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Abstract— Spatial neglect (SN) is a neurological syndrome
in stroke patients, commonly due to unilateral brain injury.
It results in inattention to stimuli in the contralesional visual
field. The current gold standard for SN assessment is the
behavioral inattention test (BIT). BIT includes a series of pen-
and-paper tests. These tests can be unreliable due to high
variablility in subtest performances; they are limited in their
ability to measure the extent of neglect, and they do not
assess the patients in a realistic and dynamic environment. In
this paper, we present an electroencephalography (EEG)-based
brain-computer interface (BCI) that utilizes the Starry Night
Test to overcome the limitations of the traditional SN assessment
tests. Our overall goal with the implementation of this EEG-
based Starry Night neglect detection system is to provide a more
detailed assessment of SN. Specifically, to detect the presence of
SN and its severity. To achieve this goal, as an initial step, we
utilize a convolutional neural network (CNN) based model to
analyze EEG data and accordingly propose a neglect detection
method to distinguish between stroke patients without neglect
and stroke patients with neglect.

Clinical relevance—The proposed EEG-based BCI can be
used to detect neglect in stroke patients with high accuracy,
specificity and sensitivity. Further research will additionally
allow for an estimation of a patient’s field of view (FOV) for
more detailed assessment of neglect.

I. INTRODUCTION

Spatial neglect (SN) is a common disorder that arises after
stroke and has been observed in 28.6% of stroke patients
[1]. SN is a perceptual disorder characterized by inattention
to stimuli in the contralesional visual field. People with SN
usually display inattention to one side of themselves, such
as inability to shave one side of the face or dress one side of
their body. Lesions to the attentional networks [2], ventral
frontal lobe, right inferior parietal lobe or superior temporal
lobe can cause SN [3]. Left-side neglect is more common and
often more severe compared to right-side neglect [4]. SN is

IDeniz Kocanaogullari and Murat Akcakaya are with the Depart-
ment of Electrical and Computer Engineering, University of Pittsburgh,
3700 O’Hara St, Pittsburgh, PA 15213, USA dekl107@pitt.edu,
akcakaya@pitt.edu

2Jennifer Mak is with the Department of Bioengineering, Uni-
versity of Pittsburgh, 3700 O’Hara St, Pittsburgh, PA 15213, USA
jem356@pitt.edu

3Jessica Kersey and Elizabeth Skidmore are with the Department of Oc-
cupational Therapy, University of Pittsburgh, 5012 Forbes Tower, Pittsburgh,
PA 15260, USA jmk286@pitt.edu, skidmore@pitt.edu

4Aya Khalaf is with the School of Medicine, Yale University, 333 Cedar
St, New Haven, CT 06510, USA aya.khalaf@yale.edu

5Sarah Ostadabbas is with the Department of Electrical and Computer
Engineering, Northeastern University, 360 Huntington Ave, Boston, Mas-
sachusetts 02115, USA ostadabbaslece.neu.edu

6George Wittenberg is with the Department of Neurology, Uni-
versity of Pittsburgh, 3471 Fifth Ave, Pittsburgh, PA 15213, USA
geowitt@pitt.edu

This work is supported by NSF Grant #1915083 and #1915065

978-1-7281-1990-8/20/$31.00 ©2020 IEEE

264

a strong predictor of disability and it could possibly develop
safety concerns; a diagnosis of SN is often accompanied by
extended hospitalization [5], an increased risk of falling [6],
and poor stroke recovery outcomes [7].

Existing clinical assessments of SN have several short-
comings. The current gold standard method is the Behavioral
Inattention Test which consists of 6 subtests in the conven-
tional test: line crossing, letter cancellation, star cancellation,
figure and shape copying, line bisection, and representational
drawing [8]. It is difficult to determine SN using only one
subtest and the drawing tests can be subjectively scored.
Additionally, these tests to do not assess the patient in a real-
istic, dynamic environment; they are not sensitive to changes
in neglect severity, and they are affected by compensatory
strategies. Therefore, performance between subtests can also
be highly variable [9]. Furthermore, BIT gives an overall
score, which is compared to the established cutoff score to
return a “yes-or-no” diagnosis of SN; it does not give the
extent to which the patient has SN. These issues present a
clinical need for an objective measurement of SN that will
identify its presence as well as the severity.

To overcome these limitations of the BIT, our goal is
to develop an electroencephalography (EEG)-based brain-
computer interface (BCI) that can not only detect neglect
but enable thorough assessment of neglect severity through
the estimation of neglected field of view. As a first to step
to achieve these goals, we built an EEG-based BCI and
showed that it can detect neglect with high accuracy. EEG
is used as the measurement modality in the proposed BCI
system because it is portable and more cost-effective than
other brain imaging techniques. Moreover, it has very high
temporal resolution. Furthermore, certain EEG features were
shown to be associated with neglect: (i) on average there
is an increase in N100 and P200 responses in the EEG of
perceived targets compared to neglected targets in stroke pa-
tients and (ii) the N100a EEG component which is expected
around 130-160ms after a stimulus, does not exist in the
EEGs of neglect patients in response to contralesional stimuli
[10]. Finally, to develop a classification algorithm based
on the recorded EEG that will distinguish between stroke
patients with and without neglect, we utilize a deep learning
methodology based on convolutional neural network (CNN)
structures. Such deep learning structures have been used
to develop classification and object recognition algorithms
for various applications [11]. For example, they are used
to analyze time-series data [12] for speech recognition [13],
time-series classification [14] and stock price prediction [15].
Recently, there have been attempts to analyze EEG data using
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TABLE 1

Age Sex Stroke Hemisphere Days Since Stroke  BIT Total  BIT sul below cutoff (/6)
SNO1 76 M Right 115 44 6
SNO02 51 M Right 9 25 5
SNO03 67 M Right 3 127 5
SN04 72 F Right - 130 2
SNO5 57 F Left 7 134 2
‘WSNO1 68 F Right 17 139 1
‘WSN02 80 M Left 21 140 0
‘WSNO03 66 F Left 10 142 1
WSNO04 69 M Left 5 143 0
WSNO5 57 M Left 8 145 0
‘WSN06 69 F Bilateral 10 146 0

deep CNN structures [16] both in time [17] and frequency
domains [18]. In this paper, we consider EEG data as a multi-
channel time-series and develop a classifier to detect neglect.
Our experimental results with stroke patients show that our
method can detect neglect with high accuracy, specificity and
sensitivity.

II. METHODS
A. Participants

11 stroke patients: 5 patients with SN and 6 patients
without SN (WSN) participated in the experiments. Experi-
mental procedures were approved by the Institutional Review
Board (IRB) of the University of Pittsburgh (IRB number
PRO15020115). Participants must score at least 8/10 on a
visual acuity test to be eligible. Once the eligibility was
confirmed, BIT was administered to determine the presence
or absence of neglect. A diagnosis of neglect was established
by either a total BIT score lower than the established cutoff
(<129), or a score lower than the cutoff score on more than
one subtest [8]. Patients with recent seizures were excluded
from this study. Patient characteristics are detailed in Table I.
Note that SNO4 is missing time since stroke information.

B. Data Collection

The participants are seated 114cm away from the screen,
which corresponds to a viewing area of 17.23° by 9.74°.
A modified version of the Starry Night Test [19] is used
for the experiments, see Figure 1. In this test, the screen
is divided into an 8x8 grid and targets are shown in 64
random locations on this grid. A target appears 3 times in
every location for a total of 192 targets. These targets are
red dots which cover 0.22° of a person’s visual field. They
are shown for 66ms on the screen and the time between
each target is randomized from 700ms to 2200ms. There are
also distractors, which are smaller green dots that are shown
randomly every 50-250ms. The reason for the randomized
appearance of targets and distractors is to reduce the risk
of seizure [20]. The experiment begins with a calibration
session, where the targets stay on the screen until the
participant presses a key on keyboard or for 3 seconds. The
response times corresponding to all targets are recorded. EEG
is not collected during the calibration session in which we
learn the ground truth for the neglected visual field. The same
test is then repeated while the EEG data are collected, but
during EEG collection targets are shown just for 66ms. This
paradigm is designed for quantitative SN evaluation and to
detect both the presence and severity of SN.

EEG was collected through 16 electrodes located at Fpl,
Fp2, F3, F4, Fz, Fcl, Fc2, Cz, P1, P2, C1, C2, Cp3, Cp4, P5
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and P6 according to 10-20 system with sampling frequency
of 256Hz.

Fig. 1.

Starry Night Test Paradigm

C. Preprocessing

After the calibration session, the target locations corre-
sponding to slow-time and fast-time response targets are
identified. Specifically, to achieve this separation, a time
threshold for every patient is calculated using Otsu’s method
[21]: if a target’s corresponding response time is greater
than the threshold value, it is considered as a ’slow-response
target’ or a neglected target; if it is smaller than the threshold
value then it is a ’fast-response target’ or an observed target.
This procedure provides information about the perceived or
potentially not perceived/neglected locations on the observed
visual field of the computer screen and it is used as a ground-
truth for the following EEG analysis. Accordingly, EEG data
are first processed through an 8" order Butterworth band-
pass filter with corner frequencies of 2 and 62 Hz, and then
through a 4" order notch filter with corner frequencies of
58 and 62 Hz, and EEG corresponding to slow-response and
fast-response targets are separated from each other to be used
in the following classification approach.

More specifically, after filtering, as there is a minimum
of 700ms between each target presentation during EEG
collection based on the designed paradigm, see Fig. 1; 192
EEG segments, each 700ms long and time-locked to the
presented targets, are extracted from each patient’s recorded
EEG data. As EEG is very person-specific, and we are
aiming at a classification across individuals, first 500ms of
the EEG segments are considered to include the desired
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response, and a baseline correction was applied to each
segment using the last 200ms of their data. Baseline cor-
rection is achieved in the spectral domain such that the
spectrum of the desired responses is corrected by the baseline
spectrum of the baseline. These spectrum are computed
through Fourier transforms with a Hamming window. After
baseline correction, every channel is normalized using min-
max normalization to generate a common scale for all data.

D. Classification

We developed a classification algorithm to distinguish
between the preprocessed and segmented EEG data corre-
sponding to the slow-response targets for stroke patients with
and without neglect. More specifically, we utilized EEGNet
[22] to build this classifier. EEGNet includes a CNN model
that can be applied to recorded multi-channel EEG. EEGNet
is paradigm agnostic and can be trained with limited EEG
data. As our results below demonstrate, we identified that the
CNN structures in EEGNet are more robust to overfitting to
training data and outliers in the recorded EEG with high
generalization.

The classification approach/structure is depicted in Fig 2.
In this classification method, a 2D convolutional layer (a
temporal filter) with a size of (30,1) is followed by a
batch normalization and a depthwise convolution [23] layer
of size (1,16) (a spatial filter). Depthwise convolution is
used to reduce the number of trainable parameters and most
importantly, in EEG applications, such a filtering approach
allows us to train spatial filters (based on electrode location)
for each temporal filter output. A batch normalization [24]
layer is then applied along the extracted spatiotemporal
features. These features are then processed through an ex-
ponential linear unit [25] and an average pooling layer of
size (4,1) to reduce computational complexity. After these
layers, a dropout [26] with a rate of 0.25 is applied. Note
that throughout this process in each convolutional layer, we
regularize each filter with a maximum norm constraint of 1
on its weights and use L2 kernel regularization to further
avoid overfitting [27].

The model continues with a separable convolution layer
[23] with the same size as the depthwise layer, (1, 16). Sepa-
rable convolution layers are depthwise convolution layers fol-
lowed by pointwise convolutions. Such an approach reduces
the number of parameters while the pointwise convolution
optimally combines the extracted spatiotemporal features.
Before the final step an average pooling layer of size (8,1)
is used for further dimension reduction.

The model concludes with the classification layer. Specifi-
cally, the output of the last average pooling layer is flattened
to a vector, then fed to a fully connected layer with 4
units, followed by a final layer with 2 units to classify. To
get classification probabilities, the model ends with softmax
activation layer.

ITII. RESULTS AND DISCUSSION

We present here the results for classification between
recorded EEG responses corresponding to the slow-time
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responses for stroke patients with and without neglect to
demonstrate the performance of the proposed approach for
neglect detection. In our approach, the proposed CNN-based
deep learning model was implemented using Tensorflow
[28].Here the classification/ neglect detection results are ob-
tained through 10-fold cross validation. For each training set,
the model was trained from the start for 100 epochs and each
network was trained with a mini-batch size of 16. We chose
categorical cross-entropy as the loss function and Adam [29]
as the optimizer, with parameters o = 1073, 51 = 0.9 and
B2 = 0.999. We did not explicitly set any weight decays. The
model had approximately 1400 trainable parameters and each
optimization of epoch lasted for approximately 3 seconds
on CPU. We observed for the training data that in average
neglect detection accuracy, specificity, sensitivity, and F1
score are 90.65%, 90.32%, 87.13%, and 0.9223 respectively.

TABLE I
SUMMARY OF PERFORMANCE MEASURES.

Cross

Validation | Accuracy Specificity Sensitivity F1 Score
Set 1 89.21% 88.43% 87.32% 0.8842
Set 2 88.41% 88.89% 87.26% 0.8889
Set 3 90.29% 90.62% 87.56% 0.9062
Set 4 88.49% 88.31% 86.48% 0.8831
Set 5 91.37% 90.51% 86.45% 0.9051
Set 6 88.40% 88.89% 87.38% 0.8889
Set 7 92.03% 91.31% 86.83% 0.9131
Set 8 89.50% 86.80% 87.21% 0.8680
Set 9 89.85% 90.28% 86.21% 0.9028
Set 10 90.22% 89.58% 86.60% 0.8958
Average 89.73% 89.34% 86.97% 0.8934

The results obtained from the test data are listed on Ta-
ble II. On this table, in each row average values demonstrate
the results for each test data of the 10-fold cross validation.
Even though the training set results are better than the test
set results, we observe from Table II that overall accuracy,
specificity and sensitivity were calculated on average to
be 89.73%, 89.34%,and 86.97%, respectively, with an F1
score of 0.8934. Specificity is the accuracy of detecting
the neglected targets while sensitivity is the accuracy of
detecting non-neglected targets. These results demonstrate
that the proposed approach generalizes to test data with high
performance. Moreover, through an in depth analysis of our
results, we observe that to detect neglect Cz, P1 and F3 as
the most informative channels.

IV. CONCLUSION

In this paper, we have developed and tested an EEG-based
BCI for spatial neglect detection. For neglect detection and
EEG analysis, we utilized a CNN-based deep learning model
to identify EEG features not only in time domain, but also in
the spatial domain to improve the detection of neglect across
stroke patients with and without neglect. We also showed
that our approach can detect neglect with high accuracy,
specificity and sensitivity generalizing from training to test
data.
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Future investigations will use the proposed BCI to estimate

a patient’s neglected field of view (FOV). The area of
neglected FOV could be an objective measurement of SN
severity. Additionally, the system can be used to track the
progression and rehabilitation of SN in a patient based on the
changes in the neglected FOV. Accordingly, the development
of this EEG-based BCI system could improve the assessment
of SN and offer a more versatile and detailed alternative to
the BIT.
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