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Abstract

Lipid structures affect membrane biophysical properties such as thickness, stability, permeability, curvature, fluidity,
asymmetry, and interdigitation, contributing to membrane function. Sphingolipids are abundant in plant endomembranes
and plasma membranes (PMs) and comprise four classes: ceramides, hydroxyceramides, glucosylceramides, and glycosylino-
sitolphosphoceramides (GIPCs). They constitute an array of chemical structures whose distribution in plant membranes is
unknown. With the aim of describing the hydrophobic portion of sphingolipids, 18 preparations from microsomal (MIC),
vacuolar (VM), PM, and detergent-resistant membranes (DRM) were isolated from Arabidopsis (Arabidopsis thaliana)
leaves. Sphingolipid species, encompassing pairing of long-chain bases and fatty acids, were identified and quantified in
these membranes. Sphingolipid concentrations were compared using univariate and multivariate analysis to assess sphingo-
lipid diversity, abundance, and predominance across membranes. The four sphingolipid classes were present at different
levels in each membrane: VM was enriched in glucosylceramides, hydroxyceramides, and GIPCs; PM in GIPCs, in agreement
with their key role in signal recognition and sensing; and DRM in GIPCs, as reported by their function in nanodomain for-
mation. While a total of 84 sphingolipid species was identified in MIC, VM, PM, and DRM, only 34 were selectively distrib-
uted in the four membrane types. Conversely, every membrane contained a different number of predominant species (11
in VM, 6 in PM, and 17 in DRM). This study reveals that MIC, VM, PM, and DRM contain the same set of sphingolipid spe-
cies but every membrane source contains its own specific assortment based on the proportion of sphingolipid classes and
on the predominance of individual species.
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Introduction

The composition and amounts of proteins, carbohydrates,
and lipids determine the identity and functionality of biolog-
ical membranes and their specialized functions in different
subcellular compartments. Solubility, charge, volume, size,
and reactivity of the membrane lipids contribute to define
the  biophysical  properties of the  membranes.
These properties, such as thickness, stability, permeability,
curvature, fluidity, lateral diffusion, asymmetry, and interdigi-
tation, influence the physiological role of the membrane
during plant developmental processes and in stress condi-
tions (Niemela et al, 2009; Marqués et al, 2015; Maula et al,,
2015; Cacas et al, 2016; Fanani and Maggio, 2017; Fujimoto
and Parmryd, 2017; Gronnier et al, 2017; Grosjean et al,
2018).

Three of the most common and abundant lipid families
in plant membranes are glycerophospholipids, sterols, and
sphingolipids. Due to the relatively recent development of
selective procedures of extraction and identification, sphin-
golipids have emerged as a vast, abundant, and diverse lipid
group in plants (Markham et al, 2006; Cacas et al, 2013).
In addition, an increasing number of functions accredited
to sphingolipids encompasses major aspects of cell biology
(Ali et al, 2018; Huby et al,, 2020).

As amphiphilic molecules, sphingolipids are allocated to
cell membranes and from there, they constitute the dy-
namic structural support of the bilayer (Tapken and
Murphy, 2015; Michaelson et al, 2016, Mamode Cassim
et al, 2020) and act as physiological mediators of stomatal
closure, programmed cell death, plant-microbe interactions,
abiotic stress responses, plasmodesmata function and pollen,
fruit, and seed development (Dietrich et al, 2008;
Luttgeharm et al, 2016; Ali et al, 2018; Inés et al, 2018;
Mamode Cassim et al, 2019; Gonzalez-Solis et al., 2020).

In plants, complex sphingolipids are classified into four
classes, ceramides (Cers), hydroxyceramides (hCers), glucosyl-
ceramides (GlcCers), and glycosylinositolphosphoceramides
(GIPGs) that constitute approximately 4%, 3%, 37%, and
56%, respectively, of the total sphingolipids extracted from
Arabidopsis (Arabidopsis thaliana) leaves (Sperling et al,
2005; Markham et al, 2006, Markham and Jaworski, 2007;
Luttgeharm et al, 2016 Mamode Cassim et al, 2019).
Genetic, pharmacological, and biochemical approaches have
helped to establish some assignments to these sphingolipid
classes. However, the identification of the individual species
responsible for these roles remains unachieved. Because of
their low abundance, Cers and hCers are considered meta-
bolic intermediates or sources of signaling molecules. Cers
have been involved in the cold stress and the plant immune
responses (Liang et al, 2003; Dutilleul et al, 2015). hCers
have been reported as signaling transducers in hypoxia stress
(Xie et al, 2015). Because of their high abundance, GlcCers
and GIPCs have been identified as structural components of
PM, VM, plasmodesmata, Golgi, and ER membranes, with
concentration in the nanodomains (Gronnier et al, 2019). In
addition, Cers and GIPCs display signaling roles related to
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their structural membrane allocation. For instance, GlcCers
are involved in gametophyte development, morphology and
secretion of Golgi membranes, low-temperature perfor-
mance, organogenesis, and cell differentiation (Dietrich et al,,
2008; Melser et al, 2010; Chen et al, 2012; Msanne et al,
2015). GIPCs have been postulated as structural signaling
connectors between the PM and the cell wall (Mamode
Cassim et al, 2020), as elements in several forms leading to
the defense against pathogens, in the pollen viability, and in
the perception of high salt levels (Wang et al, 2008;
Mortimer et al, 2013; Rennie et al, 2014; Fang et al, 2016;
Jiang et al, 2019). This diversity of functions explains the
essential character of sphingolipids in plants.

The hydrophobic moiety of sphingolipids is constituted
by two acyl chains: a fatty acid (FA) with 16-26C and a
long-chain base (LCB) of 18C. LCBs can be dihydroxylated
at C1 and C3 or trihydroxylated with a third OH at the C4
position and can contain a double bond in C4 (trans config-
uration) and in C8 (cis or trans configuration). The FA can
have a double bond in C9 (cis configuration). The LCB and
FA are bound through an amide bond between the amino
group in the C2 from the LCB and the carboxyl group of
the FA forming the Cer backbone. When the C2 position of
the FA is hydroxylated, then a hCer backbone is formed.
When the hydroxyl group from the C1 of the LCB forms a
1,4 glycosidic linkage to a glucose unit, a GlcCer is named
and when it is esterified to a phosphoinositol linked to sev-
eral carbohydrate units, a GIPC is produced. The OH from
the Cers and hCers, the glucose residue from the GlcCers,
and the phosphoinositol bound to the other sugar residues
form the polar head of sphingolipids. The number of
possible LCB forms (hydroxylated, unsaturated), FAs
(hydroxylated, unsaturated, with different carbon number),
and carbohydrates (diverse type and number of sugars) may
render an immense number of assembled combinations or
sphingolipid species (Luttgeharm et al., 2016).

Some plant cell membranes are particularly enriched in
sphingolipids: the ER and GA membranes, the plasma
membrane (PM), and the vacuolar membrane (VM).
Detergent-resistant membranes (DRM) are sub-PM prepara-
tions very useful in the characterization of the composition
and function of membrane nanodomains that have sphingo-
lipids and sterols as their major constituents (Sezgin et al,
2017). Microsomal membranes (MIC) are a heterogeneous
population of membrane vesicles from the different organ-
elles and the PM. These membranes have distinct and essen-
tial functions in plant cells. In the mesophyll cells, for
example, VM and PM surround two important spaces: the
cytoplasm and the vacuolar lumen, respectively. The PM is
the ultimate border of the cell and carries out solute transit,
external signal perception, energy transduction, cell-cell rec-
ognition, in-site synthesis of secreted compounds, and so on
(Mamode Cassim et al, 2019). PM contains nanodomains,
which recruit proteins and lipids involved in signaling, cell-
cell recognition, and communication (Tapken and Murphy,
2015). VM carries out solute transport, water movement,
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metabolite storage, lytic actions, and energy transduction
(Cui et al, 2020). Many of these functions are performed by
specific proteins, but lipids are the matrix supporting these
proteins, determining their tertiary and quaternary struc-
tures and, in many cases, regulating their activity. This ma-
trix is a source of signaling lipids and environmental sensors
(Gronnier et al, 2019). Therefore, resolving the lipid compo-
sition of the MIC, PM, DRM, and VM is essential to under-
stand their physiological purposes in a specific membrane.

This work describes the sphingolipidomes from the MIC,
VM, PM, and DRM from Arabidopsis leaves, and the impli-
cation of the sphingolipid composition in the properties
and functions of these membranes is discussed. For this, we
generated a set of 18 biological independent membrane
preparations from which sphingolipids were selectively
extracted and chemically separated. The independent analy-
ses allowed the identification and quantitation of molecular
species of particular pairings of LCBs and FAs corresponding
to the 84 hydrophobic moieties from the four sphingolipids
classes (Cers, hCers, GlcCers, and GIPCs) present in MIC,
VM, PM, and DRM. The experimental values were evaluated
and compared using univariate and multivariate analysis to
assess the allocation and distribution of the sphingolipid
classes and individual sphingolipid species across the four
membrane types. This analysis provides information about
the potential influence of the sphingolipid composition in
the properties and functions of the MIC, VM, PM, and
DRM.

Results

Microsomal, plasma, vacuolar, and DRM assessment
To characterize the sphingolipid composition of the PM,
VM, and DRM, using as a reference the MIC fraction, several
procedures were followed as shown in Figure 1. Two aspects
were used to assess the purity of every membrane prepara-
tion: ultrastructure and detection of membrane protein
markers by specific antibody recognition. The MIC fraction
was constituted by a heterogeneous population of vesicles
with diameters from 100 to 400 nm, stained with variable
contrast, and by the abundant presence of amorphous elec-
trodense material (Figure 2A). The ultrastructure of the VM
preparation had a more homogeneous pattern in terms of
shapes and a predominant vesicle size between 100 and 500
nm (Figure 2A). In the PM fraction, vesicle structures were
homogeneously stained, with similar shapes and with sizes
between 50 and 300 nm. The DRM ultrastructure micro-
graph presented a majority of nonvesicular fibrillary struc-
tures with lengths between 50 and 500 nm and some
vesicular formations. The purification of membrane prepara-
tions was evaluated by immunodetection of PM and endo-
membrane marker proteins. All the membrane markers
were detected in MIC: PM H™ -ATPase and a PM aquaporin,
sterol methyltransferase 1 from endoplasmic reticulum (ER),
the alternative oxidase (AOX) from the mitochondrial inner
membrane, and the Na®/H™ antiporter from the VM
(Figure 2B). The VM marker was only present in this
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membrane and the two PM markers were abundant in the
PM preparation that also included traces of ER and VM
markers. The DRM, which was obtained from the PM frac-
tions, reacted only against the PM markers. The Coomassie-
stained protein gel shows the profiles of all the membrane
preparations and was also the loading control (Figure 2C).
Altogether, these results showed that an adequate purifica-
tion of the corresponding membrane fractions was attained.

With the aim of acquiring a set of robust data for this
study, a total of 18 biological independent membrane prepa-
rations were isolated rendering a total of 23 technical repli-
cates (Figure 1). The sphingolipid contents of 23 samples
were separately processed, analyzed by HPLC/ESI-MS/MS,
and statistically scrutinized. Eight PM preparations were pu-
rified by two different procedures as described in the
Materials and Methods section. Their similarity was statisti-
cally verified and, therefore, they were treated independently
but under the common denomination of PMs (see the
Materials and Methods section for details). Then, the chemi-
cal analysis of sphingolipid molecular species from the four
membrane sources (MIC, VM, PM, and DRM) was per-
formed, which included the selective extraction and analyti-
cal separation of the four complex sphingolipids classes:
Cers, hCers, GlcCer, and GIPCs. Analyses measured the exact
pairings of FAs and LCBs in the constituent ceramides. The
extended profiling is described in Supplemental Data set S1.
As a result, 160 species of sphingolipids composed of an
LCB and a FA were identified. From these, 76 species pre-
sented levels below the detection limits, resulting in a final
profile of 84 species.

Content of sphingolipids and distribution of
sphingolipid classes in MIC, VM, PM, and DRM

The quantitative distribution of the complex sphingolipid
classes was determined for each membrane source
(Figure 3). This was calculated on the basis of the relative
sphingolipid content as a molecular percentage (mol %), as
is conventional in this type of study. In addition, distribution
was calculated in absolute amounts of sphingolipids per mg
protein. Regarding the latter, the protein yields of every
membrane preparation were considered and normalized
according to the MIC preparation, which was the starting
point for the three membrane preparations (Supplemental
Table S1; Supplemental Figure S1). The general structure of
the four sphingolipid classes is depicted in Figure 3A. The
total sphingolipid amount was first compared in Figure 3B,
revealing that while MIC contained 44.8 nmol sphingolipid/
mg protein, all the other membranes were enriched in these
lipids. VM and PM had very similar sphingolipid contents in
terms of mg of protein, while DRM showed a 6-fold enrich-
ment compared to the other membranes. Then, the contri-
bution of every sphingolipid class to the MIC, VM, PM, and
DRM was expressed in absolute amounts (Figure 3C). It was
found that the Cer amount was moderate in the PM (22.3
nmol/mg of protein), higher at the VM (81.3 mol/mg of
protein), and vast in DRM (715.4 nmol/mg of protein). The
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Figure 1 Experimental approach followed for the analysis of membrane sphingolipidomes. Arabidopsis (A. thaliana; Col-0) leaves from 11-week-
old plants were used to obtain the crude membrane fraction, microsomes (MIC). From this, VM and PM were purified. PM fractions were
obtained by two methods, phase partitioning, and free-flow electrophoresis. DRM fractions were obtained from the PMs isolated by two-phase
partitioning. Every membrane preparation was independently treated and extracted for sphingolipid analysis by HPLC/ESI-MS/MS. Thus, the
18 independent membrane preparations are named 18 biological replicates and are composed of six MIC preparations, three VM preparations,
three PM preparations obtained by two-phase partitioning, three PM preparations obtained by FFZE, and three DRM preparations. Every biologi-
cal replicate was used for one sphingolipid extraction and sphingolipid analysis (one technical replicate). However, only for one biological sample
from each type of membrane, two extractions were performed (two technical replicates). Therefore, a total of 23 technical replicates were
obtained as shown. The different statistical tests applied to the data are indicated.

hCer fraction was represented in MIC with values of 10
nmol/mg of protein, followed by the PM (95.7 nmol/mg of
protein), then by the VM (413.3 nmol/mg of protein), and
DRM (2,181 nmol/mg of protein). The GlcCer content
showed in MIC a low content (8.3 nmol/mg of protein)
while the highest values corresponded to VM (504 nmol/mg
of protein) and DRM (7122 nmol/mg of protein), with the
PM showing a moderate content (143.7 nmol/mg of pro-
tein). Finally, GIPC analysis revealed similar contents in the

VM and the PM, which was increased 10-fold in DRM. The
quantitative distribution of the four sphingolipid classes as
compared to the total content in every membrane type was
resolved (Figure 3D). Cers were predominant in DRM (app.
11.3% of the total sphingolipid content). The hCers showed
a similar distribution among all membranes (app. 20% of
the total sphingolipid content in the respective membrane).
GlcCers were abundant in the VM (app. 34% of the total
sphingolipid content). GIPCs were the most abundant class
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Figure 2 Purity assessment of MIC, VM, PM, and DRM fractions from
Arabidopsis leaves. A, Transmission electron micrographs from MIC,
VM, PM, and DRM preparations from Arabidopsis leaves. MIC, VM,
PM, and DRM pellets were fixed and processed as indicated in the
Materials and Methods. B, Immunodetection of the PM H*-ATPase
and a PM aquaporin, the Na*/H™ antiporter from the VM, the AOX
from the mitochondrial inner membrane, and the sterol methyltrans-
ferase 1 from ER. Membrane proteins were separated by SDS-PAGE
and detected by immunoblot. C, Protein loading was determined by
Coomassie blue staining of a replicate gel, wherein equal quantities of
protein were loaded in the lanes. MIC, microsomal fraction.

of sphingolipids in the PM (approximately 68% of its total
sphingolipid content) and in the MIC and DRM (approxi-
mately 44% of their total respective sphingolipid content).
These data indicate that the distribution of sphingolipid
classes and their respective species were different across
membrane types.

Overall assessment of sphingolipid profiles

To provide an overview of the general patterns among the
different membranes, the quantitative data obtained from
these 84 sphingolipid species were subjected to partial least
squares-discriminant analysis (PLS-DA). PLS-DA is a method
that uses multivariate regression to project variance along
groups, giving information about the similarity among the
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Figure 3 Sphingolipid content and sphingolipid class distribution
from MIC, VM, PM, and DRM of Arabidopsis leaves. A, Representation
of the structure of the main sphingolipid classes studied in this work.
Cers, ceramides; hCers, hydroxyceramides; GlcCers, glucosylceramides;
GIPCs, glycosylinositolphosphoceramides; FA, fatty acid; hFA, hydrox-
ylated fatty acid; LCB, long-chain base. B, Total sphingolipid content
from MIC, VM, PM, and DRM preparations. C, Content of every sphin-
golipid class in MIC, VM, PM, and DRM. Membrane types are indi-
cated in colors (light gray for MIC, magenta for VM, dark blue for PM,
and dark grey for DRM). D, Distribution of sphingolipid classes within
every membrane type. Values are expressed as mean + SE from 4 to 8
technical replicates depending on the membrane source from the in-
dependent biological preparations (see Figure 1). Different lowercase
labels in bars indicate statistical differences (i.e, in panel B, VM and
PM labeled as “b” were not statistically different among them, while
both VM and PM are statistically different to MIC labeled as “a” and
to DRM labeled as “c”). One-way ANOVA with Fisher’s post hoc test
for multiple comparisons, P < 0.05 was performed.
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DRM obtained from Arabidopsis leaves. B, Comparison of global
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different membranes and across replicates on the basis of
their species content (Figure 4A). The sphingolipid content
analysis showed that every type of membrane preparation
was different from the others while their replicates were
similar. To assess the diversity and distribution of sphingoli-
pid classes in the four different types of membranes, a hier-
archical clustering analysis was performed on the 84 species
of complex sphingolipids (Figure 4B). This clearly revealed a
membrane-specific profile for every one of the four sphingo-
lipid classes in Arabidopsis leaves. As it can be observed in
the heat map, there was enrichment of Cers in DRM, of
GlcCers in the VM, and of GIPCs in the PM (Figure 4B).
Although GIPCs predominated in DRM, other sphingolipid
classes were overrepresented as well (Figure 4B). These
results indicate that membranes are characterized by their
sphingolipid profiles.

LCB and FA profiling in Cers, hCers, GlcCers, and
GIPCs from MIC, VM, PM, and DRM
We focused on the dissection and identification of the
hydrophobic region of the four sphingolipids classes. Thus,
the LCB and FA compositions of the four sphingolipid
classes from the four membrane types were compared
(Supplemental Figures S2 and S3). We identified four LCBs
that differed in terms of unsaturation degree and hydroxyl-
ation: two were dihydroxylated forms (d180, d18:1)
and two, trihydroxylated forms (t18:0, t18:1; Supplemental
Figure S2A). In all membranes, the four sphingolipid classes
predominantly contained trihydroxylated LCBs, while the
dihydroxylated forms had a lower abundance in the Cers
and were present in about 5% of the GlcCers and GIPCs.
The predominant unsaturated LCB was the t18:1 form.

Considering the LCB.;s/LCBg4;g ratios in the membranes
and classes studied, hCers presented the highest values,
especially in the MIC (Supplemental Figure S2B). According
to the LCB,,/LCB,; ratios, the highest values corresponded
to the Cers and GIPCs in all the membranes, but the DRM
source was the one with maximal saturated over unsatu-
rated LCBs (Supplemental Figure S2C).

The analysis identified 20 FA species, differing in length,
degree of unsaturation, and hydroxylation (Supplemental

sphingolipidomes from MIC, VM, PM, and DRM. Heat map visualiza-
tion shows the standardized (z-scores) concentrations of individual
sphingolipid species from mol %. Hierarchical clustering of the sphin-
golipid classes was used to group similar profiles using Euclidean dis-
tances and Ward clustering.The scale from 1 to -1 represents the
number of standard deviations from the mean. Blue color indicates
lower concentrations than average and red color indicates higher con-
centrations than average. In B, average values from the technical repli-
cates were considered for each membrane preparation (7, 4, 8, and 4
for MIC, VM, PM, and DRM, respectively). These analyses required the
processing of a total of 1,932 values from LCBs and FAs (mol %) that
yielded 84 paired sphingolipid species (a LCB bound to a FA each)
from the 23 technical replicates. The sphingolipid classes were Cers,
ceramides; hCers, hydroxyceramides; GlcCers, glucosylceramides;
GIPCs, glycosylinositolphosphoceramides.
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Figure S3). Ten nonhydroxylated FAs (c16:0, c18:0, c20:0,
€20:1, €22:0, c22:1, €24:0, 24:1, c26:0, 26:1) were exclusively
associated with free Cers, while the other 10 hydroxylated
FA species (h16:0, h18:0, h20:0, h20:1, h22:0, h22:1, h24:0,
h24:1, h26:0, h26:1) were associated with hCers, GlcCers, and
GIPCs. The four sphingolipid classes in the MIC, VM, PM,
and DRM contained as a long-chain fatty acid (LCFA), the
16C species but the main contributors were very-long-chain
fatty acids (VLCFAs) with 22, 24, and 26C both in saturated
and unsaturated versions (Supplemental Figure S3A;
Supplemental Table S2). The comparative sum of these spe-
cies was appreciated in the LCFA/VLCFA ratios plot
(Supplemental Figure S3B). These ratios showed that the
hCers and GIPCs were mostly formed by VLCFAs that were
much less prevalent in Cers and especially in GlcCers. In this
class, DRMs were the membranes with the highest LCFA/
VLCFA ratios. We calculated the saturated over unsaturated
FA ratio (Supplemental Figure S3C). We observed that Cers
showed the highest ratio as compared to the other three
sphingolipid classes and in the four membranes. However,
DRM showed the highest saturated over unsaturated FA ra-
tio in all the membranes.

An overview of all the individual LCB and FA species
found in the four sphingolipid classes from MIC, VM, PM,
and DRM is depicted in Supplemental Figures S2 and S3.
Additionally, the composition of LCB and FA from Cers and
hCers in the MIC, VM, PM, and DRM is shown in
Supplemental Figure S4. Cers with dihydroxylated LCBs were
mainly acylated with a C16:0 FA in all membranes; minor
amounts of these LCBs were acylated to LCFAs in DRM and
VM showed some species bound to VLCFAs (Supplemental
Figure S4A and B). Ceramides with trihydroxylated LCBs
were much more abundant in all membranes, especially in
DRM, and they were acylated to a LCFA of C16:0, but pref-
erentially to VLCFAs > 24C (Supplemental Figure S4C
and D). Concerning the hCer fraction, this showed similar
combinations of LCB species bound to FAs as the Cer
class, but now acylated to hFAs/hVLCFAs (Supplemental
Figure S4E-H). In addition, dihydroxylated LCBs were more
abundant than trihydroxylated LCBs in hCers and although
they were all acylated to a hFA of 16C:0, dihydroxylated and
saturated LCBs and trihydroxylated LCBs were bound to a
hVLCFA > 24C, particularly the C24:0 and C24:1 species.

The molecular pairings of LCB and FA in GlcCers and
GIPCs were determined (Supplemental Figure S5). GlcCers
present in all membranes were characterized for a 40-fold
higher content of the d18:1 LCB as compared to the satu-
rated form. Practically, all these two LCBs were acylated to
the hLCFA C16:0 and only some of the unsaturated LCBs
were linked to a hVLCFA C24:0 (Supplemental Figure S5A
and B). The GlcCer species containing t18:1 exceeded by
about 100-fold the amount of the t18:0 forms and both
were acylated with a h16:0 FA. In addition, the GlcCers con-
taining t18:1 included a large amount of VLCFAs, the h22:0,
h24:0, h24:1, h26:0, and h26:1. This was a pattern shared by
all membranes (Supplemental Figures S5C and D).

Carmona-Salazar et al.

In the GIPC class, d18:0 and di181 LCBs had
similar low abundance, but while the unsaturated LCB was
mainly acylated with a C16:0 hLCFA, the saturated LCB
forms were mainly acylated with hVLCFAs from 22 to 26C
(Supplemental Figure S5E and F). GIPCs constituted by trihy-
droxylated LCBs contained the t18:0 and t18:1 species but
the latter were the more abundant from all the sphingolipid
classes, and their amidated FAs were mainly hVLCFAs with
C22:0, C24:0, C24:1, C26:0, and C26:1. This profile was ob-
served in all the membrane types (Supplemental Figure S5G
and H).

The abundance and distribution of these 84 sphingolipid
species in terms of classes and membrane types were
described (Supplemental Figure S6). The profile corre-
sponded to 25 Cer, 20 hCer, 12 GlcCer, and 27 GIPC species.
We observed that the Cer class is particularly abundant in
DRM, represented by about seven species, then VM is next
in decreasing order of abundance and diversity of Cer
species, followed by PM and MIC. The Cer species were
mainly formed by both saturated and unsaturated trihy-
droxylated LCBs and saturated VLCFAs. A small contribution
of dihydroxylated LCBs bound to LCFAs of 16C and 18C
was found in VM. The hCer species formed almost
exclusively by trihydroxylated LCBs bound to VLCFAs were
abundant in VM and DRM and to a lesser extent in
PM and MIC. The GlcCer species were more represented in
VM and DRM with a few species containing di or trihy-
droxylated LCBs. The GIPCs were abundant in all
membranes, especially in PM and DRM, and the more pro-
fuse varieties contained trihydroxylated LCBs and VLCFAs of
24C, in saturated and unsaturated forms.

Predominance of sphingolipid classes and individual
species in MIC, VM, PM, and DRM

The complexity of the experimental data from this
lipidomics study had as a particular focus, to assign, from all
the chemical species identified, those that were preferentially
distributed to a particular membrane. This allocation was
central, since it could allow deciphering the role of the spe-
cial lipid assortment in the properties and functions of the
VM and PM. As a first approach, the distribution of molecu-
lar sphingolipid species according to their representativeness
among the MIC, VM, PM, and DRM was shown (Figure 5).
From the 25 Cers identified, only four Cer species were of
high abundance but only distributed in VM and DRM, while
more than 20 Cer forms were identified in the four mem-
brane sources, but at low content (Figure 5A). The four
highly represented Cer species are depicted in the right part
of the Figure 5A panel, which shows that these species con-
tained trihydroxylated LCBs and VLCFAs. The distribution of
the 20 hCer forms was more similar among the four mem-
brane types, since the more abundant were from five to
seven species and the less abundant between were 13-15
species (Figure 5B). The hCer species with the highest abun-
dance in the four membranes were the same two species
that differed only in the desaturation of the FA, as it is
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Figure 5 Distribution of molecular sphingolipid species according to their diversity and abundance in MIC, VM, PM, and DRM from Arabidopsis
leaves. A. Distribution of Cer species in MIC, VM, PM, and DRM. Left pie chart includes the highly abundant species and right pie chart includes
the low abundant species. Bar graphs at the right side indicate the number of low and high abundant species. Structures of highly abundant spe-
cies in three different abundance intervals are depicted in colors according to the membrane type (light gray for MIC, magenta for VM, dark blue
for PM, and dark grey for DRM). B-D, lllustrate the same but for hCers, GlcCers, and GIPCs, respectively. The abundance of sphingolipid species is
expressed in mol % from 4 to 8 technical replicates depending on the membrane source (see Figure 1).

shown in the right part of the Figure 5B panel. Regarding
the distribution and abundance of the 12 GlcCer species
identified, VM showed the highest diversity of forms (seven
in total), which were found at high content as compared
with four species identified in MIC, PM, and DRM
(Figure 5C). The seven forms present in the VM belonged to
the high content interval, but at different extents as shown

in the right part of the Figure 5C panel. Finally, the GIPC
class, constituted by 27, 24, 27, and 25 species in MIC, VM,
PM, and DRM, respectively, integrated a diverse and the
more abundant sphingolipid class (reaching contents of
19%) in the four membrane sources (Figure 5D). From the
seven species in the highest interval of relative concentra-
tion, only one (GIPC t18:1h24:0) is the same that is
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partitioned to the four membranes, the rest are rather selec-
tive for a certain membrane. Most of the GIPC species
belonged to an abundance between 1 and 1.99% in the
membranes.

As a second approach, we aimed to distinguish which in-
dividual sphingolipid species were more represented in one
specific membrane as compared to the others in our study.
The approach here followed was to perform a one-way
ANOVA analysis and a Fisher’s post hoc test considering the
84 sphingolipid species already identified. This scrutiny
allowed the selection of a total of 44 sphingolipid species
with significant differences across the membranes studied.

Carmona-Salazar et al.

Such species were grouped in terms of their belonging to a
sphingolipid class and according to their abundance in the
membrane preparations. These results were expressed as the
individual species that, although found in other membranes,
were statistically more abundant in only one membrane
type (Figures 6 and 7).

Then, the individual content of Cers and hCers with a sig-
nificantly different abundance among MIC, VM, PM, and
DRM was determined by statistical scrutiny (Figure 6). VM
showed three Cers (Cer d18:1-c16:0, Cer d18:1-c24:0, and
Cer d18:1-c24:1) with up to approximately 3-fold more
abundance as compared to the other membranes
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Figure 6 Differential distribution of individual species of Cers and hCers among the MIC, VM, PM, and DRM from Arabidopsis leaves. A and B,
Cer individual species. C—E, hCer individual species. Values are expressed as mean + SE from 4 to 8 replicates depending on the membrane source
(see Figure 1). Different lowercase labels between bars indicate statistical differences as described in Figure 3.
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Figure 7 Differential distribution of GlcCer and GIPC individual
species among the MIC, VM, PM, and DRM from Arabidopsis leaves.
A, GlcCer individual species. B and C, GIPC individual species. Values
are expressed as mean + SE from 4 to 8 replicates depending on the
membrane source (see Figure 1). Different lowercase labels between
bars indicate statistical differences as described in Figure 3.

(Figure 6A). DRM presented seven Cers (Cer d18:1-c20:0, Cer
d18:1-c20:1, Cer t18:0-c24:0, Cer t18:0-c26:0, Cer t18:0-c26:1,
Cer t18:1-c24:0, and Cer t18:1-c26:0) that were increased up
to 4-fold with respect to MIC, VM, and PM (Figure 6B).
Eight hCer species were distributed in three groups accord-
ing to their abundance in the membrane preparations
(Figure 6C—E). VM showed the hCer d18:1-h24:1 with up to
2-fold more enrichment as compared to MIC and PM
(Figure 6C). DRM presented three hCer species (hCer d18:1-
h24:0, d18:1-h26:0, and t18:1-h26:0) that were increased up
3-fold with respect to the other membranes (Figure 6D).
Then, VM and DRM were increased up to 2-fold in four-
hCers: hCer t18:0-h22:0, t18:0-h24:0, t18:0-h26:0, and t18:0-
h26:1 (Figure GE).

In an analogous comparison, the individual content of
GlcCers and GIPCs with a significantly different abundance
among MIC, VM, PM, and DRM were plotted (Figure 7).
Seven GlcCers (GlcCer d18:1-h24:0, GlcCer t18:1-h16:0,
GlcCer t18:1-h20:0, GlcCer t18:1-h22:0, GlcCer t18:1-h24:0,
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GlcCer t18:1-h26:0, and GlcCer t18:1-h26:1) were augmented
30% in VM (Figure 7A). Six GIPC species (GIPC d18:1-h16:0,
GIPC t18:0-h24:1, GIPC t18:1-h16:0, GIPC t18:1-h18:0, GIPC
t18:1-h20:0, and GIPC t18:1-h22:0) showed a 2-fold increase
in PM as compared to MIC, VM, and DRM (Figure 7B).
Seven GIPC species (GIPC d18:0-h20:0, GIPC d18:0-h22:0,
GIPC d18:0-h24:0, GIPC t18:0-h20:0, GIPC t18:0-h22:0,
GIPCt18:0-h24:0, and GIPC t18:0-h26:0) were enriched about
3-fold in DRM as compared to the other membranes
(Figure 7C).

Discussion

While differential lipid composition has been recognized
in all cell membranes, characterization of lipidomes from
specific membranes is just recently emerging in eukaryotic
cells. This analysis has been scarcely performed due to the
difficulty in the isolation of membranes at a high purity and
the lack of protocols allowing an efficient and selective ex-
traction of lipids linked to a powerful platform of analysis.
Sphingolipidome profilings have been described in protozoa
such as Leishmania and Trypanosoma (Guan and Maser,
2017), Caenorhabditis (Cheng et al, 2019), yeast
(Sacharomyces cerevisiae; Ejsing et al., 2009), fly (Fyrst et al,
2008; Walls et al, 2013), mouse brain (Chao et al, 2019),
and various human organs and tissues (Merrill et al, 2009;
Hammad et al, 2010; Merrill, 2011; Sampaio et al, 2017;
Karsai et al, 2020; Levental et al,, 2020). In plants, the sphin-
golipidome at the level of the whole plant or organ has
been reported for Arabidopsis and rice (Markham et al,
2006; Markham and Jaworski, 2007; Ishikawa et al, 2016;
Liu et al, 2020b), and a study from Cacas et al. (2016) has
detailed the composition of GIPCs from tobacco.

In this study, the MIC, VM, PM, and DRM preparations
showed high purity, assessed by vesicle homogeneity and
protein markers, as reported for VM (Endler et al, 2006;
Barkla et al, 2009), PM, and DRM (Mongrand et al, 2004;
Borner et al, 2005; Lefebvre et al, 2007; Carmona-Salazar
et al, 2011). The sphingolipid contents determined in our
membranes are in agreement with the values that can be
compared in the literature. When the amount of nmol
sphingolipids/mg of protein in MIC is converted to nmol
sphingolipids/g fresh weight, the resultant 55 nmol sphin-
golipids/g fresh weight is a value similar to those reported
from Arabidopsis whole extracts, ie. 42.5 and 12 nmol
sphingolipids/g fresh weight, found by Markham and
Jaworski (2007) and Liu et al. (2020b), respectively. In ad-
dition, the number and abundance of the sphingolipid
species, LCBs, and FAs found in our membranes coincide
with those reported in whole extracts from Arabidopsis
(Markham and Jaworski, 2007; Liu et al, 2020b). These
agreements are indications of the reliability of the experi-
mental design followed to describe the present membrane
sphingolipidomes.
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Microsomes sphingolipid distribution, diversity, and
predominance

MICs include vesicles from most of the cell membranes.
Accordingly, MIC contained a high representation of ER and
PM vesicles as shown by the respective membrane markers
and reflected by the representation of 25 and 20 species of
Cers and hCers, respectively (which are synthesized in the
ER; Luttgeharm et al,, 2016). In addition, MIC contained 55%
of GIPCs, abundant in PM, and in whole extracts from
Arabidopsis (Liu et al, 2020b). The four most abundant
GlcCers in MIC showed to be present at high abundance in
PMs and VMs as well. All 84 species identified in the sphin-
golipid profiling of the present work were represented in
MIC, in accordance with its assorted vesicle composition.

VM sphingolipid distribution, diversity, and
predominance

Central vacuoles in the mesophyll cells from Arabidopsis oc-
cupy about 90% of the cell volume. They are engaged in the
preservation of the turgor pressure and in the degradation
and reutilization of cell constituents. Vacuoles actively
participate in processes as cell division, biogenesis, storage,
programmed cell death, and autophagy (Zhang et al., 2015;
Cui et al, 2020). The vacuolar tonoplast contributes to these
dynamic functions. We found that VM contained similar
relative amounts of hCers, GlcCers, and GIPCs and a minor
amount of Cers. Only GlcCers had been previously reported
in the VM (Verhoek et al, 1983; Yoshida and Uemura, 1986;
Ozolina et al,, 2013; Nesterkina et al,, 2015), which was coin-
cident with the 34% of GlcCers content that comprised 10
of the 12 identified species. Seven of the latter were pre-
dominant in the VM.

The high content of GIPCs and hCers (29.5 and 30.2%,
respectively) in the VM was unexpected. However, of the
24 GIPC species found, none was prevalent in this
membrane.

Regarding hCers (20 identified species, 7 as very abundant,
and 1 with the highest content as compared to the other
membranes), their presence could be related to the lytic
character of the vacuole. They could be remains of complex
sphingolipid degradation and potential biosynthetic precur-
sors for recycled species (Cui et al, 2020). hCers could be
required to maintain the impermeability of the vacuole lipid
bilayer to control water flow. In the stratum corneum, hCers
provide a highly hydrophobic barrier against water loss,
maintaining the hydration of the skin (Cha et al, 2016).
In addition, the LCBs composing the hCers could enable the
VM to function as a potential reservoir of signaling LCBs
and VLCFAs in plant cell death or development, respectively
(Bach and Faure, 2010; Saucedo-Garcia et al, 2011, 2015).
Ceramidases are located at the ER and Golgi but in the PM
as well (Luttgeharm et al, 2016; Dai et al, 2020).

PM sphingolipid distribution, diversity, and
predominance

The PM carries out extensive functions in the plant cell,
manifested as an isolating hydrophobic barrier that
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transports solutes, perceives externals signals, secretes mate-
rials, and transduces energy. These functions must be com-
patible with the current visualization of the PM as a nano-
and micro-compartmentalized film enclosing the cell con-
tent (Jaillais and Ott, 2020). Diversity of proteins and lipids
must be distributed to fulfill the structural and functional
roles of such small zones.

PM contained low amounts of Cers and GlcCers (4 and
12%, respectively) but contained all the Cer and GlcCer spe-
cies identified (25 and 12, respectively), most of them at low
abundance and with no predominance in this membrane.
However, hCers were represented in a significant proportion
(17%) composed of 20 species, with only five of them of
high abundance. The high incidence of -OH groups in the
small polar head of the hCers (almost all the species contain
trihydroxylated LCBs and a paired hydroxylated FA) could
promote structural disorder at the hydrophylic region of the
membrane (Maula et al, 2015). In addition, the large asym-
metry produced by the acyl chains from LCBs (18C) and
VLCFA (22-26C) may produce interdigitation between both
membrane leaflets, which usually increases membrane vis-
cosity (Fujimoto and Parmryd, 2017). Thus, the polar region
of the hCers could contribute to a flexible surface of the PM
and the acyl chains to a packed and rigid hydrophobic core.

GIPCs contributed to 68% of the PM sphingolipids. They
were composed of 27 species, from which 13 were the more
abundant and six preferentially enriched in the PM. The
high GIPC content agrees with the reports from Markham
and Jaworski (2007), Ishikawa et al. (2016), and Liu et al.
(2020b), and is close to the 40% value reported for tobacco
PM (Cacas et al, 2016). GIPCs contain the most voluminous
hydrophilic heads of all the membrane lipids in plants.
Although the present study excluded this polar moiety, it
must be recalled that this is an additional chemical feature
that adds diversity to GIPCs. The number of identified spe-
cies in our work was similar to that from tobacco (Cacas
et al, 2016) and rice (Ishikawa et al, 2016). However, while
the predominant GIPC in Arabidopsis is N-acetyl-hexos-
amine-hexuronic-inositolphosphate (Markham et al, 2006),
tobacco contains species with two polar heads belonging to
the A series (Cacas et al, 2016) and rice showed species
with four polar heads with different sugars (Ishikawa et al,,
2016). This variety of molecular structures protruding from
the membrane surface provides a chemical topology suitable
for recognition or sensing of external molecules/signals. A
GIPC interacting with a rhamnogalacturonan from the cell
wall pectins forms an attachment site to the PM (Voxeur
and Fry, 2014). A PM GIPC is capable of sensing Na™* ions
as the first event in the Arabidopsis response to salinity
stress (Jiang et al, 2019). The 21 GIPC species containing
VLCFA identified in this study support the proposed roles of
sphingolipids in PM nanodomain formation (Gronnier et al.,
2018), which interdigitation may facilitate cell-to-cell com-
munication (Cacas et al., 2016), and which length may con-
tribute to regulate the PM fluidity (Uemura et al, 1995;
Minami et al., 2009).
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DRM sphingolipid distribution, diversity, and
predominance

Sphingolipids, together with sterols, conform the lipid matrix
of nanodomains (Simons and lkonen, 1997). They recruit spe-
cific proteins mainly involved in signaling, favoring a more ef-
fective interaction that can be used in stress responses (Sutter
et al, 2006, Minami et al, 2009; Raffaele et al, 2009) and in
the regulation of plasmodesmata function (Yan et al, 2019;
Liu et al, 2020a). DRM are vesicle preparations obtained, in
our case, from PM and that have been very useful tools in
the studies on membrane nanodomains in plants (Mamode
Cassim et al, 2019). The typical sphingolipids identified in
these nanodomains have saturated and very long acyl chains
(Grosjean et al,, 2018). Our analysis revealed that DRMs had
the highest sphingolipid content (8-fold as compared to VM
and PM) and that some sphingolipid species from the PM
were concentrated in DRMs as reported in other plant spe-
cies (Mongrand et al, 2004; Laloi et al, 2007; Lefebvre et al,
2007; Cacas et al, 2016). DRMs contained 44% GIPCs. The
acyl part of the seven GIPC species, which were enriched (up
to 3-fold) in DRM as compared to PM, contained both
LCFAs and saturated VLCFAs, a t180 LCB, and a
predominance of a t18:1 LCB as a clear trait of association to
nanodomains. In addition, this is the main form associated
with GIPCs in total extracts from Arabidopsis (Markham
et al, 2006; Chen et al, 2012). In addition, DRM predomi-
nantly included Cer and hCer species (7 and 3, respectively)
that were not enriched in the PM, indicating that these prep-
arations and their analyses reflect the selectivity and abun-
dance of individual species targeted to specific membranes.

Conclusion

The analyses of the hydrophobic moieties of the
Arabidopsis sphingolipidomes from MIC, VM, PM, and
DRM, revealed a vast chemical diversity of species. The
four sphingolipid classes — Cers, hCers, GlcCers, and GIPCs
— were represented in the four membranes, but with dif-
ferent qualitative and quantitative distribution. Regarding
individual sphingolipid species, their abundance and pre-
dominance revealed a selective distribution in the four
membrane sources as well.

The sphingolipidomic profiles described here for the MIC,
VM, PM, and DRM contribute to the knowledge of the
structural matrix of plant membranes and to a future eluci-
dation of the roles of their components and dynamics in
cell processes.

Materials and Methods

Materials

Dextran T-500 and PEG 3350 were obtained from Sigma-
Aldrich (St. Louis, MO, USA). Optiprep solution was
obtained from Axis-Shield (Oslo, Norway). All chemicals
were of the highest grade available. Antibodies against the
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PM H*-ATPase, PM PIP2;2, vacuolar Na*/H™ antiporter, ER
sterol methyltransferase SMT1, and mitochondrial AOX
were obtained from Antisera, Vannds, Sweden.

Biological material

Arabidopsis (A. thaliana; Col-0) seeds were sown in propaga-
tion trays with a soil mixture (Mix 4 Aggregate Plus,
Sunshine, Sun Gro Horticulture, Canada Ltd; vermiculite,
Premium Grade, Sunshine, Sun Gro Horticulture; Canada
Ltd; and agrolite, Dica Mex, Dicalite de México S.A. de C.V,,
Tlalnepantla, Edo. de México, in 3:1:1, v:viv, respectively).
After 3 weeks, seedlings were transferred to individual pots
(with the same soil mixture as described above) or to hydro-
ponic trays (with one-half strength Hoagland’s medium,
Hoagland and Arnon, 1938). Plants were grown under natu-
ral solar irradiation and photoperiod, and kept at 25+3°C
in a greenhouse. In these conditions, the average photosyn-
thetic active radiation (PAR) was 980+293 pmol/m?/s,
and the plants were nonbolting and healthy as their photo-
synthetic quantum yield (Fv/Fm) was 0.83540.006. All the
leaves were harvested after 11 weeks and most of the leaf
mass was contributed by fully extended leaves. Then, they
were frozen at —70°C until use.

Microsomal membranes isolation

A total of 350 g fresh weight of Arabidopsis frozen leaves
from approximately 350 plants was used to isolate every
membrane preparation corresponding to a biological repli-
cate. Microsomal fractions were obtained as described
(Larsson et al,, 1994). Briefly, frozen leaf batches of 40 g fresh
weight were supplemented with a homogenization buffer,
blended, and the homogenate filtered and subjected to a
medium- and then a high-speed centrifugation. The result-
ing pellet, the microsomes, was resuspended and kept at —
70°C until use.

PM vesicles isolation by aqueous polymer two-phase
partitioning

PM was purified by aqueous two-phase partitioning systems
using dextran 500 and PEG 3350 as aqueous polymers
(Larsson et al, 1994; Carmona-Salazar et al, 2011). In this
method, PM vesicles were separated using the microsomal
fraction as the starting membrane material. PM vesicles
were separated from the other microsomal vesicles accord-
ing to their surface properties, and their selective partition
to a polymer phase.

VM and PM vesicles isolation by FFZE

Fractionation of microsomal membranes to render tono-
plast and PM vesicles was performed by free-flow zonal
electrophoresis (FFZE) using the BD FFE system (BD
Proteomics, Germany) as previously described (Barkla
et al, 2007, 2009). The separation was started from micro-
somes isolated from the Arabidopsis leaves. PM vesicles
are separated based on their charge-to-size ratio from the
other membrane vesicles.
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To determine the similarity between the PM prepara-
tions obtained by two-phase partitioning (three indepen-
dent preparations, four technical replicates) and those
obtained by FFE, (three independent preparations, four
technical replicates), a Kruskal-Wallis sum-rank test
(Kruskal and Wallis, 1952) was applied to the sphingolipid
species abundance (expressed as mol %) using R v 3.5.1
(R Core Team, 2018). The test indicated no statistical
differences between preparations (P = 0.3761), thus the six
preparations were pooled and treated under PM
denomination.

DRM isolation

DRM isolation was performed as described by Carmona-
Salazar et al. (2011). This was done from PM vesicles isolated
by the aqueous two-phase partitioning procedure, subjected
to Triton-X-100 solubilization, and then separated with an
Optiprep gradient, washed, and stored at —70°C until use.
A PM amount was adjusted to have a detergent/PM protein
ratio of 7 (w/w; 7 ug of Triton X-100 per 1 pg of membrane
protein, as reported for Arabidopsis DRM isolation by
Borner et al. (2005) and Laloi et al. (2007).

Protein determination

Total protein was determined by a modification of the
Lowry method (Peterson, 1977). BSA was employed as a
standard.

Immunoblotting assays

Immunoblotting was performed according to the proce-
dure described in (Carmona-Salazar et al., 2011). Briefly,
membrane proteins were separated by SDS-PAGE
(Schagger and von Jagow, 1987), electrotransferred to a
polyvinylidene difluoride membrane, blocked, and treated
with a primary antibody (Agrisera, Vannds, Sweden)
against PM H™-ATPase (1:10,000 dilution); for PM aqua-
porin PIP2;2, mitochondrial AOX, ER sterol methyltransfer-
ase SMT1, and vacuole Na*/H™ antiporter the same
antibody dilution was used (1:1,000). The secondary anti-
body (goat antirabbit I1gG alkaline phosphatase conjugate,
Sigma-Aldrich, St. Louis MO, USA) was used in a 1:1,000
dilution. Detection was performed with the alkaline phos-
phatase reaction (Sigma-Aldrich).

Sphingolipid analysis

MIC, VM, PM, and DRM preparations stored at —70°C were
thawed and lyophilized (samples were chemically stable
through this step). The extraction, separation, identification,
and quantification of sphingolipids were performed by
reverse-phase high-performance liquid chromatography cou-
pled with electrospray ionization tandem mass spectrometry
(HPLC ESI-MS/MS), as described in Markham et al. (2006)
and Markham and Jaworski (2007).
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Transmission electron microscopy

Ultrastructure of membrane preparations was analyzed as in
(Carmona-Salazar et al, 2011). Briefly, membrane fractions
were concentrated by centrifugation, fixed, and treated with
osmium tetroxide. Then they were infiltrated and embedded
in Epon resin. Ultrathin sections of 100-nm thick were done
in a Reichert-Jung Ultracut model (Reichert, Wien, Austria)
and collected on 200-mesh copper grids, stained with uranyl
acetate and observed with a Jeol-JEM-1200EX electron mi-
croscope (JEOL Ltd, Tokyo, Japan) operated at 60 kV.

Data analysis

Six MIC preparations, three VM preparations, three PM
preparations obtained by two-phase partitioning, three
PM preparations obtained by FFZE, and three DRM prepa-
rations, all of them independently obtained, were individu-
ally used for extraction and sphingolipid analysis. A total
of 18 biological independent membrane preparations were
isolated rendering a total of 23 technical replicates
(Figure 1).

PLS-DA, as implemented in software package
MetaboAnalyst (v.0.3), was used to represent the overall var-
iance across groups. Heatmaps of the z-scores arranged via
hierarchical clustering were constructed to visualize differen-
ces among membranes. ANOVA tests were used to identify
the most statistically important groups followed by the post
hoc Fisher's least significant difference (LSD) analysis,
P < 0.05.

All statistical tests were performed using MetaboAnalyst
v.0.3 (Xia and Wishart, 2016).

Supplemental Data

The following supplemental material is available.

Supplemental Figure S1. Multivariate analysis of the
sphingolipidome profiles from MIC, VM, PM, and DRM of
Arabidopsis leaves.

Supplemental Figure S2. LCB composition from the
sphingolipid classes of MIC, VM, PM, and DRM from
Arabidopsis leaves.

Supplemental Figure S3. FA composition from the sphin-
golipid classes of MIC, VM, PM, and DRM from Arabidopsis
leaves.

Supplemental Figure S4. LCB/FA composition from the
Cer and hCer classes of MIC, VM, PM, and DRM from
Arabidopsis leaves.

Supplemental Figure S5. LCB/FA composition from the
GlcCer and GIPC classes of MIC, VM, PM, and DRM from
Arabidopsis leaves.

Supplemental Figure S6. Comparative profiles of sphin-
golipid species from MIC, VM, PM, and DRM from
Arabidopsis leaves.

Supplemental Table S1. Yields from membrane fractions
isolated from Arabidopsis leaves.

Supplemental Table S2. Statistical significance of the FAs
present in the sphingolipid classes from MIC, VM, PM, and
DRM from Arabidopsis leaves.
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Supplemental Data Set 1. Sphingolipid profile of 160
sphingolipid species identified in MIC, VM, PM, and DRM
from Arabidopsis leaves.
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