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Abstract

Ridge regression was introduced to deal with the instability issue of the ordinary
least squares estimate due to multicollinearity. It essentially penalizes the least
squares loss by applying a ridge penalty on the regression coefficients. The ridge
penalty shrinks the regression coefficient estimate towards zero, but not exactly
zero. For this reason, the ridge regression has long been criticized of not being able
to perform variable selection. In this paper, we proposed a new variable selection
method based on an individually penalized ridge regression, a slightly generalized
version of the ridge regression. An adaptive version is also provided. Our new
methods are shown to perform competitively based on simulation and a real data

example. Supplementary materials for some simulation results are available online.

1 Introduction

Regression analysis has been a very important technique in statistics. Its target is to study
how a response variable depends on one or more predictor variables. The most elementary
form of regression is ordinary least squares regression. It has wide applicability in all kinds
of application areas ranging from biomedical science to engineering to financial industry.

On top of the ordinary least squares regression, Hoerl and Kennard (1970) proposed
ridge regression, which penalizes the least squares loss by a Ly penalty on the regression
coefficients. The L, penalty was added mainly to deal with the instability issue of the
ordinary least squares estimate due to multicollinearity. See Hastie (2020) for a review on
ridge regression and related developments. The L, penalty shrinks regression coefficients
estimate towards zero, but not exactly zero. As a result, ridge regression has long been
criticized of not being able to perform variable selection.

The advance of modern technologies for data collection and storage has made it pos-
sible to collect many potential predictor variables while studying one response variable
of interest. Such advance made it highly desirable to conduct variable selection, and has
consequently motivated the reasearch area of variable selection. The fundmental goal of

variable selection is to identify important predictor variables that can be used to explain



how the response variable varies. There has been a very rich literature on variable se-
lection, as echoed by many review papers published in different journals and different
research areas such as Fan and Lv (2010); Anzanello and Fogliatto (2014); Barcella et al.
(2017); Desboulets (2018); Heinze et al. (2018); Kirpich et al. (2018); Talbot (2019).

The simplest type of regression is linear regression, for which many variable selection
methods have been developed. See Fan and Lv (2010) for a selective overview of variable
selection methods for linear regression. In particular, the least absolute shrinkage and
selection operator (LASSO, Tibshirani 1996) has been a very successful variable selection
method and is widely used. It essentially achieves variable selection by penalizing the
least squares loss by a L; penalty on the regression coefficients.

Tibshirani (1996) provided a geometric interpretation why the LASSO is capable of
performing varible selection while the ridge regression is not. The fundmental reason is
that the L; function is singular at the origin since the left and right derivatives at 0 are
not equal, while the Ly function is smooth. This singularity at the origin is the key to the
success of all LASSO-type variable selection methods. Examples are Tibshirani (1996);
Fan and Li (2001); Zou (2006); Zhang and Lu (2007); Zhang (2010) among many others.

In this paper, we will work closely with the ridge regression and propose a new variable
selection method based on it. We consider a more general version of the classical ridge
regression: individually penalized ridge regression. Instead of using a same ridge regular-
ization paramter for all regression coefficent components as done in the ridge regression,
the individually penalized ridge regression uses different ridge regularization parameters
for different regression coefficient components. Intuitively speaking, the individual ridge
regularization parameter corresponding to a small true regression coefficient should be
set to be large to apply more shrinkage to its corresponding estimate towards zero, and
vice versa. In the extreme, if an infinity individual ridge regularization parameter is used,
the corresponding ridge estimate will be exactly zero. In this way, the job of variable
selection boils down to the identification of regression coefficient components for which
we should use an infinity individual ridge regularization parameter. The main objective
of the current paper is to devise a new method to achieve this goal. There are some ealier
tries along this line. Examples are Joseph and Delaney (2008) and Wipf and Nagarajan
(2008) based on Bayesian approaches. Shao and Deng (2012) proposed another variable
selection method based on ridge regression via thresholding. Frommlet and Nuel (2016)
proposed an adaptive ridge procedure for Ly regularization.

The rest of the paper is organized as follows. Section 2 reviews the classical ridge

regression. Our new method, ridge selection operator, is presented in Section 3, with its



adaptive version given in Section 4. Section 5 compares our new methods with the LASSO
and adaptive LASSO (Zou 2006; Zhang and Lu 2007) together with other methods using
simulation studies. A real data example is given in Section 6. We conclude with a brief

discussion in Section 7.

2 Classical ridge regression

We consider the most elementary linear regression model

p
Y:ﬂo—FZXJﬂj—FG
j=1
with p-dimension predictors X, X, ..., X, and random error € of mean zero and a finite
variance. The interest is to estimate the unknown regression coefficients 5y and B =
(B1, B2y - -, Bp)" based on a random sample {(x;,y;) : ¢ = 1,2,...,n} from this linear
regression model, where x; = (21, Zs2, ..., 7). We denote y = (y1,¥2,---,Yn)", and
X = (x1,Xs,...,%,)T. We assume without loss of generality that the predictors have

been standardized such that

XT]—nXl :Opxl and Z‘(E?j:na j:1727-"7p7 (1)
i=1
where 1,,; denotes a n x 1 vector of ones and 0,1 a p x 1 vector of zeros. Here for method
development, it is not required to rescale each predictor to have variance one. But as
common in practice, such a rescaling can also be applied to each predictor beforehand.
Hoerl and Kennard (1970) proposed to penalize the least squares loss by a Lo penalty
(also called the ridge penalty). The classical ridge regression estimates of the regression
coefficients By and B are defined as the optimizer of
¢ T2 Y 3 2
min _Z<yi_ﬁ0_xi B) +§Zﬂj (2)
j=1
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with ridge regularization parameter v > 0. It is obvious that the ridge regression estimate

simplifies to the ordinary least squares estimate when v = (0. The ridge regression has

enjoyed great success and been widely used since its inception.

3 Variable selection via individually penalized ridge regression

Our interest is sparse regression with some components of the true regression coefficients

being exactly zero. Let A = {j : B; # 0} be the set of important predictors.
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3.1 Individually penalized ridge regression

Towards variable selection, we consider a slightly generalized version of the classical ridge

regression (2), namely individually penalized ridge regression

RN rae ., Ly 2
miy 5 2= S XA+ 5 3w (3)

i—
with v; > 0 for 7 = 1,2,...,p. The only difference is that different ridge regularization
parameters may be used here for different regression coefficient components while a same
ridge regularization parameter is used for all regression coefficient components in (2). By
incorporating the intercept term, we denote the augmented data by x; = (1,x7)7 and
X = (X1,%2,...,%)T = (Lox1, X). The solution of (3) is given by

(o, BT) = [X7X + ding((0,47)")] Xy,

where v = (v1,vs,...,1,)" and diag(r) denotes a diagonal matrix with elements of v

sitting on the diagonal.

3.2 Ridge selection operator

It is well known that the ridge penalty shrinks the regression coefficient estimates towards
zero due to the Lo penalty. Intuitively, a large ridge penalty should be used if the cor-
responding true regression coefficient is zero or of a small magnitude. More precisely, a
large ridge regularization parameter v; should be used if the absolute value of the cor-
responding true regression coefficient §; is small, and vice versa. In extreme, if v; = oo
is used in (3), the corresponding optimizer Bj will be exactly zero. If we know a priori
which components of the true regression coefficients are zero, we can set the correspond-
ing ridge regularization parameters to be infinity in (3) to achieve variable selection. The
challenge is that we do not have this a priori information in hand. In fact, if we know
this information beforehand, there is no need to perform variable selection any more.

Motivated by Stefanski et al. (2014), we propose the following idea to let the data
speak for themselves and tell us which components favor an infinity ridge regularization
parameter in (3), achieving variable selection.

We reparametrize A\; = 1/v; and A = (A1, g, ..., A\,)7, and introduce notation A™' =
(1/A1,1/Ag, ..., 1/A,)T. As a result, v = A~'. With these notations, the solution of (3)

is given by
(Bo. BT = (Bo(N). BV = [XTX + diag((0, A )")")] KTy (4)
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and the corresponding hat matrix is
~ [ 1
H(\) = X | XTX + diag((0, (xl)T)T)] X7 (5)

We propose a new variable selection method by solving

min - (y —HA)y,y —HA)y) (6)
subject to  A\; > 0,7 =1,2,...,p; (7)

i)\j <7 (8)

for some regularization parameter 7 > 0, where (-, -) denotes the standard inner product
operator. The nonnegativity constraint in (7) is easy to understand since J; is the recip-
rocal of the nonnegative ridge regularization parameter v;. The additional constraint (8)
enforces to apply certain amount of ridge regularization measured by the harmonic mean

of the ridge regularization parameters:

- >
p

Denote the optimizer by A 2 (A, Az, - ,XP)T = (A (1), Aa(7), ... ,/):p(T))T 2 (7).
For an appropriately tuned 7, some components of the corresponding optimizer will be

REES

exactly zero. Then an estimate of the set of important predictors is given by A= {j:

;\\j > 0} as explained next. We name the proposed new method ridge selection operator
(RSO).
3.3 Some implementation issues

Within the feasible domain specified by constraints (7) and (8), some components of A
could be exactly zero. In this case, the second term inside the hat matrix H(A) cannot
be evaluated exactly in this way since it may have the potential issue of inverting zero in

A~!. This potential issue can be perfectly avoided by noting that

XX + diag((0, Wl)T)T)]_l - [( 0 XOTX > * ( 8 diago(/\—l) )]

B 1/n o’
B < 0 [XTX+diag()\_1)}_l> (9)



due to (1), and further that
[XTX + diag(A™1)] ™ = diag(VA) [diag(\/X)XTXdiag(\/X) + I] ~ diag(VA),  (10)

where vV = (VA Ve, \/)\_p)T and I denotes the identity matrix of an appropriate
size depending on the context. It retains the symmetric property of the hat matrix, and
can be used in the implementation of the objective function in (6) to avoid any numerical
issue of dividing by zero in A~L.

Note that if Xj = 0, the corresponding estimate of ; is also exactly zero, namely
BJ(X) = 0, since

BA) = [X'X+diag A )] X"y
= ding(VA) [ding(vA)X" Xdiag(VX) + 1] ! diag(VA)XTy

due to (9) and (10). It provides justification for A = {j : /):j > 0} to be used as an
estimate of the set of important predictors.

It looks like that we need to invert a p X p matrix in (10). By noting that if X is sparse
with some components being zero, diag(v/A)X”Xdiag(v/A) + I can be transformed to a
block diagonal matrix after applying an appropriate row permutation and the correspond-
ing column permutation. Inverting this block matrix essentially needs only to invert a
matrix of size #(A) x #(A), where #(A) denotes the number of nonzero components in
A

It can be shown that the equality “=" in (8) will always be attained at the optimal
solution. Consequently it is equivalent to replace constraint (8) with an equality constraint

-1 Aj = 7. The corresponding optimization problem with > 7 \; =17

min (y —HQA)y,y —HA)y) (11)
subject to  A\; > 0,7 =1,2,...,p; (12)

i)\j =T (13)

can be efficiently solved by using the modified coordinate descent algorithm introduced
in Stefanski et al. (2014). More explicitly, suppose that the current solution is @) =
(X@,Xé‘”, . ,Xéc))T and we are updating the jth component. Let e; be the jth standard
basis for the p dimensional Euclidean space. Namely e; is a vector of length p with its
jth element being one and all other elements zero. Denote X(_C; = (/)\\ — /):g-c)ej) / Zj, £ Xﬁ.
Then for any v € [0, 7], vx(f; + (7 — 7)e, satisfies the nonnegativity constraint (12) and
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the sum-to-7 constraint (13). We update the solution by ?3\(_0; + (7 —7)e;, where 7 is
given by

7 = argmin, <y ~HOA) + (1 —7)e))y,y — HOAY + (7 — V)Gj)}’> :

We repeat cycling through 7 = 1,2,..., p until convergence.

3.4 How does it work in the orthonormal design case?

Note that the hat matrix H(A) can be simplified as

-1

H(\) = )z[)zT)szdiag((O,()\_l)T)T)} X7

_ i( 1/7’L OT » ) XT
0 [XTX + diag(A™)]

-1

1
= 1y + X [X"X +diag(A™")] X"
n

by using (9) and consequently

-1

HA)H(A) = %J + X [XTX + diagA™)] " XTX [XTX + diag(A™)] T X7

since X is column centered and satisfies (1). Here J denotes a n x n matrix of ones.

With the above simplification, the objective function of (6) simplifies to
(y —HN)y,y —HN\)y)
= y'y -2y HA)y +y H(AHX)y
1 _
= ¥y — "Iy 2y X [X'X + diag(A )] Xy

+yTX [XTX + diag(A™)] 7 XX [XTX + diag A )] X y
— 37y —2y7X [X"X + diag A )] X y.
+yTX [XTX 4 diagA™)] 7 XTX [XTX + diag A )] X y,,  (14)

where y. =y — 1Jy denotes the centered y.

n
To gain further insights, we consider the special orthonormal design case with X7 X =



I. In this case, the right hand side of (14) simplifies to

yye — 2yTX [I+ diagA™)] ' Xy, + y? X [1+ diag(A™")] " I [T+ diag(A™)] " X"y,
p
Aj

= viy. -2 32 32

Ye e ZH—)\ Pi+ Z(1+>\ ) J
_ T Aj 23 22
= ycyc+Z(1 - m) B; _Zﬂj

Jj=1 j=1
p [V

= Z(l — ——)?7 4 constant, (15)

1+

j=1

where EJ denotes the jth component of the corresponding ordinary least squares estimate
B = X'y, in the orthonormal design case and the constant term in (15) does not depend
on A.

With the above simplification for the special orthonormal design case, the optimization

problem (6) simplifies to

P
1 22
min ——0 (16)
A ; (1+ ;)2
subject to  A\; > 0,7 =1,2,...,p;
p
j=1

The objective function of (16) is as simple as an additive function of A;’s.

3.5 A toy example for the orthonormal design case

Now we use a toy example to illustrate how the solution path looks like for the orthonormal
design case (16) explained above. Take B = (3,1.5,.1,.08,2,.15,.2,.05)T for example.
The big values of 517 32, and 55 indicate important predictors and small values of other
components indicate unimportant predictors, trying to mimic the simulation example to
be presented in Section 5.

In the top-left panel of Figure 1, we plot the solution path of the optimizer X of (16) as
a function of 7. It clearly shows that it does generate sparsity along the solution path. In
particular, Xl, /):2, and }:5 corresponding to “important” predictors quickly changed from
zero to nonzero as 7 increases from zero. In addition, the optimizer X increases gradually

as the regularization parameter 7 increases. This gradual increasing pattern is similar to
that of the LASSO solution path.



The bottom-left plot of Figure 1 presents the corresponding solution path of the in-
dividually penalized ridge regression estimate B\ corresponding to the optimizer X as a
function of 7. Note that the sparsity of X is maintained in the corresponding individu-
ally penalized ridge regression estimate, leading to successful variable selection as desired.
It is remarkable to note that the magnitude of any nonzero components of B increases
rapidly to near its corresponding maximum once moving away from zero. This rapid

early-stage change makes the RSO estimate less biased, and is much different from the

rather slow change of X. This difference is due to the relationship Bj = ’\—i Bj for the or-
1 .
thonormal design case being considered. Note that <1+/\ @) (1+A BJ 1+—XJ)2 is

monotonically decreasing over )\j € [0,00). This is due to the reparametrization A = v~

Note that the above simplification was made possible only with the assumption of
orthonormal design. Of cause, real-world applications are complicated and orthonormal
design is most likely an unrealistic assumption. Yet the above discussion sheds some

important insights on how the proposed RSO works.

4  Adaptive variable selection via adaptively weighted individually penalized ridge regression

Note that different regression parameter components are treated equally in the aforemen-
tioned RSO optimization problem (6) based on the individually penalized ridge regression
(3). Yet we may treat different regression coefficient components differently by incorpo-
rating some prior information as done in the adaptive LASSO (Zou 2006; Zhang and Lu
2007). By using adaptive weights, the adaptive LASSO has been shown to enjoy superior
properties than the original LASSO (Tibshirani 1996).

4.1 Adaptively weighted individually penalized ridge regression

More precisely, we can consider the following adaptively weighted individually penalized

ridge regression
n

min % > (i — Bo—x[B) ZwmﬁQ (17)
=1

with regularization parameter v; > 0 and prespecified welght w; > 0for j =1,2,...,p.
The weights w;’s are prespecified in such a way to incorporate our prior knowledge on
the relative importance of different predictors with more (resp. less) important predic-

tors receiving smaller (resp. larger) weights. Denote w = (wy,wa,...,w,)". Then the
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Figure 1: Solution paths of a toy example for the orthonormal design case: RSO on the
left and aRSO on the right; p path in the top row and ,é\ path in the bottom row.

corresponding optimizer of (3y, 37)7 is given by

0’ .

XTX + XTy. 18
0 diag(w)diag(v) Y (18)
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With similar reparametrization v = A™!, we denote the corresponding hat matrix for the

above adaptively weighted individually penalized regression by

Y | YT 0 0" - <7
H,(\) =X [X X + ( 0 disg(w)ding(A-) >] X, (19)

4.2 Adaptive ridge selection operator

The corresponding adaptive variable selection is to solve

min - (y — Ho(Ny,y — Hw(A)y) (20)
st. A\ 2>0,7=12,...,p;

i)\j S T
j=1

for appropriately tuned 7 > 0. The aforementioned potential issue of inverting zero can
happen in Hy () and the objective function of (20) as well. But it can be similarly

addressed as follows by noting that the second term in Hy (A) can be rewritten as

S 0 07 -
[X X ( 0 diag(w)diag(A™1) )]

B 1/n o’
B 0 [XTX + diag(w)diag(A™)] -
and
[X"X + diag(w)diag(A™")] ! = diag(VX) [diag(\/X)XTXdiag(\/X) + diag(w)] - diag(V'X).

For the choice of weight parameter w;, we may use the reciprocal of the absolute
value of the corresponding component of the ordinary least squares estimate as done in
the adaptive LASSO (Zou 2006; Zhang and Lu 2007). This adaptive version of our newly

proposed variable selection method is named as adaptive ridge selection operator (aRSO).
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4.3  The orthonormal design case

The above discussion for the orthonormal design case extends straightforwardly to the
aRSO. For the adaptive RSO, (16) simplifies to

P
1 a2
min — 0 (21)
DY) ey
subject to A, >0,7=1,2,...,p;

i)\j S T
j=1

in the orthonormal design case.

For the above toy example, the corresponding paths for this adaptive version (21)
with weights w = |E|f1 are given in the top-right and bottom-right panels of Figure 1.
A similar pattern is observed. But the rapid early-stage change in B is more dramatic,
making the aRSO estimate even less biased. That is exactly the advantage of the weighted
version by using a smaller weight on the ridge penalty term for predictors with regression
coefficients of a larger magnitude.

5 Simulation studies

In this example, data are generated from the model
Y = fo+ X8+ o,

where 3y = 0, 8 = (3,1.5,0,0,2,0,0,0), and ¢ ~ N(0,1). The predictors are gener-
ated from a multivariate Gaussian distribution with zero mean vector and cov(X;, Xj) =
0.5, This example is taken from Example 1 of Fan and Li (2001). An independent test
set of size 10000 is generated to evaluate prediction performance of each method being
considered. Different signal-to-noise ratios will be considered by varying ¢ and training
data of different sample sizes will be used to illustrate the performance of the proposed
(adaptive) RSO.

We compare the proposed (adaptive) RSO with the (adaptive) LASSO. Both methods
involve some regularization parameter to be tuned. In our implementation, we tune any
necessary regularization parameter by using BIC as it has been shown that the BIC is
better for variable selection consistency than AIC or cross validation (Wang et al. 2007).
The calculation of BIC requires to gauge the degrees of freedom. For any variable selection

method, its estimate’s number of nonzero components can be used as one measure of the
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degrees of freedom. Note that the (adaptively weighted) individually penalized ridge
regression estimate has a closed-form representation (4) and (18). The corresponding hat
matrix is well defined as presented above in (5) and (19). In this case, the trace of the
corresponding hat matrix can also be used as another measure of the degrees of freedom
according to Ye (1998). But this alternative choice is not available for the (adaptive)
LASSO. For our new method (adaptive) RSO, we implement BIC using both measures
of degrees of freedom. We use BICtr and BICO to denote BIC based on the trace of the

hat matrix and the number of nonzero estimate components, respectively.

5.1 Simulation results

As in Fan and Li (2001), we consider three cases: 0 = 1 and n = 60, 0 = 1 and n = 40,
and 0 = 3 and n = 40. For these three cases, Tables 1, S.1 and S.3 (in Supplementary
Materials) summarize the corresponding simulation results of the comparison between
the proposed variable selection method (adaptive) RSO and the (adaptive) LASSO over
100 random repetitions. We report the frequency for each predictor being selected and
average prediction error (with standard errors in parentheses) over the independent test
set. The last column reports the frequency of solution path being consistent, namely the
true model with Xy, Xy and Xj is included along the solution path (Yuan and Lin 2007).

It is observed that the important predictors X;, X5, and X5 are selected every time
out of the 100 repetitions for all four methods in the two cases with ¢ = 1. When the
signal-to-noise ratio decreases as ¢ increases to 3, the important predictors are not selected
all the time, but still with a high frequency. On the other hand, unimportant predictors
are selected at relatively low frequency. Overall, the (adaptive) LASSO is shown to have
a better variable selection performance than the (adaptive) RSO. Especially, the adaptive
LASSO does much better.

To figure out why the (adaptive) RSO is not performing well in terms of variable
selection, we take a closer look at the (adaptive) RSO solution path. In the last column of
these three tables, we report the frequency of solution path consistency. We are surprised
to observe that the (adaptive) RSO does no worse, even slightly better, than the (adaptive)
LASSO in terms of solution path consistency. It indicates that the unsatisfactory variable
selection performance of the (adaptive) RSO is not due to the method itself. It may be
blamed on the tuning method we have adopted.

Note that the LASSO, RSO, and (adaptive) RSO all lead to a biased estimate. Only
the adaptive LASSO was shown to be asymptotically unbiased. We propose a refitting

step as follows to correct estimation bias for the regression coefficients. For each (adaptive)
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RSO or (adaptive) LASSO estimate ,@ along the solution path, we denote the correspond-
ing estimated set of important predictors by A= {j: EJ # 0}. We obtain the refitted
regression coefficients estimate by performing ordinary least squares regression of Y on
{X;:j¢€ .Zl/}, where no penalty term is used to avoid introducing estimation bias. To
be more specific, for our proposed RSO, the RSO estimate is B(X(T)) using the above
notations in Section 3. For each 7, the corresponding estimate set of important predictors
is .Z(T) ={j: B](X(T)) # 0}, and refitting is done by performing ordinary least squares
regression of Y on {X; : j € A(r)}.

The performance of different methods after the refitting step is shown in Tables 2, S.2
and S.4 (in Supplementary Materials). Note that the BICtr is not appropriate for the
(adaptive) RSO with refitting any more and is not used. We observe that the refitting
improves the variable selection results for all methods. The proposed (adaptive) RSO
performs competitively, even with a slight advantage, and the adaptive RSO does better
than the RSO.

All numerical examples are done in R (R Core Team 2018). The (adaptive) LASSO
was implemented using the “glmnet” package, which provides a full solution path. On
the other hand, the tuning of the proposed (adaptive) RSO is based on a grid search in
our implementation. We know that the solution path-based tuning is computationally
much more efficient. Considering this, we track the CPU time needed to run the RSO or
LASSO for a single tuning parameter. On average the RSO takes 59 milliseconds while
the LASSO is much faster and takes only 1 milliseconds on a laptop equipped with Intel
Core i7-7600U CPT 2.80GHz. We admit that the proposed RSO (resp. adaptive RSO) is
slower than the LASSO (resp. adaptive LASSO). Yet it is fast enough to run all numerical
examples on a laptop.

Upon the request of a reviewer during the review process, we also include comparison
with SCAD (Fan and Li 2001), MCP (Zhang 2010), and SDAR (Huang et al. 2018). It
is observed that SCAD, MCP and SDAR perform better than LASSO, RSO and aRSO
as shown in Tables 1, S.1 and S.3 (in Supplementary Materials). Yet Tables 2, S.2 and
S.4, shows that with a refitting step LASSO, RSO and aRSO perform very similarly as
SCAD, MCP and SDAR.

5.2 Solution path

For a random sample of the case with n = 60 and ¢ = 1, Figure 2 presents the corre-
sponding solution paths of p (in top panels) and B (in bottom panels). The left panels
are for the RSO while the right panels for the adaptive RSO. It clearly shows that the
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Table 1: Simulation results for ¢ = 1 and n = 60.

Selection frequency
test error path
X1 Xo X3 Xy X5 X X7 Xg
BICtr | 100 100 28 27 100 29 32 37 | 1.144 (0.008)
aRSO 100
BICO | 100 100 19 23 100 24 22 26 | 1.160 (0.009)
aLASSO | BICO [ 100 100 3 6 100 3 3 5 | 1.110 (0.007) | 100
RSO BICtr | 100 100 42 49 100 48 53 67 | 1.188 (0.010) o5
BICO | 100 100 41 43 100 43 41 61 | 1.198 (0.011)
LASSO | BICO | 100 100 28 26 100 21 24 21 |1.163 (0.010) | 95
SCAD | BICO | 100 100 2 6 100 3 1.109 (0.007) | 100
MCP BICO | 100 100 3 7 100 3 1.114 (0.008) | 100
SDAR | BICO | 100 100 3 8 100 3 1.115 (0.008) | 98
Table 2: Post-refitting simulation results for ¢ = 1 and n = 60.
Selection frequency
test error
X1 Xo X3 Xy X5 Xg X7 X
aRSO | BICO [ 100 100 2 6 100 3 4 7 | 1.116 (0.008)
aLASSO | BICO | 100 100 3 8 100 3 4 7 | 1.118 (0.008)
RSO BICO | 100 100 2 10 100 2 2 6 | 1.114 (0.008)
LASSO | BICO | 100 100 2 10 100 2 2 6 | 1.114 (0.008)

(adaptive) RSO can really perform variable selection and the adaptive RSO produce less

bias with the more rapid early-stage change as explained earlier in the toy orthonormal

design example.
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Figure 2: Solution paths of a random sample of the example in Section 5.

5.3 High dimensional case

We next consider a high dimensional case with p = 1000 predictors. Predictors are
generated in the same way and the response is also generated in the same way Y =
3X1 + 1.5X5 + 2X5 + oe as above. In Table 3, we report the simulation results over 100
repetitions for the case with n = 200 and ¢ = 1 only. Since the dimensionality p = 1000
is larger than the sample size n = 200, the ordinary least squares estimate is not well

defined. In this case, it is not clear how to specify the adaptive weights in the adaptive
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RSO and adaptive LASSO, and consequently we only apply the RSO and LASSO. For
the simulation results reported above, we have learned that the tuning with BICO does
slightly better than the tuning with BICtr. In this example, we only choose to implement
the tuning with BICO.

In Table 3, we report the selection frequency of important predictors X, X5, and Xj5
as well as the average selection frequency of unimportant predictors. It is observed that
all the important predictors are selected across all 100 repetitions while the unimpor-
tant predictors are selected at very low frequency for both methods. The solution path
consistency is also high for both methods.

A refitting step could potentially be added to improve variable selection results as well
as prediction results in terms of test error as done above. In addition, note also that the
number of predictors is larger than the sample size in this example. It was shown that
the BIC is not an optimal tuning method for such a case (Chen and Chen 2008). They
proposed an extended BIC, which has been shown to perform better in terms of variable
selection consistency for the case with a diverging p. We may also try to improve our
simulation results by using the extended BIC. Yet the main goal of this current example
is to illustrate that the proposed RSO can be applied to high dimensional data even when
the dimensionality is larger than the sample size. As a result, we skip the refitting step

and do not implement the extended BIC.

Table 3: Simulation results for a high dimensional case with o = 1, n = 200, and p = 1000.

Selection frequency
Important Average over unimportant test error path
X: Xo X5 X;:j¢ A

RSO | 100 100 100 4.35 (0.34) 1.710 (0.335) | 100

LASSO | 100 100 100 1.13 (0.14) 1.173 (0.136) | 100
SCAD | 100 100 100 0.05 (0.02) 1.044 (0.002) | 100
MCP | 100 100 100 0.28 (0.08) 1.046 (0.002) | 100

SDAR | 100 100 100 6.57 (0.09) 1.353 (0.008) | 100
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6 A real data example

In this section, we are going to use one real dataset to illustrate the performance of
our new methods in comparison with the (adaptive) LASSO. The dataset is available at
the UCI Machine Learning Repository at https://archive.ics.uci.edu/ml/datasets/
Superconductivty+Data. It contains 81 features extracted from 21263 superconductors
along with the critical temperature. The goal is to predict the critical temperature based
on these features. See Hamidieh (2018) for more details on the dataset’s background.
We simply consider the linear regression model by regressing the critical temperature on
these 81 features. We randomly sample 200 observations as training data. The rest is
used at the test set. We apply the proposed (adaptive) RSO or the (adaptive) LASSO on
the training data to perform variable selection with BICO tuning. The selected model for
each method is applied to the test set to evaluate its prediction performance in terms of
test error. The whole process is repeated for 20 times. We report the average number of
selected features and the average test error with refitting and without refitting for all four
methods: RSO, LASSO, aRSO, and alLASSO in the first half of Table 4. The performance
of SCAD, MCP and SDAR is reported similarly in the second half of Table 4. Numbers
in parentheses are the corresponding standard errors. It shows that the (adaptive) RSO
and the (adaptive) LASSO perform similarly. The (adaptive) RSO does slightly better in

terms of prediction error by selecting a couple of more features.

Table 4: Results of the real data example.

without refitting with refitting
no. test error no. test error
RSO 12.35(0.66) 452.332(8.140 10.15(0.93 457.959(8.385

)
460.664(9.314)
438.644(8.123)
471.784(9.689)

) (
LASSO | 9.65(0.87)  467.456(8.687) | 10.40(1.24
aRSO | 14.05(0.78)  443.133(7.379) | 15.30(0.95
aLASSO | 11.95(1.32) 474.880(11.055) | 13.55(1.09

SCAD | 12.05(0.74) 457.185(5.823)
MCP 9.65(0.78)  466.867(6.639)
SDAR | 8.40(1.06)  470.813(6.467)

)
)
)
)
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7 Discussion

In this paper, we propose a new variable selection method based on ridge regression, which
has been criticized of not being able to perform variable selection. The proposed method
requires tuning of the corresponding regularization parameter, which is typical for many
variable selection methods. The current implementation is based on a grid search over
a set of candidate regularization parameters. This grid search tuning method has long
been recognized to be computationally inefficient. For many existing variable selection
methods, solution path following algorithms have been developed. Efficient regularization
parameter tuning can be achieved based on solution paths. It is not immediately clear how
to develop a solution path following algorithm for the proposed new methods of variable
selection. This can be a potential future research topic to be investigated. During the
review process, AE and one reviewer asked whether the proposed new method can be
extended to generalized linear model (GLM) and Cox proportional-hazards model (COX).
In theory, the answer is positive as long as the ridge penalized solution for GLM and
COX is well defined. Yet the ridge penalized solution for GLM and COX does not have a
closed-form expression as in the linear regression case. This will make the corresponding

implementation very computationally challenging.
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Supplementary Materials

Additional simulation results: A separate pdf file contains the simulation results of
the simulation example in Section 5.1 for the case with ¢ = 1 and n = 40, and the

case with o = 3 and n = 40.

R code: A file (RSO.R) contains the R code for the ridge selection operator and an-
other file (demoRSO.R) demonstrates how to apply the ridge selection operator and

perform refitting.
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