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ABSTRACT

Ammonia has emerged as a promising energy carrier owing to its carbon neutral content and low expense of long-range transportation.
Therefore, development of a specific pathw ay to release the energy stored in ammonia is therefore in urgent demand. Electrochemical
oxidation provides a convenient and reliable route to attain efficient utilization of ammonia. Here, we report that the high entropy (Mn,
Fe, Co, Ni, Cu)304 oxides can achieve high electrocatalytic activity for the ammonia oxidation reaction (AOR) in non-aqueous solutions.
The AOR onset overpotential of (Mn, Fe, Co, Ni, Cu)3O4 is 0.70 V, which is nearly 0.2V low er than that of their most active single metal
cation counterpart. The mass spectroscopy study revealed that (Mn, Fe, Co, Ni, Cu)zOs preferentially oxidizes ammonia to
environmentally friendly diatomic nitrogen with a Faradic efficiency of over 85%. The XPS result indicates that the balancing metal
d-band of Mn and Cu cations helps retain a long-lasting electrocatalytic activity. Overall, this work introduces a new family of
earth-abundant transition metal high entropy oxide electrocatalysts for AOR, thus heralding a new paradigm of catalyst design for

enabling ammonia as an energy carrier.
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1. Introduction 23
One of the main problems facing our planetary bodies is24
unexpected and sudden climate change due to continuously25
increasing fossil fuel consumption. Developing clean and26
renewable energy sources provides an attractive solution to27
displace carbon-intensive fossil fuels and decrease carbon dioxide28
emissions from burning fossil fuel [1]. Among many prospective29
renewable and clean energy sources, ammonia has been considered30
a promising candidate because of its carbon neutral content, high31
energy densiy, low flammability, ease of liquefaction and the vast32
availability of existing infrastructure [2]. Furthermore, there is a33
growing progress in scalable ammonia synthesis relying on34
renewable sources of energy, which causes ammonia to35
economically compete with other energy resources [3-6]. In order36
to further realize an efficient strategy to utilize NH;3,37
electrochemical oxidation of NH; is a promising approach that38
directly converts solar energy stored in NH3 into electricity at room39
temperature [7]. During the electrochemical oxidation of NH3, the40
key process at the electrode and electolyte interface involvesdl
multiple electron transfer events from the active site to thed2
adsorbed ammonia molecule and finally preferentially forming an43
environmentally friendly dinitrogen product. Even though thed4

standard electrochemical potential of converting NH3 to N is
around 0.1 V vs. NHE [8], kinetic sluggish N-N bond formation
and desorption of the final *Na.q to generate N lead to a large
energy barrier during the ammonia oxidation reaction(AOR) [9].
Therefore, it is imperative to develop a new family of
electrocatalysts to reduce the energy barrier of N-N bond formation
and accelerate desorption ofthe final *Nzaq.

Over the past few decades, several efforts have been made to
reduce the kinetic barriers and enhance the selectivity of oxidizing
ammonia dissolved in aqueous medium.[10] For example, Pt(100)
facet showed an approximately 0.55 V onset overpotential for
catalyzing AOR with a maximum current density of 1.1 mA/cn?
[10]. However, this electrocatalyst has only a 0.2 V potential
window to avoid the accumulation of nitrate poisonous species
[10]. Additionally, electrochemically deposited NiO catalysts need
about 1.3 V onset overpotential for AOR with 10% of ammonia
oxidized to NOs™ at 30mA/cn? in aqueous medium [11]. Therefore,
the narrow potential window and the formation of nitrate
byproducts in aqueous media limit the current density and
selectivity of AOR [12]. To overcome these limitations in aqueous
solvent, many recent studies have shifted to NH; electrolysis in
non-aqueous solutions [13, 14]. Although theelectrochemically
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Scheme 1. Schematic representations of synthesis route of ((Mn, Fe, Co, Ni, Cu);O4 where the size of each atomrepresents its ionic radius.

deposited Pt nanoparticle initially showed good AOR performance46
in NH; saturated acetonitrile solutions,[15] the activity quickly47
decreased due to the formation of a nitridation layer on the P#8
surface [16]. The stainless steel anode worked at higher voltages49
[17], but the electrode materials were found to corrode by the50
solvent to form Fe(NH3)sCL. Usually, the poisoning o1
electrocatalysts is considered a key factor affecting the rate52
limiting steps in AOR [13, 18, 19]. Consequently, designing an53
active and stable electrocatalyst with reasonable NH;54
adsorption/desorption sites i crucial to achieving a low55
overpotential and high current for AOR. In general, the nature 056
scaling relations creates a volcano curve based on Sabatier’s57
principle in which the optimal catalyst surface has neither t0058
strong nor too weak adsorption and is found at the apex [20-25].59
The moderate adsorption on an optimal catalyst in electrochemical60
reactions represents a balance between rates of the dissociatived1
adsorption of reactants and the desormption of intermediates and62
products. However, as heterogeneous catalytic reactions on metal63
surfaces involve complex networks of elementary steps, it is64
impossible to manipulate and enhance a single elementary step65
without affecting the energetics of all the other elementary steps66
[26]. Many efforts have been put on solving this paradoxical67
problem, including alloying metals from opposite sides of the68
volcano curve to achieve an optimum. However, the number 069
available alloys is limited by the miscibility of metal ions, so few/70
of the combination of elements can form a homogeneous alloy71
Additionally, most of the alloys are prone to form separated phases72
during the catalysis process which shortens the catalyst lifetime.73
Recently, a new class of materials called high entropy materials74
(HEMs) was discovered, which enables straightforward control of75
the electronic structure by changing the element atomic ratio in the76
homogeneous crystal [27]. To date, high entropy alloys, metal77
oxides, metal nitrides, metal caibides, metal diborides, metal78
halides, and metal chalcogenides has been synthesized [28-31].79
Instead of simply blending each metal cation, different atons with80
different d-band structure in HEM will merge uniformly into a81
single-phase crystal that allows for attaining a unique d-band82
structure with abundant active sites [27, 29, 32]. More recently83
HEM have been extensively utilized as catalysts in water splitting 84
CO, reduction, anode material for lithium ion battery and85
supercapacitor.[33, 34] These materials therefore can construct an86
uniform active phase with different metal atoms to achieve87
synergistic effect between different metal cations [35, 36]. As a88
result, high entropy materials is quickly becoming an active 89
research direction in materials research and can be the prominent90
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candidates for multistep reaction such as the activation of N-H
bonds and desorption ofthe N-N product together.

To maximize the efficiency and stability of transition metal
oxide electrocatalysts for AOR, we designed high entropy spinel
(Mn, Fe, Co, Ni, Cu);Os electrocatalysts in this work. This
equiatomic metal oxide was synthesized by using layered double
hydroxide as a mediator to form an entropy driven homogenous
spinel structure (Scheme 1). The electrocatalytic activity of the
high entropy spinel (Mn, Fe, Co, Ni, Cu);Os; exhibits a
substantially lower onset overpotential for AOR than its single
cation counterpart with a Faradic efficiency of N, production over
90%. The XPS study revealed that moderate nitrogen binding
strength was probably achieved by controlling electronic structure
of Mn and Cu active sites and is responsible for the optimized
performance because it benefits key reaction steps in AOR,
including the generation of the NH," cation radical, as well as the
adsorption of NH; and desorption ofthe final *N; species.

2. Experimental Information

Synthesis of high entropy oxide ((Mn, Fe, Co, Ni, Cu)304: As
shown in Scheme 1(Mn, Fe, Co, Ni, Cu);O4 was prepared by a
modified method from Ref. [37-39] which use layered double
hydroxides (LDHs) as precumor. In a typical synthesis, 0.3 g
polyethyleneoxide — polypropyleneoxide — polyethylene oxide
(PEO20-PPO70-PEO20, Pluronic P123) was dissolved in 15 mL
ethanol, then 10 mL H>O, and 45 mL ethylene glycol were added
to form a homogeneous solution. Next, 0.3mmol Co(Ac).-4H:0,
0.3mmol Ni(Ac)-4H20, 0.3mmol Mn(Ac):-4H20, 0.3mmol
Fe(Ac),, 0.3mmol Cu(Ac)'H.O and 0.21 g
hexamethylenetetramine (HMTA) were added into the mixed
solution under vigorous stirring for 45 min. After that, the solution
was transferred into a 100 mL stainlesssteel Teflon-lined autoclave
and heated at 170 °C for 15 h. It was then cooled to room
temperature, and the product was washed several times with water
and ethanol before dried at 60 °C, yielding the high entropy
hydroxide precursor. The HEO nanoparticles were obtained by
calcinating the precursor at 600 °C for 2h.

Electrochemical Measurement: The AOR Electrode was
fabricated from a mixture of 5 mg as-prepared high entropy oxide,
and 5 mg of carbon powder (Vulcan XC-72) dispersed in solvent
containing 0.5 mL of water, 0.5 mL of isopropy] alcohol, and 17.5
pL of neutralized Nafion solution (5 wt %, Sigma-Aldrich). After
thorough sonication, 20 pL of the catalyst ink was pipetted on the
carbon fiber paper (CFP), which was air-dried to obtain a mass
loading of 0.1 mg oxide/cn?. Cyclic voltammetry (CV) was

@ Springer | www.editorialmanager.com/nare/default.asp
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performed in a three-electrode configuration in 0.10 M KPFs60
acetonitrile solution using catalysts coated CFP as the working61l
electrode, Ag/Ag" as the reference electrode and Pt mesh as the62
counter electrode. The potential of Ag/Ag* was calibrated by the63
method in previous report.[16] The solution was saturated with64
NH; (UHP, Airgas) for 30 min before measuring the catalyst65
activities. The background currents were also collected by purgingb6
the solution with Ar for 30 min and then measuring under the same
conditions.

A chronopotentiometry test was performed in the same three
electrode system using NH; saturated 0.10 M KPFs acetonitrile
solution with continuous flow NHs over the electrolyte during the
test. The potential was set at 1.0 V vs NHE during the
measurement.

Electrochemical impedance spectroscopy (EIS): The EIS test
was conducted using a Bio-Logic SP300 electrochemical
workstation. The EIS measurements were carried out in NHj
saturated 0.10 M KPFs acetonitrile solution at 1.0 V vs NHE. The
spectra were collected in the frequency range from 0.10 to 100 kHz
with an amplitude of 10 mV.

Characterization of structure and chemical states: Powder x-ray
diffraction (XRD) patterns were collected on a Panalytical X Pert
PRO MRD HR XRD diffractometer with Cu Ko radiation. The
XRD pattern was refined by the HighScore Plus Rietveld
refinement program. SEM images were taken with a FEI XL3067
SEM-FEG microscope (operating voltage, 7 kV). The X-ray68
photoelectron spectroscopy (XPS) was performed by a Kratos69
Analytical Axis Ultra system, and all the spectra were calibrated to/0
the C Is transition set at 284.8 eV, The Transmission electron?l
microscopy (TEM) images were collected by a FEI Tecnai G272
Twin operating at 200 kV. The TEM samples were prepared by/3
dispersing the electrocatalysts in ethanol under sonication/4
anddepositing on a copper grid coated with a carbon film (Ted75
Pella, 01813). The size of nanoparticles was further determined’6
with Digital Instruments Dimension 3100 atomic force microscopy?7
(AFM) by drop-casting of nanoparticle suspension on silicon wafer/8
substrate. 79
3. Results and Discussion 80
As shown in Scheme 1. The (Mn, Fe, Co, Ni, Cu);0s was preparedS |
by a precursor morphology-directed strategy using metal LDH as82
precursors, and then LDH was annealed in air at 600°C to obtain83
(Mn, Fe, Co, Ni, Cu);O04. The structures of (Mn, Fe, Co, Ni, Cu);0,84
was investigated by X-ray diffraction (XRD). Before the85
calcination, the precursor displays unresolved diffraction peaks at86
the range of 33°-34° and 42°-43°, indicating mixing of many87
different phase. After calcination at 600C for 2h, the XRD pattern88
of (Mn, Fe, Co, Ni, Cu);O4displays seven major diffraction peaks89
at 30.9°, 35.7°.38.5°,43.9°, 54.3°,57.9°,63.9°, which could be wel90
indexed to (220), (331), (222), (400), (422), (511) and (440) planes91
of the spinel Cos0s (Fd3m) structure with standard powde®92
diffraction card number ICDD 01-076-1802. The broadening o£3
diffraction peak could be ascribed to the strong lattice distortion94
and nanometer size of (Mn, Fe, Co, Ni, Cu)3Os particle [39, 40].95
Obviously, this result indicates the Co, Cu, Fe, Mn, Ni-based?6
product exhibited a single-phase, the Fd3m spinel stucture, which97
is in line with (Mn, Fe, Co, Ni, Cu);04 stoichiometry. Detailed98
morphologies of (Mn, Fe, Co, Ni, Cu);O4 were further examined by99
SEM, TEM, and AFM. In Figure 1b and Figure S1, SEM and TENIOO
image demonstrates that the average size of (Mn, Fe, Co, Ni,

3

Cu);04is about 10 - 20 nm with a nanosphere like morphology.
Chemical compositions of these (Mn, Fe, Co, Ni, Cu);O4 was
further investigated by using energy dispersive X-ray (EDX) and
elemental mapping as shown in Figure S2. Each element of Mn, Fe,
Co, Ni, Cu disperses uniform across the whole region, implying the
homogeneous distribution of each element in (Mn, Fe, Co, Ni,

Cu);04 crystal. The EDX results in Figure S2 further show that the

= Co,0, ICDD 01-076-1802 4 - B
—— (Mn, Fe, Co, Ni, Cu]so‘

(311)

(222)
(220 1} = (400) (511)(440)
W\ T

R Precursor

Figure 1. (a) X-ray diffraction patterns of (Mn, Fe, Co, Ni, Cu);Os which is well
indexed to the spinel Co3O4 ICDD 01-076-1802 with F&3m structure; (b)TEM
image of (Mn, Fe, Co, Ni, Cu)304 and (c) SEM image and its corresponding
element mapping of Ni, Mn, Co, Fe, and Cu.

existence of all the metal cation atoms in the (Mn, Fe, Co, Ni,
Cu)304 crystal and they have nearly equiatomic ratio. Summarizing
of all of above results, we have successfully prepared high entropy
(Mn, Fe, Co, Ni, Cu);O4, The size and morphologies of (Mn, Fe,
Co, Ni, Cu);Osnanoparticle were further characterized by AFM. It
demonstrates the size of (Mn, Fe, Co, Ni, Cu);04 nanoparticle
ranges from 5 to15 nm, which is consistent to the size obtained by
TEM and SEM images.

The electocatalytic propetties of (Mn, Fe, Co, Ni, Cu);Osand its
single metal cation spinel materials were evaluated by cyclic
voltammetry (CV) and linear scan voltammetry (LSV). As shown
in Figure 2a and Figure S6a, the (Mn, Fe, Co, Ni, Cu);04 exhibits
substantially higher activity than other tested single metal cation
spinel electrocatalysts. This onset overpotential is about 0.2 V
lower than that of the most active single metal cation Mn3O4
electrocatalyst under similar electrocatalytic conditions. The (Mn,
Fe, Co, Ni, Cu);Osalso achieves a current density of 10 mA/cn?’ at
1.15 V vs. NHE and can reach 15 mA/ecn? at 1.2 V vs. NHE.
Moreover,the AOR mass activity of (Mn, Fe, Co, Ni, Cu);Os4 in
Figure 2b is 44 mA/cn’/mg. This mass activity is approximately 2
times that of Mn;Os electrocatalyst. To the best of our knowledge,
this is the first report that high entropy oxide can be a highly
efficient electrocatalyst with high AOR performance with respect
to current density and overpotential (displayed in Figure 2a and
Table S1). More interestingly, Figure 2c illustrates that (Mn, Fe, Co,
Ni, Cu)sO4 retains over 90% of the initial current density after 1h
reaction. The stability of (Mn, Fe, Co, Ni, Cu);0s were further
examined by repeated chronoamperometry and cyclic voltammetry
experiments. The AOR current density of (Mn, Fe, Co, Ni, Cu)304

www.theNanoResearch.com | www.Springer.com/jjournal/12274| Nano Research
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Figure 2. (a) Cyclic voltammetry of (Mn, Fe,Co, Ni, Cu);04 and its single metal cation counterparts in saturated 0.1M KPFs acetonitrile solution without any IR
correction; (b) Mass activity of (Mn, Fe, Co, Ni, Cu)304 and its single metal cation counterpart at 1.0V vs NHE. (¢) Chronoamperometric profiles of (Mn, Fe, Co, Nj,
Cu)304 in NHs saturated 0.1 M KPFs acetontitrile solution at 1.0V vs NHE; (d) Nyquist plots of (Mn, Fe, Co, Ni, Cu)304and its single metal cation counterparts in NH3

saturated 0.1 M KPF; acetonitrilesolutionat 1.0Vvs NHE.

in Figure S6b can maintain above 90% of its initial current density24
after three times continuous lh chronoamperometry tests at 1.05,25
0.95, and 0.90 V vs. NHE, indicating high catalytic stability o226
electrocatalysts during the AOR process. XRD analysis of (Mn, Fe27
Co, Ni, Cu);0s was performed before and after the AOR process t028
examine any possible phase changes, where no obvious shift 029
diffraction peaks in the XRD pattem (Figure S3) was observed 30
This result suggests that the structure of (Mn, Fe, Co, Ni, Cu);Os4 is31
stable during AOR process. Compared with the every single metal32
cation spinel oxide in Figure 2d, the small semicircle in (Mn, Fe,33
Co, Ni, Cu);04 represents a small charge-transfer resistance Re,34
implying that the increase of charge transfer rate favors fo35
enhancingthe AOR activity [41]. 36

Additionally, to examine the AOR products, we used mass37
spectroscopy to analyze the gaseous products during the AOR38
process as shown in Figure S4a. The calculated results from these39
data are illustrated in Figure 3a, b. They demonstrated a high40
nitrogen productionrate of more than 7.2mmol/mg/s with FE over 41

42
a 100F L 1

8r A L g 2 & F . 43
Il L sof

A 44

3 = o} 45

§4_ E 40} 46

g2 sol 47

48

%600 2100 2400 2700 3000 3300 3600 %800 Z100 2400 700 3000 3300 3600 49

Time (s) Time (s) 50
Figure 3. (a) N, evolution rate of (Mn, Fe, Co, Ni, Cu);Os in NHs saturate 1
0.1M KPFsacetonitrile solutionat 1.0 Vvs RHE (b) Faradaic efficiency of N». 57

90% at 1.0 V vs. NHE for (Mn, Fe, Co, Ni, Cu);04. Furthermore,33
we studied the formation of hydrazine by a reported colorimetric54
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method [42], as shown in Figure S4b. The absence of absomption
peak at around 456 nm indicated that there is no hydrazine
formation during the AOR process using (Mn, Fe, Co, Ni, Cu)3;04
as the electrocatalyst.

We ako analyzed the chemical states of all metal atoms by the
XPS. As shown in Figure 4a, the XPS peaks of Co 2p3; in the
(Mn, Fe, Co, Ni, Cu);O4 was centered at 780.5 eV. The Co 2p3»
peak can be deconvoluted with a main peak at 781.9 e Vand a peak
at 780.4 eV, which can be assigned to Co?" and Co>" [43-45]. In the
region scan of Fe 2p XPS spectra in Figure 4b, the 2ps» peak was
centered at 711.3 eV. The two fitted peaks for Fe 2ps»are
attributed to Fe** (712.7 e V) and Fe*" (710.9 e V), respectively [46].
For Ni 2p in Figure 4c, the 2ps» peak was centered at 854.9 eV.
The fitted peaks at 854.7 and 856.2 €V can be assigned to Ni** and
N#** of its 2psp respectively. Compared to their single cation spinel
oxide, no significant difference can be found for the XPS spectra of
Fe, Co, and Ni. Interestingly, the Mn 2ps»peak of (Mn, Fe, Co, Ni,
Cu);04 in Figure 4d locates at 641.3 eV and a clear blueshift can be
observed in the Mn 2pspregion compared to that of Mn3O4 which
locates at around 639.6 eV. Further peak deconvolution analysis of
Mn 2p3» demonstrates that the ratio of Mn*" (642.1 eV) to Mn**
(640.7 e V) is 1.3 while it is 0.8 in Mn3O4. This result indicates that
more percentage of Mn atoms are occupied in octahedral sites in
(Mn, Fe, Co, Ni, Cu)304[47]. The Cu 2p XPS spectraofthe (Mn,
Fe, Co, Ni, Cu);04 samples are also shown in Figure 4e. The center
of Cu 2psp spectrum of (Mn, Fe, Co, Ni, Cu);O4 were resolved into
two peaks at 933.4 eV and 934.5 eV respectively. The signal with
low binding energy (933.4 eV) was attributed to Cu', and the
signal at high binding energy (934.5 eV) was indicative of Cu**
along with its satellite from 938.0 to 948.0 e V. The ratio of Cu” to
Cu*" on the surface of (Mn, Fe, Co, Ni, Cu);0s is 3:1. However,
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negligible Cu” can be found in CuO. 46
In this study, the most important result was activity, selectivity47
and stability of the (Mn, Fe, Co, Ni, Cu);O4 during the AOR are48
substantially improved compared to that of their counterpart sing1e49
metal material. The interaction between each metal cations has
benefits for enhancing the AOR catalytic performance. At first 50
according to the d-band theory,[48] the valence electron filling of 51

a [Co,, (Mn, Fe, Co, Ni, Cu,0,| b [Fey, (Mn, Fe, Co, NI, Cu),0,] 52
Co* Co¥ Co,0, Fe;,Fe’* Fe2+ &
sat Cu’*@' satCD"l"ég sat . sat Fedir el 54
#0805 o0 795 70 785 760 195 w0 7a5 10 7 7 75 T 105 §§
Binding Energy (eV) Binding Energy (eV)
c Ny, (Mn, Fe, Co, Ni, Cuj,0] d Mn,, (Mnr;l.l_'l:g, Co, Ni, Cu),0, gg
N Nize NiOq M2 " Mo .0, 59
sat N.,ii g SatNi‘.:‘_‘@ Mn > 60
880 875 870 865 BED 855 850 655 650 645 640 635 6 1
Binding Energy (eV) Binding Energy (eV)
€ [Cu,, (Mn, Fe, Co, Ni, Cu),0, 2%
W 64
sat % 65
A&Kﬁl 66
95 960 955 950 845 oa0 936 930

Binding Energy (eV)

Figure 4. XPS spectra of (Mn, Fe, Co, Ni, Cu)304 and its single metal cation69
counterparts (a) Coap, (b) Feap, (¢) Nizp, (d) Mnzp, () Cugp. 70
metal-adsotbate antibonding states is govemed by the metal d-band;;
center relative to its Fermi level. Our XPS study in Figure 4
demonstrates that the concentration of Mn** and Cu* in (Mn, Fe,73
Co, Ni, Cu)3;04 are higher than their single metal cation counterpart.
The increase of Mn*" will downshift d-band center of Mn which’4
will have a weaker metal-adsotbate bond compared to the Mn3;04/5
while the increase of Cu® will upshift of the d-band center of Cu76
will result in the stronger binding of ammonia. However, previous
calculation studies have showed that the adsorption of ammonia on
Mn site was too strong in manganese oxide and a weak adsormption
of ammonia was found on the surface of Cu in CuO [49, 50]. We
consider that the d-band center of Mn and Cu in (Mn, Fe, Co, Ni,
Cu);04 therefore would attain a moderate metal ammonia bond
strength, so that it optimizes the key steps m AOR including
adsorption of NH3 and desorption of final *N, species, in
accordance with correlation between N species binding energy and
metal d-band electronic structure in previous repotts [13, 48, 51].
Also, the high entropy effect can help the dispersion of each metal
cations which forms a homogeneous solid solution and expose a
greater number of sites. A similar effect that combination of this
ensemble and charge trans fer between metal cations have also been
observed in high-entropy fluorite oxide [52].4. Conclusion

In summary, we studied the use of high entropy spinel (Mn, Fe, Co,
Ni, Cu);0s oxide as AOR electrocatalysts toward -efficient
N; generation. (Mn, Fe, Co, Ni, Cu);Os shows 0.7V onset
overpotential which is 0.15 V lower than that of the most active
single metal oxide, more than 90% N selectivity, and a high
15 mA/cn? current density at 1300mV vs. NHE. The current
density of (Mn, Fe, Co, Ni, Cu);O4also retains above 90% after 1 h
constant AOR. The XPS study clearly shows the difference of
electronic structure of Cu and Mn atomin (Mn, Fe, Co, Ni, Cu);04
compared to that of their single metal counterparts, which can
probably promote the formation of NHy' cation radical and
suppresses the side reaction of generating soluble metal-ammonia
complex for achieving a high yield of oxidizing ammonia to No.

5

This research opens up an opportunity to directly engineer atomic
composition of nanomaterial for a  high-performance
electrochemical oxidation of ammonia.
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