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Abstract

Sphingolipids are a vital component of plant cellular endomembranes and carry out multiple
functional and regulatory roles. Different sphingolipid species confer rigidity to the mem-
brane structure, facilitate trafficking of secretory proteins, and initiate programmed cell
death. Although the regulation of the sphingolipid pathway is yet to be uncovered, increasing
evidence has pointed to orosomucoid proteins (ORMSs) playing a major regulatory role and
potentially interacting with a number of components in the pathway, including both enzymes
and sphingolipids. However, experimental exploration of new regulatory interactions is time
consuming and often infeasible. In this work, a computational approach was taken to
address this challenge. A metabolic network of the sphingolipid pathway in plants was
reconstructed. The steady-state rates of reactions in the network were then determined
through measurements of growth and cellular composition of the different sphingolipids in
Arabidopsis seedlings. The Ensemble modeling framework was modified to accurately
account for activation mechanisms and subsequently used to generate sets of kinetic
parameters that converge to the measured steady-state fluxes in a thermodynamically con-
sistent manner. In addition, the framework was appended with an additional module to auto-
mate screening the parameters and to output models consistent with previously reported
network responses to different perturbations. By analyzing the network’s response in the
presence of different combinations of regulatory mechanisms, the model captured the
experimentally observed repressive effect of ORMs on serine palmitoyltransferase (SPT).
Furthermore, predictions point to a second regulatory role of ORM proteins, namely as an
activator of class Il (or LOH1 and LOH3) ceramide synthases. This activating role was found
to be modulated by the concentration of free ceramides, where an accumulation of these
sphingolipid species dampened the activating effect of ORMs on ceramide synthase. The
predictions pave the way for future guided experiments and have implications in engineering
crops with higher biotic stress tolerance.
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way responses in a thermodynamically consistent manner. The analysis resulted in a sig-
nificant reduction in the number of possible regulatory interactions. Mainly, the model
predicts regulatory interactions between ceramides, ORMs, and ceramide synthases (espe-
cially class II). This framework can pave the way for biochemists to systematically identify
plausible regulatory networks in understudied metabolic networks where knowledge on
the underlying regulatory mechanisms is often missing. As future experimental works
explore these predictions, an iterative cycle can begin wherein model predictions allow for
targeted experiments which in turn generate results that can be reincorporated into the
model to further increase prediction accuracy. Such a model-driven approach will signifi-
cantly reduce the solution space traversed by the experimentalist.

Introduction

Sphingolipids are a diverse group of membrane lipids essential in eukaryotic organisms. In
plants, sphingolipids comprise up to 40% of the plasma membrane and are abundant compo-
nents of cellular endomembranes such as the endoplasmic reticulum (ER), Golgi, and tono-
plast [1,2]. Through their unique structural features, sphingolipids carry out several essential
functions in plant cells. Glycosylated sphingolipids like glucosylceramides (GlcCer) and glyco-
sylinositolphosphoceramides (GIPCs) contribute to membrane function and are involved in
the trafficking of secretory proteins out of the cell [3,4]. The accumulation of other sphingoli-
pids, namely long chain bases (LCBs) and ceramides, signal the initiation of programmed cell
death (PCD) when plant cells are under environmental stresses, such as the presence of bacte-
rial or fungal pathogens [5,6].

The sphingolipid biosynthesis pathway starts in the ER with the condensation of palmitoyl-
CoA and serine to produce 3-ketosphinganine. This reaction is the first committed step
towards sphingolipid LCB biosynthesis and is also the rate-limiting step of the sphingolipid
biosynthetic pathway [7]. 3-Ketosphinganine is then reduced to sphinganine, which is the
basic LCB. Sphinganine can then go through multiple modifications including unsaturation in
A4 or A8 positions; hydroxylation at C4 and/or phosphorylation at its C1 position. LCBs can
then be linked to a fatty acyl-CoA, typically with chain-lengths ranging from 16 to 26 carbon
atoms, to produce ceramides [8,9] by the activities of ceramide synthases. In Arabidopsis, two
classes of ceramide synthases were identified. Class I, encoded by Longevity Assurance Gene
One Homolog2 (LOH2), mostly operates on acyl-CoAs of length 16 and dihydroxy LCBs and
class I, encoded by LOHI and LOH3, act on acyl-CoAs containing more than 22 carbons, also
referred to as very long chain fatty acids (VLCFAs) and tri-hydroxy LCBs [9,10]. The ceramide
backbone is further modified by glycosylation at its C-1 position to form GlcCer or linked to
inositol phosphate and further glycosylated in Golgi bodies to yield GIPCs, the most abundant
glycosphingolipid in plant cells [1,11,12].

Similar to many other biochemical pathways, the first committed step catalyzed by serine
palmitoyltransferase (SPT) constitutes the main regulatory point in the pathway [7]. Tight reg-
ulation on SPT ensures sufficient production of sphingolipid components to maintain cellular
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growth, and simultaneously prevents the accumulation of PCD-inducing components under
non-stress conditions. A small polypeptide of 56 amino acids referred to as the small subunit
of SPT (ssSPT) is necessary for optimal activity of this enzyme [13]. Recently, orosomucoid-
like proteins (or ORMs) have emerged as negative regulators of the sphingolipid pathway [14].
Studies conducted in Arabidopsis thaliana (hereafter Arabidopsis), Saccharomyces cerevisiae
and mammalian cells have shown that the lack of functional ORM proteins results in accumu-
lation of sphingolipids, especially ceramides and LCBs [14-17]. Interestingly, these proteins
are essential to complete a life cycle in the model multicellular organisms Arabidopsis and
mouse [16,17]. Although the exact regulatory mechanisms remain unknown, it has been
shown that the ORM-SPT physical interaction is necessary to downregulate the activity of the
enzyme [16,18].

Interestingly, in addition to the regulation at the first step of the biosynthetic pathway,
ORM:s were proposed to act as modulators of ceramide synthases [19]. It was shown that the
overexpression of ORM genes leads to differential activity between the two classes of ceramide
synthase. Activity of class I ceramide synthase (LOH2) was observed to decrease, while class II
(LOH1/LOH3) activity was stimulated [19]. Conversely, downregulation of ORM gene expres-
sion produced the opposite effect. In addition, studies conducted on yeast and mammalian
cells postulated a ceramide-ORM feedback regulation, in which the physical interaction
between ceramides and ORMs leads to a decrease in SPT activity [20-22]. Taken together,
these experimental observations started to uncover the global regulatory role played by ORMs
in the sphingolipid pathway, however, there still remain critical knowledge gaps. For example,
it is still not known whether ORMs have any regulatory interactions with the ceramide
synthases and whether or not any other sphingolipid components interact with ORMs [19].
Furthermore, while several potential regulatory schemes were proposed to explain each of the
observed pathway behavior, experimentally verifying each of the proposed mechanisms
remains an impractical task.

Computational systems biology is a field concerned with modeling complex biological sys-
tems to test the feasibility of a predefined hypothesis or to generate new testable hypotheses
based on existing observations [23]. Over the past decade, constraint-based genome-scale met-
abolic models (GSMMs) have been reconstructed and successfully used to probe the primary
metabolism of several plant model systems including Arabidopsis [24-28]. The aim of such
large-scale, multi-tissue models has been to (i) probe the activity of primary metabolism under
different growth and environmental conditions [26], (ii) understand resource partitioning
between source and sink tissues [27], and (ii) investigate shifts in central and energy metabo-
lism associated with light and nutrient availability [26,28]. Therefore, detailed analysis of
peripheral pathways such as the sphingolipid pathway is usually outside the scope of such stud-
ies and the pathways are either overly simplified [26,27] or omitted [28]. Furthermore,
GSMMs rely on stoichiometric based analysis and therefore cannot capture relationships
between flux, enzyme expression, metabolite concentration, and regulation [29].

A widely applied modeling framework that is used to address such limitations is kinetic
modeling [30]. This framework describes the metabolic and regulatory processes occurring in
the system through kinetic expressions (e.g. mass action, Michaelis-Menten). Starting with a
set of initial conditions, the temporal behavior of the metabolic and regulatory network can be
determined [31]. However, practical application of this framework is dependent on the avail-
ability of measured enzyme kinetic parameters for all enzymes in the network, which is usually
not feasible. To overcome this limitation, ensemble kinetic modeling (EM) [32] was developed
to sample through the entire allowable kinetic solution space to generate an ensemble of
kinetic models that describe the system (see Materials and methods). This ensemble is then fil-
tered using prior knowledge of the system’s response to different genetic perturbations [33].
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EM was used to capture the inherent non-linearity of metabolic systems and to identify meta-
bolic bottlenecks in the production of various industrially relevant compounds [34]. In addi-
tion, EM was used to predict the presence of regulatory interactions occurring in biochemical
pathways [35]. Implementation of such procedure can therefore greatly accelerate the process
of hypothesis generation and testing by predicting plausible regulatory mechanisms that satisfy
the observed experimental behavior of the pathway under different growth conditions. This
analysis can subsequently be followed up with experimental testing for validation and iterative
model curation.

A number of studies have used different forms of kinetic modeling to study sphingolipid
metabolism in yeast and mammalian cells [36-39]. These studies used different experimental
data sets such as lipidomics, transcriptomics, and fluxomics to parametrize a predefined
kinetic model describing the sphingolipid pathway. In most cases, the implemented methods
assumed that the sphingolipid regulatory network was completely understood [36-38]. Fur-
thermore, they did not account for the possibility that more than one parameter set can satisfy
the observed experimental measurements. A recent study aimed at analyzing sphingolipid
metabolism in yeast addressed these issues by implementing a new framework called inverse
metabolic control analysis (IMCA) [39]. The authors used this framework to identify the key
enzymes responsible for the observed sphingolipid profile. However, the study did not incor-
porate any regulatory proteins such as ORM:s into their analysis.

In this work, a kinetic model of the Arabidopsis sphingolipid pathway was constructed to
predict the pathway’s response to various internal and external perturbations. By using the EM
approach, we identified a highly plausible regulatory interaction between ORM proteins and
different components of the sphingolipid network. These interactions were deemed plausible
as their presence was required in order to obtain the experimentally observed behavior of the
system. By testing different sets of regulatory mechanisms, the implemented framework was
used to eliminate postulated interactions which were not consistent with the experimentally
observed response of the network to genetic perturbations. The novel prediction made by the
analysis is the presence of a ceramide-ORM-ceramide synthase (class II) regulatory interac-
tion. In this scheme, ORM:s activate class II ceramide synthases (LOH1/LOH3); however,
upon ceramides accumulation ORMs are repressed and not able to activate CS II causing a
buildup of LCBs. These results illustrate how kinetic models can be used to predict regulatory
mechanisms in biochemical systems despite lack of prior knowledge on enzyme kinetics.
These predictions will result in a metabolic and regulatory model of the sphingolipid network
capable of more accurately predicting the pathway’s response to different genetic manipula-
tions as well as its response to biotic and abiotic stresses.

Results
Metabolic network reconstruction

The reconstructed network comprises a knowledgebase of all the active metabolic transforma-
tions involved in sphingolipid biosynthesis in Arabidopsis (see S1 File). The network com-
prises 77 reactions associated with 24 genes. This resulted in an elementary reaction network
consisting of 374 elementary reactions, excluding the elementary steps incorporated to
describe regulatory mechanisms (see Materials and methods). The large difference between
the number of reactions and number of genes is due to the enzyme promiscuity present in the
sphingolipid synthesis pathway. In Arabidopsis, the activity of the A4 desaturase is minimal in
most tissue types [40], therefore this reaction was not included into the network. Moreover,
the majority of acyl-CoAs found in sphingolipids are either C16 or C24 fatty acids [8,41].
Hence, the relatively negligible concentrations of other chain-length fatty acids were combined
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Fig 1. Simplified depiction of the sphingolipid pathway. A metabolic network displaying the main reactions constituting the
sphingolipid pathway. Blue flux values correspond to reactions catalyzed by CSI and red flux values correspond to reactions catalyzed
by CS II. SPT: serine palmitoyltransferase, KSR: 3-ketosphinganine reductase, SBH: LCB C-4 hydroxylase, CSI: class I ceramide
synthase, CSII: class II ceramide synthase, SLD: LCB A8 desaturase, FAH: fatty acid hydroxylase, GCS: glucosylceramide synthase,
GlcCer: glucosylceramide, GIPCS: glycosyl inositolphosphoceramide synthase, LCB: long chain base. C16 and C24 are fatty acids of
length 16 and 24 carbons, respectively.
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with one of these two groups based on their chain length. This was done to reduce redundancy
in the added reactions and to avoid having an exaggerated number of kinetic parameters,
which could potentially lead to overfitting.

Fig 1 shows the metabolic map used to construct the kinetic model. Several assumptions
had to be made on the order of modifications occurring to the different components in the
sphingolipid pathway. It was assumed that the enzyme LCB C4 hydroxylase (SBH1 and SBH2)
mainly hydroxylates free long chain bases instead of ceramides containing dihydroxylated
LCBs. This was based on previous evidence which showed that the sbh1 sbh2 double mutant
accumulated sphingolipids enriched in C16 fatty acids with dihydroxy LCBs coming from the
ceramide synthase class I [42]. Moreover, based on the findings reported by Konig et al. [43], it
was assumed that the acyl-hydroxylating enzyme fatty acid a-hydroxylase (FAH1 and FAH?2)
converted only ceramide-bound fatty acids and not free fatty acids. LCB A8 desaturase (SLD1
and SLD2) was also assumed to produce unsaturated LCBs bound to ceramides and not free
LCBs [44,45]. Again, this was done to avoid redundancy, as omitting these assumptions would
have led to an exponential increase in the number of reactions and therefore fitting parame-
ters. In addition, it was assumed that sphingolipid turnover rates were negligible compared to
their rate of formation. This assumption was necessary to calculate reference steady-state
fluxes. The linear GIPC forming pathway involving IPC-synthases and several glycosyl or
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glucuronyl-transferases [46] was lumped into one step, as no information was present on the
relative kinetics of the participating enzymes. Finally, since the majority of the glycosylated
sphingolipids (GlcCers and GIPCs) contain ceramides with hydroxylated fatty acids, no reac-
tions were added to convert non-hydroxylated ceramides into these complex forms.

Generation of kinetic parameters

The Ensemble modeling framework requires the input of both the reference steady-state fluxes
and the standard Gibbs free energies of the modeled reactions to generate the initial set of
kinetic parameters [32] (see Fig 2). The fluxes were determined by measuring the growth rate
and sphingolipid profiles of Arabidopsis seedlings at multiple time points during exponential
growth (see Materials and methods). By assuming negligible sphingolipid turnover and a con-
stant sphingolipid composition, measurements of growth and composition were used to deter-
mine the accumulation rate of each sphingolipid component. Flux balance analysis (FBA) [47]
was subsequently used to calculate the fluxes of the internal reactions in the network (see
Materials and methods). The values displayed in Fig 1 are normalized to SPT to illustrate how
the flux going through this reaction is branched into the different sphingolipid products. As
can be seen, the majority of the produced LCBs (73%) are channeled through class II ceramide
synthase to produce VLCFA containing ceramides. Furthermore, under normal conditions,
practically all of the sphingolipid components are non-phosphorylated (<1% phosphoryla-
tion). The activity of the complex sphingolipid producing enzymes GCS and GIPCS were simi-
lar. However, whereas the majority of GIPC products were VLCFA-containing ceramides,
30% of the flux through GCS went towards synthesizing C16-containing ceramides. This was
an interesting observation for the wild type, since previous CSI knockout studies found that
elimination of the C16-ceramide producing ceramide synthase has no observed change in phe-
notype under normal growth conditions [8].

The component contribution method [48] was subsequently used to calculate the standard
Gibbs free energy of each reaction in the pathway. As can be seen from the values in Table 1,
the standard free energy for most of the biochemical transformations in the pathway are nega-
tive and relatively far from equilibrium. Therefore, these reactions have a wide range of sub-
strate/product concentration ratios that can result in an overall forward flux of the reaction
[49] (see S2 File). However, the first and rate limiting step of the pathway, the reaction cata-
lyzed by SPT [1], has a slightly positive standard free energy. This means that a positive sub-
strate to product concentration ratio needs to be maintained in order for the reaction rate to
stay in the forward direction. Furthermore, the rate of the reaction is directly affected by any
changes in the actual free energy, and therefore in the concentrations of the participating reac-
tants [49]. Once the required inputs were determined, a MATLAB implementation of the
ensemble modeling framework was customized to generate the kinetic parameters (see Materi-
als and methods). This process was repeated for each of the tested regulatory schemes. Fig 3
illustrates how the generated set of kinetic parameters result in the measured steady-state
fluxes for the reference (wild type) steady-state and how the generated models are screened
based on their response to different perturbations.

The effect of perturbations on the generated model

To determine the feasibility of the metabolic network without any additional regulatory inter-
actions, we introduced perturbations in the form of enzyme overexpression or repression and
determined the predicted response of each model in the ensemble to the introduced perturba-
tion. The predicted response was then compared with the experimentally observed response
which was imposed as a ‘filtration step’. Table 2 shows the different perturbations introduced
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Fig 2. Workflow for using Ensemble modeling to predict regulatory mechanisms. Circles: metabolites, triangles:
regulators (red and blue signify inhibitors and activators, respectively). Dotted lines represent the steady-state flux. Green
lines indicate flux profiles corresponding to models that pass the applied perturbation and red lines signify models that
did not pass. Xg: substrate, Xp: product, V;,;,: inhibition reaction flux, V,: activation reaction flux.

https://doi.org/10.1371/journal.pcbi.1008284.9002

and the applied filters linked to each of them. One of the interesting observations made prior
to this analysis was the differential activity in the two classes of ceramide synthase resulting
from a perturbation to the level of ORM:s in the system. Previous studies postulated that this
differential activity potentially points to a possible regulatory interaction between ORMs and
the ceramide synthases [19]. However, it was found that a large fraction of the generated mod-
els displayed this behavior without the need for any regulatory intervention, meaning that this
behavior is more likely to emerge from the kinetic properties of the two enzyme classes. Fur-
thermore, it was observed that none of the models had satisfied the filtration step requiring an
increase in the concentration of the LCB sphinganine (d18:0) compared to the wild type dur-
ing the overexpression of class I ceramide synthase. This observation is expected since overex-
pressing ceramide synthase should intuitively decrease the concentration of LCBs which are
considered substrates to this enzyme. In addition, none of the models satisfied the experimen-
tal observation that the concentration of the VLCFA containing ceramide d18:1-hC24
increases during ORM overexpression. This was due to a decrease in the overall amount of
LCBs produced resulting from the reduced rate through SPT. The absence of models passing
these two filtration steps (see Table 2 for details) indicated that the incorporation of additional
regulatory interactions was required for the model to satisfy the available experimental
observations.

Predicting the regulatory scheme of the sphingolipid pathway

To predict plausible regulatory schemes capable of reproducing all of the observed responses,
we started with a set of 23 schemes that had been postulated in previous works [19,22]. Recent
work in mammalian cells and yeast had found that accumulation of ceramides had an inhibi-
tory effect on SPT activity, and that this interaction had been facilitated through ORMs [22].
In addition, previous work on the role of ORMs on the sphingolipid pathway in plants had
hypothesized the possibility of a regulatory interaction between ORMs and ceramide synthases
[19]. Therefore, the set of starting regulatory networks to be tested included different combina-
tions of regulatory interactions between ORMs and the ceramide synthases and/or ceramides,
as well as ceramide inhibition of SPT. These interactions were either in the form of an enzyme
activation or inhibition by a component in the metabolic network. S3 File has a description of
how the 23 schemes were generated and an explanation of how regulatory interactions were
incorporated into the network.

Table 1. Standard Gibbs free energy values for reactions in the sphingolipid pathway.

Reaction Reaction Name AG” (kJ/mol)
SPT serine palmitoyltransferase 8.9

KSR 3-ketosphinganine reductase -17.1

SBH LCB C-4 hydroxylase -397.4

CS1 class I ceramide synthase -25.5

CS2 class IT ceramide synthase -27.6

FAH fatty acid hydroxylase -93.0

GCS glucosylceramide synthase -4.5

GIPCS glycosyl inositolphosphoceramide synthase -5.1

https://doi.org/10.1371/journal.pchi.1008284.t001
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Fig 3. Model behavior under different conditions. (A) The flux profiles of different reactions during the reference (wild type) state. All of the models in the ensemble
reach the same steady-state flux. The dashed line refers to the reference steady-state value. (B) The flux profiles of different reactions during a perturbed state. The
displayed perturbation is an ORM repression. The dashed line refers to the reference steady-state value.

https://doi.org/10.1371/journal.pcbi.1008284.9003

The majority of the tested schemes resulted in no change to the number of filters passed
compared with the starting metabolic network. The two filters discussed in the previous sec-
tion had remained problematic. However, it was found that the schemes including ceramide
repression of ORMs were able to satisfy all of the observed responses. It is noted that although
the model captures the repression of ceramides on ORMs as a decrease in the concentration of
these proteins, the observed behavior would be the same if instead ceramides repressed ORM’s
binding efficiency to the regulated enzymes. Out of the 23 starting schemes, three regulatory
networks all requiring ceramide repression of ORMs had passed the implemented filtration
steps and were therefore considered candidates for further experiments to validate the pres-
ence of a regulatory interaction. Furthermore, it was found that the presence of an activating
interaction between ORMs and CSII produced a larger number of models satisfying the
observed responses. Fig 4 below displays this hypothesized regulatory network.

Table 2. List of perturbations and associated filtration steps used to screen the ensemble of models.

Perturbation Applied Filters
ORM RNAI{* 1 CSI activity

| CSII activity
ORM OE | CSI activity

1 CSII activity
| t18:0 and d18:1-hC16 concentration
1 d18:1-hC24 concentration
CSI OE 1 d18:0 concentration
1 “Cl16-cer” concentration

| “C24-cer” concentration

OE refers to overexpression and is modeled through an increase in the corresponding enzyme.
a RNAI refers to inhibition of the RNA coding for ORM expression.

https://doi.org/10.1371/journal.pcbi.1008284.1002
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Fig 4. Predicted regulatory scheme of the sphingolipid pathway. A metabolic and regulatory network displaying the
mechanism predicted to be responsible for the emerging observed behavior of the pathway. Ceramides repress ORM-
mediated activation of CSII. Blue lines indicate regulatory interactions identified in previous studies and red lines
indicate novel interactions predicted in this study.

https://doi.org/10.1371/journal.pcbi.1008284.9004

As can be seen from Fig 4, the role of both hypothesized regulatory mechanisms is to cause
an accumulation in dihydroxy-LCBs (d18:0) during CSI overexpression. The increase in cer-
amides resulting from the overexpression of LOH2 ceramide synthase (CSI) results in the
repression of ORM-mediated activation of CSII. Analysis of the passing models showed that
this does not cause a significant change in the flux through SPT. The main effect of this regula-
tion is to dampen the activating role of ORMs on CSII. This causes the concentration of LCBs
to increase, satisfying the imposed filter.

To gain further insight into what factors allowed a subset of the ensemble of kinetic param-
eters associated with the regulatory network (Fig 4) to satisfy the experimental observation,
those parameters were compared with the ones that did not pass the applied filtrations steps.
Due to the complexity in the relationship between the kinetic parameters of any given model,
it was difficult to pinpoint any differences between the two sets by comparing elementary
kinetic parameters. Therefore, these parameters were lumped in order to calculate apparent
kinetic parameters [49] (see 54 File). Subsequently, a two-sample Kolmogorov-Smirnov test
(KS test) [50] was performed to determine whether there was any statistical significance in the
distributions of parameters that passed the applied filtration steps compared to those that did
not. Interestingly, it was found that there was a significant (p < 0.001) difference for three of
the lumped parameters. Namely, both the maximal catalytic efficiency (k! ,) and substrate asso-
ciated Michaelis constant (Kj) associated with LCB C4-hydrolase (SBH) were significantly dif-
ferent between models that passed and those that did not (S4 File). This points to the essential
role that SBH plays in branching di- and trihydroxy LCBs. Furthermore, the distribution of
k! . values associated with the activated CSII pathway also displayed significant differences
between the two subsets of models (passed vs. failed). This analysis indicates that LCB branch-
ing at SBH, and the binding of ORM:s to CSII may play a vital role in maintaining homeostasis
within the sphingolipid pathway.
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Discussion

Sphingolipids constitute a major class of lipids in plants and play several functional and regula-
tory roles in plant cells [51]. The regulatory mechanisms governing the activity of the sphingo-
lipid biosynthesis pathway are not completely understood. Specifically, even though it is well
documented that ORM proteins negatively regulate SPT, questions regarding the role of these
proteins in regulating different enzymes in the pathway remain unanswered [15,19,22]. In this
work, we used a model guided approach to predict a regulatory scheme consistent with the
pathway’s observed behavior under different conditions, the up- and downregulation of ORM
gene expression and the overexpression of ceramide synthase class I (LOH2). The predictions
made pave the way for future guided experiments and have implications in engineering crops
with higher biotic stress tolerance.

Previous reports of computational analysis of sphingolipid metabolism have focused on
modeling the pathway’s activity in yeast and mammalian cells under different contexts [36-39].
However, most of the applied frameworks either did not consider regulatory interactions or
assumed a pre-defined regulatory network. A recent study of sphingolipid metabolism in yeast
developed a framework to determine the regulatory effect each enzyme had on the pathway but
did not incorporate the role of regulatory proteins such as ORMs [39].

In this study, a kinetic model comprised of elementary reactions describing both metabolic
transformations and regulatory interactions in the sphingolipid pathway was constructed. To
avoid both redundancy and overfitting, several assumptions were made to simplify the meta-
bolic network. First, the order of reactions was assumed to be fixed based on evidence from
previous works. It is possible that some of the enzymes are promiscuous in the order in which
they catalyze a given reaction (e.g., LCB modification). Second, the concentration of cofactors
and palmitoyl-CoA were considered to be constant both in the reference (wild type) and per-
turbed model. These metabolites participate in a large number of reactions in the cell and were
therefore assumed to be tightly regulated (since a change in their concentration will have an
effect on all the reactions they participate in). The addition of this constraint greatly reduced
the number of fitting parameters required, as the cofactors are modeled to be a part of the
enzyme complex. In addition, diffusion and transport rate limitations of sphingolipids enter-
ing and exiting the ER were not considered. This assumption was necessary as the transport
kinetics of the pathway are not known. Finally, it was assumed that sphingolipid turnover rates
were negligible compared to their rate of formation. This assumption was necessary to calcu-
late reference steady-state fluxes. Labeling studies using the stable isotope nitrogen 15 will be
conducted to determine rates of turnover reactions and these results will be used to further
improve the model.

The constructed network was used to generate a set of kinetic parameters that converge to
the same reference steady-state fluxes. By incorporating data on how the pathway responds to
the different perturbations represented in Table 2, different regulatory schemes were tested to
determine which ones were consistent with the observed data. The experimentally observed
pathway responses to different perturbations (enzyme over-expression (OE)/downregulation)
were incorporated into the framework as filtration steps that the generated models needed to
satisfy. This was implemented using a modified ensemble modeling framework (see Materials
and methods). Namely, the process of model screening was automated through the addition of
anew module which filters through the initial ensemble of kinetic parameters. Furthermore,
the incorporation of an activating regulatory mechanism was amended to ensure the genera-
tion of models consistent with the reference steady-state.

Starting with only the known regulatory interaction between ORMs and SPT, it was found
that this mechanism alone was sufficient to obtain the observed differential activity of the two
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classes of ceramide synthases during ORM OE or repression. This observation was counterin-
tuitive as both enzymes use LCBs as their substrate. The model showed that this behavior
could be explained solely based on the kinetics of the two classes of enzymes and does not
require any further regulation of either ceramide synthase. However, this scheme was still
incomplete, as it did not satisfy other observed behaviors in the pathway. Namely, the observa-
tion that LCBs accumulate during LOH2 (CSI) OE required additional regulatory mechanisms
to be incorporated into the network. By testing a set of plausible regulatory schemes, it was
observed that the addition of a ceramide-ORM inhibitory interaction and an ORM activation
of class IT ceramide synthases was required for all observed filtration steps to be satisfied. This
scheme is depicted in Fig 4. In this scenario, the prediction of the model indicates two layers of
regulation under normal conditions, (1) ORMs activate the synthesis of C24-containing cer-
amides by LOH1/LOH3 (CSII) and (2) the accumulation of ceramides represses this ORM-
mediated activation on CSII. The first prediction is consistent with a previous study where
overexpression of ORMs resulted in increased activity of class II CS that preferentially use
VLCFA and trihydroxy LCBs as substrates [19]. However, the effect of the accumulation of
ceramides in this regulation has not been reported. This repression by ceramides could also be
explained by a competitive inhibition of ceramide synthase.

In mammalian cells, it has been shown that ceramides, or downstream metabolites, are
involved in regulating the expression of ORM proteins, ceramide accumulation leads to
increased ORM protein levels [52]. In addition, ceramides mediate SPT inhibition by ORMs
[22]. The role of ORMDL proteins in the regulation of ceramide synthesis was tested using
mammalian cell cultures. However, in this system ORMDLs do not regulate ceramide
synthases [20]. The biological implications of the ceramide-ORM-CSII regulation depicted in
the present study could be specific to plants where ceramides containing VLCFA and trihy-
droxy LCBs are very abundant compared to mammalian cells. This regulation could be rele-
vant under bacterial and fungal infections where differential accumulation of C16-containing
ceramides and VLCFA-containing ceramides might be related to the defense response. Further
studies will be conducted with the fungal toxin fumonisin B1 (FB1), a ceramide synthase inhib-
itor that acts preferentially on LOH1 [53] promoting the accumulation of C16 ceramides
through LOH2. These results will be compared with the LOH2 OE scheme presented in this
work. In addition, future experimental work will focus on verifying the interaction of ORMs-
LOHs and the ORM-mediated activation of CSII. Specifically, this will be achieved through
co-immunoprecipitation (co-IP) experiments that will be used to determine the presence of
physical interactions between ORM1/2 proteins and ceramide synthases (LOH1/2/3).

The main strength of using the ensemble modeling framework to approach such challenges
is its ability to eliminate regulatory schemes which appear to be plausible on first sight. As
demonstrated in this work, the analysis significantly reduced the number of plausible regula-
tory schemes to be tested experimentally. Furthermore, due to the computational intractability
of testing all combinations of regulatory interactions in the pathway, it is possible that other
regulatory networks can also satisfy all filtration steps applied in this study. For example,
ORMs (or other components) could also be involved in regulating other downstream enzymes
like GCS. As more experiments are carried out on different Arabidopsis mutants and trans-
genic lines, the number of filtration steps will increase, potentially leading to fewer schemes
that satisfy all observations. Furthermore, experiments aimed at looking for regulatory interac-
tions between ORMs and different parts of the network might unravel additional interactions
that were not tested in this work. These schemes can easily be incorporated into the model as
the metabolic reactions have already been constructed. This highlights the need for future
experimental work to test the predictions of this study, which will allow the model to be
updated in a more systematic manner. We emphasize the importance of such model-driven
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approaches in addressing such problems as the one in this study, where the aim of the predic-
tions is (i) to reduce the solution space that the experimentalist has to cover and (ii) to pin-
point parts of the pathway where more data is needed to obtain a more accurate model. In this
regard, this work can be considered as the first step in a continuously updated design-test-
refine cycle aimed at obtaining an accurate mechanistic understanding of the behavior of the
sphingolipid pathway in plants.

Materials and methods
Sphingolipid compositions

The concentrations of LCB, ceramides, GlcCer, and GIPC in 12 to 15-day-old wild-type
(Columbia-0) seedlings were obtained from a previous study [16].

Growth rate

Arabidopsis seedlings were grown on Murashige and Skoog (MS) medium supplemented with
1% sucrose and 0.8% agar (pH 5.7) with 16 h light (100umol/ ms*) 8 h dark conditions at
22°C and 55% humidity. Three replicates, consisting of ten seedlings, were sampled at each
time point (5 d, 10 d, 15d and 20 d). The seedlings were freeze-dried, and the dry weight
recorded. Subsequently, a semi-log plot of the data was constructed, and linear regression was
used to obtain a best-fit line, with a slope corresponding to the growth rate (see S1 File).

Ensemble modeling

EM describes both the metabolic and regulatory state of a pathway as a set of elementary steps
obeying mass-action kinetics. This allows the construction of multiple sets of regulatory
schemes, which can be subsequently screened to determine the thermodynamic and kinetic
feasibility of each network. This section contains a brief description of how the set of kinetic
parameters can be obtained for a unimolecular enzymatic reaction with no regulation. Com-
plex reaction schemes follow the same general procedure but contain more elementary steps.

Determining steady-state flux distributions

Parsimonious Flux Balance Analysis (pFBA) [54] was used to generate the steady state flux dis-
tribution. pFBA is analogous to FBA but adds an outer objective that minimizes the sum of all
reaction fluxes. Objective tilting [55] was used to formulate both objectives in one function as
shown below.

J

Maximize v,,,,, .. — 0.0001 Z |v.]

JET=Vbiomass

subject to

> S v =0viel (1)

j€l
LB, <v,< UBYj€] (2)

Where I and J are the sets of metabolites and reactions in the model, respectively. S;; is the
stoichiometric coefficient of metabolite i in reaction j and v; is the flux value of reaction j.
Parameters LB; and UB; denote the minimum and maximum allowable fluxes for reaction j,
respectively. Vp,omass 1S the flux of the biomass reaction which mimics the cellular growth rate.

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008284  January 28, 2021 13/20


https://doi.org/10.1371/journal.pcbi.1008284

PLOS COMPUTATIONAL BIOLOGY The regulatory roles of ORM proteins in the sphingolipid pathway

The experimentally measured cellular composition of each of the sphingolipid components,
obtained from a prior study [16], was used to establish the stoichiometric coefficients of the
biomass equation. Since the majority of ceramides and complex sphingolipids contained either
16 or 24 carbon fatty acids, other acyl-CoA lengths were pooled together with one of the two
groups depending on whether they contained more or less than twenty carbons. The growth
rate was also determined experimentally to constrain the rate of the biomass reaction. Subse-
quently, by assuming negligible sphingolipid turnover rates, pFBA was used to calculate the
reaction rates for each enzymatic reaction in the network.

Generating initial ensemble of models

The elementary steps for a unimolecular enzymatic reaction can be written as:
Via Vi Vis
X, + ESX,ESXESX, +E
Via Via Vie

where, enzyme E; converts metabolite X; into X;, ;. Each step is reversible and has a rate of v; 5.
1 in the forward direction and v; ,; in the reverse direction. Since each elementary step follows
mass-action kinetics, the reaction rate can be expressed as the product of the reactant concen-
trations and a rate constant. Therefore, the rate of the forward reaction of the first step can be
written as:

Vii = k'l[Xi] [Ex]

1, 1,

where, k; ; is the rate constant associated with the forward reaction of the first step. This equa-
tion is subsequently normalized by the reference steady-state metabolite concentration and the
total enzyme concentration to yield:

re) S8,7€] [Xl] [El] Te] 5
i.total le f) XSS rng ref = K th 11

itotal

= (k,E

where, Erefi,total is the total enzyme concentration and X is the steady state metabolite con-

centration, both at the reference steady state. Preforming this normalization alleviates the need
to measure metabolite and enzyme concentrations. This equation is subsequently converted to
the log-linear form:

Inv,, = lnl%f? +InX, + Ine,;
During steady-state, X; becomes 1, therefore the In(X;) term can be omitted. This yields:
Inv,, = lnIf<,?‘el7 + Ine;;
Next, the reversibility of each reaction step (R;;) is sampled in order to determine the rate

of each elementary reaction v;;

min(vi,ijl’ Vi.Qj)

v max(vqu ) Vi,zj)

R;; can take on any value between 0 and 1 (where 0 is an irreversible reaction step) and is fur-
ther constrained by the Gibbs free energy of the reaction as follows

AG{ ref ref
(RT)L <szgn it Zl R;; < <RT)
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The reaction rates for each step (v;;) can then be determined from the net enzymatic reaction
rate (Vrefi,net)

ng—l - Vi,2j = V:Zfet
Finally, the enzyme fractions for each elementary step (e;;) are sampled between 0 and 1 in
order to calculate the kinetic parameter (Ki,jref).
that the sum of enzyme fractions for each reaction is unity.

An additional constraint is imposed to ensure

i

=1

This procedure is repeated up to 10,000 times to generate an ensemble of kinetic parameters
that all reach the predefined reference steady-state. Next, a system of ordinary differential
equations describing the metabolic network is solved to obtain the net steady-state fluxes.

X, 1
d_tl = X{g\,ef (Z Vgeneration Z Vconsumpfiv’“)

de 1
dt = Eref (Z Vgenemrion - Z V:onsumption)

i,total

A modified version of the MATLAB implementation developed by Tran et. al. [32] was used to

carry out the simulations in this work. The kinetic model and all scripts required to generate

the results in this study can be found at the link below.
https://github.com/aalsiyabi/plant_sphingolipid_kinetic_model.git

Model screening

After the initial ensemble of models are generated, a number of enzymatic perturbations are
introduced to analyze each model’s response. The perturbations take on the form of enzyme
overexpression, inhibition, or knockout and are formulated as follows

Vip = Ei.erelj()?iEH
Where E; ; represents the introduced fold change in enzyme expression compared to the refer-
ence state. Although the original MATLAB implementation [32] incorporated both inhibition
and activation regulatory mechanisms, it was observed that no models were generated when
activation was incorporated into the regulatory network. Therefore, modifications were imple-
mented to ensure that the mass balances of the introduced activator-enzyme complexes are
satisfied. Furthermore, the fluxes of the activated pathway(s) were integrated with the flux
going through the main reaction to ensure an accurate response to changes in the concentra-
tion of the activator.

After each perturbation, the predicted enzymatic response is compared with the experimen-
tally observed behavior. Models resulting in contradictory enzymatic behavior are disregarded.
In this manner, the initial set of models is filtered through multiple rounds of perturbations,
until only a small set of highly predictive models remain. A new module was added to the orig-
inal implementation to automate the screening process. Perturbations with experimentally
known responses were incorporated into the module in order to automatically screen the ini-
tial ensemble of models. The output is a subset of models passing all filtration steps. It is noted
that the order in which the screenings are introduced does not affect the final outcome.
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Constructing multiple sets of possible regulatory networks

As described earlier, regulatory events can be described as elementary reaction steps [56]. The
regulatory network is input as a stoichiometric matrix (Sreg) similar in size to the S matrix
used to describe the metabolic network. The element Sreg; ; describes the type of regulation
metabolite i confers on enzyme j, and can either be activating or inhibitory. Therefore, by con-
structing multiple Sreg matrices corresponding to different possible regulatory schemes, the
EM approach can be applied on each regulatory network individually. An initial ensemble of
models converging to the experimentally determined reference steady-state is then constructed
as detailed previously. During this step, kinetic parameters associated with regulatory pro-
cesses and those associated with metabolic processes are sampled simultaneously. Further-
more, after generating and filtering the set of kinetic parameters for each network, the
regulatory scheme passing all the screening steps is hypothesized to be the most accurately rep-
resentative of the biological system. A list of the tested regulatory networks is provided in S3
File.
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