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Geometric Analysis of Uncertainty Sampling for
Dense Neural Network Layer

Aziz Koçanaoğulları, Niklas Smedemark-Margulies, Murat Akcakaya , and Deniz Erdoğmuş

Abstract—For model adaptation of fully connected neural net-
work layers, we provide an information geometric and sample
behavioral active learning uncertainty sampling objective analy-
sis. We identify conditions under which several uncertainty-based
methods have the same performance and show that such conditions
are more likely to appear in the early stages of learning. We define
riskier samples for adaptation, and demonstrate that, as the set
of labeled samples increases, margin-based sampling outperforms
other uncertainty sampling methods by preferentially selecting
these risky samples. We support our derivations and illustrations
with experiments using Meta-Dataset, a benchmark for few-shot
learning.We compare uncertainty-based active learning objectives
using features produced by SimpleCNAPS (a state-of-the-art few-
shot classifier) as input for a fully-connected adaptation layer. Our
results indicate that margin-based uncertainty sampling achieves
similar performance as other uncertainty based sampling methods
with fewer labelled samples as discussed in the novel geometric
analysis.

Index Terms—Active learning, few-shot learning, information
geometry, margin sampling, uncertainty sampling.

I. INTRODUCTION

R ECENTLY, deep neural networks have been commonly
used for hypothesis learning in the context of various

regression and classification problems. These models require
large labeled data sets to achieve good generalization perfor-
mance [1]. Obtaining large labeled data sets is costly; several
approaches exist to overcome this limitation. For example,
model adaptation with few samples (informally referred to as
zero-, one-, few-shot learning) may enable transformation of a
hypothesis model (e.g., a classifier) trained for one specific task
to a hypothesis model suitable for another task through minimal
changes to its structure andparameters [1], [2].Model adaptation
for deep neural networks between classification tasks is typically
achieved by adjusting the last few layers [3], [4]. Active learning
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trical and Computer Engineering, Northeastern University, Boston, MA 02115
USA (e-mail: akocanaogullari@ece.neu.edu; erdogmus@ece.neu.edu).

Niklas Smedemark-Margulies is with the Khoury College of Computer Sci-
ence, Northeastern University, Boston, MA 02115 USA (e-mail: smedemark-
margulie.n@northeastern.edu).

Murat Akcakaya is with the Department of Electrical and Computer
Engineering, Pittsburgh University, Pittsburgh, PA 15261 USA (e-mail:
akcakaya@pitt.edu).

Digital Object Identifier 10.1109/LSP.2021.3072292

is crucial in caseswhere rapid adaptation is requiredwith limited
data labeling resources [5].
Related Work: As described in Settle’s work [6], active

learning objectives often combine the following measures:
uncertainty in probability space to select ambiguous samples [7],
density in data space (e.g. N nearest neighbors [8]), expected
model change (e.g. absolute sum of the gradients [9]),
and expected error reduction (e.g. maximizing mutual
information [10]). Other proposed methods include influence
functions [11], and representer point based selection [12]. In
the existing active learning literature, uncertainty sampling
methodologies (Entropy Sampling (ES) [13], Confidence
Sampling (CS) [14], and Margin Sampling (M) [15]) are
often used as baseline comparisons [16], [17] due to their low
computational overhead. Existing work usually reports the
best performing uncertainty sampling method based on the test
performance results, but performance comparison across (ES),
(CS) and (M) and justification of the performance differences
of these uncertainty methods across different datasets are
omitted. The fundamental differences across (ES), (CS) and
(M) are studied in the literature with extensive experimentation
in different domains [18], [19]. Uncertainty sampling has
also been comprehensively studied in parameter estimation for
logistic regressionmodels [20].We suggest that the performance
differences across (ES), (CS) and (M) across different testing
datasets occur due to the sampling behaviour differences in these
uncertainty samplingmethods during actively updating themod-
els.However, noneof the existingworkprovide an explanation to
these differences. Here, we aim to explain the sampling behavior
differences for uncertainty based methods from an information
geometric perspective, specifically through the geometrical
analysis of the unlabeled sample predictions. We consider a
fully connected neural network layer and demonstrate that by
design (M) performs better in selecting riskier samples (i.e.,
the samples that are geometrically located in highly uncertain
locations in the probability simplex) that enables it to achieve
similar performances to (ES) and (CS) with fewer samples.
Contributions: As mentioned above, uncertainty sampling

methods have been commonly used and they were compared
among each other and against other methods always through
their performances on different datasets [19], [21]. We pro-
pose here a novel analytical approach to compare these meth-
ods, such an analytical approach does not exist in the lit-
erature. Specifically, (i) We identify conditions under which
uncertainty-based methods have equal performance. (ii) We use
information geometry to demonstrate the behavior of sample
selection for (ES), (CS) and (M) and highlight that (M) se-
lects samples from highly uncertain locations in the probability
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simplex. (iii) We validate our analysis in a few-shot learning
scenario.
Preliminaries: Let (X ,Y) denote the domain of data and

labels over C different classes H = {H1,H2, . . . ,HC}. Let
(x ∈ Rd, y) be a single data example and its corresponding one-
hot label vector. To estimate the class label, we fit a parametric
model hθ : X → ΔC whereΔC is the C-dimensional simplex:

ΔC = {(p1, p2, . . . , pC) ∈ RC |pi > 0 ∀i,
∑
i

pi = 1}

Model parameters θ are fit by minimizing a loss function L :
(hθ(X ),Y) → R, the model parameters are optimized appro-
priately. In this paper, we specifically focus on the following
parameterized model;

hθ(x) = softmax

(
θ

[
x
1

])
where θ ∈ RC×(d+1)

softmax(a)i =
eai∑d
j=1 e

aj

where a ∈ Rd

(1)

Here θ is the parameter matrix and softmax : Rn → Δn denotes
the operator that maps the linearly transformed x to the proba-
bility simplex [22]. The hypothesis class in (1) is a linear logistic
regression function, i.e., a fully connected neural network layer
followed by softmax nonlinearity.
In many applications, hypothesis learning can be achieved us-

ing a combination of labelled and unlabelled data s.t. (X ,Y) =
({XL,XU}, {YL,YU}) where L and U denote subsets of la-
belled and unlabelled data respectively;YU is not available to the
learner.We focus on the empirical riskminimization framework,
in which optimal parameters for the model h are computed as:

θ̂L = argmin
θ

1

|XL|
∑

(x,y)∈(XL,YL)

L(hθ(x), y)

For the training of the last fully connected layer of a classification
neural network, minimization of average cross entropy loss is
considered L(hθ(x), y) = H(hθ(x), y) [23]:

argminθ H(�y, hθ(x)) = argminθ −
∑

i yi log([hθ(x)]i)

= argminθ − log([hθ(x)]̂i) where î = argmaxj yj
= argmaxθ[hθ(x)]̂i where î = argmaxj yj

(2)
Actively learning a model includes an agent that selects

anchor samples xa ∈ XU according to a sampling objective f ,
and receives the corresponding label ya from an oracle to update
the model:

xa = arg max
x∈XU

f(x,XL,YL, hθ)

θ̂L∪a = argmin
θ

1

|XL|
∑

(x,y)∈(XL∪xa,YL∪ya)

H(�y, hθ(x))

(XL,YL) ← (XL,YL) ∪ (xa, ya)

(XU ,YU ) ← (XU ,YU ) \ (xa, ya)

(3)

In (3), f is designed to decrease the loss value as fast as possible
by selecting meaningful samples. For f , we consider (ES), (CS)
and (M) objectives presented in Table I and the geometry of each
method based on their objectives is illustrated in Fig. 1.

II. ANALYSIS

The performance differences among (ES), (CS) and (M) se-
lection objectives arise from the sequence of anchor samples xa

TABLE I
UNCERTAINTY SAMPLING METHODS THAT FORM THE BASIS OF ACTIVE

LEARNING METHODOLOGIES

Fig. 1. Geometry of the given methods in Δ3. Figures from left to right
represent the values of the objective functions presented in Table I (ES), (CS)
and (M) respectively.

selected. Through Proposition 1, we show that these objectives
have the same performance for 2-class classification. Further
analyses then discuss the performance differences among the
methods.
Proposition 1: Given 2 class caseH = {H1,H2} and the set

X with hθ(x) = p ∈ Δ2 then;

xa = arg max
p∈hθ(X )

H(p) (ES)

= argmin
p

max
i

pi (CS)

= argmin
p

max
j �=i

max
i

pi − pj(M)

Proof: Let us denote the anchor sampling meth-
ods; (i) argmaxp H(p), (ii) argminp maxi pi, (iii)
argminp maxj �=i maxi pi − pj . p ∈ Δ2 ⇒ pi = 1− p �=i.

argmin
p

max
j �=i

max
i

pi − pj = argmin
p

max
i

pi − p �=i

= argmin
p

max
i

2pi − 1 = argmin
p

max
i

pi ⇒ (ii) ≡ (iii)

Similarly,

argmax
p

H(p) = argmax
p

−
∑
i

pi log(pi)

= argmax
p

−pi log(pi)− p�=i log(p �=i)

= argmax
p

−pi log(pi)− (1− pi) log(1− pi)

WLOG assume pi ≥ p �=i then, 1 ≥ pi ≥ 0.5 and
−pi log(pi)− (1− pi) log(1− pi) ismonotonically decreasing
wrt. pi → given p, q ∈ Δ2 maxi pi > maxi qi ⇒ H(p) <
H(q) ⇒ argmaxp H(p) = argminp maxi pi ⇒ (i) ≡ (ii).
Then (i) ≡ (ii) ≡ (iii). �
In a C-class classification problem, model hθ makes a cor-

rect decision for a sample and label tuple (x, y) ∈ (X ,Y) if
argmaxi yi = argmaxi[hθ(x)]i. Therefore ∀hθ(x) ∈ Δn the
critical boundary for a class i is formed where coordinate i is
tied with a single other coordinate j. In other words, ∃j s.t.
[hθ(x)]i = [hθ(x)]j ≥ [hθ(x)]k �=i,j ∀k.
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TABLE II
A FULLY CONNECTED LAYER ON TOP OF THE BACKBONE NETWORK ARCHITECTURE IS USED. THE AVERAGE NUMBER OF TRAINING SAMPLES ARE ≈ 355

WHERE NUMBER OF TEST SAMPLES ARE ≈ 90. IN THE TABLE ROOT-ACC AND MAX-ACC REFER TO ACCURACY ACHIEVED IN TEST-SET IF ALL TRAINING-SET IS

USED AND MAXIMUM ACCURACY ACHIEVED IN ANY POINT OF ACTIVE LEARNING RESPECTIVELY. WE REPORT THE RATIO OF TRAINING SAMPLES USED TO

CARDINALITY OF THE ENTIRE TRAINING SET TO REACH A NEIGHBORHOOD OF ROOT-ACCURACY. THEREFORE, A SMALLER NUMBER REPRESENTS FEWER SAMPLES

USED AND HENCE THE LESS THE BETTER. IT IS APPARENT THAT MARGIN SAMPLING (M) OUTPERFORMS OTHER SELECTION METHODS AND ACHIEVES THE

CONFIDENCE RANGE USING LESS PERCENTAGE OF THE TRAINING SET LABELLED.

Fig. 2. A three class decision boundaries on Δ3. The highlighted area corre-
sponds to where the probability mass of a in a given probability vector ∈ Δ3

is the highest. Therefore a hypothesis resulting a probability within that area
correctly classifies a. Dashed red line represent an equi-probability contour of
a logistic normal distribution that passes through the uniform distribution.

Assume a three class classification as illustrated in Fig. 2
where the labels are denoted with a, b, c. Then in order to
correctly classify a for example, the hypothesis should result a
probability vectorwhere a has the highest probabilitymass (blue
highlighted area). Hence all possible probability vector with a
having themax probability contribute to the true selection. In the
figure the decision boundary for class a is also visualized with
the blue-bold lines. Given p = hθ(x), these lines satisfy ∃i, j s.t.
pi = pj ≥ pk ∀k. In otherwords, themodel is uncertain between
two competitors. Points x ∈ X that result in p = hθ(x) close to
these decision boundaries are riskier samples.
(ES) has a frail confidence assessment: Let {x1, x2} ⊂ XU

where argmaxi y1i = argmaxi y2i = 1 and p = hθ̂(x1), q =
hθ̂(x2) ∈ Δ10 with p = [.6, .4− 8ε, ε, · · · ] where 0 < ε << 1
and q = [.7, .03̄, · · · ]. It is apparent that q is more confident on
the true class however due to 0.97 ≈ H(p) < H(q) ≈ 1.82 (ES)
selects q over p. For this example (M) and (CS) captures the
notion of confidence which is determined by the maximum pos-
terior probability and selects the sample with lesser confidence.
(CS) makes decisions using single value: Let

{x1, x2, x3, x4} ⊂ XU with p1 = hθ̂(x1), p2 = hθ̂(x2) ∈
Δ10, q1 = hθ̂(x3), q2 = hθ̂(x4) ∈ Δ10 with p1 = [.5, .5−
8ε, ε, · · · ], p2 = [.6, .4− 8ε, ε, · · · ] where 0 < ε << 1 and
q1 = [.5, 0.05̄, · · · ], q2 = [.6, 0.04̄, · · · ] and we compare ps
then qs. Since confidence level on a particular class differs the
same amount. 1 (CS) treats p and q cases the same, for the
ps the 2nd best class is still a legitimate competitor, whereas
for qs there was no other competitor. However, (M) makes

Fig. 3. Separated (s), quasi-separated (qs) and overlapping (o) labelled data
XL is used to determine a stationary point hθ̂ . Observe that (s), (qs) yields
unlabelled samples on the lines that force exact same results in (ES), (CS) and
(M). (o) on the other hand allows selection methods operate in 2D.

a distinction between these cases by incorporating another
element to select the sample closer to decision boundary (p).
SampleBehavior:Ultimately, the differences in performance

occur due to the different geometric locations of the data in the
simplex (i.e., hθ(x) ∈ Δn) compared to the geometric selection
regions of different objectives. Let us observe the different
outcome possibilities from the fully connected layer.
Consider Fig. 3 for Δ3 for three scenarios of hθ outcomes.

Given (xl, yl) ∈ (XL,YL) and (xu, yu) ∈ (XU ,YU ) if ∃θ s.t.:
(s) separation (∀(xl, yl) argmaxi[hθ(x

l)]i = argmaxi y
l
i), (qs)

quasi-separation (∀(xl, yl) argmaxi[hθ(x
l)]i = argmaxi y

l
i

and ∃(xl, yl) s.t. | argmaxi hθ(x
l)| ≥ 2. e.g. hθ(x

l) =
[0.5, 0.5, 0, · · · ], yl = [1, 0, · · · ]), (o) overlap (∃(xl, yl) where
argmaxi[hθ(x

l)]i �= argmaxi y
l
i) then a stationary point θ̂ =

arg infθ(1/|XL|)
∑

(x,y)∈(XL,YL) H(�y, hθ(x)) only exists for
(o).
We refer the reader toAlbert’s work [24] for the detailed proof

showing (s) and (qs) project samples to a two class decision
as shown in Fig. 3. In Proposition 1 we already discussed if
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samples reside on a line which is the case for (s) and (qs), the
sampling methodologies behave the same and hence we further
investigate the case of (o). Note that it is empirically known that
the differences in the performances among (CS), (ES) and (M)
increase as the training progresses. As also discussed above, the
performances differ only in the case of (o). With the following
proposition, we show that during the training, the probability
of achieving the case of (o) as the outcome of hθ in a dataset
increases as more data is incorporated into the labeled pool XL

for training;
Proposition 2: Let hθ be an arbitrary model and (X ,Y) =

{(x, y)|x ∼ fy} where fy is an arbitrary distribution identified
with the label y. Let (X1,Y1) ⊆ (X2,Y2) ⊆ (X ,Y) then prob-
ability of (o) in (X2,Y2) is greater or equal than probability of
(o) in (X1,Y1).
Proof: Let A := ∃ overlap ∈ (X1,Y1), B := ∃overlap ∈

(X2,Y2) \ (X1,Y1) ⇒ A+B := ∃ overlap ∈ (X2,Y2). Triv-
ially p(A+B) ≥ p(A) + p(B) ⇒ p(A+B) ≥ p(A). �
In summary, Proposition 2 states that as the training pro-

gresses, the probability of the case (o) increases which implies
that for active learning the (CS), (ES) and (M) will start to have
different performances.

Special case with Gaussian data: For the case of (o), con-
sider samples originating from multi-variate Gaussian distri-
butions for a C-class classification s.t. ∀(x, y) ∈ (X ,Y), x =
N (μy,Σy). Note that the equi-probability contours are not
centered around the center of theΔC (simplex) but the corners.
Sincex is normally distributed, linear combinationswith a scalar
shift of the random variables also follow a normal distribution.
Moreover, the inverse of softmax operator is well approximated
as central logratio transform clr(.) [22], [25]:

clr(p) =

[
p1
g(p)

, . . . ,
pC
g(p)

]
where g(p) = (

∏
i

pi)
1/C

Hence the outputs of the model defined in (1) follow a logistic-
normal distribution for which the pdf is;

fΔC
(p;m, s) = JC

1

|2πs| 12 exp(−
1

2
(p′ −m)T

s−1(p′ −m)) where p′ = p/g(p)

(4)

As discussed in [22], it is possible to find equi-probability con-
tours within ΔC . WLOG assume we are interested in H1 with
an ideal m = [1− ε, ε, . . . , ε] with 0 < ε << 1. In Fig. 2 we
visualize a sample equi-probability contour with the dashed red
line. Hence in terms of the probability geometry, the assessment
of riskier samples are not centric as guided by the entropy
but they follow a pattern that are analogous with the critical
boundaries and hence a perspective that is centered around the
corners is more preferable. Comparison between Figures 1 and
2 show that (M) captures these equi-probable regions but not
(CS) or (ES).

III. EXPERIMENTS AND RESULTS

Paradigm: Using a few-shot learning scenario, we compare
(ES), (CS) and (M). Alsowe consider the random selection case,
see Table I. In few-shot learning approaches, model parameters
are updated starting from a checkpoint [1], [2]. In the cases
where adaptation needs to be fast, especially in deep feature
models, a backbone that is already trained on a large labelled
dataset (e.g. image classification ResNet [27]) is kept constant

and an adaptation layer is further adjusted to generalize across an
unseen task. Specifically, as the backbone, in our experimentswe
use the model presented in [3] and later simplified in [4] which
is by design learned to output features that follow Gaussian
distribution. We then actively learn a fully connected layer
during adaptation.
Dataset and Experiment: We use Meta-dataset [28], a

benchmark for few-shot learning and image classification that
comprises the following labelled image datasets: ILSVRC-
2012 [29], Omniglot [30], FGVC-Aircraft [31], CUB-200-
2011 [32], Describable Textures [33], QuickDraw [34], FGVCx
Fungi, VGGFlower [35], Traffic Signs [36] andMSCOCO [37].
We follow the train-test splits provided by Meta-dataset in
our experiments. We define ‘root-acc‘; as the test set accuracy
achieved using all training labels set is available. We evaluate
active learning methods by comparing what percentage of the
training set must be queried before achieving the root-acc. In
our experiments, we initialize the system by providing labels
for 5% of the training samples and training an initial model:
|XU | = 0.05× |XU∪L|. At each iteration, we select a batch of
10-samples to be labelled according to the objectives presented
in Table I. At each iteration, the models are also updated to a
stationary point.
Results:Results are presented in Table II. In this Table, the

rows represent the results for different datasets and the average
of all is presented as the final row. The table is divided into 4
grouped-columns, where each group denotes a model reaching a
pre-determined performance value close to root-acc. For exam-
ple, where root-acc 85%, the column root-acc−15% represents
a model achieving a performance ≥ 70. Each column in each
group presents the results of a different sample selection method
from Table I. We present the mean and standard deviation for
the percentage of the dataset used to achieve the pre-determined
performance value. Lower mean values indicate that the method
requires less data tomatch the performance of the other sampling
methods. The results show that (M) picks the samples that result
in faster increase in performance. Moreover, we observe that
the gap between methodologies increases as labelled data size
increases (to achieve higher performance more data is required)
which is also stated in Prop. 2.

IV. CONCLUSION

In this work we provide an analysis of actively adapting
a fully connected final layer in a network architecture in a
model-adaption setting. Specifically, we focused on uncertainty
samplingmethods that arewidely used as a sanity check in active
learning tasks. We have shown that geometrically, fully con-
nected layer behavior and sample positioning by fact strength-
ens margin sampling over other uncertainty based approaches.
Empirically, we validated the claims in a few-shot learning
setting where a fully connected adaptation layer exists. With
that knowledge, it is possible to propose proxy gradient meth-
ods that leverage margin instead of selection based on mutual
information surrogates.
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KOÇANAOĞULLARI et al.: GEOMETRIC ANALYSIS OF UNCERTAINTY SAMPLING FOR DENSE NEURAL NETWORK LAYER 871

REFERENCES

[1] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for fast
adaptation of deep networks,” in Proc. the 34th Int. Conf. Mach. Learn.,
2017, pp. 1126–1135.

[2] B. Oreshkin, P.R.López, and A.Lacoste, “Tadam: Task dependent adaptive
metric for improved few-shot learning,” in Proc. Adv. Neural Inf. Process.
Syst., 2018, pp. 721–731.

[3] J. Requeima, J. Gordon, J. Bronskill, S. Nowozin, and R. E. Turner, “Fast
and flexible multi-task classification using conditional neural adaptive
processes,” in Proc. Adv. Neural Inf. Process. Syst., 2019, pp. 7957–7968.

[4] P. Bateni, R. Goyal, V. Masrani, F. Wood, and L. Sigal, “Improved few-
shot visual classification, in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit.,2019, pp. 14493–14502.

[5] F. Sung, Y. Yang, L. Zhang, T. Xiang, P. H. S. Torr, and T. M.
Hospedales,“Learning to compare: Relation network for few-shot learn-
ing,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2018, pp. 1199–
1208.

[6] B. Settles, “Active learning literature survey,” Dept. Comput. Sci. Univ.
Wisconsin-Madison, Tech. Rep., 2009.

[7] D. D. Lewis and J.Catlett, “Heterogeneous uncertainty sampling for su-
pervised learning,” in Proc. Mach. Learn. Proc., 1994, pp. 148–156.

[8] C. Berlind and R. Urner, “Active nearest neighbors in changing environ-
ments,” in Proc. Int. Conf. Mach. Learn., 2015, pp. 1870–1879.

[9] Y. Yuan, S.-W. Chung, and H.-G. Kang, “Gradient-based active learning
query strategy for end-to-end speech recognition,” in Proc. ICASSP IEEE
Int. Conf. Acoust., Speech, Signal Process., 2019, pp. 2832–2836.

[10] J. Sourati, M. Akcakaya, J. G. Dy, T. K. Leen, and D.Erdogmus, “Clas-
sification active learning based on mutual information,” Entropy, vol. 18,
no. 2, pp. 51–72, 2016.

[11] P.W.Koh and P.Liang, “Understanding black-box predictions via influence
functions,” in Proc. Int. Conf. Mach. Learn., 2017, pp. 1885–1894.

[12] C.-K. Yeh, J. Kim, I. E.-H. Yen, and P. K. Ravikumar, “Representer point
selection for explaining deep neural networks,” in Proc. Adv. Neural Inf.
Process. Syst., 2018, pp. 9291–9301.

[13] C. E. Shannon, “A. mathematical theory of communication,” Bell Syst.
Tech. J., vol. 27, no. 3, pp. 379–423, 1948.

[14] D. D. Lewis and W. A. Gale, “A. sequential algorithm for training text
classifiers,” in Proc. SIGIR’94, 1994, pp. 3–12.

[15] T. Scheffer, C. Decomain, and S. Wrobel, “Active hidden markov models
for information extraction,” in Proc. Int. Symp. Intell. Data Anal., 2001,
pp. 309–318.

[16] O. Sener and S. Savarese, “Active learning for convolutional neural net-
works: A core-set approach,” in Proc. Int. Conf. Learn. Representations,
2018. [Online]. Available: https://openreview.net/forum?id=H1aIuk-RW

[17] K. Wang, D. Zhang, Y. Li, R. Zhang, and L. Lin, “Cost-effective active
learning for deep image classification,” IEEE Trans. Circuits Syst. Video
Technol., vol. 27, no. 12, pp. 2591–2600, Dec. 2017.

[18] B. Settles and M. Craven, “An analysis of active learning strategies for
sequence labeling tasks,” in Proc. Conf. Empir. Methods Natural Lang.
Process., 2008, pp. 1070–1079.

[19] Y. Yang, Z. Ma, F. Nie, X. Chang, and A. G. Hauptmann, “Multi-class
active learning by uncertainty sampling with diversity maximization,” Int.
J. Comput. Vis., vol. 113, no. 2, pp. 113–127, 2015.

[20] A. I. Schein and L. H. Ungar, “Active learning for logistic regression: An
evaluation,” Mach. Learn., vol. 68, no. 3, pp. 235–265, 2007.

[21] M. Li and I. K. Sethi, “Confidence-based active learning,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 28, no. 8, pp. 1251–1261, Aug. 2006.

[22] J. Aitchison, “The statistical analysis of compositional data,” J. Roy. Stat.
Soc.: Ser. B (Methodological), vol. 44, no. 2, pp. 139–160, 1982.

[23] C. M. Bishop, Pattern Recognition and Machine Learning. Berlin, Ger-
many: Springer, 2006.

[24] A. Albert and J. A. Anderson, “On the existence of maximum likelihood
estimates in logistic regression models,” Biomet, vol. 71, no. 1, pp. 1–10,
1984.

[25] J. Aitchison, “Logratios and natural laws in compositional data analysis,”
Math. Geol., vol. 31, no. 5, pp. 563–580, 1999.

[26] D. A. Cohn, Z.Ghahramani, and M. I. Jordan, “Active learning with
statistical models,” J. Artif. Intell. Res., vol. 4, pp. 129–145, 1996.

[27] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016,
pp. 770–778.

[28] E. Triantafillou et al., “Meta-dataset: A dataset of datasets for learning
to learn from few examples,” in Proc. Int. Conf. Learn. Representations,
2019.

[29] O. Russakovsky et al., “Imagenet large scale visual recognition challenge,”
Int. J. Comput. Vis., vol. 115, no. 3, pp. 211–252, 2015.

[30] B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum,“Human-level con-
cept learning through probabilistic program induction,” Science, vol. 350,
no. 6266, pp. 1332–1338, 2015.

[31] S. Maji, E. Rahtu, J. Kannala, M. Blaschko, and A. Vedaldi, “Fine-grained
visual classification of aircraft,” 2013. [Online]. https://www.robots.ox.ac.
uk/∼vgg/data/fgvc-aircraft/.

[32] C.Wah, S. Branson, P.Welinder, P. Perona, and S. Belongie, “TheCaltech-
UCSD birds-200-2011 dataset,” 2011. [Online]. Available: http://www.
vision.caltech.edu/visipedia/CUB-200-2011.html

[33] M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, and A. Vedaldi, “De-
scribing textures in the wild,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2014, pp. 3606–3613.

[34] J. Jongejan, H. Rowley, T. Kawashima, J. Kim, and N. Fox-Gieg, “The
Quick, Draw!-AI experiment,” Mount View, CA, USA, 2016. Accessed:
Feb. 17, 2018. [Online]. Available: https://quickdraw.withgoogle.com/

[35] M.-E. Nilsback and A. Zisserman, “Automated flower classification over
a large number of classes,” in Proc. 6th Indian Conf. Comput. Vis., Graph.
Image Process., 2008, pp. 722–729.

[36] S. Houben, J. Stallkamp, J. Salmen,M. Schlipsing, and C. Igel, “Detection
of traffic signs in real-world images: The German traffic sign detection
benchmark,” in Proc. Int. Joint Conf. Neural Netw., 2013, pp. 1–8.

[37] T.-Y. Lin et al., “Microsoft coco: Common objects in context,” in Proc.
Eur. Conf. Comput. Vis., 2014, pp. 740–755.

Authorized licensed use limited to: University of Pittsburgh. Downloaded on July 07,2021 at 16:30:14 UTC from IEEE Xplore.  Restrictions apply. 

https://openreview.net/forum{?}id$=$H1aIuk-RW
https://www.robots.ox.ac.uk/~vgg/data/fgvc-aircraft/
http://www.vision.caltech.edu/visipedia/CUB-200-2011.html
https://quickdraw.withgoogle.com/

