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Using the field—particle correlation technique, we examine the particle energization
in a three-dimensional (one spatial dimension and two velocity dimensions; 1D-2V)
continuum Vlasov—Maxwell simulation of a perpendicular magnetized collisionless
shock. The combination of the field—particle correlation technique with the high-fidelity
representation of the particle distribution function provided by a direct discretization of
the Vlasov equation allows us to ascertain the details of the exchange of energy between
the electromagnetic fields and the particles in phase space. We identify the velocity-space
signatures of shock-drift acceleration of the ions and adiabatic heating of the electrons
arising from the perpendicular collisionless shock by constructing a simplified model with
the minimum ingredients necessary to produce the observed energization signatures in the
self-consistent Vlasov—Maxwell simulation. We are thus able to completely characterize
the energy transfer in the perpendicular collisionless shock considered here and provide
predictions for the application of the field—particle correlation technique to spacecraft
measurements of collisionless shocks.
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1. Introduction

Shock waves, disturbances propagating faster than the largest local wave speed, are
ubiquitous in space and astrophysical plasmas. From supernova remnants to the Earth’s
bow shock, we observe a variety of plasma environments in which these shock waves
efficiently convert the bulk kinetic energy of their supersonic flows into other forms of
energy, e.g. plasma heat, accelerated particles and electromagnetic radiation. Critically,
a commonality amongst this variety of plasma environments is that they are weakly
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2 J. Juno and others

collisional, i.e. the collisional mean free path is much larger than the relevant plasma
length scales, such as the gyroradius. Thus, this energy conversion must be mediated
by collisionless interactions. Here, collisionless energy transfer refers to the myriad
of mechanisms for transferring energy between the particles in the plasma and the
electromagnetic fields, or vice versa, from wave—particle resonances to instabilities.

Diagnosing collisionless energy transfer is a grand challenge in plasma physics, as the
plasma has many routes at its disposal for converting energy from one form to another.
For collisionless shocks, a number of processes have been identified as potential energy
transfer mechanisms, and the efficiency of each of these mechanisms is strongly dependent
upon factors such as the shock geometry and the fast magnetosonic Mach number M; =
Ushock / Vf, Where Ugock 18 the shock velocity and vy is the fast magnetosonic wave velocity.
In low-Mach-number shocks, dispersive radiation and wave—particle interactions provide
an effective resistivity through the shock ramp and the requisite dissipation routes for the
energy conversion of the shock (e.g. Kennel, Edmiston & Hada 1985; Balogh & Treumann
2013 and references therein).

As the shock velocity increases, particles can be reflected in the shock transition, further
complicating the energy exchange (Schwartz, Thomsen & Gosling 1983; Burgess &
Schwartz 1984; Scholer & Terasawa 1990; Guo & Giacalone 2013). Example energization
mechanisms driven by particle reflection in high-Mach-number shocks include shock
surfing acceleration (Sagdeev 1966; Sagdeev & Shapiro 1973; Lever, Quest & Shapiro
2001; Shapiro & Uger 2003), shock-drift acceleration (Paschmann et al. 1982; Sckopke
et al. 1983; Anagnostopoulos & Kaliabetsos 1994; Anagnostopoulos et al. 1998; Ball
& Melrose 2001; Anagnostopoulos, Tenentes & Vassiliadis 2009; Park et al. 2013),
diffusive shock acceleration (Fermi 1949, 1954; Blandford & Ostriker 1978; Ellison 1983;
Blandford & Eichler 1987; Decker 1988; Malkov & Drury 2001; Caprioli, Amato & Blasi
2010), and the ‘fast Fermi’ mechanism (Leroy & Mangeney 1984; Wu 1984; Savoini,
Lembége & Stienlet 2010). Additionally, the picture is not made simpler by the ways in
which these different energization mechanisms may interact. The transition from particles
gaining energy via shock-drift acceleration to particles gaining energy via diffusive shock
acceleration (Caprioli, Pop & Spitkovsky 2014), the onset of upstream kinetic instabilities
generated by the reflected particles (Schwartz et al. 1985, 1992; Schwartz 1995; Omidi,
Eastwood & Sibeck 2010; Wilson et al. 2010, 2012; Turner et al. 2013; Wilson et al. 2013a,
2014a,b), the electromagnetic fluctuations resulting from these instabilities themselves
contributing to the energetics of the shock via processes such as magnetic pumping
(Lichko et al. 2017; Lichko & Egedal 2020) and the prospect of shock reformation due
to the reflected particles, especially reflected ions (Leroy & Winske 1983; Kucharek
& Scholer 1991; Giacalone et al. 1992), all complicate the energy exchange between
the plasma and electromagnetic fields through the collisionless shock. Disentangling the
competition between these processes remains challenging.

To ascertain the details of the energy transfer in collisionless shocks, we perform a
first-principles, continuum kinetic simulation of a perpendicular collisionless shock and
use the field—particle correlation technique (Klein & Howes 2016; Howes, Klein & Li
2017; Klein 2017; Klein, Howes & TenBarge 2017; Howes, McCubbin & Klein 2018;
Chen, Klein & Howes 2019; Li et al. 2019; Horvath, Howes & McCubbin 2020; Klein
et al. 2020) to characterize this energy exchange directly in phase space. We consider
a reduced dimensionality and simplified geometry to isolate the available energization
mechanisms available to the plasma, focusing on the energization mechanisms of
shock-drift acceleration for the ions and adiabatic heating for the electrons. We emphasize
that, while these processes have been studied previously using kinetic simulations and
the particle-in-cell numerical method in higher dimensionality and greater generality (e.g.

Downloaded from https://www.cambridge.org/core. IP address: 72.82.254.174, on 20 Jul 2021 at 06:05:11, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/50022377821000623


https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0022377821000623
https://www.cambridge.org/core

FPC analysis of perpendicular collisionless shock 3

Park et al. 2013; Guo, Sironi & Narayan 2014a,b; Park, Caprioli & Spitkovsky 2015; Xu,
Spitkovsky & Caprioli 2020), this study is the first direct diagnosis of the energy transfer
in a collisionless shock in phase space and identification of the velocity-space signatures
of shock-drift acceleration and adiabatic heating.

This Eulerian perspective—focusing on individual regions of phase space for
determining the details of the energy exchange, in contrast to the more commonly used
Lagrangian perspective of integrating particle trajectories to identify how individual
particles are energized—is of high utility for interpreting spacecraft data. For example,
using Magnetospheric Multiscale mission measurements of the electron distribution
function in the Earth’s turbulent magnetosheath and the field—particle correlation
technique, Chen et al. (2019) found the velocity-space signature of electron Landau
damping and determined that the observed turbulence was principally dissipating via
electron Landau damping. In this regard, the work presented here is the beginning of
a broader program of study to identify the velocity-space signatures of energization
mechanisms in collisionless shocks and deploy the field—particle correlation technique
for the analysis of energy exchange using in sifu measurements of collisionless shocks.

To understand the observed velocity-space signatures and connect the resulting
signatures to known mechanisms for plasma energization, we construct simplified
analytical models for ions and electrons being energized by similar processes absent
of the complications of a fully self-consistent shock, and compute the field—particle
correlation on the particle distribution functions predicted by these idealized models.
These simplified models allow us to proceed pedagogically and connect the two distinct
pictures, the Eulerian point-of-view for identifying where in phase space the particles
are being energized and the Lagrangian point-of-view for analysing how individual
particles gain and lose energy. While significant intuition is gained from the Lagrangian
perspective, this novel Eulerian perspective provided by the field—particle correlation
technique has some advantages, chief among them is the ability to easily distinguish how
different regions of phase space are being energized. We will show how the field—particle
correlation technique allows us to easily separate the energy exchange occurring between
the electromagnetic fields and the multi-component distribution functions (e.g. incoming
beam versus reflected ions in the shock foot and ramp) which frequently characterize
collisionless shock dynamics. We may thus distinguish the different effects the same
electromagnetic fields are having on different parts of the distribution function, from how
the cross-shock electric field decelerates the incoming bulk flow and accelerates reflected
ions to how the motional electric field supporting the upstream E x B motion energizes
both the reflected ions and bulk electrons.

The rest of the paper is organized as follows. In § 2 we provide details of the simulations
performed, followed by a broad overview of the results of the simulations examining the
shock structure in the electromagnetic fields and electron and ion distribution functions.
We then present an overview of the central analysis tool of this paper, the field—particle
correlation technique, in § 3. We apply the field—particle correlation technique to obtain
the key results of the paper in §§4 and 5: the velocity-space signatures of (i) shock-drift
acceleration of the ions and (ii) adiabatic heating of the electrons. We conclude in § 6 with
a discussion of the implications of the results presented for spacecraft observations and
future avenues of research applying field—particle correlations to a larger range of shock
parameters.

2. Computational model and overview of results

To perform a self-consistent simulation of a perpendicular collisionless shock, we
employ the continuum Vlasov—Maxwell solver in the Gkeyll framework (Juno et al. 2018;
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4 J. Juno and others

Hakim & Juno 2020). We emphasize that, unlike traditional particle based approaches such
as the particle-in-cell method, Gkeyll directly discretizes the Vlasov—Maxwell system of
equations on a phase-space grid to obtain a high-fidelity representation of the distribution
function, free of the shot noise introduced by finite-sized particles. In other words, we
solve the following system of equations with a grid-based method for every species s in

the plasma,
of qs _
E+V~(vfs)+V,,- —I[E+v x B]f;] =0,
mS
oB oE
E-FVXE:O, E()//LOE—VXBZ—/L()J, (21)
v.E=% v.B=o,
€0

where f; = fi(x, v) is the particle distribution function for species s, g, and m, are the
charge and mass of species s, respectively, E = E(x) and B = B(x) are the electric and
magnetic fields,respectively, and the coupling between the electromagnetic fields and
particles is given by velocity moments of the particle distribution function,

0 = ZqS/fsdv, J = qu/vﬁdv, (2.2a,b)

i.e. the charge and current density. This approach has been previously leveraged in
the study of electrostatic collisionless shocks (Pusztai et al. 2018; Sundstrom et al.
2019), allowing for a detailed study of the phase-space dynamics which results from the
evolution of the shock. Comparisons to the particle-in-cell method for the study of kinetic
instabilities have clearly demonstrated the advantages of using a continuum representation
to eliminate discrete particle noise in the particle velocity distributions (Skoutnev et al.
2019; Juno et al. 2020).

Here, a perpendicular shock refers to the orientation of the magnetic field with respect
to the shock normal. Because the magnetic field is perpendicular to the shock normal, in
one spatial dimension, we require only the two velocity components perpendicular to the
magnetic field to fully describe the dynamics of the system, i.e. 1D-2V. The particular
one-dimensional (1-D) geometry we choose is the one spatial coordinate along the shock
normal in the x direction, with the initial magnetic field in the z direction, B(t = 0) = BZ.
For completeness, in this dimensionality and field geometry, the Vlasov—Maxwell system
of equations is

fs ofs s afs fs
A, X o — | [Ex Bl — E, —v.B = C[f],
or " ax T, <[ by, T By L:]
0B, _9E, 2.3)
ot ax
9E,  J, 0 9E, 7 JoB. U,
= ——, = —C— — —,
ot € dt ox €

where we have added a collision operator C[f;] on the right-hand side of the Vlasov
equation.!

IThe addition of a collision operator on the right-hand side of the Vlasov equation introduces some semantic
ambiguity of the name of this equation, which, with the inclusion of a collision operator, is now formally the Boltzmann
equation and the system of equations the Boltzmann—Maxwell system of equations—see Hénon (1982) for a discussion
of this linguistic history. Because the collision operator is principally employed for numerical reasons and to provide
velocity-space regularization, we will continue to refer to the equation system of interest as the Vlasov—Maxwell system
of equations to emphasize our focus on collisionless physics.
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FPC analysis of perpendicular collisionless shock 5

The electrons and ions are initialized with the same supersonic flow directed in the
negative x direction towards a reflecting wall, which leads to a shock wave that propagates
in the positive x direction in our simulation. Note that the particles reflect from the
wall, but the ‘reflecting wall’ boundary condition for the electromagnetic fields is a
conducting wall boundary condition in the traditional sense, with zero normal magnetic
field and zero tangential electric field. This method of initialization is often called the
‘reflecting-wall’ set-up? and has been previously employed in numerous particle-in-cell
studies of collisionless shocks (e.g. Papadopoulos, Wagner & Haber 1971; Spitkovsky
2005, 2007).

Detailed parameters are as follows: the reflecting wall for the particles and conducting
wall for the electromagnetic fields are at x =0, and plasma is injected with a copy
boundary condition® at x = 25d;, where d; = c/wp; is the ion collisionless skin depth.

Here, ¢ is the speed of light and w,; = \/e*ng/€om; is the ion plasma frequency. Note
that the subscript 0 denotes the upstream value, e.g. ng is the upstream density and B,
is the upstream magnetic field magnitude. We use a reduced mass ratio between the ions
and electrons, m;/m, = 100. The total plasma beta, B = 2uono(T,, + T;,) /Bé = 2, with
the ion beta, B; = 1.3, and the electron beta, 8. = 0.7. Both the ions and electrons are
non-relativistic, with v, /c = 1/16, where v,, = /2T, /m,. With this choice of electron

beta and v, /c, the ratio of the electron plasma frequency, w,, = +/e*ny/€ym,, to the
electron cyclotron frequency, §2.. = —eBy/m,, iS w,./§2.. ~ 13.4. The in-flow velocity in
the simulation frame to initialize the perpendicular, electromagnetic shock is U, = —3v,,
where vy = By/\/onom; is the ion Alfvén speed. Note that the in-flow velocity is negative
because the plasma initially flows in the negative x direction. Because the plasma is
initialized with a flow in a background magnetic field, we initialize the corresponding
electric field to support this flow, E = —U,x x B = U,Bp.

For the grid resolution in configuration space, we use N, = 1536 grid cells, which
correspond to Ax ~d,/6 ~ 3.74p, where d, = c/wp,, and Ap = v,e/(ﬁa)pe) are the
electron inertial length and electron Debye length, respectively, and we employ piecewise
quadratic Serendipity elements for the discontinuous Galerkin basis expansion (Arnold
& Awanou 2011). In velocity space, the electron extents are £8v,,, and the ion extents
are £16v,, with zero-flux boundary conditions at the velocity-space limits and N, =
N,, = 64 grid cells for both species, which correspond to Av = v, /4 for the electrons
and Av = v,;/2 for the ions. The basis expansion in velocity space is also piecewise
quadratic Serendipity elements. For further details about the algorithm and the choice
of basis expansion, we refer the reader to Juno et al. (2018) and Hakim & Juno (2020).

We have run the simulation with a small amount of collisions to regularize velocity
space. In this case, we choose an electron—electron collision frequency, v,, = 0.01£2,,
much less than the ion cyclotron frequency, §2.; = eBy/m;, with the ion—ion collision
frequency correspondingly smaller based on the square root of the mass ratio, v; =
0.00142,,;. Note that because the ions are hotter than the electrons, they should formally
be even more collisionless than the electrons; however, these collisionalities are larger
than typical solar wind collisionalities (Wilson et al. 2018) and are not chosen to be
realistically small, but instead chosen to be just large enough to provide regularization of

2In contrast to the ‘injection’ set-up where an injection boundary condition is employed on each side of the domain
and the plasma blocks collide and form a shock in the middle of the domain.

3For Gkeyll, this means that the value in the layer of cells beyond the x = 25d; edge (the ‘ghost’ or ‘halo’ layer) is
exactly equal to the value in the layer of cells at the x = 254, edge, for all the quantities being evolved: the distribution
functions for the electrons and ions, and the electromagnetic fields. Because the plasma is initialized with a flow
propagating in the negative x direction, this boundary condition leads to a continuous injection of plasma from the
right wall with the corresponding electric field and magnetic field to support the E x B flow.
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6 J. Juno and others

the velocity-space structure given finite velocity resolution. Details on the implementation
of the collision operator and its conservation properties can be found in the paper by
Hakim et al. (2019).

In figure 1, we show the electromagnetic fields and particle distribution functions for
the electrons and ions in x — v, phase space after the perpendicular shock has formed
and propagated through the simulation domain, ,,; = 112;'. Although the downstream
of the shock is fairly oscillatory as the energy injected into the plasma by the shock
sloshes back and forth between the electromagnetic fields and particles, we can estimate
the compression ratio of this low-Mach-number shock from the average downstream
magnetic field to be roughly » ~ 2.5 (solid black line in figure 1(c)). With this estimate
for the compression ratio, we calculate the shock velocity in the simulation frame to be
Ugnoek = U,/(r — 1) = 2v4. Note that in this reflecting wall set-up, the simulation frame
is equivalent to the frame in which the downstream plasma is at rest.

Thus, combining the velocity of the incoming flow with the velocity of the shock in
the downstream frame, this self-consistently produced perpendicular shock is a My =5
shock, where M, is the Alfvén Mach number. Equivalently, using the definitions for the
sound speed and magnetosonic speed given by

iTi + eTe
o= [P el 2.4)
m;

vp = /2 + v3, (2.5)

where y; =y, =1+2/VDIM = 2 because the simulation domain has two velocity
dimensions, we find this shock has a fast magnetosonic Mach number, My ~ 2.89. With
these plasma parameters and this magnetosonic Mach number, we note that this shock is
supercritical M; > M; .~ 2 (Wilson 2016), similar to the Earth’s bow shock, and thus
bodes well for the ultimate goal of predicting velocity-space signatures of energization
mechanisms in spacecraft observations of heliospheric shocks.

In this regard, we focus our attention now on the particle distribution functions and
the phase-space structure generated through the shock. While the particle distribution
functions in the x — v, phase space shown in figure 1 are illustrative of the dynamics
through the shock, which shows a reflected population of ions in figure 1(d) and a clear
compression of the electrons in figure 1(e), we can gain further insight into the dynamics of
this shock by looking at the distribution function in v, — vy at fixed points in configuration
space through the shock. In figure 2, we plot the ion (a—f) and electron (g—i) distribution
functions in velocity space at several points through the shock, from upstream through the
ramp to downstream.

As an example of the wealth of data contained in the distribution function, we draw
special attention to the ion distribution function in the shock ramp. As we move from
upstream into the shock, at the beginning of the ramp at x = 22.5d;, we begin to see a
small population of reflected ions, forming a small ‘crescent’ distribution in the lower
right quadrant of the v, — v, space. Further up the ramp at x = 21.5d;, we observe that
the incoming ion beam begins to be deflected by the fields in the shock transition, which
generates a ‘boomerang’ distribution that smoothly connects the decelerated incoming ion
beam with the reflected ion population. It is this reflected population, in agreement with
previous studies of supercritical shocks (e.g. Ball & Melrose 2001; Balogh & Treumann
2013), which dominates the ion energization and provides a segue to our key result:
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FIGURE 1. The x-electric field (a), y-electric field (b), z-magnetic field (¢), ion distribution
function integrated in v; (d) and electron distribution function integrated in v; (e) after the

perpendicular shock has formed and propagated through the simulation domain, ¢ = 11!2;,].

Note that the distribution functions are plotted in the simulation frame f(x, v}, v}) for each
species s. We have marked an approximate transition from upstream of the shock to the shocked
plasma (dashed—dotted line), and likewise an approximate transition from the shock to the
downstream region (dashed line). To mark the oscillation of the electromagnetic fields and the
sloshing of energy between the fields and particles in the downstream region, we have used a
solid black line to mark the approximate compression of the magnetic field, along with E = 0.
We expect the y-electric field to roughly oscillate about zero in the frame of the simulation, as the
‘reflecting-wall’ set-up is performed in the frame of the downstream plasma, where the E x B
velocity is zero.
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FIGURE 2. The ion (panels (a)-(f)) and electron (panels (g)—(i)) distribution functions in the
simulation frame (downstream frame) f;(x, v)’c, v;), for each species s, plotted at various points

through the shock at t = 11[26_,1. As we move from upstream, x = 24.5d;, through the shock
ramp, x = 21.5d;, we can identify the reflected ion population as well as a broadening of the
electron distribution function.

diagnosing the velocity-space signatures of particle energization in this perpendicular
electromagnetic shock. To obtain these velocity-space signatures, we now describe our
tool of choice for our analysis of the high-quality distribution function data provided by
the continuum kinetic simulation: the field—particle correlation technique.

3. The field-particle correlation technique

From combining the Vlasov equation and Maxwell’s equations, we can obtain a
conservation equation for the total energy of the kinetic plasma (e.g. Klein et al. 2017),

6() 2 1 2 1 2
W= [dx|=|F ——|B dx [ dv—m,v7f,. 3.1
/ (2| | +2M0| |)+§Y / / vzm.svf.; 3.1
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FPC analysis of perpendicular collisionless shock 9

The first integral represents the energy of electromagnetic fields in the plasma and the
second accounts for the combined microscopic kinetic energy* of all plasma species s. In
the absence of particle collisions, the net microscopic kinetic energy of a given plasma
species may only be changed through collisionless interactions between the particles of
that species and the electromagnetic fields.

To explore the energy transfer between fields and particles, we define the phase-space
energy density for a particle species s by wy(x, v,1) = m?*f(x,v,1)/2 in the
non-relativistic limit. Multiplying the Vlasov equation by m,v?/2, we obtain an expression
for the rate of change of this phase-space energy density,

ow,(x, v, 1) v: . of; V2 f,

P =—v-Vw, —g; 2E Pk s (v x B) - (3.2)

This equation describes the mechanisms that govern how the energy density in the 3D-3V
phase space (x, v) evolves, where each term has a clear physical interpretation.

The first term on the right-hand side of (3.2) describes how wy(x, v, ) changes due to
particle advection from other spatial regions, which gives rise in fluid theory to the energy
change through pressure forces and heat fluxes.’> Because this term describes the advection
of particle kinetic energy as particles move from one spatial position to another, when
integrated over the full plasma volume, this term yields zero net change of the total kinetic
energy of particle species s, W, = [ dx [ dvim,v?f,. The third term on the right-hand
side of (3.2) describes the magnetic forces on the particles. Although this term can move
kinetic energy from one location in velocity space to another, when integrated over all
velocity space, this term does zero net work on the particles, as expected for the magnetic
force.

The second term on the right-hand side of (3.2) describes the work done on the plasma
species s by the electric field. When (3.2) is integrated over all velocity space and all
physical space to obtain the rate of change of the total kinetic energy W, of a particle
species s, the first and third terms have zero net contribution (Klein & Howes 2016; Howes
et al. 2017), which yields

8W /dx/dv%” 0J; E:/dx(/dvqsvfx)-Ezfdxjs-E, (3.3)

This expression makes clear that the change in species energy WV arises from work done
on that species by the electric field, j, - E

In our exploration of particle energization at collisionless shocks, we choose to focus on
the second term in (3.2) to investigate the energization of the particles by the electric field.
The form of that term demonstrates that the rate of particle energization can be computed
at a single-point in physical space x, by measuring the electric field at that position E(x;)
and the particle velocity distribution at the same position f;(x, v). This fundamental fact
underlies the field—particle correlation (FPC) technique (Klein & Howes 2016; Howes
et al. 2017; Klein et al. 2017), where the unnormalized correlation (essentially a time

“Note that the microscopic kinetic energy of a plasma species s includes contributions from the kinetic energy of
bulk plasma flows (associated with the first moment of the distribution) as well as thermal and non-thermal energy
contained in the second moment of the particle velocity distribution f;(v). One cannot extract energy from the thermal
component, of course, and the irreversible, entropy increasing conversion of free energy in the non-thermal component
to thermal energy is dictated by the physics of nonequilibrium thermodynamics in this kinetic system.

SIn the context of fluid theory, it has been shown that these pressure forces can mediate the conversion of bulk flow
kinetic energy to random kinetic energy in the velocity distribution (Yang et al. 2017). This distinction between energy
conversion and energization is further discussed in Appendix C.
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average) of the product of the electric field E(x,) and a term that depends on the particle
velocity distribution f;(x,, v) over some correlation interval t is computed by

1 t+1/2 2 a - " t,
CE(xO’ v, 1, T) = —/ —q‘vv_M
2 2 ov

. ] - E(xp, ) dr. (3.4)

—1/2

The resulting correlation Cg(xy, v,?, T) directly measures the rate of change of
phase-space energy density at position x; as a function of 3V particle velocity space
v, which produces a velocity-space signature that is characteristic of the mechanism
of energization and can be used to identify a particular, locally-occurring energization
process, e.g. Landau damping (Howes et al. 2017; Klein et al. 2017) and cyclotron
damping (Klein et al. 2020). We note that as part of this identification, further analysis
may be required to ascertain certain details; for example, if one obtains velocity-space
signatures corresponding to the presence of Landau damping, the resonant velocity that
the velocity-space signature is concentrated around is necessary to determine what wave
modes are Landau damping in the plasma, as one can find similar structure whether a
Langmuir wave (Howes et al. 2017) or kinetic Alfvén wave (Klein et al. 2017; Horvath
et al. 2020) is undergoing Landau damping. However, even with this caveat, a key
advantage of the FPC method to diagnose particle energization is that it requires only
measurements at a single spatial point x, to determine the energization by the electric
field. An appropriately instrumented single spacecraft mission can provide the requisite
full 3V particle velocity distribution f;(xy, v, #) and electric field E(xy, ) at the spacecraft
position x; as a function of time. Thus, the velocity-space signatures determined here using
kinetic numerical simulations, our key results, may be directly sought using spacecraft
observations.

In the case of particle energization as a consequence of the dissipation of weakly
collisional plasma turbulence, the rate of particle energization represented by the second
term in (3.2) generally includes two distinct contributions: (i) an often large-amplitude
oscillatory component that leads to zero net energization, which is associated with
undamped wave motion, and (ii) a typically smaller amplitude secular component that
corresponds to the net collisionless transfer of energy from the fields to the particles
(Klein & Howes 2016; Howes et al. 2017). By an appropriate choice of the correlation
interval 7, the oscillatory energy transfer is largely eliminated by time averaging, which
exposes the secular energy transfer associated with the collisionless damping of the
turbulent fluctuations. For the perpendicular collisionless shock in this study, the shock is
quasi-stationary in the shock-rest frame of reference, with smooth electromagnetic fields
through the shock as seen in figure 1, and thus we need not time average the correlation,
but instead take the instantaneous correlation (the limit T — 0). We will thus suppress
the dependence of the correlation on t henceforth. We note that the FPC with t = 0 is
simply the instantaneous rate of change of the phase-space energy density, dw,/dt, due
to work done on the particles by the electric field. If kinetic instabilities were to arise
upstream or within the shock transition region, or if the shock itself were to become
non-stationary, then it is likely that taking a correlation interval t longer than either
the unstable wave period or the shock reformation time would be necessary to recover
a meaningful velocity-space signature of the net particle energization.

In addition, we adopt two final modifications of the FPC analysis that are well suited
for the study of collisionless shocks: (i) we separate the contributions to the rate of
energization by the different components of the electric field, E, and E,; and (ii) we
replace v? in (3.4) by the component associated with the electric field, e.g. using v? for the
correlation using E,. We refer the reader to Appendix A for a discussion of the validity
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FPC analysis of perpendicular collisionless shock 11

and usefulness of this transformation. Therefore, the form of the FPCs implemented here
for a position x = x; in our 1D-2V Gkeyll simulation is given by

2 8 S 9 X9 9 t
Cr. (%0, sy Oy ) = —qo 2B (g, 1) 80 Ve U ) (3.5)
2 0V,
v? of. Lt
Cr. (%o, s Vs 1) = — o (g, 1) 80 U U ). (3.6)
* : 2 dv,

An issue which cannot be overemphasized in performing the FPC analysis of a
collisionless shock is making a judicious choice of the frame of reference in which
to calculate (3.5) and (3.6) (Goodrich & Scudder 1984). We choose to evaluate the
correlations in the frame of reference in which the shock is at rest (the shock-rest frame,
unprimed variables), as opposed to the frame of reference of the simulation, in which
the plasma is at rest downstream of the shock (the simulation frame or downstream
frame, primed variables).® For clarity, the shock velocity in the simulation frame is
given by Ugpock = UshoakX = 2vaXx. It is critical not only that the velocity coordinates are
transformed to the shock-rest frame, v = v’ — Ugye, but also that the electromagnetic
fields are appropriately Galilean transformed to the shock—rest frame,

E=F + Ushock X B/, (37)

and B=B'.

We note that our discussion and application of the FPC to the collisionless shock is
principally concerned with how the plasma is energized via the electromagnetic fields and
focuses on the phase-space dynamics governed by the electric field term in the Vlasov
equation. As mentioned previously, plasmas additionally convert bulk kinetic to thermal
energy, and vice versa, via other terms in (3.2) such as the v -V term, which gives
rise to pressure forces and heat fluxes. To explore how these other physical mechanisms
impact the flow of energy through 3D-3V phase space, one can perform complementary
correlations with these other terms. Correlating with the magnetic term in the Lorentz
force allows the determination of how the magnetic field leads to changes in w(x, v, 7) as a
function of velocity v—e.g. energy can be moved between different degrees of freedom by
the magnetic field, even though the net energy change (integrated over velocity space) must
always be zero. Similarly, if spatial gradients of f;(x, v, f) are available, the velocity-space
signatures of the work done on the particles by the pressure tensor can be determined. Of
course, computing the total rate of change of the phase-space energy density w,(x, v, f) at
a particular point in configuration and velocity space requires all the terms of (3.2).

Our focus here, however, is on the term in the Vlasov equation which produces net
energization of a plasma species s, the electric field term in (3.2). In fact, as shown in
Appendix B, these additional terms, such as the v x B term, can have a cancellation
effect on the evolution of the phase-space energy density, so that the net energization
due to, for example, an E x B drift is identically zero, as it should be. As such, we are
well justified in formulating the FPC to focus only on the net energization and avoid
obfuscating the signatures of energization with the additional motion of phase-space
energy density arising from these other terms in the Vlasov equation. For a further
discussion of energization versus energy conversion, we refer the reader to Appendix C.

®Note that in both cases, because the 1-D spatial coordinate is aligned with the shock normal, both frames of
reference are normal incidence frames.
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FIGURE 3. The ion distribution function f;(vy, vy) (a), and the Cg, (b) and C E, (c) components
of the FPC, (3.5) and (3.6), computed at x = 22.9d; from the self-consistent Gkeyll simulation.
Note that the FPC is computed in the shock—rest frame. While the bulk incoming ions are slowed
down by the cross-shock electric field, Ey, we see the distribution of reflected ions gain energy
due to the motional electric field, Ey, which supports the incoming supersonic E x B flow.

4. Field-particle correlation analysis: ions
4.1. Velocity-space signature of ion energization

In figure 3(a), the ion distribution function includes both a component from the incoming
beam of ions upstream, as well as the aforementioned ‘crescent’ population of reflected
ions. For the E, contribution to the FPC, Cg (v, vy), at position x = 22.9d,, figure 3(b)
shows that the incoming ion beam is being acted upon strongly by the cross-shock electric
field E,, but that E, has little effect on the reflected ion population at this position. On
the other hand, for the E) contribution to the FPC, Cg, (v,, v,), at position x = 22.9d,,
figure 3c) shows that the reflected ions principally interact with this component of the
electric field, i.e. the motional electric field which supports the incoming E x B flow.

To understand this visual representation of the rate of ion energization over velocity
space, recall that the FPC determines the rate of change of the phase-space energy density
of a particular plasma species, w,(x, v, 1) = m,|v|*f;(x, v, £)/2, due to the electric field.
The phase-space energy density of the ions, w;, can only change if the number of ions
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FPC analysis of perpendicular collisionless shock 13

in that volume of phase space changes. Therefore, the nested blue and red crescents in
figure 3(c) indicate that ions are accelerated by E, from the blue region to the red region.
Conservation of particle number requires that the number of ions lost from the blue region
is the same as the number gained in the red region, but because the red region is at higher
velocity v,, the net effect, obtained by integrating Cg, over velocity space (v,, vy), is an
increase in the ion phase-space energy density w;. We also note that the observed Cg,
signature is a larger amplitude than the observed Cg,, such that E, dominates the energy
exchange at this particular point in space. Furthermore, the FPC method computes the
rate of change of energy density, so the rate of energization per ion in the low-density
population of reflected ions is much higher in amplitude than the loss of energy per ion by
the much more dense incoming beam.

As a first attempt to understand this signature, consider that the gradient length scale
of the collisionless shock in our simulation is Lg,eck ~ pi, Where p; = v,,/§2,; is the ion
Larmor, or gyro-, radius. Therefore, ions encountering this gradient in the magnetic field
will not necessarily have closed orbits and smoothly transition downstream. Depending on
an ion’s gyrophase when it encounters this magnetic field gradient, the ion’s new Larmor
orbit may cause the ion to move back upstream, where the magnetic field magnitude is
smaller. The increased Larmor radius of this reflected ion in the upstream region then
allows the ion to gain energy along the motional electric field supporting the incoming
E x B motion. This energization of the reflected ion population via E| is consistent
with the well-known energization mechanism, shock-drift acceleration (Paschmann et al.
1982; Sckopke et al. 1983; Anagnostopoulos & Kaliabetsos 1994; Anagnostopoulos ef al.
1998; Ball & Melrose 2001; Anagnostopoulos et al. 2009; Park et al. 2013). However,
to understand why shock-drift acceleration would produce the particular velocity-space
signature observed in figure 3(c), we turn to a simplified analytic model to connect
the well-known Lagrangian picture for shock-drift acceleration with the new Eulerian
perspective granted by the FPC.

4.2. Shock-drift acceleration in an idealized perpendicular shock

We consider now a simplified reduction of the electromagnetic fields observed in our
self-consistent simulation to a step function in the magnetic field,

B, x>0
B.(x) = {Bd o @.1)

with amplitude jump B,;/B, = 4. We will also continue to work exclusively in the
shock-rest frame, where to a good approximation the motional electric field, E,, is a
constant through the entire shock. The value of the constant E,, as well as the ion
and electron plasma betas, are chosen so that the shock velocity is similar to the
self-consistent simulation, M4 = 4.9 and M; = 3.0. This reduced model corresponds to
the limit Ly /p0; << 1 and allows us to decompose the ion motion more easily between
upstream and downstream gyro- and E x B motion. To mimic the geometry of the
self-consistent simulation, we take E, < 0 and B, > 0 so that the inflow E x B is in the
negative x direction.

In figure 4, we plot (a) the trajectory of an ion in the (x,y) plane and (b) its
corresponding trajectory in (v, vy) velocity space in the shock-rest frame, where the
colours indicate the corresponding segments of the trajectory. In the upstream region at
x > 0 (black), the black circle centred about the upstream E x B velocity (black star)
corresponds to the Larmor orbit of the ion about the upstream inflow velocity in the (v, vy)
plane. Upon first crossing the magnetic discontinuity to x < 0, the ion changes to a Larmor
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FIGURE 4. (a) Real space trajectory of an ion as it traverses the shock front and

(b) velocity-space trajectory.

gyration in the (v,, v,) plane (blue) about the downstream E x B velocity (green star). In
the larger amplitude downstream perpendicular magnetic field, the radius of the Larmor
motion in the (x, y) plane in the shock-rest frame is reduced (blue).

Depending on the ion’s gyrophase when the ion crosses the magnetic discontinuity, the
ion passes back upstream to x > 0, and once again undergoes a Larmor orbit in the (v,, vy)
plane (red) about the upstream E x B velocity (black star). In this segment of the trajectory
(red), the ion gains perpendicular energy in the shock—rest frame, graphically represented
by the distance in velocity space of the ion from the origin of the (v,, vy) plane. Finally, the
ion will eventually cross back into the downstream region to x < O (green), and resumes
its Larmor orbit in the (v, v,) plane (green) about the downstream E x B velocity (green
star). Without any additional crossings of the magnetic discontinuity, the ion will simply
E x B drift downstream.

In the segment of the trajectory where the ion can gain energy, it is the motional
electric field, E,, that is doing positive work on the ion, exactly like in our self-consistent
simulation. We note that this ion’s dynamics—the reflection due to the magnetic gradient
and energy gain from its traversal upstream and alignment with the motional electric
field—is the well-known single-particle picture of shock-drift acceleration. In fact, this
picture in velocity space, where a single ion gains energy via this reflection by a magnetic
gradient, has been previously noted (Gedalin 1996a). We wish now to connect this
Lagrangian perspective on how a single ion gains energy from this reflection off a
magnetic gradient to the Eulerian point-of-view we have from the FPC.

4.3. Velocity-space signature of shock-drift acceleration

To connect the single-particle picture of shock-drift acceleration with how a distribution
of ions is energized, we employ the Vlasov-mapping technique (Scudder er al. 1986;
Kletzing 1994; Hull et al. 1998; Hull & Scudder 2000; Hull et al. 2001; Mitchell &
Schwartz 2013, 2014), described in Appendix D, to determine the velocity distribution
function in our simplified model for the electromagnetic fields through the shock. We
show in figure 5 the reconstructed ion distribution f;(vy, v,) (a) at x = 0.4d; and the
corresponding FPC Cg (v,, vy) (b) computed from the motional electric field, E,, and
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FIGURE 5. Comparison of the reconstructed ion distribution function (a) and Cg, component of
the FPC (b) computed from this reconstruction to the self-consistently produced ion distribution
function (¢) and Cg, component of the FPC (d) from the Gkeyll simulation. Using the
Vlasov-mapping technique, we can connect the single-particle orbits (overplotted white (a) and
black (b) lines) to the distribution function dynamics. Here, Cg, integrated over velocity space is
net positive, which means the observed velocity-space signature corresponds to an energization
process. We identify this particular velocity-space signature as the signature of shock-drift
acceleration, energization of the reflected ions via the motional electric field in the upstream,
via the connection between where in velocity space a single ion is energized and the specific
region of velocity space where the strongest energy exchange is occurring.

gradients of this reconstructed distribution function. In addition, we repeat figures 3(a)
and (c), for reference in comparing the distribution function and generated velocity-space
signature between the simplified model and self-consistent simulation.

In the reconstructed distribution function from the idealized model, we identify, in
addition to the incoming upstream population centred at the upstream E x B velocity,
a component of reflected particles that have returned upstream, exactly like in the
self-consistent simulation. Overplotted on the ion distribution function and computed
FPC from the Vlasov-mapping technique is the trajectory in (v,, v,) for the ion analysed
in figure 4, which shows that this reflected population and velocity-space signature
are coincident with the red segment of the trajectory in figure 4. Integrating this

Downloaded from https://www.cambridge.org/core. IP address: 72.82.254.174, on 20 Jul 2021 at 06:05:11, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/50022377821000623


https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0022377821000623
https://www.cambridge.org/core

16 J. Juno and others

field—particle correlation over velocity space simply yields the net rate of work done
by E,, [ Cg (vy, v,)dv.dv, = j,E,, and we find the integration to be positive. We thus
identify the whole population of reflected ions as experiencing net energization, with the
velocity-space signature of this energization process, shock-drift acceleration, given by
figure 5(b,d).

We have now connected the Lagrangian picture of shock-drift acceleration with the
Eulerian picture provided by the FPC technique, and we conclude this section noting that
while shock-drift acceleration has been studied extensive theoretically and numerically
(e.g. Gedalin 1996a,b, 1997; Gedalin, Newbury & Russell 2000; Park et al. 2013; Guo
et al. 2014a,b; Park et al. 2015; Gedalin et al. 2018; Xu et al. 2020), the velocity-space
signature of shock-drift acceleration provides a new perspective on the energization of the
ions in phase space via this process. In both cases, we understand that a portion of the
distribution of ions is reflected via the magnetic field gradient and return upstream, where
they can gain energy via the motional electric field. Although the single-particle trajectory
in phase space guides our understanding of where we expect the ions to be gaining energy,
using the FPC technique enables us to see clearly the exact region of phase space in which
ions are being energized via shock-drift acceleration.

This confirmation of the velocity-space signature of shock-drift acceleration in a
self-consistent simulation is a vitally important step for the comparison to measured
velocity-space signatures of energy exchange using in situ spacecraft measurements;
however, it is also interesting that the velocity-space signature of shock-drift acceleration
is unchanged between the idealized model and a self-consistent simulation given the
additional physics of the self-consistent simulation: the finite shock width and cross-shock
electric field. We explore the reasons for the excellent agreement despite these two key
differences between the simulation and the idealized model in Appendix E, where we find
the cross-shock electric field assists in reflecting ions, which allows the ions to traverse
further back upstream and gain additional energy via shock-drift acceleration. Thus, while
the combination of the finite shock width and cross-shock electric field quantitatively
changes the population of ions that are reflected, the qualitative signature of energization
in velocity space via shock-drift acceleration remains unchanged.

5. Field-particle correlation analysis: electrons
5.1. Velocity-space signature of electron energization

We now examine the energization of the electrons by the simulated perpendicular
collisionless shock. Similar to figure 3 for the ions, figure 6(a) shows the electron
distribution function f, (v,, v,), figure 6(b) shows the Cg, and figure 6(c) shows the Cg,
components of the FPC, (3.5) and (3.6). As shown in figure 1(e), the electron distribution
broadens through the entire shock ramp, so we plot in figure 6 the results of the FPC
analysis at xz = 21.8d;, where the cross-shock electric field peaks. In figure 6(a), the centre
of the distribution in the shock-rest frame is displaced away from the origin to v, < 0
and v, < 0 due to the particle drifts in the varying electric and magnetic fields through
the shock ramp. Because the thermal width of the electron velocity distribution is much
larger than the net drift of the distribution in the shock-rest frame, computing the Cg,_ and
Cg, correlations using (3.5) and (3.6) leads to the qualitative ‘two-lobed’ velocity-space
signatures observed in figure 6(b,c). The small drifts—i.e. |v,/v,| < 1—lead to a slight
asymmetry of the two-lobed structure, so we overplot contours of constant Cg, _ to make
these slight asymmetries more visually apparent. Although the gain (red) and loss (blue)
of electron energy largely cancels out upon integration over velocity space (vy, vy),
asymmetries in the two lobes lead to a non-zero net energization.
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FIGURE 6. The electron distribution function f.(vy, vy) (a), and the Cg, (b) and C E, (¢)
components of the FPC, (3.5) and (3.6), computed at xp = 21.8d; from the self-consistent Gkeyll
simulation. Note that the FPC is computed in the shock-rest frame. The contours on the FPC
plots, which are the same in both Cg, and CE},, make clear that Ey, leads to a net loss of electron
energy, whereas E, yields a net increase of electron energy.

In figure 6(b), the asymmetry of the velocity-space signature leads to a net energization
of the electrons by the cross-shock component of the electric field E,. Additionally, in
contrast to the shock-drift acceleration of the ions by the motional electric field E, seen
in figure 3(c), we see in figure 6(c) that the electrons experience a net loss of energy due
to the E, component of the electric field. As with the ion analysis, we now turn to an
idealized model for the electron dynamics through the shock layer to understand these
velocity-space signatures for the electron energization.

5.2. Adiabatic heating in an idealized perpendicular shock

Unlike the ions for which Ly < p;, the electron gyroradius is much smaller than the
gradient length scale of the shock, Ly > p., and we thus expect the electrons to
stay well magnetized through the shock. Therefore, we adopt a simplified model for the
electron dynamics through the shock by taking a shock ramp with a linearly increasing
magnetic field over a length L = 2d; and mass ratio m;/m, = 1836, which satisfy the limit
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FIGURE 7. (a) Profiles along the shock normal direction of the perpendicular magnetic field B,
(blue) and the motional electric field £y, (red), (b) trajectory in the (x, y) plane of an electron as it
traverses the finite-width ramp in the magnetic field and (c) the rate of work done by the electric
field on the distribution of particles jyEy.

Lgwock > p.. The other parameters are the same as the simple shock model used for the ion
analysis in § 4.2: a magnetic field increase of B;/B,, = 4, a constant and uniform motional
electric field E, < 0 in the shock—rest frame, with the same ion and electron plasma betas
such that the shock velocity is comparable to the self-consistent simulation M, = 4.9 and
M; = 3.0. Note that this idealized model for the electrons has no cross-shock component
of the electric field, E, = 0; the implications of this choice are discussed at length in the
upcoming subsections.

In this model, the increase in the magnetic field magnitude through the ramp leads
to a steady decrease in the E x B velocity as the plasma flows through the shock
transition. In addition, the gradient of the magnetic field magnitude in the shock-normal
direction induces a VB drift in the +y direction. In figure 7(a), we plot the profile of the
perpendicular magnetic field B,(x) (blue) and the motional electric field E, (x) (red) along
the shock normal direction, and figure 7(b) shows the trajectory of an electron in the (x, y)
plane as it flows through the shock ramp over 0 < x/d; < 2. The trajectory plot shows
clearly the V B drift in the 4y direction. As the electrons flow through the shock ramp over
0 < x/d; <2 and undergo a VB drift in the +y direction, figure 7(c) shows that the net
energization for a distribution of electrons j,E| is positive.

In the region where the perpendicular magnetic field changes magnitude, 0 < x/d; < 2,
the V B drift is anti-aligned with the motional electric field, thus leading to net energization
of electrons. In fact, the rate of energization of the electrons by the VB drift in the
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motional electric field is precisely that needed to conserve the first adiabatic invariant of
the electron, i.e. the magnetic moment .« = m,v? /2B,. This energization via conservation
of the electron’s adiabatic invariant is thus often referred to as adiabatic heating.

We can show the relationship between the energization via the VB drift and the
conservation of the electron’s magnetic moment by considering the change in the
perpendicular kinetic energy of the electrons,

dm,v? /2
dtl/ = qeuvsEy, CRY

where the magnitude of the V B drift in the +y direction is given by

22 [ 10B
gy = ok (025 (5.2)
2g.B, \ B, 0x

For the static fields in this model, the total time derivative is dominated by the
E x B velocity, d/dt = /0t + u,0/0x = ug.pd/0x. Substituting ug.s = E,/B,, we can
manipulate (5.1) to obtain
d mevy O
ax 2B,  dx
proving that the electron’s magnetic moment u is conserved. As before, we now wish

to connect this single-particle, Lagrangian picture of adiabatic heating with the Eulerian
picture provided by the FPC technique.

(5.3)

5.3. Cross-shock electric field impact on velocity-space signature of adiabatic heating

We again employ the Vlasov-mapping technique, as in §4.3, to reconstruct the
electron distribution function through the idealized shock model and the resulting FPC
velocity-space signatures. Figure 8(a) presents the resulting electron distribution function
Je(vy, vy) and figure 8(b) shows the Cg, correlation at position x4 = 1.84; in the model,
where the velocity-integrated energy transfer rate j,E, is positive, as seen in figure 7(c).
Note that the small shift (relative to v,,) of the distribution to v, > 0, due to the VB drift,
leads to an asymmetry in the velocity-space signature because of the vf weighting in (3.6)

for Cg,.” Although a large part of the energy transfer rate represented by this two-lobed
velocity-space signature cancels out upon integration over vy, the slight asymmetry leads
to a net positive energization of the electrons, which yields j,E, > 0, as plotted in
figure 7(c).

We compare the predicted velocity-space signature of electron adiabatic heating from
the idealized shock model in figure 8(b) to the Gkeyll simulation results, where we plot in
figure 8(c) the f, (v,, vy) and figure 8(d) the C, from the simulation at position xz = 21.8d,.
While the correlation Cg, from the simulation has the same qualitative, two-lobed structure
indicative of drift energization of the electrons, the net drift of the electron velocity
distribution has v, < 0, and therefore the resulting asymmetry in Cg, has the opposite
overall sign, which leads to a net loss of energy for the electrons due to E,. How can
we reconcile these apparently contradictory results for the electron energization by the
motional electric field E,, particularly given that we have shown in (5.3) that the VB drift
in the +y direction leads to adiabatic heating of the electrons?

"Note that this shift of £, and resulting asymmetry in Cg, is somewhat difficult to discern visually in figure 8(a,b)
because we have taken a realistic mass ratio m,/m, = 1836 in the model and the VB drift for the electrons in (5.2) is
proportional to m,.
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FIGURE 8. Comparison of the reconstructed electron distribution function (a) and Cg,
component of the FPC (b) computed from this reconstruction to the self-consistently produced
electron distribution function (c¢) and Cg, component of the FPC (d) from the Gkeyll simulation.
Unlike with the ion comparison presented in figure 5, the model Cg, displays the opposite
asymmetry from the Cg, computed from the self-consistent simulation. Even though the
signatures are qualitatively similar, this first computation of Cg, suggests that E), is responsible
for a net loss of energy through the shock. J

We can check if the adiabatic invariant of a distribution of electrons,

me[(vx - ux)z + (Uy - uy)z

e = /;dv { / s b dv} , (5.4)

is constant through the shock, and whether our intuition about how the electron
temperature should increase through a magnetic field gradient has merit. Note that in the
1D-2V geometry of the simulated perpendicular shock where both velocity coordinates are
perpendicular to the magnetic field, the adiabatic invariant of the distribution of electrons
can be simplified to

TJ_,e
B,

Me = ——, (5.5)
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FIGURE 9. The electron adiabatic invariant, i, = T /B, (blue solid), the electron temperature
(red solid) and the magnetic field (black dashed) normalized to their value upstream and plotted
through the shock. The electron temperature rises commensurate with the compression of the
magnetic field such that the electron j, is well conserved through the shock.

where T', , is the temperature of the electrons perpendicular to the magnetic field. Indeed,
as shown in figure 9, the adiabatic invariant for the distribution of electrons, ., is well
conserved through the shock transition.

This result suggests that the cross-shock electric field is complicating the electron
dynamics and energy exchange through the shock. Here we can leverage the
Vlasov-mapping model to explore the effect of the cross-shock electric field on the
energetics of the electrons. Figure 10(b) presents a comparison of the electron trajectories,
figure 10(c) shows the rate of energization of the electrons by the electric field j, - E
and figure 10(d) presents the cumulative electron energization integrated from upstream
fx 1 dj, - E for two models: (i) a ‘full model’ (solid) which integrates electron trajectories
in the self-consistently produced electromagnetic fields in figure 10(a); and (ii) a ‘zero E,
model’ (dashed), in which we artificially set the cross-shock electric field to zero.

The trajectories in figure 10(b) show a clear qualitative difference between the zero E,
model and the full model: in the zero E, model (blue), the transverse drift through the
shock ramp is relatively weak and in the +y direction, whereas the full model (black)
yields a much larger amplitude drift in the opposite direction. This qualitative difference
in the transverse drift direction explains the stark differences in Cg, between the idealized
model in figure 8(b) and the simulation in figure 8(d). ‘

Looking at the rate of electron energization by the electric field in figure 10(c), we
indeed see that j E, (red dashed) is positive for the zero £, model (and is the only means
of energization of the electrons because E, = 0), but j,.E, is negative for the full model
(red solid). However, when the energization by j. E, (blue solid) is combined with j, E,
(red solid), the net rate of energization j, - E of the two models is exactly the same (black
solid and red dashed overlap). Therefore, although the dynamics of the electrons differ
qualitatively in the presence or absence of the cross-shock electric field, their energization
is the same in either case. To explain this puzzling finding, we exploit the limit Lg,ocx > 0.
to execute a guiding-centre drift analysis of the electron energization.

5.4. Guiding-centre drift analysis of electron energization

In the idealized model presented in § 5.2, there are only two drifts: an E x B drift in the
x direction, due to a constant E, through the magnetic field ramp, and a V B drift in the y
direction, due to the linearly increasing magnetic field. The introduction of a cross-shock
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FIGURE 10. (a) Electromagnetic fields approximated from the self-consistent Gkeyll simulation.
(b) Example electron trajectories for full model (black) and zero E, model (blue), which show
qualitatively different drifts in the y direction. (c¢) Rate of work done by the components of the
electric field, j,Ey (red) and j E (blue) for the full model (solid) and zero E, model (dashed),
along with total j - E (black). Note that the total energization (black, solid and dashed) is the
same for both cases. (d) Cumulative work done integrated from upstream fx J « E. The electrons
experience adiabatic heating in both cases, although the detailed mechanisms of energization
involve qualitatively different drifts.
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electric field, along with the transition from a single-particle picture to a distribution of
particles, adds several new drifts to the full list of potentially dynamically important drifts.
We now not only have an E x B drift that has a component in the x direction, due to
the motional electric field E, supporting the incoming supersonic flow, but also a new y
component, due to the cross-shock electric field E,. For a distribution of electrons the VB
drift in the y direction is modified from its single particle form,

2
SP m.vy . 0B .,

= g B o (5.6)
to
Uyg = qelne P gg aaiz p; (5.7)
where p . is the electron perpendicular pressure,
! 2
Ple= 5Me /(vi_uel) fe dv. (5.8)

We now must also consider a polarization drift in the x direction, and we note that the total
time derivative as the electrons flow through the shock is dominated by the convective
contribution d/dt = d/9t + U - V =~ U,d/0x, which gives

1 dE 1 0E, .
.B, dt 2.,B, ~ ox

(5.9)

UgE/dr =

Finally, we have the magnetization drift, V x M, a bulk drift in the y direction due to the
increasing density through the shock ramp,

VxM 1 e 1 9 e\ ~
Uyt =~ = Ly (PR = O (Pre) (5.10)
Gehe qene B, gene 0x \ B,

where the magnetization vector M (Hazeltine & Waelbroeck 1998) is given by

(5.11)

= —Ihw-
Although there can, in principle, be a polarization drift in the y direction due to the
variation in E, through the shock, in the shock rest frame E, changes very little, so this

drift is negligible. We note that the VB drift and magnetization drift can be combined to
form the diamagnetic drift,

U =u +u _ 1 peJ_aBz_i_i Pel
diamag = %v& T HvM gen. | B2 0x  9x\ B, /]’

1 1 ap, 1 Vp,. xB
_ L 2P PeL X5 (5.12)
gene Bz ox 4elle |B|2

This generalization from the single-particle picture to a distribution of particles is
somewhat subtle and often dubbed Spitzer’s paradox from the early work on plasma
equilibria in a fusion context (Spitzer 1952, 1962; Qin et al. 2000). While the concept
of pressure is ill-defined for a single particle, magnetic field gradients must inevitably
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FIGURE 11. (a) A comparison of the major drifts through the shock evaluated in the shock-rest
frame of reference: (i) E x B drift in x (black) and y (green dashed), (ii) the VB drift in y
(blue), (iii) the magnetization drift in y (red dashed), and (iv) the polarization drift in x (magenta
dashed—dotted). We check that these drifts sum to the total first moment computed from the
electron distribution function (b) as well as determine how each of these drifts contributes to the
overall energy exchange, j, - E (¢) and compare the j, - E computed from these drifts to the total
J. + E computed from moments of the electron distribution function. Note that in comparing how
each of these drifts contributes to j, - E, we plot the polarization drift multiplied by E, (green
dashed—dotted), the VB and magnetization drifts multiplied by Ej, in the shock-rest frame (blue
and red dashed, respectively), and the total j, - E arising from both components of the E x B
flow (black), as we expect the total energization due to the E x B flow to be zero.

be balanced by pressure gradients in equilibrium because the VB drift depends on the
particles’ velocity, and thus different parts of the distribution of particles will experience
different V B drifts. As a consequence, the pressure of the plasma must change through the
magnetic field gradient, presuming of course that the plasma is magnetized. To understand
this generalization from the single-particle picture to a distribution of particles, a detailed
derivation of these drifts from the first moment of the Vlasov equation can be found in
Appendix F.

We plot these drifts in the shock-rest frame in figure 11(a) as a function of the distance
through the shock, which shows that there is a clear ordering of the magnitude of these
drifts: both components of the E x B drift are dominant, the VB and magnetization V x
M drifts provide equal contributions at a smaller amplitude, and the polarization drift is
yet smaller. To demonstrate that the sum of these drifts indeed completely describes the
bulk flow of the plasma in the shock-rest frame, we show in figure 11(b) that the first
moment of the electron distribution agrees well with the sum of the drifts for both x and y
components.
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The rate of energization of the electrons in the drift approximation is equal to the rate
of work done by the electric field on the drifting electrons, given by

Jie E=qnU;-E, (5.13)

where U, is the total drift motion, which can be decomposed into the contributions by the
individual drifts identified above in, e.g. (5.7)—(5.11). This analysis follows in the vein of
studies of electron energization in reconnection using the guiding centre approximation
(Dahlin, Drake & Swisdak 2014, 2015, 2016, 2017; Drake et al. 2019). However, we
emphasize again that we have generalized from a single-particle picture to a distribution
function picture as part of our goal to understand the energization of the electrons in
phase space, and thus our equivalent guiding centre energization equation has additional
terms, such as the energization of the plasma via the magnetization drift (5.10), which do
not appear in the guiding centre energy equation of a single particle, e.g. (1) in Dahlin
et al. (2014) and Dahlin ef al. (2016).® We reiterate that the perspective provided by the
Lagrangian point-of-view, wherein one considers the energization of individual particles,
has significant merit, but that the Eulerian perspective has its own advantages, and to
obtain the Eulerian point-of-view we must generalize from single particles to distributions
of particles.

In figure 11(c), we plot the rate of electron energization by each of these four drifts
in the shock-rest frame. The first key takeaway from this figure is that, although the two
components of the E' x B drift dominate the total drift motion, there is no net work done by
the E' x B drift as we expect because (E x B) - E = 0. So, while the energization arising
from one component of the £ x B drift may appear large, summed over all components
the energization must be zero, as shown in figure 11(c). In this regard, separately plotting
the contributions to the rate of electron energization j, - E by the different components
of the E x B drift can be somewhat misleading, as both components of the E x B flow
are much larger than the other drifts.

That the full E x B drift leads to zero net energization of the particles also explains
the puzzling finding in our single-particle modelling of the electron energization shown
in figure 10(c). Although the j, E, and j. E, from the full model were larger than and
significantly different from the zero E, model, when summed they yielded the same net
rate of energization of the electrons as the zero E, model. This cancellation is exactly the
result of the two components of ‘energization’ from the E x B flow cancelling, as we
know they must. The remaining net energization is then solely from the other drifts and
their alignment with the motional electric field E,.

In figure 11(d), we check that the total rate of energization of the electrons by the
electric field in the shock-rest frame, j, - E, agrees with the sum of the energization
by the VB, magnetization and polarization drifts, finding good agreement. Note that for
this comparison, we are computing the electron current in the shock—rest frame from the
electron distribution function, i.e.

J. = fqe(v’ — UspoaxX)f dv'. (5.14)

81n fact, this generalization from a single-particle picture to a distribution function picture is also pointed out, at least
implicitly, by Dahlin ez al. (2014) (and subsequent studies) when summing over particles, thus permitting the definition
of the pressure of the plasma, and measuring the total heating of the plasma. While the curvature drift term of interest in
these studies is proportional to v‘2 for a single particle, the evolution of the energy density, or integrated energy density as
in (5) in Dahlin et al. (2014), transforms this term to be proportional to p| because particles of different parallel velocities
experience different curvature drifts.
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After the comparison between the full model and zero-E, model in figure 10(c,d) revealed
that the total j, - E was roughly equivalent between the two models, when the zero-E,
model only had energy exchange, due to the alignment of the VB drift with the motional
electric field, we might have anticipated that the only energy gain arose from this same
adiabatic heating process from the idealized model in § 5.2. Importantly though, we see
from the drift analysis in figure 11(c) that the model in § 5.2 must be generalized to the
case when a distribution of particles is drifting.

While the energy gain by a single electron VB drifting in the model fields is exactly
the energy gain required for that single electron’s magnetic moment p to be conserved,
in the self-consistent simulation it is not only the VB drift that ensures the electron
distribution’s adiabatic invariant u, is well conserved in the shock. We also have
an equal contribution to the energization from the magnetization drift. Together, as
shown by (5.12), the VB and magnetization drifts are equivalent to the diamagnetic
drift, Udiamag = UVB + uvxar, S0 another perspective on the electron energization via

adiabatic heating is the adiabatic invariant of a distribution of electrons, u, in (5.4),
is conserved due to the alignment of the diamagnetic drift and the motional electric
field, E.

Two important questions remain: (i) what is responsible for the slight disagreement
between the energy gain arising from the VB and magnetization drifts and j, - E from
velocity moments of the electron distribution function in figure 11(d)?; and (ii) even if the
physics of adiabatic heating is the same with the electrons gaining energy via the alignment
of drifts with the motional electric field, is the velocity-space signature of adiabatic heating
the same as that predicted by the Vlasov-mapping model in figure 10(b)? To answer the
first question, we have performed a more realistic mass ratio simulation, m;/m, = 400,
in Appendix G where we find better agreement between the energy gain arising from the
V B and magnetization drifts and j, - E from velocity moments of the electron distribution
function. Thus, the small disagreement between these methods of measuring the electron’s
energy gain in the m;/m, = 100 simulation is simply a result of the fact that the electron
gyroradius is not asymptotically smaller than the shock’s extent. To answer the second
question, we seek a means of eliminating the £ x B component of the energy exchange in
the FPC.

5.5. Velocity-space signature of adiabatic electron heating

If the large E x B flows are polluting the analysis of the overall exchange of the
energy, when fundamentally the electron heating principally arises from the alignment
of the VB and magnetization drifts with the motional electric field, we return to the
velocity-space signature plotted in figures 6(c) and 8(d) to determine how we might remove
the contribution from the large E x B flows to the FPC signal. Guided by the fact that the
transverse electric field component E, governs the adiabatic heating of the electrons, we
seek to eliminate the large contribution to the rate of energization associated with the
y-component of the E x B drift (which is ultimately cancelled by energization associated
with its x-component, as we show in Appendix B). Therefore, we transform to a frame of
reference moving in the transverse direction at the same velocity as the y-component of
the E x B drift, U, = —E,/B.p. We define the transverse drift frame of reference: (i) in
the x direction, or shock-normal direction, the shock is at rest; (ii) in the y direction, or
transverse direction, the frame moves at a velocity equal to the y-component of the local
E x B drift in the shock-rest frame.
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Critically, the electric field transforms from the shock—rest frame (sf, unprimed) to the
transverse drift frame (¢d, double primed), as

E . . . .
E'=E+ U,dXB=E+(—Ey) x Bz=E — Ex =E,y, (5.15)
where we have assumed E, = 0 in this 1D-2V perpendicular shock. Therefore, in the
transverse drift frame, the cross-shock electric field is zero, E7 = 0, and the motional
electric field is unchanged from the shock-rest frame, E] = E,. The y-component of the
velocity coordinate in the transverse drift frame is

E,
v, = v, — Uy = vy + B (5.16)

)
Z

For completeness, the x velocity coordinate and magnetic field are unchanged from the

shock-rest frame, v/ = v, and B = B.

Although the transverse drift frame changes with position through the shock as the
cross-shock electric field changes along the normal direction, one can determine this frame
of reference at any position from a local, single-point measurement of the electric field.
In contrast, other drifts generally depend on gradients, and therefore cannot be uniquely
specified using only single-point measurements. The benefit of the transverse drift frame
of reference is not only that the rate of energization associated with the total E x B drift is
equal to zero, which is true in any frame of reference, but also that the rates of energization
associated with each component of the E x B drift are separately zero.”

Because E = 0 in the transverse drift frame, we need only examine the y correlation,
Ce (v, v)), to explore the energization of the electrons. We plot in figure 12(a) the
correlation C ;_r(v;’, v_;,’ ) in the transverse drift frame at position xz = 21.8d;, and compare
it with the corresponding correlation Cg (vy, vy) in the shock-rest frame shown in
figure 12(b) (a repeat of figure 6¢). '

We note two things immediately from figure 12. First, transformation to the transverse
drift frame has switched the sign of the net rate of electron energization (from integrating
the correlation over velocity space) relative to the case in the shock-rest frame, made
clear by counting the overplotted equally spaced contours in the blue-red, two-lobe
structure of each case. Second, the correlation C E;;(vj’c’, v;f) in the transverse drift frame is
strikingly similar to the correlation found in figure 8(b) computed from the reconstructed
distribution function from the idealized model. Both points are perhaps unsurprising, as
this transformation has removed the energy exchange in the v, degree of freedom due to
the E x B flow, and we are left with a similar energization mechanism found in the
idealized model: alignment of the VB and magnetization drifts with the motional electric
field, E,. The alignment of these two combined drifts (constituting the diamagnetic drift)
with the motional electric field is exactly what is required for the electron distribution’s
adiabatic invariant w, to be well-conserved and for the electrons to gain energy through
the increasing magnetic field of the perpendicular shock. Figure 12(a) contains the second
key result of this paper, the velocity-space signature of adiabatic electron heating.

It is worth emphasizing that transformation to the transverse drift frame not only
revealed the same velocity-space signature for adiabatic heating as in the idealized

9Note that the transverse drift frame is not the only frame of reference in which the contributions to the energization
arising from each component of the E' x B drift are zero. One could also define a normal drift frame moving at the normal
component of the local E x B drift, which would yield E] = 0. This could be useful in determining the energization
associated with the polarization drift in the x direction, but because this is a subdominant contribution, we do not pursue
that line of investigation here.
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FIGURE 12. A comparison of the FPC from Ey, where v, and v, are shifted to the shock-rest
frame and local E x B frame respectively, i.e. the transverse drift frame, C E! (v)’c/ , v;/ ) (a) to
our previous computation of the FPC from E, using only a frame transformation in vy to the
shock—rest frame, Cg, (vx, vy) (b). Note that panel (b) is a repeat of figure 6(c) and panel (d) is
a repeat of figure 8. While the previous correlation, Cg,, suggested the electrons were losing
energy in this degree of freedom, the newly transformed correlation, Cgr, demonstrates that
the electrons are in fact gaining energy once the E x B motion in this degree of freedom is
subtracted. This energization mechanism, caused by an alignment of the VB and magnetization
drifts with the motional electric field, Ey, is the same mechanism responsible for energizing the
electrons in the idealized model, and the velocity-space signature for this adiabatic heating now
exactly matches the results of the idealized model presented in §§ 5.2 and 5.3.

model analysed in §§5.2 and 5.3, but also allowed the extraction of an energization
signature which was buried in the large background energy exchange from the E x B
flow. Ultimately, the adiabatic heating via alignment of the VB and magnetization drifts
with the motional electric field was masked by the large oscillation of energy between the
v, and v, degrees of freedom due to the two components of the E' x B motion. The need to
carefully consider the frame of reference in which the energization analysis is performed,
especially due to the impact the frame of reference choice has on the cross-shock electric
field, has been pointed out in previous studies (Goodrich & Scudder 1984).

One must therefore exercise extreme caution in attributing energization to a particular
drift when separately considering the work done by the different components of the
electric field. In figure 10(c), for example, it would be easy to attribute erroneously the
energization of the electrons to the cross-shock electric field E,. Rather, the energization
arising from the x-component of the E x B drift and E, is exactly cancelled by a loss of
energy arising from the y-component of the E' x B drift and E;. The net result is a much
smaller positive rate of energization due to the motional electric field £, and the remaining
drifts in the transverse direction.

That the addition of the magnetization drift did not qualitatively alter the velocity-space
signature of adiabatic electron heating can be understood by considering the general
qualitative features of drift energization. In the drift approximation for a warm electron
distribution relevant to most heliospheric plasmas, it is often true that the magnitude of
the drift (not including the dominant E' x B drift, which cannot energize particles) is much
less than the thermal velocity of the electrons, U, < v,.. In this case, the centre of the
drifting velocity distribution is offset from the origin of velocity space, but this offset
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will be much smaller than the thermal width of the distribution. When the correlation
is computed by taking the velocity derivatives of f, and multiplying by the appropriate
component of the electric field weighted by |v|?, the result will generally produce a
two-lobed velocity-space signature, qualitatively similar to that shown in figure 12(a).

A careful consideration of the drifts is essential to interpret properly the mechanism
responsible for the adiabatic heating. However, much of the interest in collisionless shocks
is focused not on adiabatic heating and instead on identifying mechanisms of non-adiabatic
heating. In fact, because the observed temperature increase in the electrons is entirely in
the perpendicular temperature to conserve the electron distribution’s adiabatic invariant,
even if the electron response is initially adiabatic, this anisotropy will itself be a source of
instabilities, such as the whistler anisotropy instability (Gary 1993; Gary, Liu & Winske
2011; Wilson et al. 2013b, 2020), which will further complicate the energy exchange.

Likewise, the transverse drift frame relies on the electrons being magnetized so that
their E x B motion is well-defined. While the transformation is sensible here because
Lgwock > pe, there are many observations of collisionless shocks where the shock ramp
is not asymptotically larger than the electron gyroradius (Hobara et al. 2010) and thus
would warrant caution in the application of the transverse drift frame to reveal any
masked energization signatures such as the velocity-space signature of adiabatic heating
in figure 12(a). In addition, the transverse-drift frame is a non-inertial frame because
the E x B velocity is changing through the shock. While the transformation to the
instantaneous transverse-drift frame at a single point in configuration space in a simulation
is a perfectly reasonable frame transformation, care will be required in applying this
technique to the analysis of spacecraft data, which inevitably average over a small volume
of configuration space.

Nevertheless, the velocity-space signatures of the mechanisms that govern non-adiabatic
heating are likely to be entirely distinct from the simple two-lobed appearance of adiabatic
heating, and so will be easy to distinguish using a field—particle correlation analysis. In
addition, it is useful to first characterize the ‘background’ signature of adiabatic heating,
as represented by the typical velocity-space signature shown in figure 12(a). In cases
where the adiabatic response produces a temperature anisotropy that drives instabilities,
the energetic response, and thus the electron’s velocity-space signature through the
shock, is likely to be characterized by a combination of both adiabatic and non-adiabatic
signatures.

6. Summary and future outlook

This paper presents the first attempt to characterize the energy exchange in a
collisionless shock using the field—particle correlation technique (Klein & Howes 2016;
Howes et al. 2017). We have examined a self-consistent perpendicular collisionless shock
using the continuum VIasov—Maxwell solver in the Gkeyll simulation framework and our
results can be summarized as follows:

(i) we have identified the velocity-space signatures of shock-drift acceleration of ions
in figure 5(d) and adiabatic heating of electrons in figure 12(a);

(i1) using simplified models of single-particle motion through idealized models of the
electromagnetic fields through the shock transition, we identified the conditions
under which we expect to observe these velocity-space signatures for these
energization processes.

(a) We determined that the velocity-space signature of shock-drift acceleration can
be seen clearly in a reflected ion population and is robust to the presence of the
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finite shock width and cross-shock electric field that arise in the self-consistent
simulation.

(b) For the electrons, we determined it was critical to eliminate the energization
associated with the separate components of the E x B drift by transforming to
the transverse drift frame of reference, as the large E x B drifts in both x and y
due to the incoming supersonic flow and cross-shock electric field significantly
obscured the effect of the energization of the electrons via other drifts;

(iii) finally, we observed a general strength of this method of analysis using the
field—particle correlation technique, which goes beyond identification of where
J + E is positive and which components are positive, and furthermore captured the
subtleties of a generalization from a single-particle picture to a distribution of
particles.

(a) In the case of the ions, a cursory glance at the x component of j - E, which is
overall negative owing to the slowing down of the bulk distribution, obscures
the role the cross-shock electric field plays in increasing the reflected fraction of
ions—see Appendix E for further details.

(b) In the case of electrons, just using the components of j - E would completely
miss the actual source of energization, as one might expect that the positive x
component of j - E corresponds to net energization via the cross-shock electric
field. In fact, it is not the cross-shock component of the electric field E, which
leads to the observed energization of the electrons through the shock, but
rather the motional electric field E,. Additionally, while in the single-particle
picture the energization is simply the alignment of said motional electric field
with the VB drift, the generalization to a distribution of electrons introduces
an additional drift, the magnetization drift, which when combined with the VB
drift, forms the diamagnetic drift. When aligned with the motional electric field,
these two drifts provide the necessary energization for the adiabatic invariant of
the electron distribution to be well conserved through the shock.

The work presented here is only the beginning of a program of studies to determine,
in general, how we may be able to leverage the full information contained in the
particle velocity distribution function to ascertain the details of the energy exchange in
a collisionless shock. While historically the Lagrangian perspective of examining how
individual particles gain and lose energy has led to enormous improvements in our
understanding of the dynamics and energetics of collisionless shocks, this complementary
Eulerian approach, directly analysing the energy exchange in phase space using the
field—particle correlation technique, has significant value for interpreting both simulation
and spacecraft data. Especially when advances in spacecraft instrumentation provide
ever higher resolution and higher cadence particle velocity distribution measurements of
collisionless shocks (Chen et al. 2018; Goodrich et al. 2018), the time is ripe for fully
exploiting the information contained in phase space to provide a deeper understanding of
the mechanisms of particle energization at a collisionless shock.

Further studies of higher dimensional, higher magnetosonic Mach number, and more
general geometry collisionless shocks are of the utmost importance. As reviewed in the
introduction, there is a large variety of processes not considered in this study that have been
studied previously as potential energization mechanisms, from shock surfing acceleration
to diffusive shock acceleration. As with the body of work using the field—particle
correlation technique for analysing dissipation via resonant processes, we will require a
systematic study of all of these processes if we have any hopes of distinguishing their
velocity-space signatures. We may expect certain energization processes, such as diffusive
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shock acceleration and the fast Fermi process, which also rely on particle reflection, may
have qualitatively similar velocity-space signatures to shock-drift acceleration but still
contain all the requisite information to identify the particular process locally occurring,
just as we can use information, such as the velocity around which a resonant wave process
is identified, to characterize the particular waves which are resonantly energizing the
plasma.

We expect, as we move to higher dimensionality, higher magnetosonic Mach number
and more general shock geometry, our analysis will also be further complicated by
upstream kinetic instabilities such as those observed in the Earth’s bow shock. The
velocity-space signatures of these instabilities are of equal importance to characterize and
study using the field—particle correlation technique. While the instantaneous field—particle
correlation technique employed in this study was well-suited to the impulsive ion
energization via shock-drift acceleration and the steady electron energization via adiabatic
heating, we may require finite-time correlations to characterize the energy exchange
within the upstream fluctuations and turbulence of the shocks in exact analogy with
previous field—particle correlation studies (Klein et al. 2017, 2020; Horvath et al.
2020). Nevertheless, an exciting frontier awaits in applying the field—particle correlation
technique to the distribution functions produced by more realistic collisionless shock
simulations and classifying the observed velocity-space signatures of particle energization.
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Appendix A. Component-wise separation of the field-particle correlation technique

In (3.4) derived in § 3, the field—particle correlation was expressed as a dot product
between the electric field and the velocity-space gradient of the particle distribution
function. While this gives the total energy exchange, it is often useful to identify
components of the energy exchange by decomposing the field—particle correlation
technique like so,

) v? of;(x0, v, 1)
C(U) > 1 = — S_Ex , 1) . ;, Al
000 = g B, S (A1)
2 af;(xo, v,
CO (0, 1,7) = —qu By (x, ) - L0020 (A2)
’ 2 v,

similar to (3.5) and (3.6), but without the substitution of the components of v2. We
now justify this additional substitution to obtain the form of the field—particle correlation
technique employed throughout this manuscript.

Although this substitution alters the rate of change of phase-space energy density as
a function of velocity space (vy, v,), the difference in these two forms vanishes upon
integration of the field—particle correlation over velocity space. In other words, the change
does not alter the net rate of particle energization at a given spatial position xy. That this
replacement does not alter the net rate of energization is easily seen by examining the x
contribution to the dot product in the second term of (3.2) when integrated over (vy, vy)
velocity space,

- @) o
/ dvx/ dv, —q———2E, /s
oo oo 2 oV,
qs - - af, - A
= _EEX /OO dv, /oo dvxvfavx + vf,/oo vavX

—00 —00 v2 af;
- dv, dv, [ —q,=E, , A3
/_oo v/_oo v>(61.2 8vx> (A3)

where the v, integral of the factor with vyz, is a perfect differential, and thus contributes
nothing assuming appropriate velocity-space boundary conditions, lim, _, 4o f(vy, vy) =
0.

The primary motivation for this substitution of the components of v? is to highlight the
regions in velocity space that contribute to the net energy transfer between the particles and
fields. Let us compare the velocity-space signature obtained with (A2) to (3.6) for the case
considered in § 4. Figure 13(a) plots the two forms of the field—particle correlation (3.6),

Ck,, and figure 13(b) plots that of (A2), Cg) , for the same case shown in figure 3(e). Using

the alternative form in figure 13(b) ng) given by (A2), we see that there is a large feature
in the velocity-space signature of the ion energization associated with the incoming ion
flow, but that significant feature leads to zero net ion energization. In fact, apparent energy
transfer associated with E, in this form is actually cancelled exactly by the magnetic field
term (v x B),df/dv, in the Lorentz force, as discussed in Appendix B.

Using the preferred form in figure 13(a) Cg,, this net zero energy transfer associated
with the incoming ion beam does not appear. Only the energy transfer associated with the
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FIGURE 13. (a) Field—particle correlation Cg, (vy, vy) from (3.6) using weighting v}g versus (b)

2
the correlation Cgi )(vx, vy) using the full v? weighting, both computed from the ion distribution
function of the self-consistent Gkeyll simulation.

reflected ions appears when using the form in (3.6). Therefore, although using only the
vy2 contribution does not capture the full energy flow in velocity space, it does capture the
energy transfer associated with the net rate of energization, and so this form is preferable
for the study of particle energization.

Appendix B. Calculation of field-particle correlation for the E x B drift

Here we calculate the field—particle correlation for the rate of change of phase-space
energy density of a plasma undergoing uniform E x B motion. Consider the case, relevant
to the particular transverse magnetized shock problem addressed here, of a constant
transverse magnetic field B = B,z and a constant electric field E = —E,gp where Ey( > 0,
which gives an upstream E x B velocity of ug.p = —(E,0/Bo)Xx. The 2V Maxwellian
distribution drifting with this ug, s velocity is given by

no - 2, 029/,2
fi(vy, vy) = —= e Luma Hl B1)
2
ts

where we have assumed no spatial variation, in analogy with the upstream region of the
perpendicular shock studied here.

With no spatial variation, the rate of change of phase-space energy density
Wy (X, Uy, Oy, 1) = myv3fi(x, vy, vy, 1)/2 is given by

Ow,(x, v, 1) v? of,
— = —q,—=—(E B).—. B2
a7 9 (E+vxB)- - (B2)
Substituting in the fields and the velocity-space derivatives
0 s -2 x x
al — wﬁ’ (B3)
Uy v2
afy  —2v,
=—2f, B4
o, > i (B4)
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we obtain the following result:

dwe(x,v,1) v? 2f;
= _2,

o1 —CISE(—UyEyo — VB + vueBy — VyupgpByo) » (BS)

1s

where we see that the term from (v x B),(df;/dv,) cancels with the contribution from
(v x B),(9f;/dv,) that is not associated with the E x B flow. Now, if we substitute for the
E x B velocity, where ug,p = —(E,0/B), we obtain

ows(x, v, 1) E, 2f;

v2
= —q, — | = B. =0, B6
ot 4> ( v EG — v, B ~o) 2 (B6)

where the change of phase-space energy density arising from the electric field in the first
term is cancelled by the change of phase-space energy density arising from the magnetic
field acting on the E' x B flow.

Importantly, (B6) demonstrates that the instantaneous rate of change of the phase-space
energy density, at every point in velocity space, is zero for a Maxwellian plasma simply
undergoing uniform E x B motion. Of course, we expect that an E x B flow produces no
net energization. However, in combination with our intuition that E x B flows produce
no net energization, the result presented here more strongly motivates the form of the
field—particle correlation technique presented in Appendix A, and other transformations
employed throughout this study, to eliminate the contribution of E x B flows to individual
components of the energization, such as the transformation to the transverse-drift frame in
§ 5. Using these transformations, we can then gain further insight into the energy exchange
in phase space without having to sum over components, as is required in (B6) to completely
cancel the E' x B contribution to the rate of change of the phase-space energy density.

Appendix C. Energy conversion versus energization

The purpose of this appendix is to clarify terminology on energy conversion within the
plasma versus energization of the plasma via the processes present in this collisionless
shock. In the analysis of the ion energization in the Gkeyll simulation presented in § 4, the
narrow upstream velocity distribution broadens as it passes into the downstream region,
as can be seen in figure 2(d). We wish to distinguish between this broadening of the ion
distribution, which we identify as energy conversion from bulk kinetic to internal energy,
and energization of the ion distribution, i.e. energy transfer from the electromagnetic fields
to the ions.

To understand this distinction, we return to the simplified model for the ion dynamics
through the perpendicular shock presented in § 4. For the reader’s benefit, we re-plot the
single-particle motion and fields in the simplified model, along with the net rate of work
done on the full ion particle velocity distribution, j,Ey, in figure 14. In addition, we have
marked with x, the point at which the field—particle correlation was calculated in § 4.

We now plot in figure 15 that spatially averaged downstream distribution function
and field—particle correlation, which are averaged over —4 < x/d; < —2. We observe a
broadened ring distribution and an approximately anti-symmetric velocity-space signature,
which corresponds to zero net energization over this spatial interval. Importantly, if
we transform to the downstream frame of reference and compare the distance to the
origin of the upstream distribution (white circle) with the distance to the origin of
the ring distribution, we find that both distributions, upstream and spatially-averaged
downstream, are roughly equidistant to the origin. In other words, the energy of these
two distributions is roughly equivalent. In the upstream, the energy is dominantly bulk
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FIGURE 14. (a) Profiles along the shock normal direction of the transverse magnetic field B,

(blue) and the motional electric field Ey (red), (b) trajectory of a reflected ion in the (x, y) plane,
and (c) the rate of work done by the electric field on the distribution of particles j,Ey.

kinetic, while in the downstream, the energy is mostly non-thermal, with an increase in the
effective perpendicular temperature of the distribution. However, this energy conversion
is conservative, not changing the total net energy of the ions. The only process in the
simplified model which changes the total microscopic kinetic energy of the ions is the
energization via shock-drift acceleration.

It is worth expanding upon this subtlety of energy conversion versus energization
by considering a more generic idealized model in which we vary the amplitude of the
magnetic field increase at the magnetic discontinuity. In general, as an ion £ x B drifts
through a magnetic discontinuity, the perpendicular velocity in the local bulk-flow frame
of reference increases at the expense of the diminished bulk-flow E x B velocity. The
downstream perpendicular velocity relative to the upstream bulk-flow velocity v, /U,
is determined by three dimensionless parameters for this idealized problem: (i) the ratio
of the downstream to the upstream magnetic field magnitude B,/B,; (ii) the ratio of the
upstream perpendicular velocity to the upstream bulk-flow velocity v,,/U,; and (iii) the
gyrophase 6 of the ion!® when it first reaches the magnetic discontinuity.

In figure 14(b), the specific ion trajectory plotted returns upstream (red segment) due to
the increased magnetic field downstream of the discontinuity. If the ion does not return

10Note that, because the inflow velocity is in the —x direction for the model configurations considered here, we define
the gyrophase 6 as the angle measured clockwise from the —x direction. Therefore, & = 0 corresponds to a perpendicular
velocity that increases the magnitude of the inflow velocity, and 6 = 180° decreases the magnitude of the inflow velocity.
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FIGURE 15. Averaging over the downstream region —4 < x/d; < —2 in the idealized shock
model yields (a) the distribution function (f;(vy, vy)) and (b) the field—particle correlation CE/v of
the averaged distribution. The averaged field—particle correlation is approximately symmetric,
which corresponds to zero net energization, in agreement with a spatial average of j,E, in
figure 14(c), which suggests that the ions experience no further energization once they have
crossed downstream.

upstream, then one can compute the downstream perpendicular velocity v,,/U, as the
difference between the velocity upon crossing the discontinuity and the downstream E X
B velocity, which yields

. , 2 1/2
v 3 Uiy . =
Z‘Z” _ {[ULMCOSQ‘F <1 _ B_d>] +|:Ju s1n6] } . (CDhH

Note that, although the perpendicular energy relative to the local (upstream or
downstream) bulk-flow velocity generally increases, this increase comes at the expense
of the kinetic energy of the incoming bulk flow, and the total kinetic energy of each
ion is conserved in this process. This statement can be proven for a ring of ions with
perpendicular velocity v, approximately equal to the upstream velocity U, by squaring
(C1), substituting B,/B, = U,/U,, integrating the gyrophase 6 over 27 and multiplying
by m;/2, to obtain the expression

mvl = tmt, 4+ m(U, — Uyp)*. (C2)

The conservation of energy is obvious when evaluated in the downstream frame (U, = 0),
where (C2) proves that the downstream perpendicular energy of the ring of ions is simply
the sum of the upstream perpendicular energy plus the ‘bulk’ kinetic energy of the ring
distribution moving at U,,.

Of course, if an ion does return upstream, it can gain energy by the process of shock-drift
acceleration via the alignment of the transverse (to the shock normal) component of
the Larmor velocity and motional electric field that supports the inflow at the E x B
velocity. Only if an ion returns upstream is there any net energy exchange between the
electromagnetic fields and the particles. We demonstrate this energy gain for the idealized
model in figure 16, which plots the gain of perpendicular energy (v, 4/v.4.4)* as a function
of (v, v,) for By/B, = 2, 3, 4 in panels (a,b,c).
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FIGURE 16. Ion energization as a function of v, /U, and 6 on the (v, vy) plane for B;/B, =
(a) 2, (b) 3, and (c) 4. The upstream bulk velocity is given by the star, the downstream bulk
velocity is given by the diamond. The blue circle in (c) represents particles with a specific
upstream perpendicular velocity v, , where only particles with gyrophases 6 within the indicated
range undergo reflection.

In this figure, the black contours separate regions with different numbers of crossings of
the magnetic discontinuity (x = 0 in figure 14), where every ion must cross the magnetic
discontinuity an odd number of times to eventually cross downstream, given by the large
numbers on the plot. The increase of the perpendicular energy arising from shock-drift
acceleration is given by the colour bar. In the self-consistent simulation, this energy gain
comes at the expense of the field energy, while for the idealized model, this energy gain via
shock-drift acceleration is not conservative. Nevertheless, the idealized model helpfully
illustrates where, in phase space, we observe merely energy conversion versus where we
expect to see actual energization due to the electromagnetic fields. All ions that cross the
magnetic discontinuity only once conserve their energy, which leads to the increase of the
perpendicular energy (relative to the downstream frame) predicted by (C1) (green colour).

We conclude this appendix by making a few final notes on this distinction between
energy conversion and energization. The movement of particles from one position in
velocity space to another requires acceleration, so this energy conversion is still mediated
by forces in the plasma: the v x B force in the single-particle picture, which combines with
the v - V, streaming term in the distribution function picture. The latter term corresponds
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to the traditional picture of pressure work, as once we have a distribution of particles, the
pressure can participate in this energy conversion.

It is important though to distinguish pressure work, which simply converts one form of
energy into another, and a pressure supported electric field, which requires gradients in the
pressure and can energize the plasma. For example, the cross-shock electric field, which
arises in the self-consistent simulation, is a result of the electron pressure gradient. This
pressure-supported cross-shock electric field both increases the reflection of ions—see
Appendix E for further details—and is a critical component to the increase in 7, of the
electrons via adiabatic heating, where the pressure gradient provides the relevant drifts for
the electron distribution’s adiabatic invariant to be conserved through the magnetic field
gradient.

Fundamentally, we seek to be as precise as possible in what we are diagnosing with the
field-particle correlation technique by focusing exclusively on the electric field component
of the evolution of the phase-space energy density. While the energy conversion that
occurs in collisionless shocks is a component of the overall increase in the temperature of
e.g. the ions, this process of energy conversion is distinct from the energization processes
that occur, such as shock-drift acceleration. Additionally, it is from these energization
processes that we seek the velocity-space signatures, as we may then be able to leverage
this same toolkit for understanding the processes present in spacecraft observations of
collisionless shocks.

Appendix D. Vlasov-mapping technique to determine full particle velocity
distributions

We can explore the evolution of the particle velocity distributions in our idealized
perpendicular shock models by a technique that we denote as Vlasov mapping (Scudder
et al. 1986; Kletzing 1994; Hull et al. 1998; Hull & Scudder 2000; Hull et al. 2001;
Mitchell & Schwartz 2013, 2014). At the physical point x g at which we want to ‘observe’
the velocity distribution, we repeat the single-particle-motion analysis for every point
(V, init> Y, init) in the velocity space, integrating backwards in time until we reach a
point xyp upstream in the unperturbed, in-flowing plasma. This backwards integration
yields a final position in velocity space (v, fin, v, fin) by following along the ion trajectory
through phase space. Because the velocity distribution upstream is known, we know the
phase-space density at this final point in velocity space (v, fip, v, fin)- For a collisionless
plasma, Liouville’s theorem dictates that the phase-space density is invariant along the
particle trajectories through 3D-3V phase space, so we may set the phase-space energy
density at (v, jpit. Y, jpjt) at the point of observation equal to the phase-space density
upstream at (v, fin, v, fin)> Which gives

Js(Xobs» Uy init» Yy init) =Js(xup, v, fin: U, fin)- (DD

This Vlasov-mapping technique is, of course, not self-consistent with respect to how the
evolving particle velocity distributions may become unstable and generate electromagnetic
field fluctuations through kinetic instabilities. It is essentially an extension of the
single-particle-motion analysis, computing the evolution of the full velocity distribution
arising from known electromagnetic fields. Furthermore, it is possible in general that
regions of phase space downstream do not connect to any position upstream, which leads
to voids in the downstream phase space, but for the perpendicular collisionless shock
evaluated here, this potential difficulty is not encountered.
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Appendix E. Effect of finite ramp width and cross-shock electric field on ion
energization

To understand the effects of the finite shock width and the cross-shock electric field
on the ion energization, we first use the Vlasov-mapping model to separate out the
effects of different components of the electric field on the ion trajectories, similar to the
analysis of the electrons presented in § 5.3. In figure 17(b), we compare the ion trajectories
between two Vlasov-mapping models: (i) the ‘full model’ (solid), which computes the ion
trajectories and evolution of the ion velocity distribution using the full electromagnetic
fields from the Gkeyll simulation; and (ii) the ‘zero E, model’ (dashed), in which we
artificially set the cross-shock electric field to zero. In figure 17(c), we plot the rates of
energization of the ion distribution by the electric field, j.E, (blue) and j,E, (red), along
with the total energization, j - E (black), for the two models. We also show the cumulative
total energization of the ion distribution by integrating from upstream fx tp Jj+Ed, along

with the separate contributions from each component of the electric field for both models
in figure 17(d).

First, we adopt a Lagrangian approach to examine the ion energization along its
trajectory. The comparison of the example reflected ion trajectories in figure 17(b)
illustrates how the cross-shock electric field alters the ion trajectory. Because E, opposes
the flow of ions into the shock, the ion penetrates less deeply into the shock before turning
back upstream (solid blue segment of trajectory) than for the zero E, model (blue dashed).
For the full model including E,, the ion returns further upstream (red solid), where the
lower magnitude of the magnetic field leads to a larger Larmor radius of its orbit. This
return further upstream in the full model is particularly important when the shock ramp
has a finite width. The enhancement of the ion reflection by E, significantly affects
energization of these reflected ions by E, through the shock-drift acceleration mechanism,
where figure 17(c) shows that the rate of ion energization j,E, (red) in the foot and ramp
region, 22 < x/d; < 24, is much larger for the full model (solid) than for the zero E, model
(dashed). This increased energization is a direct result of the larger distance the full model
ion traverses in y upstream as its gyroradius is increased by the combination of acceleration
by E, and the decreased magnetic field amplitude upstream.

Another way to view the effect of the cross-shock electric field in increasing the
efficiency of shock-drift acceleration is to employ a complementary Eulerian point of
view to examine the energization as a function of velocity space (vy, v,) at a single
point in configuration space. Following this approach, we explore the enhanced reflection
due to the cross-shock electric field by examining Cg, to understand how E, accelerates
or decelerates ions in different regions of velocity space. Figure 18(a) plots the ion
distribution function f;(v,, v,) and figure 18(b) shows the correlation with the cross-shock
electric field Cg, (vy, v,) from the simulation at the position xz = 21.8d; (vertical red line
in figure 17 and the same point where the electron analysis in § 5 was performed),where
the cross-shock electric field peaks.

The ion distribution at this position is dominated by the incoming beam, with a small
fraction of reflected ions forming a ‘boomerang’-shaped distribution. The dominant effect
is that E, decelerates the incoming ion beam. However, the population of reflected ions
with v, > 0 at xz—which corresponds to the upper crossing of the red segment of the
trajectory with the vertical line at xp in figure 17(b)—is being accelerated by E,, which
causes these ions both to return further upstream and to increase their perpendicular
velocity, thereby leading to a larger Larmor radius. These two effects that E, has on the
reflected ions with v, > 0 reinforce the enhanced reflection and increased energization of
these ions by the shock-drift acceleration mechanism.
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FIGURE 17. (a) Electromagnetic fields approximated from the self-consistent Gkeyll simulation.
(b) Example ion trajectories for the full model (solid) and zero E, model (dashed). (¢) Rate of
work done by the components of the electric field, j,E, (red) and j £, (blue) for the full model
(solid) and zero Ey model (dashed), along with total j - E (black). (d) Cumulative work done
integrated from the upstream fx Jj - E. Inclusion of the cross-shock electric field enhances ion
reflection, thereby achieving a larger energy gain arising from the motional electric field E,
through shock-drift acceleration.

In this regard, we reiterate a powerful feature of the FPC: the velocity-space signatures
produced by the FPC reveal how electric fields energize different components of the ion
distribution in qualitatively different ways. The cross-shock electric field decelerates the
incoming beam while accelerating the reflected population with v, > 0, as shown by the
blue and red signatures, respectively, in these regions of phase space. The separation
of the energization of different populations of the ion velocity distribution from an
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FIGURE 18. The ion distribution function from the Gkeyll simulation (a), and Cg, computed
from the Gkeyll simulation (b) plotted at xp = 21.8d;, near the peak of the cross-shock electric
field. We note two features in the velocity-space signature found from computing Cg, : the strong
negative correlation coincident with the incoming beam, which denotes the deceleration of the
incoming flow and transfer of energy from the bulk upstream kinetic energy to electromagnetic
energy, and the modest positive correlation at vy, < 0, vy > 0 where particles can now be
accelerated by the cross-shock electric field and pushed back upstream. This acceleration of
ions of particular velocities is the principal reason for the increased efficiency of shock-drift
acceleration despite the finite shock width, as the cross-shock electric field assists in increasing
the phase-space density of reflected ions that can gain energy along the motional electric field
upstream.

Eulerian perspective, provided by the FPC method, enables a deeper understanding of the
underlying mechanisms of ion acceleration at the shock. We emphasize that by looking
only at the velocity-integrated rate of energization by E,—given by j.E, in figure 17(c) at
xg—one sees just the net loss of ion energy due to E,, which masks the important effect
that the cross-shock electric field plays to enhance the ion reflection. While the role of
the cross-shock electric field in enhancing the reflection of the ions has been previously
theorized to be an important component of energizing the reflected ion population (Cohen
et al. 2019), the Eulerian perspective provided by the FPC makes the physics of the
cross-shock electric field especially clear by illustrating where the ions are gaining and
losing energy in phase space.

Appendix F. Bulk guiding centre drifts

To derive the bulk drifts, we begin with the momentum equation, obtained via taking
the first velocity moment of the Vlasov equation of plasma species s,

du; 1 .
Y~ v.r, =L (E4u xB), (F1)
dr mgng my
where
d 0 + v (F2)
- = us ° k)
dr ot
and P; is the pressure tensor,
P =m, / (v — u) (0 — u)f dv. (F3)
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Note that in the derivation of (F1) from the first velocity moment of the Vlasov equation,
we have used the zeroth moment of the Vlasov equation to eliminate the terms which
involve the time evolution of the density. We seek the drifts perpendicular to the magnetic
field, so we take the cross-product (F1) with the magnetic field, B,

d s S S
& B+ —vV.P.xB=LExB+% (u xB)xB. (F4)
dr mgng mg mg ——————
(B-ug)B—|B|?uy

Rearranging, the perpendicular component of the bulk velocity is

ExB V.P xB m  dug
— — — X
|BI? qsng|BI>  qs|BJ*> di

(F5)

us| =

If the plasma is magnetized, or at least the electrons are as in § 5, it is natural to split the
pressure tensor as

P,=P°+1,, (F6)
where
P¢ = (I — bb)p, | +bbp, = Ip, | +bb(p,; —p;.1), (F7)

is the Chew—Goldberger—Low (CGL) pressure tensor (Chew et al. 1956), b = B/|B] is the
direction of the magnetic field and II is the agyrotropic part of the pressure tensor. Note
that Tr (Pf) = 2p,1 + ps = 3p,, where p; is the scalar pressure. From this definition, we
can also see that Tr (II;) = 0. In the 1D-2V simulation of interest in this study, where
B = B.(x)z, the trace of the pressure tensor is instead Tr (Pf) = 2p,.1 = 2p, because we
are not evolving the degree of freedom parallel to the magnetic field. Thus, p,;, = p, in
this geometry, but for generality we will retain the subscript L for the remainder of the
derivation.
The divergence of the CGL pressure tensor is

V-PS=Vp, +(poy—psi) V- (Bb) +bV (psy — Ps.1), (F8)
~——

(V-b)b+V b

where V| = b - V. Hence, we can calculate the contribution of the CGL pressure tensor
to the bulk drift:

V-P{xB  Vp,, xB
gn|BP? qoni|BP

VHb x B
gsns|BI*

+ (P51 — Ps.) (F9)

where the terms in the direction of the magnetic field in (F8) are eliminated upon taking

the cross-product with B. Putting everything together, we obtain

ExB Vp,, xB
|B|? qsns| B|?

VibxB V-MI,xB m, du

s,.L = Vs - B o
+ (PA,J_ p .,H) qsns|B|2 qsn5|B|2 QS|B|2 dr

(F10)

Uus, =

We now define the magnetization vector (Hazeltine & Waelbroeck 1998),
M, = B (F11)
s p S,J_ | B|2 ’
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FIGURE 19. A comparison of the strength of the major single-particle drifts through the shock
(a), E x B in x (black) and y (green), the VB drift in y (blue), magnetization drift in y (red
dashed), and the polarization drift in x (magenta. dashed—dotted) for a m;/m, = 400. We check
that these drifts sum to the total first moment computed from the electron distribution function
(b) as well as determine how each of these drifts contributes to the overall energy exchange, j, - E
(c), and compare the j, - E computed from these drifts to the total j, - E computed from moments
of the electron distribution function (d). As before in figure 11, we sum the energy exchange
arising from E x B flows to demonstrate that this total energization is zero, as it should be.
We note that the energization arising from the combination of the VB and magnetization drifts
more closely agrees with the energy exchange, j, - E computed from moments of the electron
distribution function in comparison to figure 11.

which is a generalization of the definition in (5.11). We note that

VXM, =V B Vp,. x B v (B (F12)
X s = X Vs Tn = 5 s X ey 9

T T ANT-TE
so that we can rearrange (F10) as

ExB VxM, p,.Vx(B/B,

U, = +
|B|? qsny qshy
o )V”be V.II, xB m,  dug B (F13)
s I - - — X .
Pt =P BP T qmBP g IBP i

The first three terms, the E x B drift, the magnetization drift and the VB drift' are the
dominant three drifts in the 1D-2V perpendicular shock of interest in this study. The other

"'We can see this is identical to the V B drift definition employed in (5.7) for a magnetic field only in the z direction
with a bit of vector calculus, V x (2/B;) = —VB, x 2/B2.
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FIGURE 20. The electron adiabatic invariant, © = T /B;, for the m;/m, = 100 simulation
(blue) and m;/m, = 400 simulation (red dashed). The conservation of the adiabatic invariant
is within ~ 1 percent in the m;/m, = 100 simulation, while the conservation is even better for
the m;/m, = 400 simulation, which suggests that the m;/m, = 400 is even more strongly in the
asymptotic limit of p, < Lghock-

terms: the curvature drift, agyrotropy drift and polarization drift are all either identically
zero in this geometry or small. For example, we demonstrated in § 5 that the polarization
drift is small through the shock, and because the electron’s adiabatic invariant is well
conserved, the agyrotropic component of the drift must be small.

We note again that the combination of the bulk VB drift and the magnetization drift
produce the familiar diamagnetic drift,

Vps, 1 X B

udlamagnellc qsnslBIZ ’ (F 14)
and that an alternative interpretation of the results of § 5 is that the electron distribution’s
adiabatic invariant is conserved via the alignment of the diamagnetic drift with the
motional electric field. In other words, whereas for a single particle only the VB drift was
important for that single particle to heat adiabatically, the generalization to a distribution
of particles leads to a bulk drift, the diamagnetic drift, which is a combination of the VB
drift and the magnetization drift, being the principally important drift for the distribution
of particles to heat adiabatically.

Appendix G. Checking u. conservation with a m;/m, = 400 simulation

Here, we repeat some of the analysis of § 5 for a more realistic mass ratio simulation,
m;/m, = 400, to determine a possible source for the slight disagreement between the
energization, due to the VB and the magnetization drifts, and the energization, j, - E,
computed from moments of the electron distribution function. All other parameters are
the same, e.g. box size, L, = 25d;, plasma betas, 8; = 1.3, 8, = 0.7, and electron—electron
collisionality, v,, = 0.01£2.;. Note that with the increased mass ratio, the ion—ion
collisionality is commensurately reduced. In addition, because the ions are more massive
and there is more scale separation between the ions and electrons, we have doubled
the configuration space resolution to N, = 3072 to keep Ax ~ d,/6. For computational
convenience, we perform our analysis just after the shock is formed, r = 4.3 ".

We plot in figure 19 an identical figure to figure 11 for the m;/m, = 400 simulation to
compare strengths of the same drifts of interest in § 5 in figure 19 (a): E x B in x and
v, the VB drift in y, the magnetization drift, V x M, in y and the polarization drift in
x. We also repeat the comparison of these drifts to the computed first moment from the
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electron distribution function in figure 19(b), alongside a comparison of the amount of
bulk energization arising from these drifts in figure 19(c), and how it compares with the
bulk energization, j, - E computed from moments of the electron distribution function in
figure 19(d). We note that the agreement between the energization of the electrons arising
solely from the alignment of the V B and the magnetization drifts with the motional electric
field and the total j, - E computed from moments of the electron distribution function is
better than what was observed in figure 11 for the m;/m, = 100 simulation. The more
realistic mass ratio increases the scale separation between the shock width, which remains
Lgwock ~ d;, and the electron gyroradius, and thus we expect the electron adiabatic invariant
to be more strongly conserved through the shock. This stronger conservation is indeed the
case, as we show in figure 20 comparing . computed from both the m;/m, = 100 and
m;/m, = 400 at the same time ¢t = 4.39;1.
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