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Abstract
Conventional optimal design frameworks consider a narrow range of sampling cost structures
that thereby constrict their capacity to identify the most powerful and efficient designs. We relax
several constraints of previous optimal design frameworks by allowing for variable sampling
costs in cluster-randomized trials. The proposed framework introduces additional design
considerations and has the potential to identify designs with more statistical power, even when
some parameters are constrained due to immutable practical concerns. The results also suggest
that the gains in efficiency introduced through the expanded framework are fairly robust to
misspecifications of the expanded cost structure and concomitant design parameters (e.g.,
intraclass correlation coefficient). The proposed framework is implemented in the R package

XXX.

Key words: optimal design, design precision, cost efficiency, power analysis, cost

structure



OPTIMAL SAMPLE ALLOCATION

The statistical power to detect treatment effects in cluster-randomized trials is, in part,
governed by how the total sample size is allocated across levels of the hierarchy and treatment
conditions (Bloom, 2005; Hedges & Borenstein, 2014; Liu, 2003; Kelcey, Shen, & Spybrook,
2016; Spybrook, Shi, & Kelcey, 2016). For instance, holding constant the total sample size,
designs can achieve vastly different levels of statistical power under different sampling plans
(Hedges & Borenstein, 2014; Liu, 2003; Raudenbush, 1997). Equally, holding constant the total
sample size, designs with different sampling plans may require dramatically different total costs
because the costs of sampling a unit are not always equal across levels (Hedges & Borenstein,
2014; Raudenbush, 1997) and treatment conditions (Liu, 2003; Cochran, 1963; Nam, 1973).

As a result, an important first step in the design of such studies is to consider theoretical
guidelines for sample allocation. Such guidelines have been typically derived from the
conventional optimal design framework (e.g., Raudenbush, 1997). The conventional framework
seeks to identify the sample allocation that produces the greatest statistical power to detect a
treatment effect given a fixed budget by leveraging information regarding the marginal costs of
sampling additional clusters and individuals (Hedges & Borenstein, 2014; Liu, 2003;
Raudenbush, 1997). Implicit in this framework is the assumption that the costs of sampling
additional control and treatment units are invariable.

However, prior theoretical and empirical work in the context of cluster-randomized trials
suggests that the marginal costs potentially vary across treatment conditions and sampling levels.
The potential for differences in costs of sampling a unit across levels in cluster-randomized trials
has been recognized and modeled in previous literature (e.g., Hedges & Borenstein, 2014;
Raudenbush, 1997). For example, in a classroom-randomized trial in which classrooms are the

primary unit of randomization (e.g., Mosteller, 1995), recruiting one additional classroom is
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much harder, also dramatically expensive, than sampling one additional student from dozens of
students in an already sampled classroom.

The costs of sampling potentially vary between treatment conditions as well (Liu, 2003;
Cochran, 1963; Nam, 1973). The marginal cost of sampling a unit in the control condition (C)
includes the expenditures used to recruit and measure such a unit (e.g., business travels and work
time of data collectors, incentive paid to the unit). The marginal cost of sampling a unit in the
treatment condition (CT) usually includes the same marginal cost of sampling a control unit (C)
plus the marginal fees associated with the delivery and implementation of interventions to this
unit (C’; e.g., specialized training to become an intervention provider, work time of an
intervention provider), or CT = C + C!. Thus, we have CT/C = 1 + C!/C. That is, the cost ratio
of sampling between treatment condition (CT /C) is potentially dependent on how expensive
interventions are relative to the cost of sampling a control unit (C!/C) or how cheap sampling a
control unit is relative to the marginal cost of interventions.

There are notable examples of studies in which expenses varied across treatment
conditions. Take for example the study reported by Springer et al. (2011) regarding a cluster-
randomized evaluation of whether incentives in teacher performance improve student outcomes.
In this study, teachers in the experimental group were eligible to receive a bonus payment of up
to $15,000 per year based on their students’ performance in tests. In contrast, teachers in the
control condition carried on with business as usual. As a result, the costs of sampling each
additional teacher in the experimental group typically exceed the cost associated with sampling
an additional control teacher.

A similar example of differences in costs unfolded in the Tennessee class size experiment

(Mosteller, 1995). This experiment evaluated the effects of student-teacher ratios on student
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achievements (Mosteller, 1995). Students and teachers were randomly assigned to one of three
treatment conditions: regular classrooms of 22 to 25 students (the control condition), small
classrooms of 13 to 17 students, and regular classrooms of 22 to 25 students assisted by a paid
and trained teacher aide. In this setting, classrooms staffed with an aide are likely to incur
additional costs as are smaller classrooms.

Examples of differential sampling costs among treatment conditions are not limited to
classrooms and schooling. This type of cost disparity often arises in health care. For example,
many community health interventions include public education messaging and activities or the
general promotion of novel policies (e.g., Glynn et al., 1995) and incorporate costly trainings for
health care providers (e.g., Hiscock et al., 2008). In many of these instances, the nature of an
intervention and its deployment incurs marginal costs above and beyond those realized in the
control condition. A study of four-year smoking cessation community intervention includes
activities of public education, training of health care providers, and promotion of policies to
restrict the sale and use of tobacco (Glynn et al., 1995); another intervention is a three-session
training program co-led by well child providers and a parenting expert (Hiscock et al., 2008).
Some additional examples of costly interventions are ten days training, travels to professional
development conferences (Greenleaf et al., 2011); ten, two-day on-site training sessions (Jacob,
Goddard, Kim, Miller, & Goddard, 2015); four-day professional trainings with one day per
month (Jayanthi, Gersten, Taylor, Smolkowski, & Dimino, 2017).

Although sampling costs plausibly vary across experimental and control conditions,
empirical research suggests that such differences are predominantly found at the cluster level

where the interventions are implemented (e.g., Liu, 2003; Mosteller, 1995; Springer et al., 2011).
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The differences in sampling costs at the individual level, if there are any, will be relatively small
comparing with the sampling costs at the cluster level.

Even the cost of sampling a unit potentially varies across levels of the design and
treatment conditions, the budget functions in previous optimal design frameworks do not fully
consider these variations in the cost structures of sampling, and the optimal design parameters
chose to maximize the statistical power in these frameworks are also limited. For example, in the
optimal design framework developed by Raudenbush (1997) for two-level cluster-randomized
trials, the budget function only considers the cost variation across levels and assumes the cost of
sampling one additional individual or cluster in the experimental group is equal to that in the
control group. Along with the between-treatment equal cost assumption in the budget function,
the Raudenbush (1997) framework optimizes the sampling ratio across levels but not between
treatment conditions. Alternatively, Liu (2003) developed a framework that allows cost variation
between treatment conditions. Yet, the Liu (2003) framework does not model cost variation
across levels and thus optimizes the sampling ratio between treatment conditions but not across
levels.

More generally, the perspectives presented in previous frameworks (e.g., Raudenbush,
1997; Liu, 2003; Connelly, 2003; Turner, Toby Prevost, & Thompson, 2004) only partially
consider the potential sampling costs of a cluster-randomized trial and optimize the sample ratio
either across levels or between treatment conditions. Each of these previous frameworks present
a type of constrained optimization —that is, they optimize only one of the sampling ratios across
levels and between treatment conditions and constrain the another one. As a result, each of these
frameworks potentially return sub-optimal sampling schemes when sampling costs vary across

levels of the design and treatment conditions.
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In this study, we develop an optimal sampling framework that considers the potential for
variation in costs across treatment conditions and levels of the hierarchy. We consider the design
of two- and three-level cluster-randomized trials and organize our study as follows. We begin
with a review of the literature regarding previous optimal design frameworks. We follow with
the development of a more flexible optimal design framework that relaxes the typical parameter
and cost constraints for two-level cluster-randomized designs and derives optimal sample
allocation across levels and treatment conditions from multiple perspectives. We then extend this
framework to three-level cluster-randomized trials. We follow by detailing the relative design
precision and efficiency between different sample allocations, and subsequently use it to
compare the results between the proposed and previous frameworks. In turn, we investigate the
robustness of the proposed optimal sample scheme to the misspecification of design parameter

values and cost structures. We end with a discussion.

Background

For single-level experiments in which individuals are assigned at random to experimental
and control groups, prior literature has developed strategies to maximize statistical power under a
fixed budget by minimizing the variance of a treatment effect (Cochran, 1963; Nam, 1973). The
historical framework begins with a sample size for the experimental group (n”) and the control
group (n%) and assumes that the costs of sampling an individual in the experimental and control
groups are n’ and n®. In turn, the total cost or budget function of the study can be described as
m = c¢Tn” + cn. Under this conventional framework, sampling is optimized in terms of power

when the sampling ratio between treatment conditions under the budget function is

nl/n¢ =./c/cT . (1)
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Once the optimal ratio is identified, the total sample size is a straightforward function of
the available budget (through the budget function) or power (through a power formula). Equation
1 shows that the more expensive sampling an individual in the treatment condition is, the smaller
the proportion of individuals that should be assigned to the treatment condition. If there is no
difference in the cost of sampling between treatment conditions (¢ = c7), the best sampling
strategy is to assign an equal number of individuals to each treatment condition. Thus, a balanced
design is the best one in terms of statistical power under a fixed budget if, and only if, there is no

difference in the costs of sampling an additional individual between treatment conditions.

Compared to single-level experiments that only need to identify the optimal sampling
ratio between treatment conditions, cluster-randomized trials need to additionally identify
optimal sampling ratio across levels. Literature on the optimal sample size allocation for two-
level cluster-randomized trials has separately addressed these two facets of optimal ratio in
different frameworks but has not developed expressions to optimize them simultaneously in a
single framework.

For example, Raudenbush (1997) developed an optimal design framework for two-level
cluster-randomized trials in which there are a total number of ] clusters and n individuals in each
cluster. The budget function in the framework is m = J(C;n + C,), where C; and C, are the
respective costs of sampling an additional individual and cluster regardless of which treatment

condition the unit is assigned to. Rearranging the budget function, we have

. om
T (CintCy)

J )

Given this budget function, the optimal sampling ratio across levels that produces the

maximum power under the fixed budget by minimizing the variance of the treatment effect can

be identified as
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where p is the unconditional intraclass correlation coefficient in a population, R? and R are the
proportions of outcome variance explained by covariates at the individual and cluster levels,
respectively. The cluster-level sample size J is then identified under a budget m using Equation 2

or a power formula once the optimal n in Equation 3 is given.

Equation 3 proposes two primary pathways for improving statistical power under a fixed
budget. First, as the conditional variance at the cluster level is relatively large, it is more
beneficial to sample fewer individuals per cluster in exchange for more clusters under a fixed
budget. Second, when the sampling cost of a cluster is relatively large, the statistical power of a
design can be improved by sampling more individuals per cluster in exchange for fewer clusters

under a fixed budget (Raudenbush, 1997).

An implicit assumption of the conventional optimal design framework (Raudenbush,
1997) is that the cost of sampling a unit in the treatment condition is equal to that of a unit in the
control condition, and only balanced designs with an equal number of clusters in each treatment
condition are considered. As a result, the Raudenbush (1997) framework presents a type of
constrained optimal design framework in which sample allocations are constrained to designs
with an equal sample size and equal sampling costs between treatment conditions. However,
such constraint are potentially incongruous with previous optimal design frameworks that
recognize the potential for unequal sampling costs between treatment conditions (Cochran, 1963;
Nam, 1973; Liu, 2003) and potentially restrictive in practice (e.g.,Mosteller, 1995; Greenleaf et

al., 2011; Jacob et al., 2015; Springer et al., 2011) because they limit researchers abilities to
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identify the sample size allocation that produces the greatest statistical power under a fixed
budget.

Liu (2003) relaxed the between-treatment equal cost assumption and the constraint of
balanced designs in the Raudenbush (1997) framework and shifted the optimal design in
multilevel experiments back to the optimal sample size ratio between treatment conditions in
single level experiments. However, by allowing sampling costs to vary between treatment
conditions and considering unbalanced designs, the Liu (2003) framework omitted the
optimization of sample size ratio across levels. More specifically, under this framework, a single
unitary cost for sampling an additional cluster and its individuals is considered but that cost is

allowed to differ by treatment condition.

For instance, presume that the combined cost of sampling an additional cluster together
with its individuals in the treatment and control groups are CT and C, respectively. The budget
function is m = (1 — p)JC + pJCT with p as the proportion of clusters to be assigned to the
treatment condition and J as the number of total clusters. We can rearrange the budget function

as

m

J= (1-p)Cc+pcT’ )
Under this scenario Liu (2003) derived the optimal sampling ratio between treatment
conditions as /C/CT (i.e., (p])/[(1 — p)]] = +/C/CT ), which has the same expression of

Equation 1 for the single-level experiments. Thus, the optimal proportion of clusters to be

assigned to the treatment condition is

_ eyt
P= e )

10
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Although the work by Liu (2003) widened the scope and flexibility of cost structures and is
consistent with earlier literature (Cochran, 1963; Nam, 1973), it did not model the cost variation
across levels and retained constraints on the sample allocation across levels. Thus, the resulting
framework presents a type of constrained optimal design, which often results in sub-optimal

sample allocation.

The Raudenbush (1997) framework has also been extended to three-level cluster-
randomized trials with the same between-treatment equal cost assumption and the balanced-
design constraint (Moerbeek, van Breukelen, & Berger, 2000; Konstantopoulos, 2009, 2011;
Hedges & Borenstein, 2014). Suppose K is the total number of level-three clusters, n and | are
the sample sizes per level-two and level-three unit, respectively. The budget function is m =
K(nJC; + JC, + C3), where C;, C,, and C; are the respective costs of sampling one additional

level-one, level-two, and level-three unit. Thus, we have

_ m
- Tl]C1+]C2+C3'

(6)
Given the above budget function, literature has solved the optimal sample allocation

across levels in a three-level cluster-randomized trial (Moerbeek, van Breukelen, & Berger,

2000; Konstantopoulos, 2009, 2011; Hedges & Borenstein, 2014) as

_ |(=p2—-p3)(1-R}) [Ca
n= R . @)

and

p2(1-R3) |Cs

— =, 8

pa(1-R3) \ﬁ ®
where p, and p; are the respective unconditional intraclass correlation coefficient at the level

two and level three, and R?, R3, R? are the respective proportions of variance at the level one,

11
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level two, and level three explained by covariates. These solutions can be reached in such a way
that a three-level cluster-randomized trial is viewed as two-level cluster-randomized trials by
omitting level-one or level-three units and then repeating the solution reported under the

Raudenbush (1997) framework.

More specifically, by omitting the top-level units, a three-level cluster-randomized trial
conceptually reduces to a two-level cluster-randomized trial with an (pseudo) intraclass
correlation coefficient of p, /(1 — p3). By substituting p, /(1 — p3) as the p value into Equation
3, we can have the optimal n expression in Equation 7. Likewise, we can have | expression in

Equation 8 by omitting the level-one units in a three-level cluster-randomized trial.

In summary, previous frameworks model same aspects of the sampling cost variation
across treatment conditions and levels of the design in cluster-randomized trials, but none of
them fully models or accounts for the cost variation across both levels and treatment conditions.
That is, although previous optimal design frameworks develop strategies that improve design
precision and efficiency through balancing costs and sample allocation, these frameworks are
incomplete in terms of the budget function and the parameters for optimization. In the next
section, we develop a more flexible optimal design framework by modeling the full cost

variation and optimizing the sampling ratios across both levels and treatment conditions.

Optimal Sample Allocation in Two-Level Cluster-Randomized Trials
We first develop our framework within the context of two-level cluster-randomized trials.
We begin with an assumption that sets the individual-level sample sizes to be equal between
treatment conditions (i.e., n = n¢ = nT). Under the random assignment of clusters, such an

assumption simplifies presentation, calculations, and implementation with sacrificing nugatory

12
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gains in efficiency. However, we provide the optimal sample allocation solutions without such

an assumption in the supplemental materials.

Models

Assuming a cluster-randomized design, we let the number of sampled individuals in each
cluster be n, the number of total sampled clusters be J, and the proportion of clusters to be
assigned to the treatment condition be p with pJ as an integer. We can estimate the treatment
effect through multilevel linear models or ordinary least squares (Raudenbush & Bryk, 2002).
Multilevel linear models and ordinary least squares will provide identical treatment effect
estimations when the individual-level sample size in the same treatment condition does not vary
across clusters. See Hedges and Hedberg (2007) and Hoover (2002) for the method of pooling
the variance between treatment conditions when sample sizes are not equal between treatment
conditions at the cluster level.

We present the analytic models in the format of multilevel linear models, and the
individual-level model is

Yij = Boj + B1Xij + & &;~N(0, 7)), )
where Y;; is the continuous outcome of individual i (i = 1,2, ...,n) inclusterj (j = 1,2,...,)),
Bo; is the conditional mean score of cluster j, B; = (By1, ..., B1r)" is an r-length vector of
individual-level regression coefficients, X;; is an r-length vector of individual-level covariate
values for individual i in cluster j that may vary within and across groups or only within groups,
and g;; is the individual-level error term with a conditional variance 012|.

Similarly, the cluster-level model is

Boj = Yoo + 6T + V6Zj + ug; uo;~N(0, 7)), (19)

13
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where yg is the conditional mean across all clusters and individuals, T; is the treatment indicator

with T; = 1 for clusters in the treatment group, otherwise T; = 0 with § as the treatment effect.

Y¢ = (yGl, s qu)’ is a g-length vector of cluster-level regression coefficients, Z; is a q-length

vector of cluster-level covariate values for cluster j, which could include variables measured

directly at the cluster-level and/or cluster means of individual-level covariates, and wy; is the
random effect of cluster j with a conditional variance 022|. With unconditional variances at the

individual and cluster levels as o and o7 the intraclass correlation coefficient is

2
p=— (11)

2
gi{+0;

If we standardize the outcome to have a variance of one in a population, the treatment

effect (9) is placed on a standardized mean difference scale and has a variance of

2 _ p(1-R3)+(-p)(1-R})/n
95 = p(1-p)J ' (12)

When the null hypothesis is false (i.e., § # 0), the statistical power follows a noncentral t-
distribution (Hedges & Hedberg, 2007; Liu, 2003) with the noncentrality parameter as

P A/ (o)L M (13)
Jz Jpt-rpmra-p(1-r3)

The statistical power at the significance level a for the two-tailed test (Hedges & Hedberg, 2007;
Hoover, 2002; Donner & Klar, 2000; Rutterford, Copas, & Eldridge, 2015) is

P=1-Hc(a/2, J]—q—2),]—q—2, A]+H[-c(a/2, ]—q—2),] —q—2, 1], (14)
where c(a/2, v) is the two-tailed critical value in a t-distribution with v degrees of freedom and
the significance level a, and H (x, v, 1) is the cumulative distribution function of the noncentral

t-distribution with v degrees of freedom and a noncentrality parameter A. Similarly, the
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statistical power at the significance level a for the one-tailed test (Hedges & Hedberg, 2007;

Hoover, 2002; Donner & Klar, 2000; Rutterford, Copas, & Eldridge, 2015) is

P=1-Hlc(a,]J—q—2),] —q—2,2]. (15)

Methods

The intersection of the optimal design frameworks presented by Raudenbush (1997) and
others (Liu, 2003; Cochran, 1963; Nam, 1973), with the cost structures often observed in
multilevel studies (e.g., Tennessee class size experiment; Mosteller, 1995) suggest another
prospect—the budget function should let the cost of sampling vary across both levels of the
hierarchy and treatment conditions. For this reason, we integrate these frameworks to develop a
more flexible framework with potentially more realistic cost structure. In this extended
framework, we first assign ¢, as the cost of enrolling each additional individual within a cluster
in the control condition and ¢! as the cost of enrolling each additional individual within a cluster
in the treatment condition. Similarly, we use ¢, as the cost of sampling each additional cluster in

the control condition and ¢ for an experimental cluster.

Thus, the budget function is m = (1 — p)J(cyn + ¢3) + pJ(cTn + cI). Rearranging the

budget function, we have

m
- (1-p)(cin+c)+p(cIn+cly

J (16)

Substituting J in Equation 16 to Equation 12, we can rewrite the variance of the treatment effect
as

o2 = [p(1-RZ)n+(1-p)(1-R2)][(1-p) (c1n+cx)+p(cT n+cl))
&= p(1-p)nm

. (17)

Optimal Sample Allocation

15
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We can derive optimal sample size allocation from several different but linked
perspectives, including minimizing the variance of the treatment effect under a fixed budget,
minimizing the budget requested to achieve a fixed variance of the treatment effect, and
maximizing the noncentrality parameter A under a fixed budget. We will have identical results
from these different perspectives. Consistent with prior frameworks, we can identify an optimal
design that achieves the greatest statistical power under a fixed budget by minimizing the error
variance of the treatment effect. To minimize the error variance in Equation 17, we derive its

first-order derivatives with respect to p and n and set these derivatives equal to zero, yielding

\/(cln+cz) /(cTn+c])

- ’ (18)
1+\/(cln+Cz) /(cIn+cy)
o -p(1-RY) [ pyey+pel (19)

[o(1-rz) N @=Pertpel’

The above expressions can be used to identify the optimal sampling ratio across levels
and treatment conditions. There are no simple closed form solutions to the roots of p and n in
Equations 1818 and 19. We can numerically solve the roots by (1) substituting Equation 19 for n
in Equation 18; (2) using the uniroot function in the R Package Stats (R Core Team, 2019) to
find a root in (0, 1) that makes the difference between the right-hand and left-hand sides of the
updated Equation 18 equal to or smaller than, e.g., 1071%; (3) using the solved p value to have
the root of n in Equation 19. We implement these solutions in the R package XXX (Citation
masked).

Similar to the results of prior frameworks, the results indicate that the optimal p and
optimal n are not a function of total budget m but rather are driven by the relative cost structure

of sampling. Only the total number of clusters J is impacted by the total budget through Equation
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16. The optimal p is driven by the control/treatment cost ratio of sampling a cluster and its
individuals (i.e., (c;n + ¢;) /(cIn + ¢I)), which is also influenced by the number of individuals
sampled in each cluster (n). From Equation 18, we can see that a balanced design with p = .5 is
the optimal one if, and only if, the costs of sampling a cluster and its individuals in each
treatment condition are equal (i.e., c;n + ¢, = ¢l n + ¢l). Otherwise, the more expensive
sampling a cluster and its individuals in the treatment condition is, the smaller the optimal p.
That is, investigators should assign a smaller proportion of clusters to the experimental group
when the cost of sampling in the treatment condition is more expensive than that in control.

The optimal n in Equation 19 is driven by two factors. The first factor is the square root

of conditional variance ratio between levels (i.e., /alzl /|03 = JA—p)(1—R2)/

\/,D(TRZZ) ). This indicates that the larger the conditional cluster/individual variance ratio is,
the smaller the resulting optimal n. It is intuitive that researchers need more clusters to identify
the treatment effect with a larger conditional intraclass correlation coefficient because a larger
proportion of variation at the group level requires more clusters to achieve a same level of
statistical power or design precision (Hedges & Hedberg, 2007). The terms (1 — p)c, + pc} and
(1 —p)c; + pcl can be viewed as the weighted costs of sampling one additional cluster and
individual, respectively.

The second factor is the square root of the weighted sampling cost ratio between levels,

with the proportion of clusters assigned to the experimental group as the weight (i.e.,

J@A =p)cy + pcl /\/(1 = p)ey + pcl). The larger the weighted cluster/individual cost ratio is,

the bigger the optimal n. Put differently, when the weighted costs of sampling a cluster is more

17
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expensive than sampling an individual, researchers should sample fewer clusters in favor of more
individuals per cluster.
Constrained Optimal Sample Allocation and Relations to Previous Frameworks

There are practical considerations that may limit the use of optimal sample allocation
(Hedges & Borenstein, 2014). For example, many classrooms have an upper limit of about 20 to
30 students and this may constitute a common constraint in classroom-based designs. We probe
several such constraints in p and n in order to (a) delineate the conditions under which the
proposed framework reduces to previous frameworks and (b) outline the flexibility of the
proposed framework.

Constrained p. Suppose the constrained proportion of clusters to be assigned to the
treatment condition is p, (i.e., p = py). If we minimize the variance of the treatment effect in
Equation 17 with respect to n the constrained optimal individual-level sample size has the exact
same expression with Equation 19. Thus, the constrained optimal individual-level sample size
can be obtained from Equation 19 along with p = p,. If we letp = .5, C; = (1 — p)c; + pcl,
and C, = (1 — p)c, + pcl, the constrained optimal individual-level sample size in Equation 19
will reduce to Equation 3, the optimal sample size expression under the Raudenbush (1997)
framework.

Constrained n. Suppose the constrained individual-level sample size is ny (i.e., n = ny),
minimizing the variance of the treatment effect in Equation 17 with respect to p the constrained
optimal proportion has the exact same expression with Equation 18. Thus, the constrained
optimal proportion can be obtained from Equation 18 along with n = n,. [f we let C = ¢yny +
¢, and CT = cT'ny + cI, the constrained optimal proportion in Equation 18 will reduce to

Equation 5, the optimal p expression under the Liu (2003) framework.
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Optimal Sample Allocation in Three-Level Cluster-Randomized Trials
Similar to those for two-level cluster-randomized trials, the potential gains in design
efficiency and/or statistical power in three-level cluster-randomized trials can mostly be achieved
by optimizing sampling ratios between treatment conditions and among levels. We subsequently
present the optimal sample allocation with the constraint of equal sample sizes at the individual
and sub-cluster levels (i.e., n = n® = nT and ] = J¢ = JT). We provide the optimal sample

allocation solutions without such a constraint as supplemental materials.
Models

Suppose a three-level cluster sampling design has a total number of K clusters (level-
three units) with pK clusters assigned to the treatment condition, each cluster has J sub-clusters
(level-two units) of size n. Let Y;j; be the continuous outcome of unit i in sub-cluster j in cluster
kwithi=1,..,n,j=1,..,J,andk =1, ..,K. Let Xijk Zjie, Wi be the vectors of covariates at
the level one, level two, level three with corresponding regression coefficient vectors of By, B,
Bk and lengths of 7, s, and q, respectively. Similar to models for two-level cluster-randomized
trials, the covariates could be variables measured at the same level or aggregated values of
variables measured at a lower level.

When the sample size per (sub-)cluster do not vary across (sub-)clusters within each
treatment condition, we can estimate the treatment effect using ordinary least squares or
multilevel linear models (Raudenbush & Bryk, 2002). Under the multilevel formulation, the

level-one model is

Yijk = Bojk + BiXijk + €ijk &ijk~N(0,07), (20)
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where By ji is the conditional mean score of sub-cluster ; in cluster k and €;jy is the individual-
level error term with a conditional variance 012|. Similarly, the level-two or sub-cluster-level
model is

Bojk = Yook + BjZjk + U jk uo~N(0, 022|)a (21)
where ygox 18 the conditional mean score of cluster k&, and wj is the random effect of sub-
cluster j in cluster k£ with a conditional variance 022|. The level-three or cluster-level model is

Yook = Tooo + 0T + BxWi + ook ook ~N (0, 032|), (22)
where 10 1s the conditional mean across all clusters, sub-clusters, and individuals, T}, is the
treatment indicator with T}, = 1 for clusters in the experimental group and otherwise T;, = 0 with

6 as the treatment effect, uqy is the random effect of cluster k with a conditional variance 032|.

Let the unconditional variances at the individual-, sub-cluster-, and cluster-level be o2,
dZ, and o2, respectively. The total unadjusted variance is 62 = of + 62 + o%. The intraclass

correlation coefficient at the level two is

022 o2

pr=mra— =2 (23)

o2+o2+0?  o?
The intraclass correlation coefficient at the level three is

o3 o3

Py = = o 24)

o?+oi+0?  o?
If we standardize the outcome to have a variance of one, the treatment effect (&) is placed

on a standardized mean difference scale and has a variance of

2 nJp3(1-R3)+np,(1-R3)+(1-p,—p3)(1-R%)
% = p(-pInJK ’ (23)

where R%, R , and R? are the proportions of outcome variance explained by covariates at the

cluster, sub-cluster, and individual levels, respectively.
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When the null hypothesis is false (i.e., § # 0), the statistical power follows a noncentral ¢

distribution with the noncentrality parameter as

_ & _ Sy p(1-p)njK
A=—= . (26)
/ag Jnjp3(1—R§)+np2(1—R§)+(1—p2—p3)(1—Rf)

Statistical power for three-level cluster-randomized trials can be obtained by inserting the above
noncentrality parameter into Equation 14 for the two-tailed test or Equation 15 for the one-tailed
test with substituting J as K in the degree of freedom expression.

Optimal Sample Allocation

Suppose the respective costs of enrolling each additional level-one, level-two, and level-
three unit in the control condition are ¢, ¢,, and c3, and the costs of enrolling each additional
level-one, level-two, and level-three unit in the treatment condition are c¢I, ¢I, and cI,
respectively. Thus, the budget function is m = (1 — p)K(c;nJ + ¢c,] + ¢c3) + pK(cInJ + 1] +
c). Rearranging the budget function, we have

m
T (A-p)ein+cz+e)+p(clnj+el J+cl)

27)

Substituting K in Equation 27 to Equation 25, we have the variance of the treatment effect as

2 _ nJps(1-R3)+np,(1-R3)+(1—p,—p3)(1-RE) _(1-p)(cinj+caj+c3)+p(cl nj+cd J+cl)
o2 = x . (28)
p(1-p)nj m

Following similar methods of minimizing the error variance of the treatment effect, the

optimal sampling plan for each parameter can then be delineated as

J (cs+caJ+ein))/(cT+cT J+cTn))

p : (29)
1+J (cs+ca]+ein))/(c] +c3 J+ein))

n:\/ (1=p2=p3)(1-R}) \/(1—1))(03+621)+p(03T+CZTI) (30)
p3(1-RZ)J+p;(1-R2) (1-p)eyJ+pe] ] ’
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]:\/npz(1—R§)+(1—p2—p3)(1—R§)\/ (1-p)es+pef (31)

np3(1-R2) (1-p)(cz+cin)+p(c] +cIn)’

Each of the expressions in Equations 29 to 31 identifies the optimal sampling plan when one of
the parameters is malleable. When all three of these parameters are freed, there are no simple
closed-form solutions. However, we can solve the multivariate partial derivatives numerically.
We implement this solution in the R package XXX (Citation masked) by (1) initiating random
values for n and J (e.g., sample one integer of n € (2,100) and one integer of ] € (2,100)) and
calculating an initial value of p using Equation 29; (2) Updating the value of n in Equation 30
using the updated p and J; (3) Updating the value of J in Equation 31 using the updated p and n;
(4) Updating the value of p in Equation 29 using the updated n and J; (5) Steps 2 to 4 form one
iteration. Repeat steps 2 to 4 until each parameter converges to a specified tolerance level (e.g.,
1/10°). The resulting converged values of p, n, and J in the final iteration capture the sampling

plan that jointly optimizes over these parameters.

Implications

The optimal design parameters in Equations 29 to 31 provide a more flexible framework
for identifying optimal sample allocations across levels and treatment conditionds. These optimal
design parameters are driven by cost structure and design parameters in a similar but extended
fashion with those in two-level cluster-randomized trials. These equations can also be used to
improve the precision of cluster-randomized trials with additional constraints. For any given
constraint, one just needs to use the relevant constraint to substitute the corresponding optimal
design parameter expressions and solve the remaining equations. For example, researchers may

constrain the level-one sample size per level-two unit as 20 (i.e., n = 20), the constrained
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optimal sample allocation would be solved by using n = 20 to substitute Equation 30 and
solving the roots of p and J from Equations 29 and 31.

Again, we can see that a balanced design with p = 0.5 is the optimal one if and only if
the costs of sampling a cluster and its subsequent subunits in each treatment condition are equal
(i.e., c3 + ¢ + cynJ = ¢ + cI] + cI'nJ). When we additionally letp = .5, C; = (1 —p)c; +
pct, C, = (1 —p)c, + pcl,and C3 = (1 —p)cz + pcl, the above optimal sample allocation
expressed in Equations 30 and 31 reduces to solutions in previous frameworks but with different

formulations (Konstantopoulos, 2009, 2011; Hedges & Borenstein, 2014).

Relative Precision and Efficiency

There are many practical reasons that may constrain the use of the optimal sampling
allocation guidelines derived above. From a practical standpoint, for instance, the number of
clusters available to researchers in a particular study may be below the number suggested by the
formulas. In response, researchers may intentionally expend resources by sampling additional
individuals within clusters in an attempt to compensate for this constraint. Similarly, from a
design standpoint, we may eventually find that the parameter values used to plan a study differ
from the observed values. Here, we suffer from a type of design misspecification because the
proposed optimal sampling plan (based on predicted values) may prove to be sub-optimal once
data have been collected. When the optimal sample allocation is not a viable option or was
incorrectly identified, we can identify the specific loss of statistical precision and efficiency an
alternative design presents relative to the true optimal design (based on true values). Such
statistical precision and efficiency analyses help provide a sense of what constitutes efficient
designs and can assist researchers in identifying designs with the most statistical precision and

efficiency among the many constrained designs that may be viable.
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Our analysis of statistical precision and design efficiency considers two complementary
planning perspectives. In the first perspective, we consider the statistical precision as measured
through the relative variance of studies in which the sampling plan is malleable, but the budget
and remaining parameters are constrained to preset values. In this setting, we compare the
variances of the treatment effect estimator under a sub-optimal sampling plan with that of an
optimal sampling plan. Conceptually, this assessment of relative statistical precision captures the
increased sampling variance incurred by using sub-optimal sample allocations. To facilitate
interpretations using a common metric, we subsequently frame this analysis in terms of the
minimum detectable effect size (MDES; Bloom, 1995) because the MDES is a design parameter
that researchers often use in planning studies.

In the second perspective, we consider the relative efficiency of designs in terms of study
cost such that the total budget is now free, but the effect size, statistical power and other
parameters are fixed. Under this approach, we detail the total additional cost a study under sub-
optimal sampling would require to achieve an error variance comparable to a study that used
optimal sampling. Conceptually, this evaluation quantifies the increased resources required to
carry out sub-optimal designs.

For the first perspective, the relative precision (RP) is

2
RP =28 (32)

Os

where O'go is the smallest possible variance of the treatment effect a type of trial can achieve
under a fixed budget and 6§ is the variance of the treatment effect an alternative and sub-
optimal design can achieve under the same budget. The values of RP range from 0 to 1, with the
RP approaching one when a sub-optimal design achieves a precision level near the optimal

design benchmark.
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For the second perspective, we can define the relative cost efficiency (RCE) as

mO

RCE = — (33)
where m? is the smallest budget to achieve a desired level of variance of the treatment effect (or
statistical power) under the optimal sample allocation and m is the budget to achieve the same
level of design precision under an alternative and sub-optimal design.

Using information from Equation 17, both perspectives share a more general relative
precision and efficiency (RPE) expression for a sub-optimal design relative to the optimal design

for two-level cluster-randomized trails as

RpE = PR +(-p)(1-RDI[A-p)(can+ep)+p°(cfn’+cz ) |p(1-p)n (34)
[p(1-RZ)n+(1-p)(1-R?)|[(1-D)(c1n+c)+p(cTn+c])|po(1—p2)no °

where p° and n° represent the optimal design parameter values or the roots of p and n in
Equations 18 and 19, and n and p represent the alternative parameter values identified under a
different framework or a study actually carried out. The RPE in Equation 34 can be used to
measure (1) the relative variance increased in a study than that in the optimal design under a
fixed budget, and (2) the relative budget requested by the optimal design to that by a sub-optimal
study to achieve a same level of error variance. Comparing with the optimal design benchmark,
the percentage of increased variance/budget by a study is (1 — RE)/RE x100%. RPE values of
at least .90 are generally considered good, and an RPE between .80 and .90 is considered
acceptable (Korendijk, Moerbeek, & Maas, 2010; Hedges & Borenstein, 2014).

Unlike power, effect size, or sample sizes, the variance of the treatment effect is not the
simplest design parameter researchers usually face. To systematically improve statistical
precision for designs, it is important to transfer such a measure to the ultimate parameter
researchers can directly consider. We can take a third perspective to further transfer the measure

under the first perspective. Let the statistical power and the budget be fixed between the optimal
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and sub-optimal designs and further compare the relative values of MDES between two designs.
Under this perspective, the statistical power and thus the noncentrality parameter A are equal

between optimal and sub-optimal designs.

Thus, we have A = 1° or §/ |0# = 6°/ |04, with the additional subscripts to denote

parameters in the optimal design. Rearranging this equation, we have
§° = 5VRPE, (35)

where §° and § are the respective MDES in the optimal and sub-optimal designs under a same
budget to maintain the same level of statistical power. Equation 35 quantifies the relative
statistical precision, measured by MDES, between an optimal and sub-optimal design, thus it can
be used to improve statistical precision by carefully choosing the best available optimal sample
allocation and MDES. A design with an RPE of .90 can detect about a 5% smaller effect if it
uses the optimal design (v/0.90 =~ 0.95). A design with an RPE of .80 can detect about a 11%
smaller effect if the optimal design is used (v/0.80 ~ 0.89). Additionally, given specific design
parameters, researchers can directly compute the relative statistical power of a sub-optimal and
optimal design by using statistical power formulas (Equation 14 or 15).

Similarly, the RPE for a sub-optimal design relative to the optimal design for three-level

cluster-randomized trails is

RPE =

n°J%p3(1-R3)+n°py(1-R5)+(1—p2—p3)(1-RF) [(1—p°)(c1n®J°+cp)%+c3)+p°(cIn® 0 +c] jo+c])lp(1-p)ns
nJp3(1-R3)+np,(1-R3)+(1-po—p3)(1-R3) [(1-p)(cinJ+cz)+ca)+p(cTnj+cl j+cT)|pe(1-po)nojo 2
(36)
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where p?, n°, and J° represent the solved values for optimal design parameters expressed in
Equations 29 to 31, respectively. p, n and J represent the actual values a three-level design

carried out or identified under a different framework.

A Comparison with Previous Frameworks

In the derivation section, we have shown that previous optimal design frameworks for two-
level cluster-randomized trials (Raudenbush, 1997; Liu, 2003) are special cases of our proposed
framework. The optimal design parameters for two-level cluster-randomized trials are n and p in our
proposed framework. They are n and the constraint of p = .5 in the Raudenbush (1997) framework, p
and a predetermined value of n in the Liu (2003) framework. Both previous frameworks can be
viewed as constrained optimal designs in our proposed framework. Thus, we can directly assess the
RPE values of designs identified by previous frameworks comparing with the benchmark designs
identified under our proposed framework. Since the conclusion for three-level cluster-randomized
trials is the same for two-level cluster-randomized trials, next we only present the results for two-level
cluster-randomized trials.

For the cost structures, we considered both equal and unequal costs between treatment
conditions and set the cost of sampling one additional individual in the control condition as one
(i.e., c; = 1). For the equal costs between treatment conditions, we considered cluster/individual
cost ratios as 3, 10, and 30 to reflect potential differences in the costs of sampling a cluster and
an individual within a cluster (e.g., Raudenbush, 1997) and presented them in the first three rows
of the left panel in Table 1. We considered two scenarios for the unequal costs between treatment
conditions. The first scenario fixes the cluster/individual cost ratio in the control condition as 10
and considers a cluster-level treatment to control cost ratio of 3 (e.g., efficacy studies of

interventions; Greenleaf et al., 2011; Jacob et al., 2015), 10 (e.g., teacher pay for performance;
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Springer et al., 2011), and 30 (e.g., Tennessee class size experiment; Mosteller, 1995). These
cost structures are presented in the rows 4 to 6 of the left panel in Table 1. The second scenario
considers the cluster/individual cost ratio in the control condition as 3 or 10 and varies the
treatment/control cost ratio as those of first scenario (3, 10, 30) but at both the cluster and
individual levels. These cost structures are presented in the rows 7 to 12 of the left panel in Table
1.

For the intraclass correlation coefficient, we considered values of 0.15 and 0.25 (e.g.,
Hedges & Hedberg, 2007). For the R squared values or the proportions of outcome variance
explained by covariates, we considered three types of design. The first type of design has no
covariate adjustment (i.e., R? = RZ = 0). The second type of design has a half of cluster-level
outcome variance explained by a cluster-level covariate (i.e., R? = 0, R? = 0.5, and g = 1). The
third type of design has covariates explained a half of outcome variances at both the cluster and
individual levels (i.e., R? = R = 0.5,and q = 1).

For simplicity, we used n = 20 as the predetermined individual-level sample size in the
framework by Liu (2003). In the computation we rounded the values of n to integers and the values of
p and RPE to two decimal places. The results for designs with a cluster-level covariate are presented
in Table 1. For other two types of design (i.e., designs without a covariate and designs with covariates
at both levels), the conclusions are similar with those in Table 1 and are not repeatedly presented.

Across all values of cost structures and design parameters, there are 11 out of 24 designs
identified under the Raudenbush (1997) framework have RPE values below the good level of .90
(Table 1). From a relative perspective, designs identified under the Raudenbush (1997) framework
achieve lower statistical power under the same budgets requested by the proposed framework. The

statistical power drops to .70 when the treatment/control sampling cost ratio is 10, and .63 for a cost
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ratio of 30 (Table 1). Half (12 of 24) of the designs identified under the Liu (2003) framework have
RPE values below the good level of .90 (Table 1).

For designs identified under previous frameworks, the RPE values and the relative statistical
power are directly influenced by how far the constrained values depart from the optimal values in our
proposed framework. For example, when the costs of sampling are equal between treatment
conditions (e.g., first three cost structures in Table 1), the constrained p under the Raudenbush (1997)
framework is equal to the optimal p = .5 in our framework, thus the Raudenbush framework can
identify identical designs with RPE values of one. When the constrained p = .5 departs far away from
the optimal values, designs identified under the Raudenbush framework have much lower RPE values
and statistical power (e.g., the last cost structure in Table 1).

We can see similar patterns for the Liu (2003) framework in Table 1, when the predetermined
n = 20 is close to the optimal values under the proposed framework, the RPE values for designs
under the Liu (2003) framework are close to one (e.g., the third to sixth cost structures in Table 1).
When the predetermined individual-level sample sizes are far from the optimal values, we have much
lower RPE values and statistical power (e.g., the first cost structures in Table 1). Collectively, the
results comparing with previous frameworks show that the proposed framework can be used to
significantly improve design precision and efficiency, especially when the cost of sampling a

treatment unit is multiple times that for a control unit.

Table 1.

Comparison of Proposed Framework with Previous Frameworks for Two-Level Cluster-
Randomized Trials.

Proposed Raudenbush Liu
p n J n J RPE Pr p J RPE Pr
A5 50 6 172 6 172 1.0 .80 .50 94 .72 .65
25 50 4 247 4 247 1.0 .80 .50 130 .59 .56
A5 .50 11 121 11 121 1.0 .80 .50 94 91 .76

Cost Structures

cF=1¢,=c=3
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cf=1c,=cl=10 25 50 8 174 8 174 1.0 .80 .50 130 .81 .71
A5 50 18 98 18 98 1.0 .80 .50 94 1.0 .80
25 50 13 145 13 145 1.0 .80 .50 130 .97 .79
A5 43 14 111 IS 105 98 .79 44 96 98 .79
25 .42 10 163 11 154 97 .79 .44 131 091 .76
A5 34 21 103 25 88 91 .76 .33 106 1.0 .80
25 32 15 160 18 133 .89 .75 33 146 99 .79
A5 26 31 106 42 77 .83 .72 23 132 97 .79
25 24 22 173 30 120 .80 .70 .23 182 1.0 .80
A5 37 6 184 6 172 93 .77 37 101 .72 .66
25 37 4 265 4 247 93 77 37 139 .59 57
A5 24 6 235 6 172 .79 70 24 128 .72 .66
25 24 4 338 4 247 79 70 24 177 .89 .57

6 6

4 4

cF'=1,¢,=cl' =30

cF'=1,¢,=10,c} =30
cF'=1,¢, =10,cI =100

cf'=1,¢, =10, cI =300

I'=3,¢,=3,c=9

%)
=

' =10,¢c,=3,cI =30

A5 .15 335 172 .68 .63 .15 183 .72 .66
25 15 483 247 .68 .63 .15 252 .59 .57
A5 .37 11 130 11 121 93 .77 .37 101 91 .76
25 37 8 186 8 174 93 .77 37 139 .81 .71

cF'=30,c,=3,cI =90

cF'=3,c,=10,cI =30

cf'=10,c, =10,cl = A5 24 11 166 11 121 .79 .70 .24 128 91 .76
100 25 24 8 237 8 174 .79 70 24 177 .81 .71
cf =30,c, =10,c} = A5 15 11 236 11 121 .68 .63 .15 183 91 .76
300 25 15 8 339 8 174 .68 .63 .15 252 .81 .71

Note. Pr is the statistical power of designs identified by previous frameworks for the same budget
that produces a power of .80 under the proposed framework. The Raudenbush (1997) framework
assumes p = .5, the results for the Liu (2003) framework are based on a predetermined
individual-level sample size of 20.

To illustrate the difference in the required total sample size under different optimal
design framework, further suppose researchers plan to implement the cluster-randomized trials to
detect a standardized effect of 0.2 (Spybrook, Shi, & Kelcey, 2016). We reported the total
number of clusters (J) needed to have a power level of 0.8 for the effect size of 0.2 in Table 1.
The results show that we can sample more clusters under the proposed framework than those
under the Raudenbush (1997) framework but with less budget request to achieve a power of 0.8

(e.g., see | and RPE values for the forth to last cost structures in Table 1).

Comparing with the Raudenbush (1997) framework, the proposed framework gains
efficiency mainly through sampling less clusters in the experimental group but much more

clusters in the control group. This mechanism results in the opposite directions in the change of
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the optimal proportion p and the number of total clusters /. For example, comparing results in
the first and last three cost structures in Table 1, we can clearly see that the more expensive
sampling in treatment is, the smaller the optimal p and the larger the number of total clusters J.
This mechanism of opposite directions in the change of p and J ensures that we still have enough

clusters (e.g., classrooms) in the treatment condition.

For example, in the last cost structure where sampling a treatment cluster (e.g., regular
class assisted by a teacher aide; Mosteller, 1995) costs 30 times that of sampling a cluster in
control (e.g., a regular class), with p = 0.25 we need to sample 87 clusters in each treatment
condition under the Raudenbush (1997) framework. However, under the proposed framework we
have an optimal p of .15 and J of 339. The number of total clusters to be sampled is about twice
the number (174) in the balanced design. Under the proposed framework, there will be 51 cluster
in the treatment condition, 36 clusters less than that in the balanced design, and 288 clusters in
the control condition, 201 clusters more than that in the balanced design. Yet, the balanced
design will require a 47% larger budget than that required under the proposed framework to

achieve comparable power.

Given the same requested budget by previous framework to detect an effect of 0.20 with
a power of 0.8, we can detect a smaller effect under the proposed framework, and the MDES
under proposed framework can be calculated based on these RPE values. Taking the same
example mentioned above with an RPE of .68, we can detect an effect of 0.16 under the
proposed framework with the same budget, which is 20% smaller than 0.20. The optimal sample
allocation can significantly improve design precision than that under the previous framework,
and a smaller MDES can account for the overestimate of an effect size due to sampling error and

other factors. In conclusion, we have shown that the proposed framework can be used to recover
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more gains in statistical precision and efficiency that have gone unconsidered in previous

frameworks.

Design Sensitivity

To further probe the loss of efficiency resulting from constrained designs and the
sensitivity of optimal designs to misspecifications of parameter values at the planning stage, we
examined the extent to which proposed designs are robust to incorrect initial values of the cost
structure and the design parameter values. Similarly, we only present the results for two-level
cluster-randomized trials, as the conclusion is the same for three-level experiments.

In our analyses, we first calculated the true optimal design parameter values (n° and p°)
based on the true values and then computed the optimal design parameter values (n and p) under
misspecified initial values. Using Equation 34 we then computed the RPE values designs
achieved. For the comparison, we used the same cost structures and design parameter values that have
been used in the previous section. We rounded the values of n to integers and the values of p and RPE
to two decimal places in the computation. We presented the result for designs with a covariate at
the cluster level (R? = 0 and RZ = .5), results for other types of designs have similar
conclusions and will be provided upon request.

Robustness to the Misspecification of Intraclass Correlation Coefficient

In terms of the range of misspecification on intraclass correlation coefficient, we
considered multiplicative values of the true parameter—0.25, 0.5, 2, and 3 times the true
values—mapping the range of 0.25 to 2.75 times the true values within which constrained
optimal designs (p = 0.5) showed robustness in previous literature (Korendijk, Moerbeek, &
Maas, 2010). Across cost structures, R squared values, and intraclass correlation coefficients,

when the misspecification of intraclass correlation coefficients is 0.5 or 2 times the true values,
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designs averaged an RPE of .96 or .94, respectively. Practically, the results suggest that planning
studies under misspecifications of this type and magnitude will often require a budget that is only
about 5% larger than the optimal design benchmark, or the optimal design can detect a less than
3% smaller effect.

When the misspecification of the intraclass correlation coefficient is even larger—for
example 0.25 or 3 times the true values—the average RPE values are about .88 and .81,
respectively. Our initial probe suggests that the optimal sample allocation identified under the
proposed framework is fairly robust to the misspecification of the intraclass correlation

coefficients.

Table 2.

Robustness of Optimal Sample Allocation to the Misspecification of Intraclass Correlation
Coefficients.

Misspecification of p

Cost Structures p 0.25 0.5 2 3
15 .89 .96 97 91
T _ — T
cf=1c;=¢; =3 25 88 97 88 63
15 .87 .96 .96 .87
T _ T _
cf =1,c,=¢ =10 25 86 95 .90 81
15 .88 97 .96 .89
T _ T _
cf =1,c,=¢f =30 25 87 97 95 74
15 .87 .96 .95 .88
T _ — T _
ci =1,¢,=10,c; =30 25 86 96 93 1
15 .87 .97 .95 .85
T _ — T _
€1 = 1> G = 10> €2 = 100 25 .87 .96 .95 .79
15 .89 97 .96 .87
T _ — T _
Cl = 1, CZ = 10, CZ == 300 25 89 .97 .95 81
15 .89 .96 97 91
T _ — T _
of =3,6,=3,¢;=9 25 88 97 88 63
15 .89 .96 97 91
T _ — T _
cf =10,¢, =3, ¢ =30 25 88 97 88 63
15 .89 .96 97 91
T _ — T _
cf =30,¢;=3,¢] =90 25 88 97 88 63
15 .87 .96 .96 .87
T _ — T _
¢; =3,6,=10,c; =30 25 86 95 90 81
15 .87 .96 .96 .87
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T =10, ¢, = 10, ¢ = 100 25 36 95 90 31
15 87 96 96 87

¢f =30, ¢, =10,¢c; =300 25 36 95 90 81
Average .88 .96 .94 .81

Robustness to the Misspecification of Cost Structures

As for the misspecification of initial cost structure, we investigated the robustness of
optimal design to the misspecification on initial cluster/individual cost ratio (CICR) and
treatment/control cost ratio (TCCR). The range of the misspecification was set as 0.25, 0.5, 2,
and 4 times the true values. The results are presented in Table 3. When the misspecification is
0.5 or 2 times the true CICR, designs have an average RPE value of .97. Even when the
misspecification is 0.25 or 4 times the true CICR, designs have average RPE values of .89 or .90,
respectively. As for the misspecification of initial TCCR values, the results are similar. Even
when the misspecification is 0.25 or 4 times the true TCCRs, designs have an average RPE value
of .90. The results suggest that designs optimized under moderate misspecifications of cost ratios

largely retain their RPE values.

Table 3.

Robustness of Optimal Sample Allocation to Misspecification of Cost Structures Measured by
Relative Precision and Efficiency.

Misspecification of CICR Misspecification of TCCR
025 05 2 4 025 0.5 2 4
T R A5 91 97 98 8 88 97 97 88
25 88 97 97 091 88 97 97 88
A5 87 98 97 8 88 97 97 88
25 90 9 97 90 88 97 97 88
T A5 89 97 97 8 88 97 97 88
25 91 97 97 90 88 97 97 .88
A5 87 97 97 88 89 97 97 88
25 88 9% 97 8 90 97 97 .89
A5 89 97 97 8 90 97 97 90
25 90 97 97 91 90 98 97 .90
A5 90 97 98 90 91 98 98 .90
25 92 98 98 91 91 98 98 .89

Cost Structures

cF'=1,c,=10,cf =30
cF'=1,c,=10,cI =100

cF'=1,c,=10,cI =300
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A5 91 97 98 .89 .89 97 97 .89
25 .88 97 97 91 .89 97 97 .89
A5 91 97 98 .89 91 98 98 .92
25 .88 97 97 91 91 98 98 .92
A5 91 97 98 .89 .94 98 98 .93
25 .88 97 97 91 .94 98 98 .93
A5 .87 98 97 .89 .89 97 97 .89
25 .90 95 97 .90 .89 97 97 .89
A5 .87 98 97 .89 91 98 98 .92
25 .90 95 97 90 91 98 98 .92
A5 .87 98 97 .89 .94 98 98 .93
¢l =30,,=10,¢; =300 )5 ‘o0 95 97 90 94 93 98 .93
Average .89 97 97 .90 .90 97 97 .90

Note. CICR is the cluster/individual cost ratio. TCCR is the treatment/control cost ratio.

cF'=10,¢,=3,cf =30
cF'=30,c,=3,cf =90
cl'=3,c,=10,cf =30

cf' =10,¢, =10, cl =100

Discussion

Prior literature has developed a host of strategies and tools to improve the efficiency with
which designs can estimate effects (e.g., Bloom, Richburg-Hayes, & Black, 2007; Raudenbush,
Martinez, & Spybrook, 2007; Kelcey, B., & Phelps, 2013; Kelcey, Shen, & Spybrook, 2016;
Schochet, 2008; Borenstein, Hedges, & Rothstein, 2012; Dong & Maynard, 2013). Previous
optimal design frameworks have been limited in their modeling the cost structures of sampling
and optimizing the sampling ratios across levels and treatment conditions. In this paper, our
proposed framework addresses this need by developing a flexible cost framework that more
naturally maps onto practical design settings. The results of the extended framework identify
potentially important gains in statistical precision and efficiency that have previously gone
unconsidered.

Even when some of the parameters are constrained by practical considerations, our
results suggest that within a broad range of applied settings the proposed framework can identify
sampling strategies with more precision and efficiency than those detailed in previous literature.

In this way, the introduction of a treatment-condition specific cost framework and the
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optimization of sampling ratios across levels and treatment conditions can be useful for
adjudicating among several potential designs with varying constraints. Additionally, the
proposed framework performed better than previous frameworks even when the parameter
values were misspecified.

To design cluster-randomized trials with adequate statistical power and efficiency under
an optimal design framework, researchers additionally need the cost information about sampling.
The information about the cost of sampling a unit can usually be estimated through pilot studies,
budget planning, similar studies, or cost centers (e.g., CostOut at https://www.cbcse.org/costout).
Even when cost estimation may not be strictly accurate, our initial probe of the proposed optimal
design framework suggested that the results are fairly robust to the misspecification on initial
values of intraclass correlation coefficient and cost structures. In this way, our results suggest
that even when some parameters are constrained, and some are misspecified, there are still
advantages to probing more flexible sampling plans.

In the presence of unequal sampling costs between treatment conditions, we have
illustrated that unbalanced designs can be more efficient than balanced ones. Put another way,
unbalanced designs can return more statistical power than balanced designs under unequal
sampling costs between treatment conditions. It is generally assumed that the treatment or
intervention itself does not change the standardized variance of an outcome. For designs with
unequal number of clusters between treatment conditions, the assumption of homogeneity of
variance between treatment conditions (controlling for the treatment effect) can still be tested the
same way with balanced designs as the variance formulas adjust for the number of clusters.

We illustrated the opposite directions in the change of the optimal p and the number of

total clusters needed for a certain level of statistical power. This mechanism ensures that
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unbalanced designs still result in enough clusters to be sampled in a treatment condition.
However, when the number of total clusters is small and the proportion of clusters to be assigned
to the treatment condition is also small, there may be an issue whether the treatment arm can
correctly reflect the population variance, and thus there may be a homoskedasticity issue
between treatment conditions. Further studies address small number of clusters in unbalanced
design is needed.

Despite the utility of our framework and the potential gains in statistical precision and
efficiency it offers, we caution readers that the resulting optimal sampling plans are intended to
serve as a starting point for planning a cluster-randomized trial rather than a rigid tool. For
example, an analysis of optimal design may suggest a small value of optimal proportion (p) if
sampling costs vastly different between treatment conditions. In power analysis, a small value of
p may suggest a large number of total clusters that exceeds the clusters researchers could
practically reach. In this case, researchers should constraint the optimal proportion to a larger
number than that the analysis gives so that a feasible design can be achieved. In practice, the
optimal sampling plan operates as a type of initial strategy or benchmark that is subsequently
moderated by practical design considerations and constraints to reach a final sampling plan.

To facilitate end-user calculations, we have developed a freely available R package XXX
(citation masked) that implements the proposed framework. The package also can perform power
analysis accommodating costs by default (e.g., required budget/sample size calculation, power
calculation under a given budget, minimum detectible effect size calculation under a given

budget) and conventional power analysis (e.g., sample size, power, and MDES calculation).
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