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Abstract 

Conventional optimal design frameworks consider a narrow range of sampling cost structures 

that thereby constrict their capacity to identify the most powerful and efficient designs. We relax 

several constraints of previous optimal design frameworks by allowing for variable sampling 

costs in cluster-randomized trials. The proposed framework introduces additional design 

considerations and has the potential to identify designs with more statistical power, even when 

some parameters are constrained due to immutable practical concerns. The results also suggest 

that the gains in efficiency introduced through the expanded framework are fairly robust to 

misspecifications of the expanded cost structure and concomitant design parameters (e.g., 

intraclass correlation coefficient). The proposed framework is implemented in the R package 

XXX.  

Key words: optimal design, design precision, cost efficiency, power analysis, cost 

structure  



OPTIMAL SAMPLE ALLOCATION 

3 

 

The statistical power to detect treatment effects in cluster-randomized trials is, in part, 

governed by how the total sample size is allocated across levels of the hierarchy and treatment 

conditions (Bloom, 2005; Hedges & Borenstein, 2014; Liu, 2003; Kelcey, Shen, & Spybrook, 

2016; Spybrook, Shi, & Kelcey, 2016). For instance, holding constant the total sample size, 

designs can achieve vastly different levels of statistical power under different sampling plans 

(Hedges & Borenstein, 2014; Liu, 2003; Raudenbush, 1997). Equally, holding constant the total 

sample size, designs with different sampling plans may require dramatically different total costs 

because the costs of sampling a unit are not always equal across levels (Hedges & Borenstein, 

2014; Raudenbush, 1997) and treatment conditions (Liu, 2003; Cochran, 1963; Nam, 1973).  

As a result, an important first step in the design of such studies is to consider theoretical 

guidelines for sample allocation. Such guidelines have been typically derived from the 

conventional optimal design framework (e.g., Raudenbush, 1997). The conventional framework 

seeks to identify the sample allocation that produces the greatest statistical power to detect a 

treatment effect given a fixed budget by leveraging information regarding the marginal costs of 

sampling additional clusters and individuals (Hedges & Borenstein, 2014; Liu, 2003; 

Raudenbush, 1997). Implicit in this framework is the assumption that the costs of sampling 

additional control and treatment units are invariable.  

However, prior theoretical and empirical work in the context of cluster-randomized trials 

suggests that the marginal costs potentially vary across treatment conditions and sampling levels. 

The potential for differences in costs of sampling a unit across levels in cluster-randomized trials 

has been recognized and modeled in previous literature (e.g., Hedges & Borenstein, 2014; 

Raudenbush, 1997). For example, in a classroom-randomized trial in which classrooms are the 

primary unit of randomization (e.g., Mosteller, 1995), recruiting one additional classroom is 
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much harder, also dramatically expensive, than sampling one additional student from dozens of 

students in an already sampled classroom.  

The costs of sampling potentially vary between treatment conditions as well (Liu, 2003; 

Cochran, 1963; Nam, 1973). The marginal cost of sampling a unit in the control condition (𝐶) 

includes the expenditures used to recruit and measure such a unit (e.g., business travels and work 

time of data collectors, incentive paid to the unit). The marginal cost of sampling a unit in the 

treatment condition (𝐶𝑇) usually includes the same marginal cost of sampling a control unit (𝐶) 

plus the marginal fees associated with the delivery and implementation of interventions to this 

unit (𝐶𝐼; e.g., specialized training to become an intervention provider, work time of an 

intervention provider), or 𝐶𝑇 = 𝐶 + 𝐶𝐼. Thus, we have 𝐶𝑇/𝐶 = 1 + 𝐶𝐼/𝐶. That is, the cost ratio 

of sampling between treatment condition (𝐶𝑇/𝐶) is potentially dependent on how expensive 

interventions are relative to the cost of sampling a control unit (𝐶𝐼/𝐶) or how cheap sampling a 

control unit is relative to the marginal cost of interventions. 

There are notable examples of studies in which expenses varied across treatment 

conditions. Take for example the study reported by Springer et al. (2011) regarding a cluster-

randomized evaluation of whether incentives in teacher performance improve student outcomes. 

In this study, teachers in the experimental group were eligible to receive a bonus payment of up 

to $15,000 per year based on their students’ performance in tests. In contrast, teachers in the 

control condition carried on with business as usual. As a result, the costs of sampling each 

additional teacher in the experimental group typically exceed the cost associated with sampling 

an additional control teacher.  

A similar example of differences in costs unfolded in the Tennessee class size experiment 

(Mosteller, 1995). This experiment evaluated the effects of student-teacher ratios on student 
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achievements (Mosteller, 1995). Students and teachers were randomly assigned to one of three 

treatment conditions: regular classrooms of 22 to 25 students (the control condition), small 

classrooms of 13 to 17 students, and regular classrooms of 22 to 25 students assisted by a paid 

and trained teacher aide. In this setting, classrooms staffed with an aide are likely to incur 

additional costs as are smaller classrooms.  

Examples of differential sampling costs among treatment conditions are not limited to 

classrooms and schooling. This type of cost disparity often arises in health care. For example, 

many community health interventions include public education messaging and activities or the 

general promotion of novel policies (e.g., Glynn et al., 1995) and incorporate costly trainings for 

health care providers (e.g., Hiscock et al., 2008). In many of these instances, the nature of an 

intervention and its deployment incurs marginal costs above and beyond those realized in the 

control condition. A study of four-year smoking cessation community intervention includes 

activities of public education, training of health care providers, and promotion of policies to 

restrict the sale and use of tobacco (Glynn et al., 1995); another intervention is a three-session 

training program co-led by well child providers and a parenting expert (Hiscock et al., 2008). 

Some additional examples of costly interventions are ten days training, travels to professional 

development conferences (Greenleaf et al., 2011); ten, two-day on-site training sessions (Jacob, 

Goddard, Kim, Miller, & Goddard, 2015); four-day professional trainings with one day per 

month (Jayanthi, Gersten, Taylor, Smolkowski, & Dimino, 2017). 

Although sampling costs plausibly vary across experimental and control conditions, 

empirical research suggests that such differences are predominantly found at the cluster level 

where the interventions are implemented (e.g., Liu, 2003; Mosteller, 1995; Springer et al., 2011). 
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The differences in sampling costs at the individual level, if there are any, will be relatively small 

comparing with the sampling costs at the cluster level.  

Even the cost of sampling a unit potentially varies across levels of the design and 

treatment conditions, the budget functions in previous optimal design frameworks do not fully 

consider these variations in the cost structures of sampling, and the optimal design parameters 

chose to maximize the statistical power in these frameworks are also limited. For example, in the 

optimal design framework developed by Raudenbush (1997) for two-level cluster-randomized 

trials, the budget function only considers the cost variation across levels and assumes the cost of 

sampling one additional individual or cluster in the experimental group is equal to that in the 

control group. Along with the between-treatment equal cost assumption in the budget function, 

the Raudenbush (1997) framework optimizes the sampling ratio across levels but not between 

treatment conditions. Alternatively, Liu (2003) developed a framework that allows cost variation 

between treatment conditions. Yet, the Liu (2003) framework does not model cost variation 

across levels and thus optimizes the sampling ratio between treatment conditions but not across 

levels. 

More generally, the perspectives presented in previous frameworks (e.g., Raudenbush, 

1997; Liu, 2003; Connelly, 2003; Turner, Toby Prevost, & Thompson, 2004) only partially 

consider the potential sampling costs of a cluster-randomized trial and optimize the sample ratio 

either across levels or between treatment conditions. Each of these previous frameworks present 

a type of constrained optimization —that is, they optimize only one of the sampling ratios across 

levels and between treatment conditions and constrain the another one. As a result, each of these 

frameworks potentially return sub-optimal sampling schemes when sampling costs vary across 

levels of the design and treatment conditions.  
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In this study, we develop an optimal sampling framework that considers the potential for 

variation in costs across treatment conditions and levels of the hierarchy. We consider the design 

of two- and three-level cluster-randomized trials and organize our study as follows. We begin 

with a review of the literature regarding previous optimal design frameworks. We follow with 

the development of a more flexible optimal design framework that relaxes the typical parameter 

and cost constraints for two-level cluster-randomized designs and derives optimal sample 

allocation across levels and treatment conditions from multiple perspectives. We then extend this 

framework to three-level cluster-randomized trials. We follow by detailing the relative design 

precision and efficiency between different sample allocations, and subsequently use it to 

compare the results between the proposed and previous frameworks. In turn, we investigate the 

robustness of the proposed optimal sample scheme to the misspecification of design parameter 

values and cost structures. We end with a discussion.  

Background  

For single-level experiments in which individuals are assigned at random to experimental 

and control groups, prior literature has developed strategies to maximize statistical power under a 

fixed budget by minimizing the variance of a treatment effect (Cochran, 1963; Nam, 1973). The 

historical framework begins with a sample size for the experimental group (𝑛𝑇) and the control 

group (𝑛𝐶) and assumes that the costs of sampling an individual in the experimental and control 

groups are 𝑛𝑇 and 𝑛𝐶. In turn, the total cost or budget function of the study can be described as 

𝑚 = 𝑐𝑇𝑛𝑇 + 𝑐𝑛. Under this conventional framework, sampling is optimized in terms of power 

when the sampling ratio between treatment conditions under the budget function is 

𝑛𝑇/𝑛𝐶 = √𝑐/𝑐𝑇  .     (1) 
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Once the optimal ratio is identified, the total sample size is a straightforward function of 

the available budget (through the budget function) or power (through a power formula). Equation 

1 shows that the more expensive sampling an individual in the treatment condition is, the smaller 

the proportion of individuals that should be assigned to the treatment condition. If there is no 

difference in the cost of sampling between treatment conditions (𝑐 = 𝑐𝑇), the best sampling 

strategy is to assign an equal number of individuals to each treatment condition. Thus, a balanced 

design is the best one in terms of statistical power under a fixed budget if, and only if, there is no 

difference in the costs of sampling an additional individual between treatment conditions.  

Compared to single-level experiments that only need to identify the optimal sampling 

ratio between treatment conditions, cluster-randomized trials need to additionally identify 

optimal sampling ratio across levels. Literature on the optimal sample size allocation for two-

level cluster-randomized trials has separately addressed these two facets of optimal ratio in 

different frameworks but has not developed expressions to optimize them simultaneously in a 

single framework.  

For example, Raudenbush (1997) developed an optimal design framework for two-level 

cluster-randomized trials in which there are a total number of 𝐽 clusters and 𝑛 individuals in each 

cluster. The budget function in the framework is 𝑚 = 𝐽(𝐶1𝑛 + 𝐶2), where 𝐶1 and 𝐶2 are the 

respective costs of sampling an additional individual and cluster regardless of which treatment 

condition the unit is assigned to. Rearranging the budget function, we have 

𝐽 =
𝑚

(𝐶1𝑛+𝐶2)
.      (2) 

Given this budget function, the optimal sampling ratio across levels that produces the 

maximum power under the fixed budget by minimizing the variance of the treatment effect can 

be identified as  
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𝑛 = √
(1−𝜌)(1−𝑅1

2)

𝜌(1−𝑅2
2)

√
𝐶2

𝐶1
 ,    (3) 

where 𝜌 is the unconditional intraclass correlation coefficient in a population, 𝑅1
2 and 𝑅2

2 are the 

proportions of outcome variance explained by covariates at the individual and cluster levels, 

respectively. The cluster-level sample size 𝐽 is then identified under a budget 𝑚 using Equation 2 

or a power formula once the optimal 𝑛 in Equation 3 is given.  

Equation 3 proposes two primary pathways for improving statistical power under a fixed 

budget. First, as the conditional variance at the cluster level is relatively large, it is more 

beneficial to sample fewer individuals per cluster in exchange for more clusters under a fixed 

budget. Second, when the sampling cost of a cluster is relatively large, the statistical power of a 

design can be improved by sampling more individuals per cluster in exchange for fewer clusters 

under a fixed budget (Raudenbush, 1997).  

An implicit assumption of the conventional optimal design framework (Raudenbush, 

1997) is that the cost of sampling a unit in the treatment condition is equal to that of a unit in the 

control condition, and only balanced designs with an equal number of clusters in each treatment 

condition are considered. As a result, the Raudenbush (1997) framework presents a type of 

constrained optimal design framework in which sample allocations are constrained to designs 

with an equal sample size and equal sampling costs between treatment conditions. However, 

such constraint are potentially incongruous with previous optimal design frameworks that 

recognize the potential for unequal sampling costs between treatment conditions (Cochran, 1963; 

Nam, 1973; Liu, 2003) and potentially restrictive in practice (e.g.,Mosteller, 1995; Greenleaf et 

al., 2011; Jacob et al., 2015; Springer et al., 2011) because they limit researchers abilities to 
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identify the sample size allocation that produces the greatest statistical power under a fixed 

budget.  

Liu (2003) relaxed the between-treatment equal cost assumption and the constraint of 

balanced designs in the Raudenbush (1997) framework and shifted the optimal design in 

multilevel experiments back to the optimal sample size ratio between treatment conditions in 

single level experiments. However, by allowing sampling costs to vary between treatment 

conditions and considering unbalanced designs, the Liu (2003) framework omitted the 

optimization of sample size ratio across levels. More specifically, under this framework, a single 

unitary cost for sampling an additional cluster and its individuals is considered but that cost is 

allowed to differ by treatment condition.  

For instance, presume that the combined cost of sampling an additional cluster together 

with its individuals in the treatment and control groups are 𝐶𝑇 and 𝐶, respectively. The budget 

function is 𝑚 = (1 − 𝑝)𝐽𝐶 + 𝑝𝐽𝐶𝑇 with 𝑝 as the proportion of clusters to be assigned to the 

treatment condition and 𝐽 as the number of total clusters. We can rearrange the budget function 

as  

𝐽 =
𝑚

(1−𝑝)𝐶+𝑝𝐶𝑇.     (4) 

Under this scenario Liu (2003) derived the optimal sampling ratio between treatment 

conditions as √𝐶/𝐶𝑇 (i.e., (𝑝𝐽)/[(1 − 𝑝)𝐽] = √𝐶/𝐶𝑇 ), which has the same expression of 

Equation 1 for the single-level experiments. Thus, the optimal proportion of clusters to be 

assigned to the treatment condition is 

𝑝 =
√𝐶 /𝐶𝑇

1+√𝐶 /𝐶𝑇
.      (5) 
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Although the work by Liu (2003) widened the scope and flexibility of cost structures and is 

consistent with earlier literature (Cochran, 1963; Nam, 1973), it did not model the cost variation 

across levels and retained constraints on the sample allocation across levels. Thus, the resulting 

framework presents a type of constrained optimal design, which often results in sub-optimal 

sample allocation. 

The Raudenbush (1997) framework has also been extended to three-level cluster-

randomized trials with the same between-treatment equal cost assumption and the balanced-

design constraint (Moerbeek, van Breukelen, & Berger, 2000; Konstantopoulos, 2009, 2011; 

Hedges & Borenstein, 2014). Suppose 𝐾 is the total number of level-three clusters, 𝑛 and 𝐽 are 

the sample sizes per level-two and level-three unit, respectively. The budget function is 𝑚 =

𝐾(𝑛𝐽𝐶1 + 𝐽𝐶2 + 𝐶3), where 𝐶1, 𝐶2, and 𝐶3 are the respective costs of sampling one additional 

level-one, level-two, and level-three unit. Thus, we have 

𝐾 =
𝑚

𝑛𝐽𝐶1+𝐽𝐶2+𝐶3
.       (6) 

Given the above budget function, literature has solved the optimal sample allocation 

across levels in a three-level cluster-randomized trial (Moerbeek, van Breukelen, & Berger, 

2000; Konstantopoulos, 2009, 2011; Hedges & Borenstein, 2014) as 

𝑛 = √
(1−𝜌2−𝜌3)(1−𝑅1

2)

𝜌2(1−𝑅2
2)

 √
𝐶2

𝐶1
 ,      (7) 

and 

𝐽 = √
𝜌2(1−𝑅2

2)

𝜌3(1−𝑅3
2)

√
𝐶3

𝐶2
,       (8) 

where 𝜌2 and 𝜌3 are the respective unconditional intraclass correlation coefficient at the level 

two and level three, and 𝑅1
2, 𝑅2

2, 𝑅3
2 are the respective proportions of variance at the level one, 
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level two, and level three explained by covariates. These solutions can be reached in such a way 

that a three-level cluster-randomized trial is viewed as two-level cluster-randomized trials by 

omitting level-one or level-three units and then repeating the solution reported under the 

Raudenbush (1997) framework. 

More specifically, by omitting the top-level units, a three-level cluster-randomized trial 

conceptually reduces to a two-level cluster-randomized trial with an (pseudo) intraclass 

correlation coefficient of 𝜌2/(1 − 𝜌3). By substituting 𝜌2/(1 − 𝜌3) as the ρ value into Equation 

3, we can have the optimal 𝑛 expression in Equation 7. Likewise, we can have 𝐽 expression in 

Equation 8 by omitting the level-one units in a three-level cluster-randomized trial.  

In summary, previous frameworks model same aspects of the sampling cost variation 

across treatment conditions and levels of the design in cluster-randomized trials, but none of 

them fully models or accounts for the cost variation across both levels and treatment conditions. 

That is, although previous optimal design frameworks develop strategies that improve design 

precision and efficiency through balancing costs and sample allocation, these frameworks are 

incomplete in terms of the budget function and the parameters for optimization. In the next 

section, we develop a more flexible optimal design framework by modeling the full cost 

variation and optimizing the sampling ratios across both levels and treatment conditions. 

Optimal Sample Allocation in Two-Level Cluster-Randomized Trials 

We first develop our framework within the context of two-level cluster-randomized trials. 

We begin with an assumption that sets the individual-level sample sizes to be equal between 

treatment conditions (i.e., 𝑛 = 𝑛𝐶 = 𝑛𝑇). Under the random assignment of clusters, such an 

assumption simplifies presentation, calculations, and implementation with sacrificing nugatory 
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gains in efficiency. However, we provide the optimal sample allocation solutions without such 

an assumption in the supplemental materials.  

Models 

Assuming a cluster-randomized design, we let the number of sampled individuals in each 

cluster be 𝑛, the number of total sampled clusters be 𝐽, and the proportion of clusters to be 

assigned to the treatment condition be p with 𝑝𝐽 as an integer. We can estimate the treatment 

effect through multilevel linear models or ordinary least squares (Raudenbush & Bryk, 2002). 

Multilevel linear models and ordinary least squares will provide identical treatment effect 

estimations when the individual-level sample size in the same treatment condition does not vary 

across clusters. See Hedges and Hedberg (2007) and Hoover (2002) for the method of pooling 

the variance between treatment conditions when sample sizes are not equal between treatment 

conditions at the cluster level.  

We present the analytic models in the format of multilevel linear models, and the 

individual-level model is 

𝑌𝑖𝑗 = 𝛽0𝑗 + 𝜷𝑰
′ 𝑿𝒊𝒋 + 𝜀𝑖𝑗  𝜀𝑖𝑗~𝑁(0, 𝜎1|

2 ),     (9) 

where 𝑌𝑖𝑗 is the continuous outcome of individual 𝑖 (𝑖 = 1, 2, … , 𝑛) in cluster 𝑗 (𝑗 = 1, 2, … , 𝐽), 

𝛽0𝑗 is the conditional mean score of cluster j, 𝜷𝑰 = (𝛽𝐼1, … , 𝛽𝐼𝑟)′ is an 𝑟-length vector of 

individual-level regression coefficients, 𝑿𝒊𝒋 is an 𝑟-length vector of individual-level covariate 

values for individual 𝑖 in cluster 𝑗 that may vary within and across groups or only within groups, 

and 𝜀𝑖𝑗 is the individual-level error term with a conditional variance 𝜎1|
2 . 

Similarly, the cluster-level model is 

𝛽0𝑗 = 𝛾00 + 𝛿𝑇𝑗 + 𝜸𝑮
′ 𝒁𝒋 + 𝑢0𝑗  𝑢0𝑗~𝑁(0, 𝜎2|

2 ),   (10) 
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where 𝛾00 is the conditional mean across all clusters and individuals, 𝑇𝑗 is the treatment indicator 

with 𝑇𝑗 = 1 for clusters in the treatment group, otherwise 𝑇𝑗 = 0 with 𝛿 as the treatment effect. 

𝜸𝑮 = (𝛾𝐺1, … , 𝛾𝐺𝑞)
′
 is a 𝑞-length vector of cluster-level regression coefficients, 𝒁𝒋 is a 𝑞-length 

vector of cluster-level covariate values for cluster 𝑗, which could include variables measured 

directly at the cluster-level and/or cluster means of individual-level covariates, and 𝑢0𝑗 is the 

random effect of cluster 𝑗 with a conditional variance 𝜎2|
2 . With unconditional variances at the 

individual and cluster levels as 𝜎1
2 and 𝜎2

2 the intraclass correlation coefficient is 

𝜌 =
𝜎2

2

𝜎1
2+𝜎2

2.      (11) 

If we standardize the outcome to have a variance of one in a population, the treatment 

effect (𝛿) is placed on a standardized mean difference scale and has a variance of 

𝜎𝛿
2 =

𝜌(1−𝑅2
2)+(1−𝜌)(1−𝑅1

2)/𝑛

𝑝(1−𝑝)𝐽
.     (12) 

When the null hypothesis is false (i.e., 𝛿 ≠ 0), the statistical power follows a noncentral 𝑡-

distribution (Hedges & Hedberg, 2007; Liu, 2003) with the noncentrality parameter as 

𝜆 =
𝛿

√𝜎𝛿
2

=
𝛿√𝑝(1−𝑝)𝑛𝐽

√𝜌(1−𝑅2
2)𝑛+(1−𝜌)(1−𝑅1

2)
.    (13) 

The statistical power at the significance level 𝛼 for the two-tailed test (Hedges & Hedberg, 2007; 

Hoover, 2002; Donner & Klar, 2000; Rutterford, Copas, & Eldridge, 2015) is 

𝑃 = 1 − 𝐻[𝑐(𝛼/2, 𝐽 − 𝑞 − 2), 𝐽 − 𝑞 − 2, 𝜆] + 𝐻[−𝑐(𝛼/2, 𝐽 − 𝑞 − 2), 𝐽 − 𝑞 − 2, 𝜆 ], (14) 

where 𝑐(𝛼/2, 𝑣) is the two-tailed critical value in a 𝑡-distribution with 𝑣 degrees of freedom and 

the significance level 𝛼, and 𝐻(𝑥, 𝑣, 𝜆) is the cumulative distribution function of the noncentral 

𝑡-distribution with 𝑣 degrees of freedom and a noncentrality parameter 𝜆. Similarly, the 
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statistical power at the significance level α for the one-tailed test (Hedges & Hedberg, 2007; 

Hoover, 2002; Donner & Klar, 2000; Rutterford, Copas, & Eldridge, 2015) is  

𝑃 = 1 − 𝐻[𝑐(𝛼, 𝐽 − 𝑞 − 2), 𝐽 − 𝑞 − 2, 𝜆].     (15) 

Methods 

 The intersection of the optimal design frameworks presented by Raudenbush (1997) and 

others (Liu, 2003; Cochran, 1963; Nam, 1973), with the cost structures often observed in 

multilevel studies (e.g., Tennessee class size experiment; Mosteller, 1995) suggest another 

prospect—the budget function should let the cost of sampling vary across both levels of the 

hierarchy and treatment conditions. For this reason, we integrate these frameworks to develop a 

more flexible framework with potentially more realistic cost structure. In this extended 

framework, we first assign 𝑐1 as the cost of enrolling each additional individual within a cluster 

in the control condition and 𝑐1
𝑇 as the cost of enrolling each additional individual within a cluster 

in the treatment condition. Similarly, we use 𝑐2 as the cost of sampling each additional cluster in 

the control condition and  𝑐2
𝑇 for an experimental cluster.  

Thus, the budget function is 𝑚 = (1 − 𝑝)𝐽(𝑐1𝑛 + 𝑐2) + 𝑝𝐽(𝑐1
𝑇𝑛 + 𝑐2

𝑇). Rearranging the 

budget function, we have 

𝐽 =
𝑚

(1−𝑝)(𝑐1𝑛+𝑐2)+𝑝(𝑐1
𝑇𝑛+𝑐2

𝑇)
.      (16) 

Substituting 𝐽 in Equation 16 to Equation 12, we can rewrite the variance of the treatment effect 

as  

 𝜎𝛿
2 =

[𝜌(1−𝑅2
2)𝑛+(1−𝜌)(1−𝑅1

2)][(1−𝑝)(𝑐1𝑛+𝑐2)+𝑝(𝑐1
𝑇𝑛+𝑐2

𝑇)]

𝑝(1−𝑝)𝑛𝑚
.   (17) 

Optimal Sample Allocation 
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We can derive optimal sample size allocation from several different but linked 

perspectives, including minimizing the variance of the treatment effect under a fixed budget, 

minimizing the budget requested to achieve a fixed variance of the treatment effect, and 

maximizing the noncentrality parameter 𝜆 under a fixed budget. We will have identical results 

from these different perspectives. Consistent with prior frameworks, we can identify an optimal 

design that achieves the greatest statistical power under a fixed budget by minimizing the error 

variance of the treatment effect. To minimize the error variance in Equation 17, we derive its 

first-order derivatives with respect to 𝑝 and 𝑛 and set these derivatives equal to zero, yielding  

𝑝 =
√(𝑐1𝑛+𝑐2) /(𝑐1

𝑇𝑛+𝑐2
𝑇)

1+√(𝑐1𝑛+𝑐2) /(𝑐1
𝑇𝑛+𝑐2

𝑇)

,     (18) 

𝑛 =
√(1−𝜌)(1−𝑅1

2)

√𝜌(1−𝑅2
2)

√
(1−𝑝)𝑐2+𝑝𝑐2

𝑇

(1−𝑝)𝑐1+𝑝𝑐1
𝑇.    (19) 

The above expressions can be used to identify the optimal sampling ratio across levels 

and treatment conditions. There are no simple closed form solutions to the roots of 𝑝 and 𝑛 in 

Equations 1818 and 19. We can numerically solve the roots by (1) substituting Equation 19 for 𝑛 

in Equation 18; (2) using the uniroot function in the R Package Stats (R Core Team, 2019) to 

find a root in (0, 1) that makes the difference between the right-hand and left-hand sides of the 

updated Equation 18 equal to or smaller than, e.g., 10−10; (3) using the solved 𝑝 value to have 

the root of 𝑛 in Equation 19. We implement these solutions in the R package XXX (Citation 

masked).  

Similar to the results of prior frameworks, the results indicate that the optimal 𝑝 and 

optimal 𝑛 are not a function of total budget 𝑚 but rather are driven by the relative cost structure 

of sampling. Only the total number of clusters 𝐽 is impacted by the total budget through Equation 



OPTIMAL SAMPLE ALLOCATION 

17 

 

16. The optimal 𝑝 is driven by the control/treatment cost ratio of sampling a cluster and its 

individuals (i.e., (𝑐1𝑛 + 𝑐2) /(𝑐1
𝑇𝑛 + 𝑐2

𝑇)), which is also influenced by the number of individuals 

sampled in each cluster (𝑛). From Equation 18, we can see that a balanced design with 𝑝 = .5 is 

the optimal one if, and only if, the costs of sampling a cluster and its individuals in each 

treatment condition are equal (i.e., 𝑐1𝑛 + 𝑐2 = 𝑐1
𝑇𝑛 + 𝑐2

𝑇). Otherwise, the more expensive 

sampling a cluster and its individuals in the treatment condition is, the smaller the optimal 𝑝. 

That is, investigators should assign a smaller proportion of clusters to the experimental group 

when the cost of sampling in the treatment condition is more expensive than that in control.  

The optimal 𝑛 in Equation 19 is driven by two factors. The first factor is the square root 

of conditional variance ratio between levels (i.e., √𝜎1|
2  /√𝜎2|

2 = √(1 − 𝜌)(1 − 𝑅1
2)/

√𝜌(1 − 𝑅2
2)). This indicates that the larger the conditional cluster/individual variance ratio is, 

the smaller the resulting optimal 𝑛. It is intuitive that researchers need more clusters to identify 

the treatment effect with a larger conditional intraclass correlation coefficient because a larger 

proportion of variation at the group level requires more clusters to achieve a same level of 

statistical power or design precision (Hedges & Hedberg, 2007). The terms (1 − 𝑝)𝑐2 + 𝑝𝑐2
𝑇 and 

(1 − 𝑝)𝑐1 + 𝑝𝑐1
𝑇 can be viewed as the weighted costs of sampling one additional cluster and 

individual, respectively.  

The second factor is the square root of the weighted sampling cost ratio between levels, 

with the proportion of clusters assigned to the experimental group as the weight (i.e., 

√(1 − 𝑝)𝑐2 + 𝑝𝑐2
𝑇/√(1 − 𝑝)𝑐1 + 𝑝𝑐1

𝑇). The larger the weighted cluster/individual cost ratio is, 

the bigger the optimal 𝑛. Put differently, when the weighted costs of sampling a cluster is more 
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expensive than sampling an individual, researchers should sample fewer clusters in favor of more 

individuals per cluster.  

Constrained Optimal Sample Allocation and Relations to Previous Frameworks 

There are practical considerations that may limit the use of optimal sample allocation 

(Hedges & Borenstein, 2014). For example, many classrooms have an upper limit of about 20 to 

30 students and this may constitute a common constraint in classroom-based designs. We probe 

several such constraints in 𝑝 and 𝑛 in order to (a) delineate the conditions under which the 

proposed framework reduces to previous frameworks and (b) outline the flexibility of the 

proposed framework.  

Constrained 𝒑. Suppose the constrained proportion of clusters to be assigned to the 

treatment condition is 𝑝0 (i.e., 𝑝 = 𝑝0). If we minimize the variance of the treatment effect in 

Equation 17 with respect to 𝑛 the constrained optimal individual-level sample size has the exact 

same expression with Equation 19. Thus, the constrained optimal individual-level sample size 

can be obtained from Equation 19 along with 𝑝 = 𝑝0. If we let 𝑝 = .5, 𝐶1 = (1 − 𝑝)𝑐1 + 𝑝𝑐1
𝑇, 

and 𝐶2 = (1 − 𝑝)𝑐2 + 𝑝𝑐2
𝑇, the constrained optimal individual-level sample size in Equation 19 

will reduce to Equation 3, the optimal sample size expression under the Raudenbush (1997) 

framework. 

Constrained 𝒏. Suppose the constrained individual-level sample size is 𝑛0 (i.e., 𝑛 = 𝑛0), 

minimizing the variance of the treatment effect in Equation 17 with respect to 𝑝 the constrained 

optimal proportion has the exact same expression with Equation 18. Thus, the constrained 

optimal proportion can be obtained from Equation 18 along with 𝑛 = 𝑛0. If we let 𝐶 = 𝑐1𝑛0 +

𝑐2 and 𝐶𝑇 = 𝑐1
𝑇𝑛0 + 𝑐2

𝑇, the constrained optimal proportion in Equation 18 will reduce to 

Equation 5, the optimal 𝑝 expression under the Liu (2003) framework.  
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Optimal Sample Allocation in Three-Level Cluster-Randomized Trials 

Similar to those for two-level cluster-randomized trials, the potential gains in design 

efficiency and/or statistical power in three-level cluster-randomized trials can mostly be achieved 

by optimizing sampling ratios between treatment conditions and among levels. We subsequently 

present the optimal sample allocation with the constraint of equal sample sizes at the individual 

and sub-cluster levels (i.e., 𝑛 = 𝑛𝐶 = 𝑛𝑇 and 𝐽 = 𝐽𝐶 = 𝐽𝑇). We provide the optimal sample 

allocation solutions without such a constraint as supplemental materials.  

Models 

Suppose a three-level cluster sampling design has a total number of K clusters (level-

three units) with 𝑝𝐾 clusters assigned to the treatment condition, each cluster has 𝐽 sub-clusters 

(level-two units) of size 𝑛. Let 𝑌𝑖𝑗𝑘 be the continuous outcome of unit 𝑖 in sub-cluster 𝑗 in cluster 

𝑘 with 𝑖 = 1, … , 𝑛, 𝑗 = 1, … , 𝐽, and 𝑘 = 1, … , 𝐾. Let 𝑿𝒊𝒋𝒌, 𝒁𝒋𝒌, 𝑾𝒌 be the vectors of covariates at 

the level one, level two, level three with corresponding regression coefficient vectors of 𝜷𝑰, 𝜷𝑱, 

𝜷𝑲 and lengths of 𝑟, s, and 𝑞, respectively. Similar to models for two-level cluster-randomized 

trials, the covariates could be variables measured at the same level or aggregated values of 

variables measured at a lower level.  

When the sample size per (sub-)cluster do not vary across (sub-)clusters within each 

treatment condition, we can estimate the treatment effect using ordinary least squares or 

multilevel linear models (Raudenbush & Bryk, 2002). Under the multilevel formulation, the 

level-one model is 

𝑌𝑖𝑗𝑘 = 𝛽0𝑗𝑘 + 𝜷𝑰
′ 𝑿𝒊𝒋𝒌 + 𝜀𝑖𝑗𝑘  𝜀𝑖𝑗𝑘~𝑁(0, 𝜎1|

2 ),    (20) 
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where 𝛽0𝑗𝑘 is the conditional mean score of sub-cluster j in cluster k and 𝜀𝑖𝑗𝑘 is the individual-

level error term with a conditional variance 𝜎1|
2 . Similarly, the level-two or sub-cluster-level 

model is 

𝛽0𝑗𝑘 = 𝛾00𝑘 + 𝜷𝑱
′𝒁𝒋𝒌 + 𝑢0𝑗𝑘  𝑢0𝑗𝑘~𝑁(0, 𝜎2|

2 ),         (21) 

where 𝛾00𝑘 is the conditional mean score of cluster k, and 𝑢0𝑗𝑘 is the random effect of sub-

cluster j in cluster k with a conditional variance 𝜎2|
2 . The level-three or cluster-level model is 

𝛾00𝑘 = 𝜋000 + 𝛿𝑇𝑘 + 𝜷𝑲
′ 𝑾𝒌 + 𝑢00𝑘  𝑢00𝑘~𝑁(0, 𝜎3|

2 ),   (22) 

where 𝜋000 is the conditional mean across all clusters, sub-clusters, and individuals, 𝑇𝑘 is the 

treatment indicator with 𝑇𝑘 = 1 for clusters in the experimental group and otherwise 𝑇𝑘 = 0 with 

𝛿 as the treatment effect, 𝑢00𝑘 is the random effect of cluster 𝑘 with a conditional variance 𝜎3|
2 .  

Let the unconditional variances at the individual-, sub-cluster-, and cluster-level be 𝜎1
2, 

𝜎2
2, and 𝜎3

2, respectively. The total unadjusted variance is 𝜎𝑇
2 = 𝜎1

2 + 𝜎2
2 + 𝜎3

2. The intraclass 

correlation coefficient at the level two is 

𝜌2 =
𝜎2

2

𝜎1
2+𝜎2

2+𝜎3
2 =

𝜎2
2

𝜎𝑇
2.      (23) 

The intraclass correlation coefficient at the level three is  

𝜌3 =
𝜎3

2

𝜎1
2+𝜎2

2+𝜎3
2 =

𝜎3
2

𝜎𝑇
2.        (24) 

If we standardize the outcome to have a variance of one, the treatment effect (𝛿) is placed 

on a standardized mean difference scale and has a variance of 

𝜎𝛿
2 =

𝑛𝐽𝜌3(1−𝑅3
2)+𝑛𝜌2(1−𝑅2

2)+(1−𝜌2−𝜌3)(1−𝑅1
2)

𝑝(1−𝑝)𝑛𝐽𝐾
,   (25) 

where  𝑅3
2, 𝑅2

2 , and 𝑅1
2 are the proportions of outcome variance explained by covariates at the 

cluster, sub-cluster, and individual levels, respectively.   
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When the null hypothesis is false (i.e., 𝛿 ≠ 0), the statistical power follows a noncentral 𝑡 

distribution with the noncentrality parameter as 

𝜆 =
𝛿

√𝜎𝛿
2

=
𝛿√𝑝(1−𝑝)𝑛𝐽𝐾

√𝑛𝐽𝜌3(1−𝑅3
2)+𝑛𝜌2(1−𝑅2

2)+(1−𝜌2−𝜌3)(1−𝑅1
2)

.    (26) 

Statistical power for three-level cluster-randomized trials can be obtained by inserting the above 

noncentrality parameter into Equation 14 for the two-tailed test or Equation 15 for the one-tailed 

test with substituting 𝐽 as 𝐾 in the degree of freedom expression.   

Optimal Sample Allocation 

Suppose the respective costs of enrolling each additional level-one, level-two, and level-

three unit in the control condition are 𝑐1, 𝑐2, and 𝑐3, and the costs of enrolling each additional 

level-one, level-two, and level-three unit in the treatment condition are 𝑐1
𝑇, 𝑐2

𝑇, and 𝑐3
𝑇, 

respectively. Thus, the budget function is 𝑚 = (1 − 𝑝)𝐾(𝑐1𝑛𝐽 + 𝑐2𝐽 + 𝑐3) + 𝑝𝐾(𝑐1
𝑇𝑛𝐽 + 𝑐2

𝑇𝐽 +

𝑐3
𝑇). Rearranging the budget function, we have 

𝐾 =
𝑚

(1−𝑝)(𝑐1𝑛𝐽+𝑐2𝐽+𝑐3)+𝑝(𝑐1
𝑇𝑛𝐽+𝑐2

𝑇𝐽+𝑐3
𝑇)

.     (27) 

Substituting 𝐾 in Equation 27 to Equation 25, we have the variance of the treatment effect as  

𝜎𝛿
2 =

𝑛𝐽𝜌3(1−𝑅3
2)+𝑛𝜌2(1−𝑅2

2)+(1−𝜌2−𝜌3)(1−𝑅1
2)

𝑝(1−𝑝)𝑛𝐽


(1−𝑝)(𝑐1𝑛𝐽+𝑐2𝐽+𝑐3)+𝑝(𝑐1
𝑇𝑛𝐽+𝑐2

𝑇𝐽+𝑐3
𝑇)

𝑚
.  (28) 

Following similar methods of minimizing the error variance of the treatment effect, the 

optimal sampling plan for each parameter can then be delineated as 

𝑝 =
√(𝑐3+𝑐2𝐽+𝑐1𝑛𝐽)/(𝑐3

𝑇+𝑐2
𝑇𝐽+𝑐1

𝑇𝑛𝐽)

1+√(𝑐3+𝑐2𝐽+𝑐1𝑛𝐽)/(𝑐3
𝑇+𝑐2

𝑇𝐽+𝑐1
𝑇𝑛𝐽)

,     (29) 

𝑛 = √
(1−𝜌2−𝜌3)(1−𝑅1

2)

𝜌3(1−𝑅3
2)𝐽+𝜌2(1−𝑅2

2)
 √

(1−𝑝)(𝑐3+𝑐2𝐽)+𝑝(𝑐3
𝑇+𝑐2

𝑇𝐽)

(1−𝑝)𝑐1𝐽+𝑝𝑐1
𝑇𝐽

 ,   (30) 
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𝐽 = √
𝑛𝜌2(1−𝑅2

2)+(1−𝜌2−𝜌3)(1−𝑅1
2)

𝑛𝜌3(1−𝑅3
2)

√
(1−𝑝)𝑐3+𝑝𝑐3

𝑇

(1−𝑝)(𝑐2+𝑐1𝑛)+𝑝(𝑐2
𝑇+𝑐1

𝑇𝑛)
.   (31) 

Each of the expressions in Equations 29 to 31 identifies the optimal sampling plan when one of 

the parameters is malleable. When all three of these parameters are freed, there are no simple 

closed-form solutions. However, we can solve the multivariate partial derivatives numerically. 

We implement this solution in the R package XXX (Citation masked) by (1) initiating random 

values for 𝑛 and 𝐽 (e.g., sample one integer of 𝑛 ∈ (2, 100) and one integer of 𝐽 ∈ (2, 100)) and 

calculating an initial value of 𝑝 using Equation 29; (2) Updating the value of 𝑛 in Equation 30 

using the updated 𝑝 and 𝐽; (3) Updating the value of 𝐽 in Equation 31 using the updated 𝑝 and 𝑛; 

(4) Updating the value of 𝑝 in Equation 29 using the updated 𝑛 and 𝐽; (5) Steps 2 to 4 form one 

iteration. Repeat steps 2 to 4 until each parameter converges to a specified tolerance level (e.g., 

1/1010). The resulting converged values of 𝑝, 𝑛, and 𝐽 in the final iteration capture the sampling 

plan that jointly optimizes over these parameters. 

Implications 

The optimal design parameters in Equations 29 to 31 provide a more flexible framework 

for identifying optimal sample allocations across levels and treatment conditionds. These optimal 

design parameters are driven by cost structure and design parameters in a similar but extended 

fashion with those in two-level cluster-randomized trials. These equations can also be used to 

improve the precision of cluster-randomized trials with additional constraints. For any given 

constraint, one just needs to use the relevant constraint to substitute the corresponding optimal 

design parameter expressions and solve the remaining equations. For example, researchers may 

constrain the level-one sample size per level-two unit as 20 (i.e., 𝑛 = 20), the constrained 
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optimal sample allocation would be solved by using 𝑛 = 20 to substitute Equation 30 and 

solving the roots of 𝑝 and 𝐽 from Equations 29 and 31.  

Again, we can see that a balanced design with 𝑝 = 0.5 is the optimal one if and only if 

the costs of sampling a cluster and its subsequent subunits in each treatment condition are equal 

(i.e., 𝑐3 + 𝑐2𝐽 + 𝑐1𝑛𝐽 = 𝑐3
𝑇 + 𝑐2

𝑇𝐽 + 𝑐1
𝑇𝑛𝐽). When we additionally let 𝑝 = .5, 𝐶1 =  (1 − 𝑝)𝑐1 +

𝑝𝑐1
𝑇, 𝐶2 =  (1 − 𝑝)𝑐2 + 𝑝𝑐2

𝑇, and 𝐶3 =  (1 − 𝑝)𝑐3 + 𝑝𝑐3
𝑇, the above optimal sample allocation 

expressed in Equations 30 and 31 reduces to solutions in previous frameworks but with different 

formulations (Konstantopoulos, 2009, 2011; Hedges & Borenstein, 2014).  

Relative Precision and Efficiency 

There are many practical reasons that may constrain the use of the optimal sampling 

allocation guidelines derived above. From a practical standpoint, for instance, the number of 

clusters available to researchers in a particular study may be below the number suggested by the 

formulas. In response, researchers may intentionally expend resources by sampling additional 

individuals within clusters in an attempt to compensate for this constraint. Similarly, from a 

design standpoint, we may eventually find that the parameter values used to plan a study differ 

from the observed values. Here, we suffer from a type of design misspecification because the 

proposed optimal sampling plan (based on predicted values) may prove to be sub-optimal once 

data have been collected. When the optimal sample allocation is not a viable option or was 

incorrectly identified, we can identify the specific loss of statistical precision and efficiency an 

alternative design presents relative to the true optimal design (based on true values). Such 

statistical precision and efficiency analyses help provide a sense of what constitutes efficient 

designs and can assist researchers in identifying designs with the most statistical precision and 

efficiency among the many constrained designs that may be viable.  
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Our analysis of statistical precision and design efficiency considers two complementary 

planning perspectives. In the first perspective, we consider the statistical precision as measured 

through the relative variance of studies in which the sampling plan is malleable, but the budget 

and remaining parameters are constrained to preset values. In this setting, we compare the 

variances of the treatment effect estimator under a sub-optimal sampling plan with that of an 

optimal sampling plan. Conceptually, this assessment of relative statistical precision captures the 

increased sampling variance incurred by using sub-optimal sample allocations. To facilitate 

interpretations using a common metric, we subsequently frame this analysis in terms of the 

minimum detectable effect size (MDES; Bloom, 1995) because the MDES is a design parameter 

that researchers often use in planning studies.  

In the second perspective, we consider the relative efficiency of designs in terms of study 

cost such that the total budget is now free, but the effect size, statistical power and other 

parameters are fixed. Under this approach, we detail the total additional cost a study under sub-

optimal sampling would require to achieve an error variance comparable to a study that used 

optimal sampling. Conceptually, this evaluation quantifies the increased resources required to 

carry out sub-optimal designs.  

For the first perspective, the relative precision (RP) is 

𝑅𝑃 =
𝜎

𝛿𝑜
2  

𝜎𝛿
2 

,      (32) 

where 𝜎𝛿𝑜
2  is the smallest possible variance of the treatment effect a type of trial can achieve 

under a fixed budget and 𝜎𝛿
2  is the variance of the treatment effect an alternative and sub-

optimal design can achieve under the same budget. The values of RP range from 0 to 1, with the 

RP approaching one when a sub-optimal design achieves a precision level near the optimal 

design benchmark. 



OPTIMAL SAMPLE ALLOCATION 

25 

 

For the second perspective, we can define the relative cost efficiency (RCE) as 

𝑅𝐶𝐸 =
𝑚𝑜

𝑚 
,      (33) 

where 𝑚𝑜 is the smallest budget to achieve a desired level of variance of the treatment effect (or 

statistical power) under the optimal sample allocation and 𝑚 is the budget to achieve the same 

level of design precision under an alternative and sub-optimal design.  

Using information from Equation 17, both perspectives share a more general relative 

precision and efficiency (RPE) expression for a sub-optimal design relative to the optimal design 

for two-level cluster-randomized trails as  

𝑅𝑃𝐸 =
[𝜌(1−𝑅2

2)𝑛𝑜+(1−𝜌)(1−𝑅1
2)][(1−𝑝𝑜)(𝑐1𝑛𝑜+𝑐2)+𝑝𝑜(𝑐1

𝑇𝑛𝑜+𝑐2
𝑇)]𝑝(1−𝑝)𝑛

[𝜌(1−𝑅2
2)𝑛+(1−𝜌)(1−𝑅1

2)][(1−𝑝)(𝑐1𝑛+𝑐2)+𝑝(𝑐1
𝑇𝑛+𝑐2

𝑇)]𝑝𝑜(1−𝑝𝑜)𝑛𝑜 ,   (34) 

where 𝑝𝑜 and 𝑛𝑜 represent the optimal design parameter values or the roots of 𝑝 and 𝑛 in 

Equations 18 and 19, and 𝑛 and 𝑝 represent the alternative parameter values identified under a 

different framework or a study actually carried out. The RPE in Equation 34 can be used to 

measure (1) the relative variance increased in a study than that in the optimal design under a 

fixed budget, and (2) the relative budget requested by the optimal design to that by a sub-optimal 

study to achieve a same level of error variance. Comparing with the optimal design benchmark, 

the percentage of increased variance/budget by a study is (1 − 𝑅𝐸)/𝑅𝐸  100%. RPE values of 

at least .90 are generally considered good, and an RPE between .80 and .90 is considered 

acceptable (Korendijk, Moerbeek, & Maas, 2010; Hedges & Borenstein, 2014).  

Unlike power, effect size, or sample sizes, the variance of the treatment effect is not the 

simplest design parameter researchers usually face. To systematically improve statistical 

precision for designs, it is important to transfer such a measure to the ultimate parameter 

researchers can directly consider. We can take a third perspective to further transfer the measure 

under the first perspective. Let the statistical power and the budget be fixed between the optimal 
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and sub-optimal designs and further compare the relative values of MDES between two designs. 

Under this perspective, the statistical power and thus the noncentrality parameter 𝜆 are equal 

between optimal and sub-optimal designs.  

Thus, we have 𝜆 = 𝜆𝑜 or 𝛿/√𝜎𝛿
2 =  𝛿𝑜/√𝜎𝛿𝑜

2  with the additional subscripts to denote 

parameters in the optimal design. Rearranging this equation, we have 

𝛿𝑜 = 𝛿√𝑅𝑃𝐸,      (35) 

where 𝛿𝑜 and 𝛿 are the respective MDES in the optimal and sub-optimal designs under a same 

budget to maintain the same level of statistical power. Equation 35 quantifies the relative 

statistical precision, measured by MDES, between an optimal and sub-optimal design, thus it can 

be used to improve statistical precision by carefully choosing the best available optimal sample 

allocation and MDES. A design with an RPE of .90 can detect about a 5% smaller effect if it 

uses the optimal design (√0.90 ≈ 0.95). A design with an RPE of .80 can detect about a 11% 

smaller effect if the optimal design is used (√0.80 ≈ 0.89). Additionally, given specific design 

parameters, researchers can directly compute the relative statistical power of a sub-optimal and 

optimal design by using statistical power formulas (Equation 14 or 15).  

Similarly, the RPE for a sub-optimal design relative to the optimal design for three-level 

cluster-randomized trails is 

𝑅𝑃𝐸 =

𝑛𝑜𝐽𝑜𝜌3(1−𝑅3
2)+𝑛𝑜𝜌2(1−𝑅2

2)+(1−𝜌2−𝜌3)(1−𝑅1
2)

𝑛𝐽𝜌3(1−𝑅3
2)+𝑛𝜌2(1−𝑅2

2)+(1−𝜌2−𝜌3)(1−𝑅1
2)


[(1−𝑝𝑜)(𝑐1𝑛𝑜𝐽𝑜+𝑐2𝐽𝑜+𝑐3)+𝑝𝑜(𝑐1

𝑇𝑛𝑜𝐽𝑜+𝑐2
𝑇𝐽𝑜+𝑐3

𝑇)]𝑝(1−𝑝)𝑛𝐽

[(1−𝑝)(𝑐1𝑛𝐽+𝑐2𝐽+𝑐3)+𝑝(𝑐1
𝑇𝑛𝐽+𝑐2

𝑇𝐽+𝑐3
𝑇)]𝑝𝑜(1−𝑝𝑜)𝑛𝑜𝐽𝑜 ,

 (36) 
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where 𝑝𝑜, 𝑛𝑜, and 𝐽𝑜 represent the solved values for optimal design parameters expressed in 

Equations 29 to 31, respectively. 𝑝, 𝑛 and 𝐽 represent the actual values a three-level design 

carried out or identified under a different framework.  

A Comparison with Previous Frameworks 

In the derivation section, we have shown that previous optimal design frameworks for two-

level cluster-randomized trials (Raudenbush, 1997; Liu, 2003) are special cases of our proposed 

framework. The optimal design parameters for two-level cluster-randomized trials are 𝑛 and 𝑝 in our 

proposed framework. They are 𝑛 and the constraint of 𝑝 = .5 in the Raudenbush (1997) framework, 𝑝 

and a predetermined value of 𝑛 in the Liu (2003) framework. Both previous frameworks can be 

viewed as constrained optimal designs in our proposed framework. Thus, we can directly assess the 

RPE values of designs identified by previous frameworks comparing with the benchmark designs 

identified under our proposed framework. Since the conclusion for three-level cluster-randomized 

trials is the same for two-level cluster-randomized trials, next we only present the results for two-level 

cluster-randomized trials. 

For the cost structures, we considered both equal and unequal costs between treatment 

conditions and set the cost of sampling one additional individual in the control condition as one 

(i.e., 𝑐1 = 1). For the equal costs between treatment conditions, we considered cluster/individual 

cost ratios as 3, 10, and 30 to reflect potential differences in the costs of sampling a cluster and 

an individual within a cluster (e.g., Raudenbush, 1997) and presented them in the first three rows 

of the left panel in Table 1. We considered two scenarios for the unequal costs between treatment 

conditions. The first scenario fixes the cluster/individual cost ratio in the control condition as 10 

and considers a cluster-level treatment to control cost ratio of 3 (e.g., efficacy studies of 

interventions; Greenleaf et al., 2011; Jacob et al., 2015), 10 (e.g., teacher pay for performance; 
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Springer et al., 2011), and 30 (e.g., Tennessee class size experiment; Mosteller, 1995). These 

cost structures are presented in the rows 4 to 6 of the left panel in Table 1. The second scenario 

considers the cluster/individual cost ratio in the control condition as 3 or 10 and varies the 

treatment/control cost ratio as those of first scenario (3, 10, 30) but at both the cluster and 

individual levels. These cost structures are presented in the rows 7 to 12 of the left panel in Table 

1.  

For the intraclass correlation coefficient, we considered values of 0.15 and 0.25 (e.g., 

Hedges & Hedberg, 2007). For the R squared values or the proportions of outcome variance 

explained by covariates, we considered three types of design. The first type of design has no 

covariate adjustment (i.e., 𝑅1
2 = 𝑅2

2 = 0). The second type of design has a half of cluster-level 

outcome variance explained by a cluster-level covariate (i.e., 𝑅1
2 = 0, 𝑅2

2 = 0.5, and 𝑞 = 1). The 

third type of design has covariates explained a half of outcome variances at both the cluster and 

individual levels (i.e., 𝑅1
2 = 𝑅2

2 = 0.5, and 𝑞 = 1). 

For simplicity, we used 𝑛 = 20 as the predetermined individual-level sample size in the 

framework by Liu (2003). In the computation we rounded the values of 𝑛 to integers and the values of 

𝑝 and RPE to two decimal places. The results for designs with a cluster-level covariate are presented 

in Table 1. For other two types of design (i.e., designs without a covariate and designs with covariates 

at both levels), the conclusions are similar with those in Table 1 and are not repeatedly presented.   

Across all values of cost structures and design parameters, there are 11 out of 24 designs 

identified under the Raudenbush (1997) framework have RPE values below the good level of .90 

(Table 1). From a relative perspective, designs identified under the Raudenbush (1997) framework 

achieve lower statistical power under the same budgets requested by the proposed framework. The 

statistical power drops to .70 when the treatment/control sampling cost ratio is 10, and .63 for a cost 
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ratio of 30 (Table 1). Half (12 of 24) of the designs identified under the Liu (2003) framework have 

RPE values below the good level of .90 (Table 1).  

For designs identified under previous frameworks, the RPE values and the relative statistical 

power are directly influenced by how far the constrained values depart from the optimal values in our 

proposed framework. For example, when the costs of sampling are equal between treatment 

conditions (e.g., first three cost structures in Table 1), the constrained 𝑝 under the Raudenbush (1997) 

framework is equal to the optimal 𝑝 = .5 in our framework, thus the Raudenbush framework can 

identify identical designs with RPE values of one. When the constrained 𝑝 = .5 departs far away from 

the optimal values, designs identified under the Raudenbush framework have much lower RPE values 

and statistical power (e.g., the last cost structure in Table 1).  

We can see similar patterns for the Liu (2003) framework in Table 1, when the predetermined 

𝑛 = 20 is close to the optimal values under the proposed framework, the RPE values for designs 

under the Liu (2003) framework are close to one (e.g., the third to sixth cost structures in Table 1). 

When the predetermined individual-level sample sizes are far from the optimal values, we have much 

lower RPE values and statistical power (e.g., the first cost structures in Table 1). Collectively, the 

results comparing with previous frameworks show that the proposed framework can be used to 

significantly improve design precision and efficiency, especially when the cost of sampling a 

treatment unit is multiple times that for a control unit. 

Table 1. 

Comparison of Proposed Framework with Previous Frameworks for Two-Level Cluster-

Randomized Trials. 

Cost Structures 𝜌 
Proposed Raudenbush Liu 

p n J n J RPE Pr p J RPE Pr 

𝑐1
𝑇 = 1, 𝑐2 = 𝑐2

𝑇 = 3 
.15 .50 6 172 6 172 1.0 .80 .50 94 .72 .65 

.25 .50 4 247 4 247 1.0 .80 .50 130 .59 .56 

.15 .50 11 121 11 121 1.0 .80 .50 94 .91 .76 
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𝑐1
𝑇 = 1, 𝑐2 = 𝑐2

𝑇 = 10 .25 .50 8 174 8 174 1.0 .80 .50 130 .81 .71 

𝑐1
𝑇 = 1, 𝑐2 = 𝑐2

𝑇 = 30 
.15 .50 18 98 18 98 1.0 .80 .50 94 1.0 .80 

.25 .50 13 145 13 145 1.0 .80 .50 130 .97 .79 

𝑐1
𝑇 = 1, 𝑐2 = 10, 𝑐2

𝑇 = 30 
.15 .43 14 111 15 105 .98 .79 .44 96 .98 .79 

.25 .42 10 163 11 154 .97 .79 .44 131 .91 .76 

𝑐1
𝑇 = 1, 𝑐2 = 10, 𝑐2

𝑇 = 100 
.15 .34 21 103 25 88 .91 .76 .33 106 1.0 .80 

.25 .32 15 160 18 133 .89 .75 .33 146 .99 .79 

𝑐1
𝑇 = 1, 𝑐2 = 10, 𝑐2

𝑇 = 300 
.15 .26 31 106 42 77 .83 .72 .23 132 .97 .79 

.25 .24 22 173 30 120 .80 .70 .23 182 1.0 .80 

𝑐1
𝑇 = 3, 𝑐2 = 3, 𝑐2

𝑇 = 9 
.15 .37 6 184 6 172 .93 .77 .37 101 .72 .66 

.25 .37 4 265 4 247 .93 .77 .37 139 .59 .57 

𝑐1
𝑇 = 10, 𝑐2 = 3, 𝑐2

𝑇 = 30 
.15 .24 6 235 6 172 .79 .70 .24 128 .72 .66 

.25 .24 4 338 4 247 .79 .70 .24 177 .59 .57 

𝑐1
𝑇 = 30, 𝑐2 = 3, 𝑐2

𝑇 = 90 
.15 .15 6 335 6 172 .68 .63 .15 183 .72 .66 

.25 .15 4 483 4 247 .68 .63 .15 252 .59 .57 

𝑐1
𝑇 = 3, 𝑐2 = 10, 𝑐2

𝑇 = 30 
.15 .37 11 130 11 121 .93 .77 .37 101 .91 .76 

.25 .37 8 186 8 174 .93 .77 .37 139 .81 .71 

𝑐1
𝑇 = 10, 𝑐2 = 10, 𝑐2

𝑇 =
100 

.15 .24 11 166 11 121 .79 .70 .24 128 .91 .76 

.25 .24 8 237 8 174 .79 .70 .24 177 .81 .71 

𝑐1
𝑇 = 30, 𝑐2 = 10, 𝑐2

𝑇 =
300 

.15 .15 11 236 11 121 .68 .63 .15 183 .91 .76 

.25 .15 8 339 8 174 .68 .63 .15 252 .81 .71 

Note. Pr is the statistical power of designs identified by previous frameworks for the same budget 

that produces a power of .80 under the proposed framework. The Raudenbush (1997) framework 

assumes 𝑝 = .5, the results for the Liu (2003) framework are based on a predetermined 

individual-level sample size of 20. 

To illustrate the difference in the required total sample size under different optimal 

design framework, further suppose researchers plan to implement the cluster-randomized trials to 

detect a standardized effect of 0.2 (Spybrook, Shi, & Kelcey, 2016). We reported the total 

number of clusters (𝐽) needed to have a power level of 0.8 for the effect size of 0.2 in Table 1. 

The results show that we can sample more clusters under the proposed framework than those 

under the Raudenbush (1997) framework but with less budget request to achieve a power of 0.8 

(e.g., see 𝐽 and RPE values for the forth to last cost structures in Table 1).  

Comparing with the Raudenbush (1997) framework, the proposed framework gains 

efficiency mainly through sampling less clusters in the experimental group but much more 

clusters in the control group. This mechanism results in the opposite directions in the change of 
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the optimal proportion 𝑝 and the number of total clusters 𝐽. For example, comparing results in 

the first and last three cost structures in Table 1, we can clearly see that the more expensive 

sampling in treatment is, the smaller the optimal 𝑝 and the larger the number of total clusters 𝐽. 

This mechanism of opposite directions in the change of 𝑝 and 𝐽 ensures that we still have enough 

clusters (e.g., classrooms) in the treatment condition.  

For example, in the last cost structure where sampling a treatment cluster (e.g., regular 

class assisted by a teacher aide; Mosteller, 1995) costs 30 times that of sampling a cluster in 

control (e.g., a regular class), with 𝜌 = 0.25 we need to sample 87 clusters in each treatment 

condition under the Raudenbush (1997) framework. However, under the proposed framework we 

have an optimal 𝑝 of .15 and 𝐽 of 339. The number of total clusters to be sampled is about twice 

the number (174) in the balanced design. Under the proposed framework, there will be 51 cluster 

in the treatment condition, 36 clusters less than that in the balanced design, and 288 clusters in 

the control condition, 201 clusters more than that in the balanced design. Yet, the balanced 

design will require a 47% larger budget than that required under the proposed framework to 

achieve comparable power.  

Given the same requested budget by previous framework to detect an effect of 0.20 with 

a power of 0.8, we can detect a smaller effect under the proposed framework, and the MDES 

under proposed framework can be calculated based on these RPE values. Taking the same 

example mentioned above with an RPE of .68, we can detect an effect of 0.16 under the 

proposed framework with the same budget, which is 20% smaller than 0.20. The optimal sample 

allocation can significantly improve design precision than that under the previous framework, 

and a smaller MDES can account for the overestimate of an effect size due to sampling error and 

other factors. In conclusion, we have shown that the proposed framework can be used to recover 
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more gains in statistical precision and efficiency that have gone unconsidered in previous 

frameworks.  

Design Sensitivity 

To further probe the loss of efficiency resulting from constrained designs and the 

sensitivity of optimal designs to misspecifications of parameter values at the planning stage, we 

examined the extent to which proposed designs are robust to incorrect initial values of the cost 

structure and the design parameter values. Similarly, we only present the results for two-level 

cluster-randomized trials, as the conclusion is the same for three-level experiments. 

In our analyses, we first calculated the true optimal design parameter values (𝑛𝑜 and 𝑝𝑜) 

based on the true values and then computed the optimal design parameter values (𝑛 and 𝑝) under 

misspecified initial values. Using Equation 34 we then computed the RPE values designs 

achieved. For the comparison, we used the same cost structures and design parameter values that have 

been used in the previous section. We rounded the values of 𝑛 to integers and the values of 𝑝 and RPE 

to two decimal places in the computation. We presented the result for designs with a covariate at 

the cluster level (𝑅1
2 = 0 and 𝑅2

2 = .5), results for other types of designs have similar 

conclusions and will be provided upon request. 

Robustness to the Misspecification of Intraclass Correlation Coefficient 

In terms of the range of misspecification on intraclass correlation coefficient, we 

considered multiplicative values of the true parameter—0.25, 0.5, 2, and 3 times the true 

values—mapping the range of 0.25 to 2.75 times the true values within which constrained 

optimal designs (𝑝 = 0.5) showed robustness in previous literature (Korendijk, Moerbeek, & 

Maas, 2010). Across cost structures, R squared values, and intraclass correlation coefficients, 

when the misspecification of intraclass correlation coefficients is 0.5 or 2 times the true values, 
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designs averaged an RPE of .96 or .94, respectively. Practically, the results suggest that planning 

studies under misspecifications of this type and magnitude will often require a budget that is only 

about 5% larger than the optimal design benchmark, or the optimal design can detect a less than 

3% smaller effect.  

When the misspecification of the intraclass correlation coefficient is even larger—for 

example 0.25 or 3 times the true values—the average RPE values are about .88 and .81, 

respectively. Our initial probe suggests that the optimal sample allocation identified under the 

proposed framework is fairly robust to the misspecification of the intraclass correlation 

coefficients. 

Table 2. 

Robustness of Optimal Sample Allocation to the Misspecification of Intraclass Correlation 

Coefficients. 

Cost Structures 𝜌 
Misspecification of 𝜌 

0.25 0.5 2 3 

𝑐1
𝑇 = 1, 𝑐2 = 𝑐2

𝑇 = 3 
.15 .89 .96 .97 .91 

.25 .88 .97 .88 .63 

𝑐1
𝑇 = 1, 𝑐2 = 𝑐2

𝑇 = 10 
.15 .87 .96 .96 .87 

.25 .86 .95 .90 .81 

𝑐1
𝑇 = 1, 𝑐2 = 𝑐2

𝑇 = 30 
.15 .88 .97 .96 .89 

.25 .87 .97 .95 .74 

𝑐1
𝑇 = 1, 𝑐2 = 10, 𝑐2

𝑇 = 30 
.15 .87 .96 .95 .88 

.25 .86 .96 .93 .71 

𝑐1
𝑇 = 1, 𝑐2 = 10, 𝑐2

𝑇 = 100 
.15 .87 .97 .95 .85 

.25 .87 .96 .95 .79 

𝑐1
𝑇 = 1, 𝑐2 = 10, 𝑐2

𝑇 = 300 
.15 .89 .97 .96 .87 

.25 .89 .97 .95 .81 

𝑐1
𝑇 = 3, 𝑐2 = 3, 𝑐2

𝑇 = 9 
.15 .89 .96 .97 .91 

.25 .88 .97 .88 .63 

𝑐1
𝑇 = 10, 𝑐2 = 3, 𝑐2

𝑇 = 30 
.15 .89 .96 .97 .91 

.25 .88 .97 .88 .63 

𝑐1
𝑇 = 30, 𝑐2 = 3, 𝑐2

𝑇 = 90 
.15 .89 .96 .97 .91 

.25 .88 .97 .88 .63 

𝑐1
𝑇 = 3, 𝑐2 = 10, 𝑐2

𝑇 = 30 
.15 .87 .96 .96 .87 

.25 .86 .95 .90 .81 

.15 .87 .96 .96 .87 
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𝑐1
𝑇 = 10, 𝑐2 = 10, 𝑐2

𝑇 = 100 .25 .86 .95 .90 .81 

𝑐1
𝑇 = 30, 𝑐2 = 10, 𝑐2

𝑇 = 300 
.15 .87 .96 .96 .87 

.25 .86 .95 .90 .81 

Average .88 .96 .94 .81 

 

Robustness to the Misspecification of Cost Structures 

As for the misspecification of initial cost structure, we investigated the robustness of 

optimal design to the misspecification on initial cluster/individual cost ratio (CICR) and 

treatment/control cost ratio (TCCR). The range of the misspecification was set as 0.25, 0.5, 2, 

and 4 times the true values. The results are presented in Table 3. When the misspecification is 

0.5 or 2 times the true CICR, designs have an average RPE value of .97. Even when the 

misspecification is 0.25 or 4 times the true CICR, designs have average RPE values of .89 or .90, 

respectively. As for the misspecification of initial TCCR values, the results are similar. Even 

when the misspecification is 0.25 or 4 times the true TCCRs, designs have an average RPE value 

of .90. The results suggest that designs optimized under moderate misspecifications of cost ratios 

largely retain their RPE values. 

Table 3. 

Robustness of Optimal Sample Allocation to Misspecification of Cost Structures Measured by 

Relative Precision and Efficiency. 

Cost Structures 𝜌 
Misspecification of CICR Misspecification of TCCR 

0.25 0.5 2 4 0.25 0.5 2 4 

𝑐1
𝑇 = 1, 𝑐2 = 𝑐2

𝑇 = 3 
.15 .91 .97 .98 .89 .88 .97 .97 .88 

.25 .88 .97 .97 .91 .88 .97 .97 .88 

𝑐1
𝑇 = 1, 𝑐2 = 𝑐2

𝑇 = 10 
.15 .87 .98 .97 .89 .88 .97 .97 .88 

.25 .90 .95 .97 .90 .88 .97 .97 .88 

𝑐1
𝑇 = 1, 𝑐2 = 𝑐2

𝑇 = 30 
.15 .89 .97 .97 .89 .88 .97 .97 .88 

.25 .91 .97 .97 .90 .88 .97 .97 .88 

𝑐1
𝑇 = 1, 𝑐2 = 10, 𝑐2

𝑇 = 30 
.15 .87 .97 .97 .88 .89 .97 .97 .88 

.25 .88 .96 .97 .89 .90 .97 .97 .89 

𝑐1
𝑇 = 1, 𝑐2 = 10, 𝑐2

𝑇 = 100 
.15 .89 .97 .97 .89 .90 .97 .97 .90 

.25 .90 .97 .97 .91 .90 .98 .97 .90 

𝑐1
𝑇 = 1, 𝑐2 = 10, 𝑐2

𝑇 = 300 
.15 .90 .97 .98 .90 .91 .98 .98 .90 

.25 .92 .98 .98 .91 .91 .98 .98 .89 
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𝑐1
𝑇 = 3, 𝑐2 = 3, 𝑐2

𝑇 = 9 
.15 .91 .97 .98 .89 .89 .97 .97 .89 

.25 .88 .97 .97 .91 .89 .97 .97 .89 

𝑐1
𝑇 = 10, 𝑐2 = 3, 𝑐2

𝑇 = 30 
.15 .91 .97 .98 .89 .91 .98 .98 .92 

.25 .88 .97 .97 .91 .91 .98 .98 .92 

𝑐1
𝑇 = 30, 𝑐2 = 3, 𝑐2

𝑇 = 90 
.15 .91 .97 .98 .89 .94 .98 .98 .93 

.25 .88 .97 .97 .91 .94 .98 .98 .93 

𝑐1
𝑇 = 3, 𝑐2 = 10, 𝑐2

𝑇 = 30 
.15 .87 .98 .97 .89 .89 .97 .97 .89 

.25 .90 .95 .97 .90 .89 .97 .97 .89 

𝑐1
𝑇 = 10, 𝑐2 = 10, 𝑐2

𝑇 = 100 
.15 .87 .98 .97 .89 .91 .98 .98 .92 

.25 .90 .95 .97 .90 .91 .98 .98 .92 

𝑐1
𝑇 = 30, 𝑐2 = 10, 𝑐2

𝑇 = 300 
.15 .87 .98 .97 .89 .94 .98 .98 .93 

.25 .90 .95 .97 .90 .94 .98 .98 .93 

Average  .89 .97 .97 .90 .90 .97 .97 .90 

Note. CICR is the cluster/individual cost ratio. TCCR is the treatment/control cost ratio. 

Discussion 

Prior literature has developed a host of strategies and tools to improve the efficiency with 

which designs can estimate effects (e.g., Bloom, Richburg-Hayes, & Black, 2007; Raudenbush, 

Martinez, & Spybrook, 2007; Kelcey, B., & Phelps, 2013; Kelcey, Shen, & Spybrook, 2016; 

Schochet, 2008; Borenstein, Hedges, & Rothstein, 2012; Dong & Maynard, 2013). Previous 

optimal design frameworks have been limited in their modeling the cost structures of sampling 

and optimizing the sampling ratios across levels and treatment conditions. In this paper, our 

proposed framework addresses this need by developing a flexible cost framework that more 

naturally maps onto practical design settings. The results of the extended framework identify 

potentially important gains in statistical precision and efficiency that have previously gone 

unconsidered.  

Even when some of the parameters are constrained by practical considerations, our 

results suggest that within a broad range of applied settings the proposed framework can identify 

sampling strategies with more precision and efficiency than those detailed in previous literature. 

In this way, the introduction of a treatment-condition specific cost framework and the 
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optimization of sampling ratios across levels and treatment conditions can be useful for 

adjudicating among several potential designs with varying constraints. Additionally, the 

proposed framework performed better than previous frameworks even when the parameter 

values were misspecified.  

To design cluster-randomized trials with adequate statistical power and efficiency under 

an optimal design framework, researchers additionally need the cost information about sampling. 

The information about the cost of sampling a unit can usually be estimated through pilot studies, 

budget planning, similar studies, or cost centers (e.g., CostOut at https://www.cbcse.org/costout). 

Even when cost estimation may not be strictly accurate, our initial probe of the proposed optimal 

design framework suggested that the results are fairly robust to the misspecification on initial 

values of intraclass correlation coefficient and cost structures. In this way, our results suggest 

that even when some parameters are constrained, and some are misspecified, there are still 

advantages to probing more flexible sampling plans.  

In the presence of unequal sampling costs between treatment conditions, we have 

illustrated that unbalanced designs can be more efficient than balanced ones. Put another way, 

unbalanced designs can return more statistical power than balanced designs under unequal 

sampling costs between treatment conditions. It is generally assumed that the treatment or 

intervention itself does not change the standardized variance of an outcome. For designs with 

unequal number of clusters between treatment conditions, the assumption of homogeneity of 

variance between treatment conditions (controlling for the treatment effect) can still be tested the 

same way with balanced designs as the variance formulas adjust for the number of clusters.  

We illustrated the opposite directions in the change of the optimal 𝑝 and the number of 

total clusters needed for a certain level of statistical power. This mechanism ensures that 
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unbalanced designs still result in enough clusters to be sampled in a treatment condition. 

However, when the number of total clusters is small and the proportion of clusters to be assigned 

to the treatment condition is also small, there may be an issue whether the treatment arm can 

correctly reflect the population variance, and thus there may be a homoskedasticity issue 

between treatment conditions. Further studies address small number of clusters in unbalanced 

design is needed.  

Despite the utility of our framework and the potential gains in statistical precision and 

efficiency it offers, we caution readers that the resulting optimal sampling plans are intended to 

serve as a starting point for planning a cluster-randomized trial rather than a rigid tool. For 

example, an analysis of optimal design may suggest a small value of optimal proportion (𝑝) if 

sampling costs vastly different between treatment conditions. In power analysis, a small value of 

𝑝 may suggest a large number of total clusters that exceeds the clusters researchers could 

practically reach. In this case, researchers should constraint the optimal proportion to a larger 

number than that the analysis gives so that a feasible design can be achieved. In practice, the 

optimal sampling plan operates as a type of initial strategy or benchmark that is subsequently 

moderated by practical design considerations and constraints to reach a final sampling plan. 

To facilitate end-user calculations, we have developed a freely available R package XXX 

(citation masked) that implements the proposed framework. The package also can perform power 

analysis accommodating costs by default (e.g., required budget/sample size calculation, power 

calculation under a given budget, minimum detectible effect size calculation under a given 

budget) and conventional power analysis (e.g., sample size, power, and MDES calculation).  
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