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Abstract

Plasmoids—magnetized quasi-circular structures formed self-consistently in reconnecting current sheets—were
previously considered to be the graveyards of energetic particles. In this paper, we demonstrate the important role
of plasmoids in shaping the particle energy spectrum in relativistic reconnection (i.e., with upstream magnetization
σup? 1). Using 2D particle-in-cell simulations in pair plasmas with σup= 10 and 100, we study a secondary
particle energization process that takes place inside compressing plasmoids. We demonstrate that plasmoids grow
in time, while their interiors compress, amplifying the internal magnetic field. The magnetic field felt by particles
injected in an isolated plasmoid increases linearly with time, which leads to particle energization as a result of
magnetic moment conservation. For particles injected with a power-law distribution function, this energization
process acts in such a way that the shape of the injected power law is conserved, while producing an additional
nonthermal tail f (E)∝ E−3 at higher energies, followed by an exponential cutoff. The cutoff energy, which
increases with time as µE tcut , can greatly exceed σupmec

2. We analytically predict the secondary acceleration
timescale and the shape of the emerging particle energy spectrum, which can be of major importance in certain
astrophysical systems, such as blazar jets.

Unified Astronomy Thesaurus concepts: Plasma astrophysics (1261); High energy astrophysics (739); Blazars
(164); Pulsars (1306); X-ray binary stars (1811); Accretion (14); Stellar accretion disks (1579)

1. Introduction

Magnetic reconnection is a very efficient and rapid
mechanism of tapping magnetic field energy in astrophysical
environments. In recent decades this phenomenon has been
studied extensively with numerical techniques varying from
resistive magnetohydrodynamics (MHD; Loureiro et al. 2005;
Huang & Bhattacharjee 2010) to kinetic particle-in-cell (PIC)
algorithms (e.g., Zenitani & Hoshino 2001; Bessho &
Bhattacharjee 2012; Guo et al. 2014; Sironi & Spitkovsky
2014). Systems of two plane-parallel magnetic field regions
with opposite polarities separated by a current layer are thought
to serve as good localized analogs of larger-scale astrophysical
systems. PIC simulations of such regions in the magnetically
dominated relativistic regime, when the available magnetic
field energy greatly exceeds the plasma energy, have been
studied in the past decade. These simulations (in both two and
three dimensions) have shown that relativistic magnetic
reconnection produces extended nonthermal particle energy
spectra, which can usually be described by a power law with a
high-energy exponential cutoff, namely, µ -dN dE E ep E Ecut.
The power-law index p is found to depend on the plasma
magnetization, σup. This dimensionless parameter is defined as
the ratio of the magnetic and the plasma enthalpy densities
evaluated for the upstream unreconnected region. Typically
hard power laws (i.e., p− 2) are produced when the
magnetization is high (i.e., σup 10; Guo et al. 2014; Sironi
& Spitkovsky 2014; Werner et al. 2016).

The exact mechanism of particle acceleration and power-law
formation in relativistic reconnection has been the topic of
extensive research. Possible candidates include direct accel-
eration in magnetic X-points (e.g., Zenitani & Hoshino 2001;
Uzdensky et al. 2011; Sironi & Spitkovsky 2014), Fermi-like
acceleration by the motional electric field via the so-called
“slingshot” mechanism (e.g., Li et al. 2017; Guo et al. 2019),

and mergers between large plasmoids (e.g., Drake et al. 2006a;
Nalewajko et al. 2015). We will further refer to these
mechanisms as pre-acceleration (or primary acceleration),
while their details will remain out of the scope of this paper.
So far the pre-acceleration stage has been under the spotlight

of the community. Instead, our main focus will be the
energization process operating on longer timescales after the
pre-acceleration stage, which we will refer to as the secondary
acceleration. This secondary process has often been neglected
in previous studies because it can only be seen by evolving a
large-enough system to long timescales. Petropoulou & Sironi
(2018, hereafter PS18) performed large 2D simulations, where
they demonstrated that a power law is formed at relatively short
timescales during the pre-acceleration stage, while particles are
slowly energized during the secondary acceleration stage on
much longer timescales. In particular, they showed that in late
stages of reconnection the characteristic maximum energy of
the population of particles increases sublinearly with time,

µE tmax
1 2. This secondary acceleration, while being slow,

may have an imprint on the formation and evolution of the
nonthermal tail in the particle spectrum on long timescales, and
might be relevant for astrophysical applications.
In this paper, we expand on the work of PS18 by

investigating in detail the secondary particle energization
process. In Section 2 we discuss qualitatively the structure of
the reconnection layer and its dynamics. In Section 3 we
introduce our analytical model of the secondary acceleration
and the formation and evolution of the nonthermal particle
energy spectrum. Our analytical model relies on certain
physical assumptions about both the structure of plasmoids
and the motion of particles within them. To verify our
analytical model, we perform numerical simulations with a
setup presented in Section 4. In Sections 5 and 6 we justify the
assumptions of our analytical model and empirically demon-
strate their validity using results of our simulations. In
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Section 7 we discuss our results, focusing on their applicability
to astrophysical systems. We conclude in Section 8 with a
summary of the most important findings of this paper.

2. A Qualitative Overview of the Reconnection Layer

We qualitatively describe the structure and evolution of the
reconnection layer in the relativistic regime, setting the stage
for the analytical model of particle energization presented in the
next section.

Figure 1 shows snapshots of the plasma density structure
from a 2D simulation of reconnection in pair plasma. The
simulation is initialized with a cold background (upstream)
plasma and a hot dense current sheet in the middle (x= 0); the
magnetic field in the y-direction changes its sign at x= 0 (for a
detailed description of the simulation setup, see Section 4). At
early times the current sheet “breaks” in several locations as a
result of the tearing instability (Drake & Lee 1977; Zenitani &
Hoshino 2005a, 2005b), which in our simulations develops
from numerical noise. Tearing of the initial current sheet leads
to the formation of a series of primary magnetic islands, or
plasmoids. These are separated by X-points, i.e., locations
where the magnetic field vanishes, introducing a nonideal
electric field. Secondary current sheets are formed in between
primary plasmoids, and over time they also become unstable,
leading to the formation of secondary plasmoids (Drake et al.
2006b; Uzdensky et al. 2010; Uzdensky & Loureiro 2016).
Although primary and secondary plasmoids evolve in a similar
way, they have different internal structures. More specifically,
primary plasmoids have an unmagnetized core with plasma
from the initial current sheet, while secondary plasmoids form
from the secondary current sheets that have been enriched with
magnetized upstream plasma. Henceforth, we focus on the
evolution and structure of primary plasmoids, as they will
contain the highest-energy particles in our simulations (see
also PS18).

Plasmoids grow in size as they continuously accrete plasma
and magnetic flux from the upstream region and flows of
reconnected plasma along the current sheet (see, e.g., plasmoid
highlighted with a solid white rectangle in Figure 1). While
plasmoids grow, their interiors compress over time, as injected
particles and magnetic flux are advected inward toward the
plasmoid center. Plasmoids can also collide and merge with
one another to form bigger islands. In addition to “minor”
mergers between plasmoids of unequal sizes, a plasmoid can
occasionally undergo a “major” merger when colliding with a
plasmoid of similar size (or equivalently similar mass), as
illustrated in Figure 1 with a dashed white rectangle. In this
paper, we will focus on periods between major mergers during
which the properties of plasmoids (e.g., size, magnetic flux, and
mass) evolve adiabatically slowly, i.e., at a rate dictated by the
plasma inflow into the current sheet (this will be demonstrated
in detail in Section 6).

In general, the energy spectrum of particles injected into
isolated plasmoids comprises two main populations: cold
particles (i.e., directly accreted from the upstream region),
and nonthermal particles pre-accelerated in the regions of
reconnected plasma (e.g., X-points, relativistic outflows along
the sheet, smaller plasmoids). The exact shape of the injection
spectrum will depend on the relative contribution of the two
particle populations and its evolution with time. In our
simulations, we typically find that the particle injection
spectrum into isolated plasmoids can be phenomenologically

described by a power law extending in energy up to a few times
σupmec

2 (for details, see Section 6).
Given this pre-accelerated energy spectrum, we aim to study

the long-term energy evolution of particles upon their injection
into magnetic islands, a process we refer to as the secondary
acceleration.

3. An Analytical Model for Particle Energization in
Plasmoids

In order to highlight the main mechanisms at work, we build
an analytical model for the long-term particle energization
within a constantly compressing plasmoid.
Motivated by our simulation results (see Sections 5 and 6),

we assume that the magnetic field lines in the plasmoid interior
can be described as concentric rings (see also last panel of
Figure 1). The radius of each ring is decreasing with time,
while its magnetic field strength is increasing as a result of
plasmoid compression. Particles within plasmoids are typically
strongly magnetized (i.e., their gyroradius is much smaller than
the plasmoid size), and their motion is confined to the
concentric shrinking magnetic rings. Particles injected into
the plasmoid roughly at the same time are tied to a single ring
and experience an increasing magnetic field strength in time.
We model a compressing plasmoid in the reconnection layer as

a confined region wherein charged particles are constantly
injected. The volume of this region is permeated by a uniform
magnetic field of increasing strength, B(t), due to compression.
The change in the magnetic field strength is assumed to be slow
compared to the gyration period of particles. The first adiabatic
invariant for particles is therefore conserved, m µ µû B const2 ,
where u⊥ is the particle four-velocity in the direction perpend-
icular to the magnetic field. Here, for simplicity, the particle
motion is considered to be confined in the plane perpendicular to
the magnetic field, so that u= u⊥, and we consider only the
evolution of f (t; u⊥). This toy model is sufficient for explaining
the trends found in our simulations, because the distribution cutoff
energy and the high-energy tail are largely dictated by u⊥. In the
further discussion we also consider only the high-energy tail of the
distribution function, where for particles u≈ γ? 1.
The evolution of the Lorentz factor of a single particle at the

high-energy end of the distribution is then described by

m g
g

=  »  »^
^u
u B

B

B

B
0

2 2
. 1( ) 






For a power-law scaling with time, i.e., B∝ tα, solution of
Equation (1) yields γ∝ tα/2 in the limit of γ? 1. In the case of
linear growth of the magnetic field strength with time (i.e.,
α= 1), the particle energy will scale as∝ t1/2. This is in
agreement with the findings of PS18 about the growth of the
maximum particle energy. Henceforth, we will assume for
simplicity that =B t B t t0 0( ) ( ). Equation (1) then reads
g g= t2 .

Let us now consider the evolution of the distribution
function, f (t, γ), of the particle population contained in the
volume. This evolution can be described by the following
equation:

g
g g

¶
¶

+
¶
¶

=
f

t
f S t, , 2( ) ( ) ( )

where S(t, γ) is a source term describing particle injection into
the fixed volume. Because particles are confined within the
volume (as it happens in plasmoids), there is no escape term on

2
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Figure 1. Snapshots showing the temporal evolution of the current sheet from a simulation with the magnetization of the background (upstream) plasma of σup = 100.
Color represents the plasma mass density ρ, in units of the mass density in the upstream region ρup, in logarithmic scale (see color bar). We only show the region |x|/
rL < 60 to emphasize the small-scale structures in the reconnection layer, while the actual simulation box spans from − 200 rL to 200 rL in the x-direction. The
plasmoid used in our subsequent analysis (see Section 5) is highlighted with a solid white rectangle. Dashed white rectangles track the collision of two primary
plasmoids (at ct/rL ∼ 322) from the pre-merger (ct/rL = 247) to the post-merger (ct/rL = 398) phases. In the first and last panels we also overplot the magnetic field
lines for reference. Here we used as our unit of length the Larmor radius rL of particles with energy σupmec

2 (for the exact expression, see Equation (8)).
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the left-hand side of the equation. Notice that in Equation (2),
for simplicity, it is assumed that particles injected at time t1 will
start experiencing a background magnetic field of strength B(t1)
(because the energization rate g t( ) is common for all the
injected particles). In reality, for plasmoids particles would
have started from the upstream field B(t0) regardless of when
they are injected. This, however, does not affect the final
outcome, because the highest-energy part of the plasmoid
spectrum is populated by the oldest particles, i.e., those that
have been injected first in the plasmoid.3

The approach of using equations similar to Equation (2) to
describe the evolution of the power-law distribution of particles
during magnetic reconnection is not novel. Similar approaches
have been used earlier to study the primary acceleration and the
emerging distribution of particles assuming first-order Fermi
energization mechanism to estimate g and f (t; γ) (see, e.g.,
Drury 2012; Guo et al. 2014, 2019; Montag et al. 2017). In our
case, however, a simplified approach is employed, where the
energization term directly follows from the magnetic moment
conservation (1), and since particles are confined within the
plasmoids, there is no escape term on the right-hand side.
Moreover, in our model the magnetic field strength, B, and the
plasma density, ρ, are coupled via the MHD force balance
condition and the equation of state (EOS) within plasmoids (for
details, see Section 5).

Assuming that at t= t0 the volume is empty (i.e., f (t0,
γ)= 0), and using the equation g g= t2 , we obtain the
general solution of Equation (2), which reads

òg
g

x x
g

x x=
g

g
f t

t
S

t
d,

2
, . 3

t t3
2

0

⎜ ⎟
⎛
⎝

⎞
⎠

( ) ( )

In Figure 2 we plot Equation (3), for two different choices
for the source term, S(t, γ). Curves with different colors
correspond to different times, t/t0 (and equivalently to different
magnetic field strengths, B/B0≡ t/t0), as indicated by the inset
color bars. In both panels, black solid lines indicate the
distribution function of injected particles.

In the simplest scenario, when particles are injected into the
volume at a constant rate, =n const , and with the same energy γ0

(i.e., g d g g= -S t n, 0( ) ( ) ), a power-law distribution function
will develop over time, namely, f (γ)∝ γp with p=−3, extending
to an evolving high-energy cutoff g g= t tcut 0 0

1 2( ) (see
Figure 2(a))).
We consider next a scenario where particles are injected into

the compressing volume with a power-law injection spectrum
at a constant rate (i.e., g g g g g g= - -S t n H H, s

min max( ) ( ) ( ) ,
with g gmax min , where H(γ) is the Heaviside function). This
scenario is inspired by our simulation results, which will be
described in detail in Section 6, where particles are injected into
plasmoids already pre-accelerated. The evolution of the particle
distribution function in this case is illustrated in Figure 2(b), for
s=− 3/2. The shape of the distribution in the range g g< max
resembles the injected power law. Thus, a power-law
distribution with a sharp cutoff at gmax upon injection will be
transformed into a broken power law with a sharp break at gmax,
as shown in Figure 2(b). The break indicates the transition from
the injected power law to a power law with an asymptotic slope
p=−3, as expected by monoenergetic injection of particles at
gmax. If the high-energy cutoff of the injected spectrum is not
sharp, then a smooth transition between the two power-law
segments is expected instead of the sharp break at g g= max
shown in Figure 2(b).
In this simplified model particles were confined to move in

the direction perpendicular to the magnetic field, i.e.,
Equation (3) describes the evolution of the f (t; γ⊥). In our
model, as we argue in Section 6.2, energizations in parallel and
perpendicular direction are disentangled. At the same time, for
the highest-energy particles γ⊥ 2γP, meaning that the cutoff
and the power-law slope are well described by the evolution of
f (t; γ⊥).
The results will be slightly modified for the case when the

energy gain in the parallel and perpendicular directions is
entangled via the enforced isotropy condition.4 While
Equation (2) would still be applicable, the energization term,
g , would become g g g g g g g= +^ ^( ) ( )    . In the extreme
case where the distribution isotropy is enforced on timescales
shorter than the acceleration timescale, i.e., 〈γP〉/〈γ⊥〉= 1/2 at
all times, we obtain g g g= =^ t3 5 4 3 4  , resulting in a
somewhat faster acceleration rate, γcut∝ t3/4. However, the
slope of the power-law tail will remain unchanged.

Figure 2. Temporal evolution of the particle distribution function, f (t, γ) (see color bar), as obtained by numerically solving Equation (3) with monoenergetic (panel
(a)) or power law with g gmin max (panel (b)) distribution functions at injection, S (shown in black). In both panels, the magnetic field grows linearly with time, while
the particle injection rate is assumed to be constant. All distribution functions are normalized, so that ∫f (γ)dγ = 1.

3 We have carried out synthetic particle simulations with individual particles
being injected and getting energized according to Equation (1), i.e., always
starting with B(t0). Results of these runs show that Equation (2) approximates
well the high-energy part of the resulting distribution function.

4 A discussion of possible isotropization mechanisms, as well as the
associated timescales, can be found in Section 7.1.
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An important remark is that the p=−3 power law is not
universal and strictly relies on the magnetic field compression
rate, B∝ tα, and the parameter α (which for p=−3 is 1). This
parameter, as will be shown in consequent sections, depends on
the plasmoid growth rate and does not vary significantly (see
Section 5). So in general it is safe to assume that for realistic
parameters the emerging power law will be very close
to p=−3.

Let us briefly recap the main results of our analytical model,
which relies on the magnetic field compression and conserva-
tion of the first adiabatic invariant of particles.

1. Particles injected at a constant rate and with the same
(relativistic) energy into an isolated volume permeated by
a magnetic field whose strength is increasing linearly with
time will obtain over time a power-law distribution
function with slope p=−3 extending up to a high-energy
cutoff evolving as∝ t1/2.

2. Particles injected at a constant rate with a power-law
distribution function into the same volume will obtain
over time a broken power-law distribution function with a
break at the high-energy cutoff of the injection spectrum.
The shape of the distribution below the break is the same
as upon injection, while the power-law segment above the
break has a slope p=−3 and is followed by a high-
energy cutoff evolving as∝ t1/2.

In subsequent sections we will address several assumptions
that are used in the analytical model and may appear ad hoc. In
Section 5 we present a theoretical model for the plasmoid
interior structure that is developed based on the findings of our
numerical simulations, whose setup is described in Section 4.
We later combine the model for the plasmoid structure with the
dynamics of particles within plasmoids to justify our analytical
model for the evolution of the particle energy spectrum. In
Section 6 we discuss the temporal evolution of particles
injected into the plasmoid and directly compare the analytical
predictions with our simulations.

4. Simulation Setup

We use the electromagnetic relativistic particle-in-cell code
TRISTAN-MP v2,5 which is a multispecies extension of the
original TRISTAN-MP code (Spitkovsky 2005). We perform
2D simulations of reconnection in electron−positron (pair)
plasmas with zero guide field. We initialize the reconnection
layer (along the y-direction) as a Harris sheet with length L.
The magnetic field

= DB yB xtanh 4up ( ) ˆ ( )

reverses at x= 0 over a thickness Δ. We choose the latter to be
small enough so as to make the current sheet tearing-unstable
on short timescales. For that we typically use wD » c5 p up( )
and w»L c5000 p up( ) , where w pºc m c n e4ep up

2
up

2( ) is
the skin depth of the cold upstream plasma, which we resolve
with five simulation cells, and nup is the number density of
background electrons (or positrons). Thus, even if we do not
perturb the initial current sheet, it will “break up” starting from
numerical noise with a subsequent development of the
plasmoid instability. We use periodic boundaries in the y-
direction (which is parallel to the current sheet), while in the

other direction our boundaries are open with constant injection
of plasma and magnetic field (for details, see Sironi &
Spitkovsky 2014). The energy in our simulations is not
conserved to machine precision owing to the explicit nature of
the numerical scheme and finite number of particles per skin
depth. We thus employ eight Gaussian filter passes on
deposited currents, which keeps the energy nonconservation
well below the 1% level. Note also that inside plasmoids the
number of particles per skin depth is  102( ), which further
decreases the numerical noise in these regions of interest.
Upon initialization, the term ∇× B is balanced by the out-

of-plane current, jz. The magnetic pressure outside the current
sheet is balanced by the particle pressure in the initial current
sheet, which is provided by a hot plasma with three times
higher number density compared to the number density of
particles outside the layer. Because the properties of these
initially hot particles in the current sheet depend on initial
conditions, we exclude them from further analysis.
The plasma outside the layer (upstream) is cold, with a small

thermal spread upon initialization (kTup/mec
2≡Θe= 10−4).

The key parameter that characterizes the overall dynamics of
the system is the magnetization of the upstream plasma, σup.
This quantity is a dimensionless measure of the magnetic
energy available per particle and can be written as

s
p

=
B

h4
, 5up

up
2

( )

where h is the plasma enthalpy density of the upstream plasma,
including the contribution of its rest-mass energy density, i.e.,

r= +
G

G -
Qh c 1

1
, 6eup

2⎛
⎝

⎞
⎠

( )

with Γ being the adiabatic index of the plasma and ρup= nupme.
In the case of cold upstream plasma (Θe= 1), as considered
here, the enthalpy density is simply given by the rest-mass
energy density of the plasma, and the magnetization simplifies
to s pr= B c4up up

2
up

2. In this paper, we study reconnection in
the relativistic regime (i.e., σup? 1) and show results from two
large-scale simulations with σup= 10 and 100.
In general, the Larmor radius of an electron (or positron) in

the upstream magnetic field, Bup, can be written as

gb gb
w
s

= =r
m c

e B

c
. 7L

e
2

up

p up

up
˜

∣ ∣
( )

( )

where γ and β are the particle’s Lorentz factor and three-
velocity (in units of c), respectively.6 The Larmor radius, rL, of
particles with γ= σup? 1, β≈ 1, which roughly corresponds
to the energy gain assuming that particles tap the whole
dissipated magnetic field energy, is

s
w

=r
c

. 8L up
p up

⎜ ⎟
⎛

⎝

⎞

⎠
( )

Henceforth, we adopt rL as our length unit, and we quote times
normalized to rL/c.

5 https://ntoles.github.io/tristan-wiki/

6 Here the motion is assumed to be confined in the direction perpendicular to
the magnetic field.
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5. Structure of Plasmoids

As we have postulated in Section 3, plasmoids can be
thought of as compressing regions with a constantly amplifying
magnetic field. They continuously accrete particles from the
upstream plasma and the reconnected plasma outflows. In this
section, we will study the structure of plasmoids and the
plasmoid compression rate and explore the factors that
determine these plasmoid properties.

Let us take a close look at the structure of a typical isolated
plasmoid in the reconnection layer. Figure 3 (middle panel)
shows a close-up view of the plasma density structure in a

typical isolated primary plasmoid, also highlighted with a solid
rectangle in Figure 1 at time ct/rL= 391. The four peripheral
panels in the figure show 1D profiles of the magnetization7 (σ,
panel (a)), mean particle Lorentz factor (〈γ〉, panel (b)), mass
density (ρ, panel (c)), and magnetic field strength (B, panel (d)),
computed along a transverse stripe of width 5rL passing
through the plasmoid center (white dash-stroked stripe in
middle panel). All panels share common x-axes.
As we get closer to the plasmoid center, we can see how

magnetization, σ, drops from the upstream value, σup, to about
σ0∼ 1, which implies equipartition between the plasma and the
magnetic field energy densities. At the same time, the plasma
gets hotter toward the center (see panel (b) for 〈γ〉), which
suggests that within the plasmoid the plasma has already been
heated by magnetic energy dissipation. Both the plasma density
and magnetic field strength increase compared to the upstream
values as power laws of the distance from the plasmoid center
(lower panels).
In primary plasmoids we can identify three regions of

interest that we describe below. The central part of the
plasmoid (r< rin), the plasmoid core, contains typically hot
unmagnetized plasma used to initialize the current sheet (see
Section 4). Because the core bears the memory of our initial
conditions, it is excluded from all further analysis. The inner
part of the plasmoid beyond the core (i.e., rin< r< r0), which
we label as the plasmoid shell, is almost circular, and its
structure is determined solely by the local force balance
condition, which we will discuss later in this section.
Henceforth, we use the subscript “0” to indicate physical
quantities computed at the boundary of the plasmoid shell.
Finally, the outer part of the plasmoid (r0< r< rup),

8 which we
call the plasmoid corona, is elongated along the current sheet.
The corona can be thought of as a transitional layer between the
inner plasmoid region and the upstream plasma where the
magnetization changes rapidly (see, e.g., Figure 3(a))). The
coronal dynamics and structure are dictated by the plasma
inflow and the time-varying properties of the upstream and
current sheet. In what follows, we focus on the structure of the
plasmoid shell.
Motivated by the power-law radial profiles of the magnetic

field and density in the plasmoid shell (see Figures 3(c) and
(d)), we assume that they can both be expressed as functions of
radius from the plasmoid center, r, and time, t, in the following
form:

r r= =
z x- -

B r t B
r

r t
r t

r

r t
, , , , 90

0
0

0
⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( )
( )

( )
( )

( )

where ζ, ξ� 0, and B0≡ B(r0(t), t), ρ0≡ ρ(r0(t), t) are the time-
independent boundary values of the magnetic field and density,
respectively. The characteristic size of the plasmoid shell,
which is proportional to the plasmoid size at all times (i.e.,
r0(t)∝ rup(t)), can be written as

µ kr t t , 100( ) ( )

Figure 3. Close-up view of a representative isolated primary plasmoid from the
simulation with σup = 100 at time ct/rL = 391; this plasmoid is indicated in
Figure 1 by a white solid rectangle. Color in the middle panel represents the
plasma density ρ, in units of the upstream plasma density ρup, in logarithmic
scale (same color-coding as in Figure 1). Three characteristic radii are also
marked on the plot: rup indicates the boundary of the plasmoid corona (i.e.,
where the plasmoid ends and the upstream begins); r0 shows the outer
boundary of the plasmoid shell, where the local force balance condition is
satisfied; and rin indicates the plasmoid core that contains hot unmagnetized
plasma from the initial current sheet. Four peripheral panels show the radial
profiles of (a) the magnetization, (b) mean Lorentz factor, (c) plasma density in
units of its upstream value, and (d) magnetic field in units of its upstream value,
computed along a transverse stripe passing through the plasmoid center (see
horizontal dashed white lines in middle panel). In all peripheral panels, vertical
lines indicate the characteristic radii marked in the middle panel. Two
horizontal lines in the top left panel indicate the upstream magnetization,
σup ? 1, and the effective magnetization of the plasmoid shell, σ0 ≈ 1 (see
Appendix A). All plots share the same x-axes.

7 The magnetization, σ, is computed using the local magnetic field strength
and enthalpy density, σ = B2/4πh, where h is defined in Equation (6) with
Γ ∼ 4/3 and Θe ≡ Pe/ρec

2 ∼ 〈γβ2〉/3.
8 rup denotes the characteristic size of the plasmoid. The algorithm used to
determine the plasmoid boundaries is based on the magnetic vector potential
and is described in Appendix B.
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where κ� 0. Thus, at any fixed radius in the plasmoid shell,
the temporal dependence of the magnetic field and plasma
density can be written as B∝ t ζ κ and ρ∝ t ξ κ.

The exact value of κ is determined by the large-scale
reconnection process. By studying the growth of sufficiently
large and slowly moving isolated plasmoids, like the one
marked in Figure 1, we find that

k » -1 2 3 4 11( )

for both σup= 10 and σup= 100 simulations. The exact value
of the index κ may also depend on the numerical setup and,
more specifically, on the boundary conditions used. For
example, Sironi et al. (2016) observed κ≈ 1 in their 2D
simulations of reconnection with outflow boundary conditions
in the y-direction (as opposed to the periodic boundary
conditions used in our simulations).

The power-law indices ζ and ξ of the magnetic field and
density profiles (see Equation (9)) can be predicted from the
MHD force balance equation for the plasmoid shell,
j× B= c∇P, assuming a polytropic EOS with adiabatic index
Γ. In Appendix A we show that the force balance condition
yields

z
s
s

=
G

G + G -
2

2 1
, 120

0
( )

x
s
s

=
G + G -2 1

130

0
· ( )

Here σ0 is the effective magnetization inside the plasmoid shell,
which is typically of the order of σ0∼ 1, as illustrated in
Figure 3(a). For both σup= 10 and σup= 100 simulations, we
also find typical values for the adiabatic index Γ= 4/3 (see
Appendix A and Figure A1 for details). Substitution of these
values into Equations (12) and (13) yields

z x» »2 3, and 1. 14( )

These values are consistent with what we observe in our
simulations (see, e.g., bottom panels in Figure 3) and with the
results of Sironi et al. (2016), who reported ζ≈ 0.6 and ξ≈ 1
(see, e.g., Appendix A of that reference).

Let us finally estimate the injection rate of particles into the
plasmoid shell. At any given time, the total number of particles
in the plasmoid shell can be estimated as

ò rµ µ µ kN t r t rdr r t t, , 15
r

r t

0 0
2 2

in

0

( ) ( ) ( ) ( )
( )

where we used Equation (9) and assumed that rin= r0(t) and
ξ≠ 2 (for ξ= 2, µN t r t r t rln0 0

2
0 in( ) ( ) [ ( ) ]). The injection rate

can be then written as

µ µ k-N t r t r t t . 160 0 0
2 1( ) ( ) ( ) ( ) 

For κ≈ 1/2 the injection rate of particles in the plasmoid shell
is exactly constant in time, while for κ≈ 3/4 the rate scales as
t1/2. Equation (15) also implies that the mean density inside the
plasmoid shell, rá ñ µ N t r t0 0

2( ) ( ), is constant (or scales weakly
with time), regardless of the exact value of κ.

It is worth noting that the results presented in this section do
not directly depend on the upstream conditions, such as the
upstream magnetization. The reason is that the interior of the
plasmoid—the plasmoid shell—contains magnetized plasma
that has already been “reprocessed” by reconnection. The

magnetic flux loops in the plasmoid shell do not bear the
memory of the conditions in the unreconnected plasma. They
are in force balance with the relativistically hot plasma in the
plasmoid shell. The radial profile of the magnetic field
essentially depends on the plasma EOS. The growth of the
magnetic flux in the plasmoid interior, which is adiabatically
slow, is dictated by the global reconnection rate. The
reconnection rate, which can also be thought of as the inflow
velocity from the upstream, is ubiquitous for systems with low-
enough resistivity, and for relativistic plasmas it is equal to
vin∼ 0.1c–0.2c.
Summarizing, the key result of this section is that the

structure and evolution of the plasmoid shell are described by
three dimensionless numbers: the power-law indices of
magnetic field and plasma density profiles ζ and ξ, respectively,
defined in Equation (9), and the plasmoid growth rate κ defined
in Equation (10). The first two are set by the force balance in
the plasmoid shell and can be obtained assuming a simple
polytropic EOS of the relativistically hot plasma in the
plasmoid. The third one, however, is determined by the
large-scale reconnection process and has to be determined
empirically (from the simulations).

6. Evolution of Particles in Plasmoids

In this section, we focus on the evolution of particles upon
their injection into plasmoids, while making use of our results
about the plasmoid interior structure and its evolution.
There are two main channels for particle injection into

plasmoids from the cold upstream region. First, particles can be
accreted directly onto a plasmoid as they are carried toward the
current sheet by converging magnetic field lines. These
particles typically have low energies upon entering a plasmoid
(i.e., γ∼ 1), as they have never interacted with the current sheet
before. Alternatively, particles from the upstream region can
interact with the current sheet first before entering a plasmoid.
In this case, the injected particle population is already pre-
accelerated either by the electric field at an X-point (Zenitani &
Hoshino 2001; Larrabee et al. 2003; Lyubarsky & Liverts 2008)
or by the motional electric field via the so-called “slingshot”
Fermi-like mechanism (Drake et al. 2006a; Guo et al.
2014, 2015). Thus, at any given time the injection spectrum
of a plasmoid is expected to be a superposition of the “cold”
component directly coming from the upstream and a “hot” pre-
accelerated component inflowing from the current sheet.

Time-averaged spectra of particles injected9 into a typical
isolated plasmoid from our simulations are shown in Figure 4
(red lines). Panels (a) and (b) show results for σup= 10 and
σup= 100, respectively. The plasmoid, whose spectrum is
displayed in panel (b), is also highlighted in Figure 1 (white
rectangle). In both panels, the average injection spectrum can
be described by a power law (i.e., f (γ)∝ γ p with p∼− 2 for
σup= 10 and p∼− 1.5 for σup= 100). This power law
typically extends up to Lorentz factors of several σup. We also
note that the injection spectrum does not vary much with time,
as shown by the red colored band in Figure 4. This is true
except for times very early in a plasmoid’s lifetime, when small
variations in the amount of mass accreted via the adjacent

9 We compute these spectra using particles near the boundary of plasmoid; to
identify the boundary, we use the method described in Appendix B. The
injection spectra are averaged over the time span mentioned in the caption of
Figure 4.
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current sheets and the upstream plasma can significantly affect
the overall spectral shape (not explicitly shown here).

The spectrum computed using all particles trapped within the
plasmoid at a given time (thin black line) does not match
the injection spectrum, as shown in Figure 4. More specifically,
the energy spectrum of particles contained in the plasmoid
appears to be shifted to higher energies compared to the
injected spectrum (compare black and red solid lines). These
results suggest the presence of an acceleration mechanism
operating within the isolated plasmoids that is responsible for
pushing the injected particles to even higher energies than those
achieved via other processes prior to injection.

Identifying the process that energizes particles after their
injection into plasmoids is also important for understanding the
formation of the particle spectrum from the reconnection layer
as a whole. The reason is that, at times when the current sheet is
dominated by large plasmoids (see ct/rL> 300 in Figure 1), the
majority of particles (including the most energetic ones) are
ultimately trapped inside magnetic islands. This is exemplified
in Figure 4, where the particle spectrum from the whole
simulation box (thick gray line)—normalized to the total
number of particles—is compared against that of a single
plasmoid (thin black line). When both spectra are normalized to
their total number of particles, as done in this figure, the
particle spectra for γ? 1 fall on top of each other, except for
the highest-energy part. We note also that some of the freshly
injected particles (distribution of which is shown by red color)
may have already undergone this secondary energization in
smaller plasmoids that merged into the bigger plasmoid under
study. This, in part, can explain the variability in the particle
injection spectrum.

6.1. Particle Evolution in the Plasmoid Shell

In this section, we track a population of about 104 particles
from the σup= 100 simulation that enter the isolated primary
plasmoid shown in Figure 1 (white rectangle) at roughly the

same time (around ct/rL≈ 300) and follow their evolution as
they are carried inward to its center. This is illustrated in
Figure 5, where different panels show different snapshots of the
selected plasmoid (its boundary is indicated with a red contour;
details about the definition of the plasmoid boundary can be
found in Appendix B) and the tracked particle population
(shown in blue). With the help of these particles, we can not
only study the acceleration taking place directly inside the
plasmoid but also map the plasmoid structure in Lagrangian
terms (i.e., in the frame comoving with the fluid element).
Because particles are well magnetized, as their gyroradii are
much smaller than the shell size (we will inspect this further in
Section 6.2), their evolution also tracks the magnetic field line
on which they started in the upstream.
In Figure 5 the particles (shown in blue) are frozen into

converging magnetic field lines. At around ct/rL∼ 200 the flux
loop reconnects, and some of the particles are exposed to the
X-point and are pre-accelerated in the current sheet, forming the
injection spectrum shown in red color in Figure 4(b). Around
ct/rL∼ 300 particles cross the plasmoid boundary entering the
plasmoid corona but quickly converge into the plasmoid shell, as
the flux loop to which they are frozen circularizes (we define the
coronae and shells of plasmoids in Section 5).
In the plasmoid shell, particles start their adiabatically slow

descent toward the plasmoid core (ct/rL> 300). Plasma in the
plasmoid shell is also frozen to the converging concentric
magnetic field lines, each of which can be thought of as a circle
with a time-varying radius  t( ). Henceforth, calligraphic
capital letters will be used to denote variables in Lagrangian
terms. The total mass enclosed within a circle of radius  is
constant in time, as particles cannot move across concentric
magnetic field lines. This condition yields (for a detailed
derivation, see Appendix A)

µ kx x- - t t , 172( ) ( )( )

where ξ and κ are defined in Equations (9) and (10),
respectively. For ξ≈ 1, as found in our simulations (see

Figure 4. Particle distribution functions, f (γ), compensated by γ, from the σup = 10 (panel (a)) and σup = 100 (panel (b)) simulations. The time-averaged injection
spectra are shown with a red line, while the variation of injected distribution over time is illustrated by the transparent red band. For panel (a) the averaging period is
1300 < ct/rL < 2000, and for panel (b) it is 420 < ct/rL < 620. Black solid lines show the distribution function of all the particles in the plasmoid, while the thick
gray line represents the distribution function of all the particles in the simulation domain; both of these lines are computed at the end of the quoted time period. For
comparison purposes, all distribution functions are normalized so that ∫f (γ)dγ = 1. In these plots it is evident that the distribution function of the plasmoid as a whole
(black line) extends farther than the distribution of the injected particles (red line).
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Section 5), the expression above simplifies to µ k- t . The
magnetic field strength at the particle location, , can be
estimated by substituting  t( ) into Equation (9),

µ µkz x k- t t t , 182 2 4 3( ) ( )( )

where we assumed ξ≈ 1 and ζ≈ 2/3 to derive the second
scaling relation in the equation above.

We then compare the empirical relations for  t( ) and  t( )
with the scalings derived directly from our numerical
simulations. In Figure 6 we show how the distance from the

plasmoid center (purple band in panel (a)) and the magnetic
field strength (panel (b)) evolve with time for the same
generation of particles shown in Figure 5. In both panels, solid
lines correspond to the median value of the displayed variable,
and the colored band indicates the spread in values within the
tracked particle population. As particles move toward the
plasmoid center, the corresponding spread in and  becomes
smaller as the plasmoid shell is circularized. In panel (a), we
also plot the radius of the plasmoid boundary, rup, as a function
of time (blue band). For this particular plasmoid, we find

Figure 5. Snapshots from the σup = 100 simulation focused on the same primary plasmoid highlighted in Figure 1 with solid lines. The plasmoid boundary is
highlighted with a solid red line (for details on how we determine the plasmoid boundary, see Appendix B). Gray lines are the isocontours of the magnetic vector
potential, Az. A population of ∼ 104 particles (shown in blue) is initially frozen to a magnetic field line (see top left panel). The particles enter the plasmoid roughly at
the same time (239 < ct/rL < 299) and are later carried toward the center of the plasmoid. An animation showing the evolution of various physical quantities for the
same particle population can be found at the following link: https://youtu.be/UJsjoIieLm0.

Figure 6. Temporal evolution of the distance from the plasmoid center,  (panel (a)), and the magnetic field strength at the particle location,  (panel (b)), for the
generation of particles shown in Figure 5 in blue. Colored bands represent the spread in values within the particle population, while the solid lines show the median
value. In panel (a) we also show the evolution of the plasmoid size, rup, as a function of time; the spread, in this case, originates from the fact that the outer boundary of
this plasmoid is actually elliptical. The vertical dashed line indicates the time when particles enter the plasmoid, and the gray band at 350 < ct/rL < 600 corresponds
to the time when particles are within the contracting shell while the plasmoid remains isolated. As particles spiral down toward the center of the plasmoid ( t( )), the
plasmoid itself grows (rup(t)), and the magnetic field strength that particles experience grows with time ( t( )). At ct/rL ∼ 600 the ring of particles reaches the
unmagnetized inner core of the plasmoid, where the MHD balance condition we discussed no longer holds, which is why the growth in  halts.
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rup∝ t3/4 or κ≈ 3/4. As particles are advected by the magnetic
loop toward the plasmoid center, their distance decreases with
time as µ - t 3 4, while the magnetic field at the particle
location grows roughly linearly with time, µ t. This is in a
good agreement with the analytical scalings of Equations (17)
and (18) for κ= 3/4. Notice that the magnetic field strength 
is measured in the lab frame, whereas to compare with our
analytical estimations we need to measure it in the frame
comoving with the plasmoid (i.e., moving with an E×B drift
velocity). However, since the plasmoid we consider is large and
slow, any corrections to our measurements are negligible.

Summarizing, there are two effects acting together to build
up the linear increase of the magnetic field strength with time
experienced by a particle population after its injection into a
plasmoid shell. First, the plasmoid interior gets compressed,
and the magnetic field at a fixed distance from its center gets
amplified. Second, particles “sink” toward the center of the
plasmoid, experiencing an increasingly stronger magnetic field.

6.2. Conservation of Adiabatic Invariants

We now focus on the energization of particles after they
enter into the plasmoid, using the same sample of tracked
particles as in the previous section. In Figure 7(a)) we plot the
evolution of the mean energy of particles, 〈γ〉, as a function of
time. For ct/rL 290, i.e., after the particles have sunk into the
plasmoid shell (see also Figure 5), the growth of the mean
energy is sublinear with time. The same applies for the high-
energy cutoff of the particle energy spectrum, namely,
γcut∝ t1/2, in agreement with the results of PS18. The cutoff
is found using a similar approach to that in Bai et al. (2015),

ò
ò

g
g g g

g g g
=

a

a-

f d

f d
, 19cut 1

( )

( )
( )

where the parameter α is empirically chosen to be 3. This
formula allows one to be agnostic to the exact power-law slope,
while roughly estimating the position of the energy cutoff.
In Figure 7(a)) we also plot the temporal evolution of the

Lorentz factor of the particle motion perpendicular (〈γ⊥〉) and
parallel (〈γP〉) to the magnetic field, averaged over the tracked
particle population. We define γP and γ⊥ of a single particle as

g g= + = +^ ^u u1 , and 1 , 202 2 ( ) 

where uP and u⊥ are the parallel and perpendicular components of
the particle’s dimensionless 4-velocity with respect to the local
magnetic field. As in PS18, we find that 〈γ〉≈ 〈γ⊥〉∼ 2〈γP〉. This
suggests that inside the plasmoid shell the pressure10 is almost
isotropic, namely, P⊥≈ ρc2〈γ⊥〉≈ 2ρc2〈γP〉≈ 2PP.
PS18 proposed that the conservation of the first adiabatic

invariant, together with the magnetic field amplification due to
plasmoid compression, is responsible for the slow and steady
energy increase of particles contained within plasmoids. Our
results confirm this physical interpretation, as illustrated in
Figure 7(b), where we plot the magnetic moment (orange band)

m
g

=
-^


m c

1

2
, 21e

2
2

( )

as a function of time for all the particles highlighted in
Figure 5. In the equation above,  is computed along the
particle trajectory (see also Figure 6(b)).
Soon after the particles enter the plasmoid (dashed gray line),

their magnetic moment is, to a good approximation, conserved;
the median value for the particle population (solid red line) is
almost constant, and the variance (indicated by the width of the

Figure 7. (a) Temporal evolution of the particle Lorentz factor 〈γ〉, and the Lorentz factor of the particle motion perpendicular (〈γ⊥〉) and parallel (〈γP〉) to the
magnetic field (see inset legend), averaged over the particle population identified in Figure 5. The dashed colored line shows the evolution of the cutoff Lorentz factor
of the particle energy spectrum, computed as described in Section 6.2. (b) Temporal evolution of the population averaged adiabatic invariants μ and JP (defined in
Equations (21) and (23), respectively) for the same population of particles as in panel (a). 〈μ〉 is normalized to sm c B2e up

2 2
up, i.e., the magnetic moment of particles

with γ⊥ ∼ σup in the upstream field Bup; 〈JP〉, on the other hand, is normalized to σuprL, i.e., the mirror invariant for a particle with γP ∼ σup trapped in a circular region
of radius rL. These quantities share the same x-axis with different y-axes on the left and right highlighted with corresponding colors; dotted horizontal lines indicate
their average values after ct/rL = 300. In both panels, the gray dashed vertical line shows the moment when particles enter the plasmoid, and the gray band 350 < ct/
rL < 600 corresponds to the time when particles are within the contracting shell while the plasmoid remains isolated. As wee see from panel (a), both the parallel and
the perpendicular components of particle momenta grow with time. Since particles are well magnetized within the plasmoid shell (ct/rL > 300), this energization is
caused by the conservation of adiabatic invariants shown in panel (b).

10 We define pressure components as the flux of the corresponding momentum
components, g b gµ á ñ » á ñPi i i i

2 , because βi ≈ 1.
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colored band) is much smaller than at earlier times. From the
invariance of the magnetic moment (m = const) and the
magnetic field increase with time (see Equation (18)), it
follows that

g µ µ^  t , 221 2 1 2 ( )

where we used κ= 3/4 to obtain the scaling with time. In
Figure 7(b) we also plot the second adiabatic invariant of the
particles (green band)

gb g= µ » J p dl , 23∮ ( )    

assuming that particles have βP≈ 1, and find that »J const
for ct/rL 300. This conservation (not discussed in PS18)
yields

g µ µ t t1 . 243 4( ) ( )

where we used Equation (17) with ξ= 1 and κ= 3/4. Thus,
combining the conservation of the first two adiabatic invariants
of the particles with the growth of the (Lagrangian) magnetic
field strength, we can explain the scalings of 〈γP〉, 〈γ⊥〉 from
our simulations (Figure 7(a))). For the nonrelativistic version
of these relations for P⊥(t) and PP(t), we refer the reader to
Montag et al. (2017).

We discuss next the conditions for conservation of μ and JP
and check whether they are indeed satisfied in our simulations.
The first adiabatic invariant is conserved if the particle gyration
timescale (w-

g
1) is much shorter than the characteristic timescale

for the change of the magnetic field (  ). The particle
gyration timescale in the plasma shell (see blue ring in
Figure 5) can be written as

w
g
s

=
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1 , 25g
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where we assumed that 〈γ〉∼ σup and ~ Bup (see Figures 7
and 6(b), respectively). The timescale for the change of the
magnetic field can be written as

w~ -




r

c
10 , 26L

g
2 1( ) ( ) 

as suggested by the results shown in Figure 6(b). Thus, the
conservation of the first adiabatic invariant is satisfied inside
the plasmoid shell.

The second adiabatic invariant, also known as the mirror
invariant, is conserved if the time to cross the system in the
direction parallel to the magnetic field is much shorter than the
characteristic timescale for the change of that dimension
(  ). The former timescale can be approximated by p c2 ,
assuming that particles move along magnetic field lines with
βP≈ 1. From Figure 6(a)), we find order-of-magnitude
estimates for both timescales, which read

~ ~








r

c c

r

c
10 , while 10 . 27L L2( ) ( ) ( )

Thus, the second adiabatic invariant is also conserved within a
typical isolated plasmoid.

Let us also check that the particles can indeed be confined
within the plasmoid during the energization process. On average,
the Larmor radius of particles descending in the plasmoid shell
can be written as g s~ á ñ ~ r B r r1L L Lup up˜ ( )( ) ( ) , which is

much smaller than the plasmoid size, ~ -r r10 10 Lup
2( ) (see

Figure 7(a)). This suggests that most of the energetic particles
are trapped within the plasmoid. In fact, as particles sink toward
the plasmoid core, they get increasingly more magnetized; their
Larmor radii decrease, since the magnetic field strength grows
faster than the particle energy, namely, 〈γ〉∝ t1/2, whereas

µ t, which leads to µ -r tL
1 2˜ .

6.3. Comparison to Analytical Model

In this section, we compare the predictions of our analytical
model about the particle energy spectrum presented in
Section 3 with the results of two simulations of reconnection
with σup= 10 and σup= 100.
First, we select an isolated plasmoid and partition it into

several concentric disks defined by equally spaced contours of
the vector potential, Az. This is shown in panels (a) and (c) of
Figure 8, where the ith colored disk is defined by

< <A A Az z z
i0 , and the white solid line represents the

plasmoid boundary, Az
0. Disks are chosen in such a way that

the ith disk contains all the (i− 1)th, (i− 2)th, ..., 0th disks
forming an onion structure, with the largest (red) disk
containing all the other ones. We then pick particles from
each of these disk regions and compute their distribution
functions in the direction perpendicular to the local magnetic
field, i.e., f (γ⊥). These are displayed in panels (b) and (d) of the
same figure. For comparison purposes, all distribution func-
tions are normalized to the total particle number of each region.
The distribution function of each disk is composed of

multiple particle “generations,” namely, particles that were
injected into the compressing plasmoid at different times. In
general, particles from the outer regions (blue and green
colored regions) have spent less time within the plasmoid than
particles residing in the inner regions (orange and red colored
regions). The difference in the particle residence time within
the compressing plasmoid is reflected in the distribution
functions extracted from different regions. This is illustrated
in panels (b) and (d) of Figure 8, where we see that the energy
spectra of particles from regions closer to the plasmoid center
(orange and red curves) are systematically shifted to higher
Lorentz factors compared to the spectra of particles from the
outer regions (blue curves). Similarly, the cutoff Lorentz factor
(also marked with vertical dashes in both panels) of the
distribution function from the outer regions is lower and closer
to σup, as expected for the injection particle spectrum (see also
Figure 4). Moreover, the spectral shape is roughly the same
among different disk regions, suggestive of an energization
process that acts upon particles of all energies similarly, like
adiabatic compression.
The distribution functions from both simulations can be

phenomenologically described as smooth broken power laws
with a high-energy exponential cutoff. The low-energy part of
the spectrum has the slope of the injected energy spectrum,
which depends on σup. On the contrary, the high-energy part of
the spectrum can be roughly described as a power law with
p≈− 3 for both values of upstream magnetization. The steep
power-law segment can be easily mistaken for an exponential
cutoff because of the often limited energy range this spans.
Without prior expectation for the existence of this steep power
law, it is no surprise that previous studies did not report this. It
is also worth emphasizing that for simulations with σup 10,
where the X-point acceleration predicts steep particle spectra
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(p<− 2), the robust identification of the p=−3 power-law
tail is very difficult.

6.4. Secondary Energization Timescale

The timescale for magnetic field compression in Lagrangian
terms is   . Since = B t t,( ( ) ), from Equation (9) we see
that this timescale is also directly related to the timescale of
plasmoid growth

~ ~




r

r

r

v
, 28

up

up

up

in
( ) 

where vin is the reconnection rate (this result is similar to Sironi
et al. 2016). This timescale is also a proxy for the secondary
acceleration timescale g g=tsec  , as the secondary accelera-
tion is a direct consequence of the compression of plasmoid
interior. Relation (28) implies that the timescale for plasmoid
compression (and thus secondary particle acceleration)
becomes longer as the plasmoid grows over time. For the
particular case shown in Figure 5, where we can take
rup∼ 50rL and vin∼ 0.1c, we find that ~t r c500 Lsec , which
roughly corresponds to the acceleration timescale inferred by

Figure 7(a)) (characteristic timescale for the growth of 〈γ〉 from
∼200 to ∼400).

7. Discussion

The standard picture for particle acceleration in relativistic
reconnection is that particles get energized at the X-points and
in the current sheet before being ultimately trapped inside
plasmoids, where they do not undergo any further energization.
However, our study shows that this standard picture is not
correct. In fact, the dynamics of plasmoid compression is what
actually dictates the formation of the overall spectrum in the
long term, since most of the plasma in our 2D simulations ends
up being trapped inside these islands. The potential drop across
the X-points is limited to a few σup, thus setting an upper bound
(or a cutoff in energy) to which particles can get accelerated in
astrophysical current sheets. Plasmoid compression, on the
other hand, while being a slower process, can potentially
accelerate particles to much higher energies.

7.1. Pressure Anisotropy

The energization process inside compressing plasmoids
relies on the conservation of the first and second adiabatic

Figure 8. (a, c) Contours of the magnetic vector potential, Az, shown with colored lines. Rings with < <A A Az z z
i0 are marked using colored sectors to guide the eye.

Contours are overlaid on the plasma density shown in gray from our σup = 10 (top) and 100 (bottom) simulations. The white line indicates the plasmoid boundary Az
0.

(b, d) Distribution functions (in perpendicular direction to the magnetic field, f (γ⊥)) of particles belonging to different rings; blue curves correspond to the outermost
region, while yellow/red curves are for the entire plasmoid (except for the innermost core). Colored vertical dashes represent the corresponding cutoff energies,
computed as described in Section 6.2. Distribution functions are computed for the whole ring defined by < <A A Az z z

i0 .
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invariants for magnetized particles trapped therein. As such,
this process affects differently the parallel and perpendicular
components of the particle momenta with respect to the local
magnetic field. This can cause a slow buildup of pressure
anisotropy PP/P⊥∝ t1/4. However, as discussed in Section 6.1,
on the scales of our simulations, we find that the pressure is
almost isotropic inside the plasmoid shell, namely, P⊥≈ 2PP.

While on timescales of our simulations it is impossible to
identify an anisotropy buildup this subtle, particles may scatter
off the small substructures present inside the plasmoids (see
Figure 3). This process can slowly isotropize their distribution
on timescales comparable to the plasmoid-crossing timescale
 c. This timescale is much longer than the gyration period,
and the conservation of the first adiabatic invariant will not be
strongly affected by it. However, the conservation of the mirror
invariant may be violated, in which case the evolution of γP
will be dictated by the isotropy condition: 〈γP〉/〈γ⊥〉= 1/2
(where averaging is done over a population of particles on a
single field line). However, as was pointed out in Section 3, this
will affect the process only marginally, slightly enhancing the
energization rate.

Although not explicitly shown, we find deviations from
isotropy (with 2PP< P⊥) in the plasmoid corona and plasmoid
outskirts. While this evidence requires further analysis, it could
cause the growth of microinstabilities driven by pressure
anisotropy, which tend to isotropize particle distribution
functions (e.g., Kunz et al. 2014). While these microinstabil-
ities are typically studied for moderate plasma β values (β 1),
in our simulations we typically have β= 1 in plasmoid corona.
This puts more stringent constraints on the development of
these instabilities, requiring stronger pressure anisotropy.

7.2. Possible Limitations of the Model

The efficiency of the secondary acceleration within plasmoids
may vary in reconnecting systems with different physical
conditions. In particular, the presence of a strong guide field
can make plasmoids nearly incompressible, thus strongly
interfering with this secondary acceleration process (J. Davelaar
& A. Philippov, 2019 private communication). In 3D reconnect-
ing systems the picture can also be different. Instead of 2D flux
loops the plasmoids in 3D will look like elongated tubes that
might further break into ellipsoids owing to the kink instability
(e.g., Liu et al. 2011; Sironi & Spitkovsky 2014). The motion
and trapping of particles in these magnetic structures will be
different than in their 2D counterparts studied here, as the
highest-energy particles might be able to leave plasmoids (e.g.,
Li et al. 2019). In turbulent magnetized plasmas, current sheets
and plasmoids may not live long enough for the slow secondary
energization process to develop, as plasmoids get stochastically
formed and disrupted on timescales much shorter than the
secondary energization timescale, tsec (e.g., Zhdankin et al. 2017;
Comisso & Sironi 2018).

Radiative cooling (due to synchrotron or inverse Compton
scattering)may halt the secondary energization process in certain
systems (see Nalewajko et al. 2018; Hakobyan et al. 2019;
Werner et al. 2019). To quantify the effect of radiative cooling,
we define a “saturation” Lorentz factor for which the secondary
acceleration timescale (see Equation (28)) is comparable to the
cooling timescale.

The cooling timescale for particles with Lorentz factor γ can
be estimated from the following relation:

s g
~t

m c

U
, 29e

T
cool ( )

where for synchrotron cooling U= B2/8π (here B is the
average magnetic field strength of the plasmoid), while for
inverse Compton cooling (in the Thomson regime) U is the
energy density of the background soft photon bath. Comparing
this to the secondary acceleration timescale from Equation (28),
we find

g
s

~
m cv

wU
, 30e

T
sat

in ( )

where w is the characteristic plasmoid size (i.e., half-width in
the perpendicular direction of the plasmoid motion). The value
of γsat gives us a rough estimate of the Lorentz factor to which
the secondary acceleration can energize electrons or positrons
in a reconnecting current sheet, given the limitation from the
radiative cooling.
The fragmentation of the reconnection layer results in the

formation of plasmoids of different sizes, ranging from a few
plasma skin depths to a sizable fraction of the layer’s length L
(e.g., Loureiro et al. 2007; Uzdensky et al. 2010; Sironi et al.
2016), as also illustrated in Figure 1. The impact of secondary
energization on the plasmoid chain will differ, as the
energization timescale depends on the plasmoid size (i.e.,
smaller plasmoids contract faster; see Equation (28)). In the
following subsection, where we discuss the astrophysical
implications of our results, we will consider for simplicity a
typical large plasmoid that forms in the layer with size
w∼ 0.1 L. Such large plasmoids contain most of the radiating
particles of the layer and can have a significant contribution to
the radiation emerging from the layer (see, e.g., Petropoulou
et al. 2016, 2018).
When the radiative cooling is not limiting the secondary

acceleration, the maximum energy is determined by how large
plasmoids can grow given the size and geometry of the source,
how consistently the system can provide fresh plasma and
magnetic flux, and how long the energetic particles can be
constrained inside the plasmoid.

7.3. Astrophysical Implications

There are several astrophysical systems where the long-term
acceleration scenario could play a role in shaping the energy
distribution of radiating particles and producing a broken
power law. In this model the acceleration time is assumed to be
much smaller than the system lifetime, which is of order of a
few L/(c). The only limiting factor in this case is the radiative
cooling, which will effectively set the maximum energy to
which particles can be accelerated via secondary energization.
In the following paragraphs, we make a qualitative discussion
about the secondary acceleration and the possible impact of
radiative cooling in jetted active galaxies, pulsars, and accretion
disk coronae around black holes.
In coronae of accretion disks around black holes reconnec-

tion of magnetic flux tubes has been proposed to produce the
nonthermal emission of the hard state of X-ray binaries.
Relativistic particles in these systems are cooled on very short
timescales (via either synchrotron or inverse Compton emis-
sion), much faster than the secondary energization. This
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conclusion is consistent with the results of Beloborodov
(2017), Sironi & Beloborodov (2020), and Werner et al.
(2019), where emission models are based on bulk motions of
cooled plasmoids instead of nonthermal acceleration.

Reconnection has also been shown to take place in the outer
magnetospheres of pulsars, near the so-called light cylinder,
producing nonthermal particle populations, which then emit
pulsed synchrotron emission in X-rays and γ-rays (Lyubarskii
1996; Pétri 2012; Uzdensky & Spitkovsky 2014; Cerutti et al.
2016; Philippov & Spitkovsky 2018). Typical sizes of the
largest plasmoids in this scenario can be assumed to be equal to
some fraction of the light cylinder radius, w∼ 0.1 RLC, where
RLC∼ cP/2π and P is the rotation period of the pulsar. The
magnetic field decays as r−3 from the neutron star surface (B*)
to the light cylinder. By equating the secondary energization
rate with the synchrotron cooling rate, we find for regular
pulsars

g ~ ´
-w

R

P
3 10

0.1 0.1 s
, 31sat

2

LC

1 5

⎜ ⎟
⎛
⎝
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and for millisecond pulsars
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where we adopted B*∼ 1012 G for regular pulsars and
B*∼ 108 G for millisecond pulsars. Regular pulsars typically
have magnetization parameters of σup∼ 103− 105? γsat close
to the light cylinder (Coroniti 1990). In other words,
synchrotron cooling in this case is so strong that it limits the
secondary acceleration to Lorentz factors well below σup. In
these systems, the formation of the nonthermal tail at γ σup is
hampered by the radiative cooling. However, in millisecond
pulsars, where the predicted γsat is an order of magnitude
higher than for regular pulsars, the cooling might be slow
enough for particles with energies σup γ γsat for the
secondary acceleration to matter.

In blazars—active galaxies with relativistic jets closely
aligned to the line of sight—reconnection is believed to take
place either in Poynting-flux-dominated jets (e.g., Giannios &
Uzdensky 2019) or directly in the highly magnetized regions of
accretion disks feeding the supermassive black holes, or close
to the interface of jets and accretion flows (e.g., de Gouveia Dal
Pino et al. 2010). The occurrence of such reconnecting regions
was also confirmed in general relativistic MHD simulations of
black hole accretions disks (Nathanail et al. 2020; Ripperda
et al. 2020). Reconnection is also thought to take place in the
collimated magnetically dominated outflows (jets) launched by
the black hole and/or by the inner parts of the accretion disk
(Giannios & Spruit 2006; Barniol Duran et al. 2017; Gill et al.
2018). Plasmoids produced during this process have also been
invoked to explain high-energy flaring emission from blazar
jets (e.g., Giannios 2013; Petropoulou et al. 2016; Christie et al.
2019).

The high-energy radiation from blazar sources (i.e., from
X-ray to γ-ray energies) is usually modeled as inverse
Compton emission by a nonthermal population of relativistic
electrons and positrons in the jet scattering off low-energy
photons (these can be synchrotron photons produced by the
same particles or can originate from a radiation source external

to the jet). The characteristic maximum energy to which
particles are being accelerated sets a lower bound for the
plasma magnetization parameter, which limits particle pre-
acceleration in reconnection. Most blazar radiation models rely
on a broken power-law distribution of injected particles to
explain the observed broadband spectra (e.g., Celotti &
Ghisellini 2008; Tavecchio et al. 2010; Böttcher et al. 2013).
For blazars typically the break occurs at γb∼ 102− 103, while
the assumed nonthermal distribution usually spans up to
g ~ -10 10max

5 6. The power-law index typically varies from
p∼ [− 1, − 2] for energies below the break to p∼ [− 3, − 4]
for energies above the break.
The secondary energization process described in this paper

naturally produces a broken power-law distribution of particles.
Moreover, the power-law index below the break, which is
determined by the upstream plasma magnetization (see
Figure 4), is similar to the values inferred by radiation
modeling, for σup? 1; for σup∼ 10, p∼− 2, while for
σup 10, p∼ [− 1.5, − 1] (e.g., Guo et al. 2014; Sironi &
Spitkovsky 2014; Werner et al. 2016). Meanwhile, the
plasmoid compression leads to a spectral break at
g s»  1b up( ) (which resembles the observed γb assuming
σup∼ 102− 103) and to an asymptotic power-law index
p≈− 3 above the break, in agreement with the radiation
models. Moreover, the maximum energy reached by the
particles due to the plasmoid compression is not limited by
the magnetization; thus, particles can, in principle, reach
g smax up .

For these systems, assuming that the leading cooling
mechanism is synchrotron emission, we find a conservative
estimate for the “saturation” energy defined by Equation (30),

g
- -

 w B
10

10 cm 1 G
, 33sat

5
14

1 2
⎛
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⎞
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⎛
⎝

⎞
⎠

( )

where w∼ 0.1 L is the typical plasmoid size, B∼ 1 G is the
magnetic field within the plasmoid, and the typical size of the
system L∼ 1015 cm (see, e.g., Celotti & Ghisellini 2008). This
estimation is close to the typical maximum injection energy,
gmax, assumed when modeling the radiation from these systems.
Thus, the secondary energization in plasmoids is a plausible
mechanism for producing the broken power-law distributions
of radiating particles in blazars.

8. Summary

Fast magnetic reconnection is accompanied by the formation
of a self-similar chain of plasmoids, which accumulate particles
both from the adjacent current sheets and directly from the
upstream region. Because of this constant accretion of particles
and magnetic flux, plasmoids grow in size, while their interiors
get compressed, as particles are advected inward closer to the
plasmoid core by converging magnetic flux loops. The radial
structure of these plasmoids is independent of the upstream
conditions and is determined exclusively by the force balance
between the magnetic stresses and the plasma pressure.
We find that the highest-energy particles in our 2D

simulations typically undergo a two-stage acceleration during
their lifetime. They first get energized in the current sheets and
X-points; this process forms the initial power-law distribution
function, which depends on the upstream magnetization, σup.
These particles are then advected into plasmoids. As particles
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are advected toward the plasmoid center by the converging
field lines, they experience an almost linearly growing
magnetic field with time, while their adiabatic invariants are
roughly conserved. As a result, γ∼ γ⊥∝ t1/2 and γP∝ t3/4,
with γ⊥∼ 2γP, i.e., the pressure is almost isotropic (γP/γ⊥ ∝
t1/4, and the anisotropy grows only marginally on the
timescales of our simulations).

The power-law slope of injected particles, which depends on
σup, is conserved and extends to Lorentz factors of a few σup
(Werner et al. 2016). Meanwhile, a second power law with slope
p≈− 3 forms at g s 1 up( ) and is followed by a time-
evolving high-energy cutoff, γcut∝ t1/2. The rate of this
secondary energization is primarily dictated by the large-scale
reconnection dynamics and is independent of the upstream
parameters. For a plasmoid with transverse width w, the
secondary energization timescale is g g ~ w vin , where
vin∼ 0.1c is the global reconnection rate. As the plasmoid
grows over time, the secondary energization will become slower.
Ultimately the particle energization will cease, and γcut will stop
growing, once the secondary acceleration timescale becomes
comparable to the radiative cooling timescale for a given
astrophysical system. We find that in the outer magnetospheres
of millisecond pulsars and reconnecting regions in blazar jets the
cooling may be weak enough for this slow secondary process to
accelerate particles beyond the standard E∼ σupmec

2 limit,
forming an additional power-law tail E−3 at higher energies.

Although the secondary energization process was studied for
reconnection in pair plasmas, we argue that it can operate also
in magnetically dominated electron–ion plasmas, since all
species are accelerated to roughly the same energy, and the
secondary acceleration due to plasmoid compression proceeds
in the same way.

The authors would like to thank Alexander Philippov for
numerous discussions and insightful comments. The authors
would also like to thank the anonymous reviewer for critical
comments that helped to clarify certain points and improve the
quality of this paper. This research was supported in part by the
National Science Foundation under grant No. NSF PHY-
1748958, NASA ATP grant No. 80NSSC18K1099, and NSF
grant AST-1814708. M.P. acknowledges support from the
Lyman Jr. Spitzer Postdoctoral Fellowship and the Fermi Guest
Investigation grant No. 80NSSC18K1745. A.S. is supported by
the Simons Foundation (grant 267233). L.S. acknowledges
support from the Sloan Fellowship, the Cottrell Fellowship,
NASA ATP NNX17AG21G, and NSF PHY-1903412.

Appendix A
Structure of the Plasmoid Shell

This appendix focuses on the internal structure of primary
isolated plasmoids. We estimate the power-law indices, defined
by Equation (9), of the radial profiles of the magnetic field and
plasma density inside the plasmoid shell, rin< r< r0(t). We
also derive how the distance of particles from the plasmoid
center decreases with time, as particles slowly descend
toward it.

First, let us assume that at any given radius from the center
of the plasmoid there is a balance between the magnetic forces

and plasma pressure

´ = j B
c

P
1

, A1( )

where the current density j can be expressed as 4πj/c=∇× B.
Motivated by the simulation results, we assume that, within the
plasmoid shell, B is purely toroidal and the only variation
occurs in the radial direction, i.e., f=B B r( ) ˆ . Then,
Equation (A1) can be rewritten as
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We also assume a polytropic EOS for the plasma inside the
plasmoid shell, with isotropic pressure

r= GP K , A3( )

where K is some dimensional constant and Γ is the adiabatic
index. Substitution of Equations (9) and (A3) into
Equation (A2) yields
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where σ0 is the plasma magnetization at r= r0. This can be
expressed as

s
p r

»
G -
G G

B

K

1

4
, A50

0
2

0

( ) ( )

where we used the definition for the plasma magnetization
s p= B h40 0

2
0 and expression of the enthalpy density h0 (at

r= r0) for a relativistically hot plasma (kT0?mec
2)
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For Equation (A4) to be satisfied at all times and for all
rin< r� r0, the following relations must hold:

z x z s x= G - = G -2 , and 1 1 . A70( ) ( ) ( )

Solving the above equations for the unknown power-law
indices ζ and ξ, we find
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Particles inside the plasmoid shell are frozen into the slowly
contracting magnetic field loops, which bring the particles
closer to the plasmoid center. As a result, the mass enclosed
within a fixed magnetic loop in the plasmoid shell is
approximately constant in time. This condition can be
expressed as

ò r »

r r t dr, const, A9

r in
( ) ( )

where  is the decaying radius of a fixed magnetic loop or
plasma ring (see Figure 5). This condition, together with
Equations (9) and (10), yields

µ µx x kx x- - - - r t t , A100
2 2( ) ( )( ) ( )

where we assumed rin  .
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As an example, Figure A1 shows results from our
simulations (for a description, see Section 4) for σup= 10
(top row) and 100 (bottom row). Panels (a) and (d) show the
region of the plasmoid where the force balance is satisfied,
panels (b) and (e) show magnetization as a function of radius
from the plasmoid center (blue shaded region corresponds to
the same region in panels (a) and (d)), and panels (c) and (f)
show the EOS for the same region (top and bottom panels
correspond to different upstream magnetizations, σup= 10 and
σup= 100). As we see from panels (b) and (e), the effective
magnetization drops from the upstream value to a roughly
constant value σ0≈ 1 in the plasmoid shell. From panels (c)
and (f) we can see that the EOS indeed looks like a polytrope
with a characteristic adiabatic index of Γ= 4/3.

Thus, for Γ= 4/3 and σ0≈ 1 from Equation (A8) we find
that ζ≈ 2/3 and ξ≈ 1. From Equation (A10) we also find that

µ k- t when ξ≈ 1.

Appendix B
Finding the Boundaries of Plasmoids

In this section, we describe the algorithm we used for
identifying the plasmoid boundaries. This relies on the mixing
criterion (Daughton et al. 2014; Rowan et al. 2017) and on the
vector potential.

We distinguish particles originating from one side of the
current sheet, + x, from the ones from the other side, − x.
Henceforth, we refer to their densities as ρ+ and ρ−. We then

compute the so-called mixing factor, λf, in each cell of our
simulation domain

l
r

r r
= - -
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+
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⎞
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( )

The mixing factor is defined in a way that λf= 1 inside the
plasmoids and the current sheet, where particles from two
separated regions are perfectly “mixed,” and λf= 0 everywhere
else. At the plasmoid edges the mixing factor takes
intermediate values, 0< λf< 1 (see Figure B1(b)). We
compute the isocontours of the vector potential Az (the
simulation is done in the x–y plane). To identify the boundary
of a particular plasmoid, we select regions characterized by
intermediate values of the mixing factor (i.e., 0.1< λf< 0.9)
and find the average value of the vector potential values in
these regions, Az

0. We then define the isocontour of =A Az z
0 as

the boundary for that particular plasmoid (see Figure B1(a),
thick white line).
Our results are robust to the choice of the exact mixing factor

values, as λf has a very steep spatial profile at the plasmoid
edges; it changes quickly from 0 to 1 going from the upstream
to the plasmoid within a few skin depths, meaning that the
mixing of particles happens very abruptly. Even if one argues
that our method does not yield the exact plasmoid boundary,
this does not affect our results, because our analysis focuses on
long-term processes taking place well within the plasmoid
boundary.

Figure A1. Top panels correspond to the σup = 10 simulation, while bottom panels are for the σup = 100 case. (a, d) Close-up view of an isolated primary plasmoid,
with color indicating ρ/ρup (see color bar). The plasmoid shell, where the force balance condition (A1) is satisfied, is shown as a blue shaded ring; the green and
yellow circles indicated the core radius and the boundary of the shell. (b, e) Plasma magnetization as a function of radius from the plasmoid center (in units of rL). The
blue shaded region corresponds to the plasmoid shell, shown in blue in panels (a) and (d). The horizontal dashed lines correspond to the upstream magnetization, σup,
and the magnetization of the plasmoid shell, σ0 (see Equation (A5)). The three radii marked on the plot are defined in Section 5. (c, f) Typical 2D histogram of the
plasma pressure and plasma density for the shaded region in panels (a) and (d). The polytropic EOS for a relativistic gas is also shown (dashed line).
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