comprising of 500 homes in the Houston area, with pricing
data from the Electric Reliability Council of Texas (ERCOT),
and benchmark the performance of the proposed approach by
comparing it with the direct model-based approach in [19].

Notation: R, R+, and Rn denote the sets of real numbers,
positive real numbers including zero, and n-dimensional real

vectors respectively. Given a, b ∈ R, a ∧ b =

{
a, a < b
b, a > b

and a ∨ b =

{
a, a > b
b, a < b

. Given two sets A and B, A\B
represents the set of all elements of A that are not in B.
We denote the the Laplace density function with zero mean
and scale parameter a ∈ R+\{0} by Lap(a). The gamma
density function with parameters a, b ∈ R+\{0} is denoted
by Γ(a, b) and the exponential density function with rate λ ∈
R+\{0} is denoted by Exp(λ). We denote by N (µ, σ, a, b)
a truncated univariate Gaussian density function with mean
µ, standard deviation σ and support [a, b].

II. PROBLEM FORMULATION

We begin by describing the model of a collection of
residential thermal loads, and formulate the problem of
minimizing the electricity procurement cost. For simplicity,
we assume that all the loads are air conditioners (ACs). Note
that the same analysis can be carried out for heaters, with
the objective of pre-heating, rather than pre-cooling homes.

A. System Model

Consider a population of N homes with controllable ACs
managed by a load serving entity (LSE). Assume that each
home has a temperature set point that is private to the
consumer, denoted by si, and a comfort range ∆i, i ∈
{1, 2, . . . , N}, which denotes the deviation from the set point
that each consumer is willing to tolerate. Therefore, the

temperature of the i-th home at any time t ∈ R+, denoted by
θi(t), must lie in the comfort band [Li0, Ui0] = [si−∆i, si+
∆i]. The flexibility of the i-th consumer, i ∈ {1, 2, . . . , N},
can be quantified by the range of the consumer’s comfort
band, that is, 2∆i. The temperature dynamics of the i-th
home, i ∈ {1, 2, . . . , N}, is governed by

θ̇i(t) = −αi(θi(t)− θa(t))− βiPiσi(t), (1)

where θa(t) represents the ambient temperature at time
t ∈ R+, Pi represents the power consumption of the i-th
AC, αi and βi represent the heating time constant (h−1)
and thermal conductivity (◦C/kWh) of the i-th home, and
σi(t) ∈ {0, 1} denotes the ON/OFF state of the i-th AC
at time t ∈ R+, where σi(t) = 1 indicates that the AC
is ON and σi(t) = 0 indicates that the AC is OFF. When
the AC is OFF, the temperature of the home rises until it
reaches the upper bound of the consumer’s comfort band
Ui0, at which point the AC turns ON. Similarly, when the
temperature reaches the lower bound of the comfort band,
Li0, the AC turns OFF. Therefore, the switching behavior of
the i-th AC, i ∈ {1, 2, . . . , N}, can be defined as

σi(t) =

 1, θi(t) = Ui0
0, θi(t) = Li0

σi(t
−), otherwise.

(2)

The total electrical power consumed by the population of

ACs is given by Ptotal =
N∑
i=1

Pi/ηi, where ηi is the

coefficient of performance of the i-th AC.

B. Optimization Problem

Define the indicator variable ui(t) : R+ → {0, 1},
∀i ∈ {1, 2, . . . , N} where ui(t) = 1 if the i-th AC is
ON at time t ∈ R+, and ui(t) = 0 otherwise. We also
denote the total number of ACs that are ON at any time
t ∈ R+ by nON (t). For simplicity, we assume without
loss of generality that all the ACs have an identical power
consumption and coefficients of performance, that is, Pi = P
and ηi = η, ∀i ∈ {1, 2, . . . , N}. Let the electricity price
forecast and ambient temperature forecast at time t ∈ R+

be denoted by π̂(t) : R+ → R+ and θ̂a(t) : R+ → R
respectively. If these forecasts are known over a T -hour
horizon, that is, ∀t ∈ [0, T ], T ∈ R+\{0}, then, the problem
of minimizing the total cost of procuring electricity by the
LSE for the collection of ACs over the time horizon [0, T ]
can be formulated as

P : min
u1(t),...,uN (t)∈{0,1}N

P

η

∫ T

0

π̂(t)

N∑
i=1

ui(t)dt

s.t. θ̇i(t) = −αi
(
θi(t)− θ̂a(t)

)
− βiPui(t)

P

η

∫ T

0

N∑
i=1

ui(t)dt ≤ E

Li0 ≤ θi(t) ≤ Ui0,

(3)

where E > 0 is the maximum energy budget of the LSE for
the time horizon [0, T ].

5918

Authorized licensed use limited to: Texas A M University. Downloaded on March 01,2021 at 03:18:05 UTC from IEEE Xplore.  Restrictions apply. 



Assumption 1: We make the following assumptions per-
taining to the feasibility of the optimization problem P .
• Without loss of generality, we assume that the initial

temperatures are within the user’s comfort constraints,
that is, θi(0) ∈ [Li0, Ui0].

• For every i ∈ {1, 2, . . . , N}, when the states are at the
upper or lower bound of the comfort band [Li0, Ui0],
there exists a control policy that can maintain the state
inside the comfort band. In other words, the dynamics
(1) are such that for all possible θ̂i(t), the temperature
θi(t) increases with σi(t) = 0, and decreases with σi =
1, or ∀t ∈ R+ and i ∈ {1, 2, . . . , N},

−αi(Li0 − θ̂i(t)) > 0, −αi(Ui0 − θ̂i(t))− βi < 0.

Note that the control inputs to maintain the temperature
at the upper or lower comfort bounds are given by
uUPi (t) = αi

βi
(θi(t)−Ui0) and uDOWN

i (t) = αi

βi
(θi(t)−

Li0) respectively.

C. Model-based Solution for Benchmarking

We now outline a model-based approach to obtain a power
reference trajectory for the collection of loads by solving the
optimization problem (3), and design a privacy-preserving
control law to track this power reference trajectory [19]. We
will later use this approach as a benchmark against which
we will validate our proposed model-free solution.

If the dynamics of the thermal loads (1) are known, the
optimization problem P can be discretized in the time vari-
able t and directly solved as a mixed-integer linear program
(MILP). However, for N homes with a discretization time
step of 1 minute, the MILP would involve n N×2×24×60
variables, which would be prohibitively large (of the order of
millions of variables) for hundreds or thousands of homes.
Hence, the typical approach to solving this MILP involves
a linear programming (LP) relaxation, where the integer
variable ui(t) is allowed to vary continuously in the interval
[0, 1], that is ui(t) : R+ → [0, 1], i ∈ {1, 2, . . . , N}.
Then, ui(t) can be interpreted as the fraction of time that
the i-th AC is ON during each discretization time interval.
Let {u∗i (t)}

N
i=1 be the solution to the optimization problem

P . Then, the optimal power reference trajectory can be
computed as P reftotal(t) = P

η

∑N
i=1 u

∗
i (t).

Privacy-preserving Implementation: In order to track this
power reference trajectory in a privacy-preserving manner,
assume that the LSE does not have access to states of
the home including its set point si, temperature θi(t), and
the state of its AC, σi(t). First, the LSE estimates the
total demand Ptotal(t) in a privacy-preserving manner as
follows. The i-th home, i ∈ {1, 2, . . . , N}, reports, with
probability p ∈ [0, 1], a corrupted power consumption P̂i =

Pi + ni, where ni ∼ Γ
(

1
pN ,

ε
Pe

)
is chosen independently

and distributed identically among homes. With this setup,
it can be shown that the total power can be estimated in a
differentially private manner as Ptotal(t) = N

N̂

∑N̂
i=1 Pi + n,

where n ∼ Lap
(
Pe

ε

)
, and pN = N̂ , where N̂ is the

number of homes that report their noise-corrupted power

consumption. Next, the LSE measures the deviation of the
total power consumption of the homes, Ptotal(t) from the
optimal power reference trajectory P ref

total(t) and uses a simple
PID controller with proportional, integral, and derivative
gains kp, ki, and kd respectively, to compute a velocity
control signal v(t) = kpe(t) + ki

∫ t
0
e(s)ds + kd

de
dt , e(t) =

Ptotal (t) − P ref
total (t), which is broadcast to all homes. The

i -th AC, i ∈ {1, 2, . . . , N} then locally computes its new
set point as si(t) = ∆iv(t), and adjusts its comfort band as
[Lit, Uit] ⊆ [Li0, Ui0] , where

Lit = min (Ui0,max (Li0, si(t)−∆i))

Uit = max (Li0,min (Ui0, si(t) + ∆i)) .
(4)

In this manner, the temperatures of individual homes can
be locally regulated in a privacy-preserving manner such
that their aggregate power consumption tracks the optimal
reference trajectory.

D. Problem Statement

We now state the problem addressed in this paper.
Problem: Given historical hourly data of electricity prices

and ambient temperatures, and the ambient temperature
forecast θ̂a(t) over a time horizon [0, T ], the aim of this
paper is to (i) solve optimization problem P without explicit
knowledge of the values of the thermal parameters αi and
βi, i ∈ {1, 2, . . . , N} in (3), and (ii) design σi(t), i ∈
{1, 2, . . . , N} that results in the optimal power consumption
determined by the solution of (3) when implemented locally
at each AC i ∈ {1, 2, . . . , N}, without access to the state
variables θi(t) or σi(t) and power consumption Pi(t) or
Ptotal(t) by the LSE.

III. MODEL-FREE PRIVACY-PRESERVING
OPTIMIZATION AND CONTROL FRAMEWORK

In this section, we present a two-stage approach to solve
the problem considered in Section II-D. In the first stage,
we begin by forecasting hourly electricity prices based on
historical price data and ambient temperature forecasts. We
then propose a heuristic relaxation to solve the optimization
problem P in a model-free manner. In the second stage, we
discuss control laws for the implementation of this solution.

A. Stage 1: Optimization

We begin by describing how the price forecast π̂(t) can
be obtained from historical data.

1) LSTM-based Price Forecasting: Given the ambient
temperature forecast θ̂a(t) over the horizon t ∈ [0, T ],
we begin by using a long short-term memory (LSTM)
neural network to forecast the hourly electricity price π̂(t),
t ∈ [0, T ]. We choose to use an LSTM-based prediction,
since its memory structure allows us to capture features like
seasonal and daily variations in prices. Real-time electricity
prices vary rapidly on a minute-by-minute basis. However,
significant variations are typically observed at the hourly
level, and most procurement by the LSE is also carried out
at this time scale. Therefore, we begin by averaging intra-
hourly historical data to obtain hourly electricity price data
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on each day. Similarly, we obtain historical temperature data
on an hourly time scale. These hourly price and temperature
datasets serve as the inputs to the LSTM.

Remark 1: The window of prediction for the LSTM is
chosen based on two considerations. First, in our simulations,
we determined that highly accurate price predictions can be
made in short time windows of less than four hours. Second,
we require that the prediction window is larger than the sum
of two time windows TON and TOFF , defined as follows:
• TON : the average time required to cool a home from its

upper comfort bound to its lower comfort bound, that
is, the average over all i ∈ {1, 2, . . . , N} of the smallest
time TON,i such that θi(0) = Ui0 and θi(TON,i) = Li0
with σi(t) = 1, ∀t ∈ [0, TON,i], and

• TOFF : the average ‘duty cycle’ of the residential ther-
mal loads, that is, the average over all i ∈ {1, 2, . . . , N}
of the smallest amount of time TOFF,i, such that
θi(TOFF ) = Ui0, given that θi(0) = Li0 and σi(t) =
0, ∀t ∈ [0, TOFF,i].

This is to account for the fact that decisions to pre-cool a
home will need to be taken at least (TON + TOFF ) amount
of time before price peaks for a feasible implementation.

2) Model-free Optimization: In order to solve the opti-
mization problem P without knowledge of the dynamics of
individual homes, we begin by making an assumption about
the price forecast π̂(t), t ∈ [0, T ].

Assumption 2: We assume that the price forecast π̂(t) is
unimodal over t ∈ [0, T ], that is, there exists tPEAK ∈ [0, T ],
such that π̂(t) is monotonically increasing ∀t ≤ tPEAK , and
monotonically decreasing ∀t > tPEAK .

This assumption is not unreasonable since historical data
indicates a strong unimodality property in hourly electricity
prices, typically correlated with hourly variations in temper-
ature and load profiles over the day, thus allowing for the
electricity price forecast π̂(t) to be closely approximated by
a unimodal function as illustrated in Fig. 1. We now propose
a simple heuristic relaxation to the optimization problem P ,
based on Assumption 2. If π̂(t) is unimodal, then, an explicit
solution to (3) can be written down as follows. Intuitively,
the optimal solution to (3) involves designing ui(t) such that
the LSE purchases most of its power during the period when
the price is low, and uses this energy to pre-cool homes
to their lower comfort bound Li0, allowing for the ACs
to be switched off during the peak pricing period until the
temperature reaches the upper comfort band Ui0. For this pre-

Fig. 1. Schematic of the optimization and control framework, indicating
periods of pre-cooling (PC), OFF time (OC), and normal cyclical cooling
operation (CC).

cooling operation, we consider the monotonically increasing
portion of the the unimodal price function, that is π̂(t) such
that t ∈ [0, tPEAK ]. Additionally, we relax the energy budget
constraint by assuming E = ∞ (An explicit model-based
solution to (3) incorporating this constraint and the switching
dynamics of the loads can be provided along the lines of
[23]). We have the following result on the solution to the
optimal control problem P for the period where the price is
monotonically increasing.

Theorem 1: If π̂(t), t ∈ [0, tPEAK ] is monotonically
increasing, then there exists t∗ < tPEAK , such that the
optimal solution to (3) is given by

u∗i (t) =


1, t < t∗, θi ∈ (Li0, Ui0]

uDOWN
i (t), t < t∗, θi = Li0
uUPi (t), t ≥ t∗, θi = Ui0

0, t ≥ t∗, θi ∈ [Li0, Ui0),

(5)

where uUPi and uDOWN
i are as defined in Assumption 1.

In order to apply the result of Theorem 1 to solving
(3) with a unimodal price forecast π̂(t), t ∈ [0, tPEAK ]
satisfying Assumption 2, it is first necessary to determine
the pre-cooling period, denoted by PC = [0, t∗] as shown in
Fig. 1 such that ui(t∗) = uDOWN

i (t∗) and θa(t∗) = Li0.
We begin by noting that we would like to maintain ui = 0
for as long as possible around the peak pricing period,
without violating consumers’ comfort bounds. We denote this
period where ui = 0 as the OFF cycle (OC) with duration
ŜOFF . The longest period for which the OFF cycle can be
maintained is the average duty cycle TOFF as defined in
Remark 1, that is ŜOFF = TOFF . Working backwards, we
can approximate t∗ ≈ tPEAK − TOFF /2. We then have the
following result on the solution to the optimization problem
(3) during the pre-cooling period and the OFF-cycle.

Corollary 1: If π̂(t) is monotonically increasing for
t ∈ [0, tPEAK ] and monotonically decreasing for t ∈
[tPEAK , T ] then the solution to (3) for t ∈ [0, tPEAK +
TOFF /2] is given by (5) with t∗ ≈ tPEAK − TOFF /2.

After the OFF cycle, the price π̂(t), t ∈ [tPEAK +
TOFF /2, T ] is assumed to be monotonically decreasing
according to Assumption 2. During this period, two types
of control actions are possible as follows:
• Option 1: Maintain θi(t) = Ui(t) for t ∈ [tPEAK +
TOFF /2, T ], or

• Option 2 (cooling cycle or CC): Allow the collection of
ACs to evolve according to their natural dynamics (1)
with control action (2).

In our approach, we choose the latter, namely Option 2, for
two reasons. First, Option 2 allows for greater comfort for
residential consumers by maintaining the average tempera-
ture of the home closer to the setpoint of the consumer’s
choice. Second, since the ambient temperatures during this
period are typically cooler, it may not be optimal to maintain
the temperature at the upper comfort bound Ui0.

In summary, we solve the optimization problem P by
dividing the day into three time horizons, namely, pre-
cooling, OFF cycle and cooling cycle, for which the control
actions u∗i (t) are determined by Corollary 1.
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Remark 2: We make the following remarks about the
proposed solution to the optimization problem P .
• We note that TOFF for a given ambient temperature

profile can be easily inferred by observing the total load
profile over a day, without any direct knowledge of the
dynamics of the homes. Therefore, the solution to (3)
can be constructed in a completely model-free manner.

• This solution relies on an accurate forecast of tPEAK ,
which is obtained using the LSTM network described
in Section III-A.1. Note that the actual magnitude of the
peak price is not important to our approach. Therefore,
while prediction errors in the price magnitude can be
tolerated, it is critical that the LSTM network be tuned
such that the time of peak pricing is predicted as
accurately as possible.

B. Stage 2: Private Control Implementation

We now describe how the solution of the optimization
problem P as discussed in Section III-A.2 and depicted
in Fig. 1 can be implemented in a private and distributed
manner at each home, without any measurement of the state
(temperature and power consumption) of the home by the
LSE. At any time t ∈ [0, T ], the LSE broadcasts one of the
following commands to the ACs:

c(t) =

 1, t ∈ [0, tPEAK − TOFF /2]
0, t ∈ [tPEAK − TOFF /2, tPEAK + TOFF /2]

CC, t ∈ [tPEAK + TOFF /2, T ]
(6)

The ACs then translate these commands into their private
switching state σi(t), i ∈ {1, 2, . . . , N}, at each time t ∈
[0, T ] as follows:

σi(t) =



1, c(t) = 1, θi(t) ∈ (Li0, Ui0]
uDOWN
i (t), c(t) = 1, θi(t) = Li0

0, c(t) = 0, θi(t) ∈ [Li0, Ui0)
uUPi (t), c(t) = 0, θi(t) = Ui0
σ(t−), c(t) = CC, θi(t) ∈ (Li0, Ui0)

1, c(t) = CC, θi(t) = Ui0
0, c(t) = CC, θi(t) = Li0

(7)
In contrast to the PID-based differentially private control

implementation described in Section II-C, the control actions
(7) can be implemented in an extremely simple manner
without any measurements being transmitted to the LSE. The
only requirement is that the homes be equipped with a smart
thermostat that can receive instructions broadcast by the LSE.
We note that the control inputs uDOWN

i (t) and uUPi (t) in (7)
to maintain a particular temperature θi(t) once the home has
cooled to its setpoint are also already present as an energy
saving measure in most ACs, where they are implemented
by turning off the compressor of the AC and do not require
knowledge of the thermal parameters of the home.

IV. CASE STUDY

In this section, we demonstrate the application of the
proposed optimization and control framework in Section
III on a test scenario in the Houston area, and benchmark

it against the model based solution described in Section
II-C. We consider N = 500 ACs with thermal power
P = 14kW, and efficiency η = 2.5, with thermal pa-
rameters αi and βi, i = 1, 2, . . . , N drawn from the
truncated Gaussians α ∼ N (µα, 0.1µα, 0.9µα, 1.1µα) and
β ∼ N (µβ , 0.1µβ , 0.9µβ , 1.1µβ) respectively, where µα =
1
RC h−1, µβ = 1

C

◦
C/kWh, and R = 2◦C/kW and C = 10

kWh/◦C represent the thermal resistance and capacitance of
the ACs respectively. We assume that the comfort bands of
the ACs ∆i are uniformly distributed in the range [1, 3]◦C.

As described in Section III-A.1, we begin by using an
LSTM to forecast the hourly price given historical price
data and the ambient temperature profile as shown in Fig.
2-Top. To obtain this forecast, we consider an input dataset
comprising of (i) real-time electricity price data for Houston,
Texas (LZ-HOUSTON node) at 15-min intervals over a
period of 7 years ranging from 2013-2019, available from
the Electric Reliability Council of Texas (ERCOT) at http:
//www.ercot.com/mktinfo/prices, and (ii) hourly
historical weather data, available from the National Centers
for Environmental Information at https://www.ncdc.
noaa.gov/cdo-web/datatools. We begin by averag-
ing the 15-min prices from the ERCOT dataset to obtain
the average hourly historical prices. After suitably scaling
the temperature and hourly price datasets, we separate them
into training and test data sets, where the training data set
comprises of all price and temperature information for the
years 2013-2017, and the test data set comprises of the same
information for the years 2018-2019. We then implement an
LSTM network comprised of one hidden layer with 5 LSTM
neurons using Keras (https://keras.io). Based on the
considerations described in Remark 1, we choose a forecast
window of 3 hours. The network was found to converge in
10 epochs, with a mean absolute error (MAE) of 4.06%.

We then compare the two following approaches:

• Private model-free control scheme: We compute the
solution to the optimal control problem (3) using the
approach in Section III-A.2, compute the control com-
mands broadcast by the LSE according to (6) and
implement the corresponding switching actions (7).

• Model-based control scheme: We compute the solution
to the optimal control problem (3) by an LP relaxation
as described in Section II-C, compute the velocity
control commands broadcast by the LSE using a PID
controller with gains kp = 10−4, ki = 10−6 and
kd = 10−4, and determine the control actions of the
individual homes according to (4).

We simulate the response of the homes to each of these
control schemes by solving (1) with switching action (7)
over a horizon of T = 24h by discretization using the
Euler method with a step size of 1 second, and compute
the total power consumption at each time step. Fig. 2-Bottom
shows the temperature profiles of the homes with the model-
free control scheme, clearly satisfying consumer comfort
constraints. We observe that the ACs are pre-cooled from
t ∈ [0, 16]h and are turned off during the period of peak
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Fig. 2. Top: Hourly price and ambient temperature, Middle: Comparison:
Power consumption of the proposed model-free framework vs model-based
solution in Section II-C, Bottom: Temperature profiles of ACs.

pricing between t ∈ [16, 17.5]h. It can be verified that this
OFF cycle aligns with the average duty cycle of the ACs
computed from αi and βi, {1, 2, . . . , N}.

The total power consumption under the model-free and
model-based control schemes are compared in Fig. 2-Middle.
We observe that the power consumption of the model-
free control scheme approximately tracks the mean of the
power consumption trajectory generated by the model-based
scheme. The average energy consumption Eavg and energy
cost savings Es over the day for each control scheme are
found to be as follows:

Uncontrolled: Eavg = 25.68MWh, Es = 0
Model-based: Eavg = 22.4MWh, Es = $3787
Model-free: Eavg = 23.0MWh, Es = $3597.

Strikingly, the proposed model-free approach has almost no
loss of performance as compared to the complex model-
based scheme, indicating its potential.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed a model-free framework to
minimize the cost of procuring electricity for a collection
of residential thermal loads by pre-cooling them to avoid
purchasing power during peak pricing periods. The proposed
approach is privacy-preserving in the sense that it does not
require knowledge of the thermal dynamics or measurement
of the states of the individual homes. Future work will
involve improving the forecast of the time at which the peak
price occurs in an online manner to dynamically shape the
duration and frequency of the pre-cooling cycles.
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