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Abstract

Ridge regression was introduced to deal with the instability issue of the ordinary

least squares estimate due to multicollinearity. It essentially penalizes the least

squares loss by applying a ridge penalty on the regression coefficients. The ridge

penalty shrinks the regression coefficient estimate towards zero, but not exactly

zero. For this reason, the ridge regression has long been criticized of not being able

to perform variable selection. In this paper, we proposed a new variable selection

method based on an individually penalized ridge regression, a slightly generalized

version of the ridge regression. An adaptive version is also provided. Our new

methods are shown to perform competitively based on simulation and a real data

example. Supplementary materials for some simulation results are available online.

1 Introduction

Regression analysis has been a very important technique in statistics. Its target is to study

how a response variable depends on one or more predictor variables. The most elementary

form of regression is ordinary least squares regression. It has wide applicability in all kinds

of application areas ranging from biomedical science to engineering to financial industry.

On top of the ordinary least squares regression, Hoerl and Kennard (1970) proposed

ridge regression, which penalizes the least squares loss by a L2 penalty on the regression

coefficients. The L2 penalty was added mainly to deal with the instability issue of the

ordinary least squares estimate due to multicollinearity. See Hastie (2020) for a review on

ridge regression and related developments. The L2 penalty shrinks regression coefficients

estimate towards zero, but not exactly zero. As a result, ridge regression has long been

criticized of not being able to perform variable selection.

The advance of modern technologies for data collection and storage has made it pos-

sible to collect many potential predictor variables while studying one response variable

of interest. Such advance made it highly desirable to conduct variable selection, and has

consequently motivated the reasearch area of variable selection. The fundmental goal of

variable selection is to identify important predictor variables that can be used to explain
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how the response variable varies. There has been a very rich literature on variable se-

lection, as echoed by many review papers published in different journals and different

research areas such as Fan and Lv (2010); Anzanello and Fogliatto (2014); Barcella et al.

(2017); Desboulets (2018); Heinze et al. (2018); Kirpich et al. (2018); Talbot (2019).

The simplest type of regression is linear regression, for which many variable selection

methods have been developed. See Fan and Lv (2010) for a selective overview of variable

selection methods for linear regression. In particular, the least absolute shrinkage and

selection operator (LASSO, Tibshirani 1996) has been a very successful variable selection

method and is widely used. It essentially achieves variable selection by penalizing the

least squares loss by a L1 penalty on the regression coefficients.

Tibshirani (1996) provided a geometric interpretation why the LASSO is capable of

performing varible selection while the ridge regression is not. The fundmental reason is

that the L1 function is singular at the origin since the left and right derivatives at 0 are

not equal, while the L2 function is smooth. This singularity at the origin is the key to the

success of all LASSO-type variable selection methods. Examples are Tibshirani (1996);

Fan and Li (2001); Zou (2006); Zhang and Lu (2007); Zhang (2010) among many others.

In this paper, we will work closely with the ridge regression and propose a new variable

selection method based on it. We consider a more general version of the classical ridge

regression: individually penalized ridge regression. Instead of using a same ridge regular-

ization paramter for all regression coefficent components as done in the ridge regression,

the individually penalized ridge regression uses different ridge regularization parameters

for different regression coefficient components. Intuitively speaking, the individual ridge

regularization parameter corresponding to a small true regression coefficient should be

set to be large to apply more shrinkage to its corresponding estimate towards zero, and

vice versa. In the extreme, if an infinity individual ridge regularization parameter is used,

the corresponding ridge estimate will be exactly zero. In this way, the job of variable

selection boils down to the identification of regression coefficient components for which

we should use an infinity individual ridge regularization parameter. The main objective

of the current paper is to devise a new method to achieve this goal. There are some ealier

tries along this line. Examples are Joseph and Delaney (2008) and Wipf and Nagarajan

(2008) based on Bayesian approaches. Shao and Deng (2012) proposed another variable

selection method based on ridge regression via thresholding. Frommlet and Nuel (2016)

proposed an adaptive ridge procedure for L0 regularization.

The rest of the paper is organized as follows. Section 2 reviews the classical ridge

regression. Our new method, ridge selection operator, is presented in Section 3, with its
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adaptive version given in Section 4. Section 5 compares our new methods with the LASSO

and adaptive LASSO (Zou 2006; Zhang and Lu 2007) together with other methods using

simulation studies. A real data example is given in Section 6. We conclude with a brief

discussion in Section 7.

2 Classical ridge regression

We consider the most elementary linear regression model

Y = β0 +

p∑
j=1

Xjβj + ε

with p-dimension predictors X1, X2, . . . , Xp and random error ε of mean zero and a finite

variance. The interest is to estimate the unknown regression coefficients β0 and β =

(β1, β2, . . . , βp)
T based on a random sample {(xi, yi) : i = 1, 2, . . . , n} from this linear

regression model, where xi = (xi1, xi2, . . . , xip)
T . We denote y = (y1, y2, . . . , yn)T , and

X = (x1,x2, . . . ,xn)T . We assume without loss of generality that the predictors have

been standardized such that

XT1n×1 = 0p×1 and
n∑
i=1

x2ij = n, j = 1, 2, . . . , p, (1)

where 1n×1 denotes a n×1 vector of ones and 0p×1 a p×1 vector of zeros. Here for method

development, it is not required to rescale each predictor to have variance one. But as

common in practice, such a rescaling can also be applied to each predictor beforehand.

Hoerl and Kennard (1970) proposed to penalize the least squares loss by a L2 penalty

(also called the ridge penalty). The classical ridge regression estimates of the regression

coefficients β0 and β are defined as the optimizer of

min
β0,β

1

2

n∑
i=1

(yi − β0 − xTi β)2 +
ν

2

p∑
j=1

β2
j (2)

with ridge regularization parameter ν ≥ 0. It is obvious that the ridge regression estimate

simplifies to the ordinary least squares estimate when ν = 0. The ridge regression has

enjoyed great success and been widely used since its inception.

3 Variable selection via individually penalized ridge regression

Our interest is sparse regression with some components of the true regression coefficients

being exactly zero. Let A = {j : βj 6= 0} be the set of important predictors.
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3.1 Individually penalized ridge regression

Towards variable selection, we consider a slightly generalized version of the classical ridge

regression (2), namely individually penalized ridge regression

min
β0,β

1

2

n∑
i=1

(yi − β0 − xTi β)2 +
1

2

p∑
j=1

νjβ
2
j (3)

with νj ≥ 0 for j = 1, 2, . . . , p. The only difference is that different ridge regularization

parameters may be used here for different regression coefficient components while a same

ridge regularization parameter is used for all regression coefficient components in (2). By

incorporating the intercept term, we denote the augmented data by x̃i = (1,xTi )T and

X̃ = (x̃1, x̃2, . . . , x̃n)T ≡ (1n×1,X). The solution of (3) is given by

(β̂0, β̂
T )T =

[
X̃T X̃ + diag((0,νT )T )

]−1
X̃Ty,

where ν = (ν1, ν2, . . . , νp)
T and diag(ν) denotes a diagonal matrix with elements of ν

sitting on the diagonal.

3.2 Ridge selection operator

It is well known that the ridge penalty shrinks the regression coefficient estimates towards

zero due to the L2 penalty. Intuitively, a large ridge penalty should be used if the cor-

responding true regression coefficient is zero or of a small magnitude. More precisely, a

large ridge regularization parameter νj should be used if the absolute value of the cor-

responding true regression coefficient βj is small, and vice versa. In extreme, if νj = ∞
is used in (3), the corresponding optimizer β̂j will be exactly zero. If we know a priori

which components of the true regression coefficients are zero, we can set the correspond-

ing ridge regularization parameters to be infinity in (3) to achieve variable selection. The

challenge is that we do not have this a priori information in hand. In fact, if we know

this information beforehand, there is no need to perform variable selection any more.

Motivated by Stefanski et al. (2014), we propose the following idea to let the data

speak for themselves and tell us which components favor an infinity ridge regularization

parameter in (3), achieving variable selection.

We reparametrize λj = 1/νj and λ = (λ1, λ2, . . . , λp)
T , and introduce notation λ−1 =

(1/λ1, 1/λ2, . . . , 1/λp)
T . As a result, ν = λ−1. With these notations, the solution of (3)

is given by

(β̂0, β̂
T )T ≡ (β̂0(λ), β̂(λ)T )T =

[
X̃T X̃ + diag((0, (λ−1)T )T )

]−1
X̃Ty (4)
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and the corresponding hat matrix is

H(λ) = X̃
[
X̃T X̃ + diag((0, (λ−1)T )T )

]−1
X̃T . (5)

We propose a new variable selection method by solving

min
λ

〈y −H(λ)y,y −H(λ)y〉 (6)

subject to λj ≥ 0, j = 1, 2, . . . , p; (7)
p∑
j=1

λj ≤ τ (8)

for some regularization parameter τ ≥ 0, where 〈 ·, · 〉 denotes the standard inner product

operator. The nonnegativity constraint in (7) is easy to understand since λj is the recip-

rocal of the nonnegative ridge regularization parameter νj. The additional constraint (8)

enforces to apply certain amount of ridge regularization measured by the harmonic mean

of the ridge regularization parameters:(
1
ν1

+ 1
ν2

+ · · ·+ 1
νp

p

)−1
≥ p

τ
.

Denote the optimizer by λ̂
4
= (λ̂1, λ̂2, . . . , λ̂p)

T ≡ (λ̂1(τ), λ̂2(τ), . . . , λ̂p(τ))T
4
= λ̂(τ).

For an appropriately tuned τ , some components of the corresponding optimizer will be

exactly zero. Then an estimate of the set of important predictors is given by Â = {j :

λ̂j > 0} as explained next. We name the proposed new method ridge selection operator

(RSO).

3.3 Some implementation issues

Within the feasible domain specified by constraints (7) and (8), some components of λ

could be exactly zero. In this case, the second term inside the hat matrix H(λ) cannot

be evaluated exactly in this way since it may have the potential issue of inverting zero in

λ−1. This potential issue can be perfectly avoided by noting that

[
X̃T X̃ + diag((0, (λ−1)T )T )

]−1
=

[(
n 0T

0 XTX

)
+

(
0 0T

0 diag(λ−1)

)]−1

=

(
1/n 0T

0
[
XTX + diag(λ−1)

]−1
)

(9)
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due to (1), and further that[
XTX + diag(λ−1)

]−1
= diag(

√
λ)
[
diag(

√
λ)XTXdiag(

√
λ) + I

]−1
diag(

√
λ), (10)

where
√
λ = (

√
λ1,
√
λ2, . . . ,

√
λp)

T and I denotes the identity matrix of an appropriate

size depending on the context. It retains the symmetric property of the hat matrix, and

can be used in the implementation of the objective function in (6) to avoid any numerical

issue of dividing by zero in λ−1.

Note that if λ̂j = 0, the corresponding estimate of βj is also exactly zero, namely

β̂j(λ̂) = 0, since

β̂(λ) =
[
XTX + diag(λ−1)

]−1
XTy

= diag(
√
λ)
[
diag(

√
λ)XTXdiag(

√
λ) + I

]−1
diag(

√
λ)XTy

due to (9) and (10). It provides justification for Â = {j : λ̂j > 0} to be used as an

estimate of the set of important predictors.

It looks like that we need to invert a p×p matrix in (10). By noting that if λ is sparse

with some components being zero, diag(
√
λ)XTXdiag(

√
λ) + I can be transformed to a

block diagonal matrix after applying an appropriate row permutation and the correspond-

ing column permutation. Inverting this block matrix essentially needs only to invert a

matrix of size #(λ) ×#(λ), where #(λ) denotes the number of nonzero components in

λ.

It can be shown that the equality “=” in (8) will always be attained at the optimal

solution. Consequently it is equivalent to replace constraint (8) with an equality constraint∑p
j=1 λj = τ . The corresponding optimization problem with

∑p
j=1 λj = τ

min
λ

〈y −H(λ)y,y −H(λ)y〉 (11)

subject to λj ≥ 0, j = 1, 2, . . . , p; (12)
p∑
j=1

λj = τ (13)

can be efficiently solved by using the modified coordinate descent algorithm introduced

in Stefanski et al. (2014). More explicitly, suppose that the current solution is λ̂(c) =

(λ̂
(c)
1 , λ̂

(c)
2 , . . . , λ̂

(c)
p )T and we are updating the jth component. Let ej be the jth standard

basis for the p dimensional Euclidean space. Namely ej is a vector of length p with its

jth element being one and all other elements zero. Denote λ̂
(c)
−j = (λ̂− λ̂(c)j ej)/

∑
j′ 6=j λ̂

(c)
j′ .

Then for any γ ∈ [0, τ ], γλ̂
(c)
−j + (τ − γ)ej satisfies the nonnegativity constraint (12) and
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the sum-to-τ constraint (13). We update the solution by γ̂λ̂
(c)
−j + (τ − γ̂)ej, where γ̂ is

given by

γ̂ = argminγ

〈
y −H(γλ̂

(c)
−j + (τ − γ)ej)y,y −H(γλ̂

(c)
−j + (τ − γ)ej)y

〉
.

We repeat cycling through j = 1, 2, . . . , p until convergence.

3.4 How does it work in the orthonormal design case?

Note that the hat matrix H(λ) can be simplified as

H(λ) = X̃
[
X̃T X̃ + diag((0, (λ−1)T )T )

]−1
X̃T

= X̃

(
1/n 0T

0
[
XTX + diag(λ−1)

]−1
)
X̃T

=
1

n
1n×n + X

[
XTX + diag(λ−1)

]−1
XT

by using (9) and consequently

H(λ)H(λ) =
1

n
J + X

[
XTX + diag(λ−1)

]−1
XTX

[
XTX + diag(λ−1)

]−1
XT

since X is column centered and satisfies (1). Here J denotes a n× n matrix of ones.

With the above simplification, the objective function of (6) simplifies to

〈y −H(λ)y,y −H(λ)y〉
= yTy − 2yTH(λ)y + yTH(λ)H(λ)y

= yTy − 1

n
yTJy − 2yTX

[
XTX + diag(λ−1)

]−1
XTy

+yTX
[
XTX + diag(λ−1)

]−1
XTX

[
XTX + diag(λ−1)

]−1
XTy

= yTc yc − 2yTc X
[
XTX + diag(λ−1)

]−1
XTyc

+yTc X
[
XTX + diag(λ−1)

]−1
XTX

[
XTX + diag(λ−1)

]−1
XTyc, (14)

where yc = y − 1
n
Jy denotes the centered y.

To gain further insights, we consider the special orthonormal design case with XTX =
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I. In this case, the right hand side of (14) simplifies to

yTc yc − 2yTc X
[
I + diag(λ−1)

]−1
XTyc + yTc X

[
I + diag(λ−1)

]−1
I
[
I + diag(λ−1)

]−1
XTyc

= yTc yc − 2

p∑
j=1

λj
1 + λj

β̃2
j +

p∑
j=1

(
λj

1 + λj

)2

β̃2
j

= yTc yc +

p∑
j=1

(1− λj
1 + λj

)2β̃2
j −

p∑
j=1

β̃2
j

=

p∑
j=1

(1− λj
1 + λj

)2β̃2
j + constant, (15)

where β̃j denotes the jth component of the corresponding ordinary least squares estimate

β̃ = XTyc in the orthonormal design case and the constant term in (15) does not depend

on λ.

With the above simplification for the special orthonormal design case, the optimization

problem (6) simplifies to

min
λ

p∑
j=1

1

(1 + λj)2
β̃2
j (16)

subject to λj ≥ 0, j = 1, 2, . . . , p;
p∑
j=1

λj ≤ τ.

The objective function of (16) is as simple as an additive function of λj’s.

3.5 A toy example for the orthonormal design case

Now we use a toy example to illustrate how the solution path looks like for the orthonormal

design case (16) explained above. Take β̃ = (3, 1.5, .1, .08, 2, .15, .2, .05)T for example.

The big values of β̃1, β̃2, and β̃5 indicate important predictors and small values of other

components indicate unimportant predictors, trying to mimic the simulation example to

be presented in Section 5.

In the top-left panel of Figure 1, we plot the solution path of the optimizer λ̂ of (16) as

a function of τ . It clearly shows that it does generate sparsity along the solution path. In

particular, λ̂1, λ̂2, and λ̂5 corresponding to “important” predictors quickly changed from

zero to nonzero as τ increases from zero. In addition, the optimizer λ̂ increases gradually

as the regularization parameter τ increases. This gradual increasing pattern is similar to

that of the LASSO solution path.
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The bottom-left plot of Figure 1 presents the corresponding solution path of the in-

dividually penalized ridge regression estimate β̂ corresponding to the optimizer λ̂ as a

function of τ . Note that the sparsity of λ̂ is maintained in the corresponding individu-

ally penalized ridge regression estimate, leading to successful variable selection as desired.

It is remarkable to note that the magnitude of any nonzero components of β̂ increases

rapidly to near its corresponding maximum once moving away from zero. This rapid

early-stage change makes the RSO estimate less biased, and is much different from the

rather slow change of λ̂. This difference is due to the relationship β̂j =
λ̂j

1+λ̂j
β̃j for the or-

thonormal design case being considered. Note that ∂

∂λ̂j

(
λ̂j

1+λ̂j
β̃j

)
= 1

(1+λ̂j)2
β̃j and 1

(1+λ̂j)2
is

monotonically decreasing over λ̂j ∈ [0,∞). This is due to the reparametrization λ = ν−1.

Note that the above simplification was made possible only with the assumption of

orthonormal design. Of cause, real-world applications are complicated and orthonormal

design is most likely an unrealistic assumption. Yet the above discussion sheds some

important insights on how the proposed RSO works.

4 Adaptive variable selection via adaptively weighted individually penalized ridge regression

Note that different regression parameter components are treated equally in the aforemen-

tioned RSO optimization problem (6) based on the individually penalized ridge regression

(3). Yet we may treat different regression coefficient components differently by incorpo-

rating some prior information as done in the adaptive LASSO (Zou 2006; Zhang and Lu

2007). By using adaptive weights, the adaptive LASSO has been shown to enjoy superior

properties than the original LASSO (Tibshirani 1996).

4.1 Adaptively weighted individually penalized ridge regression

More precisely, we can consider the following adaptively weighted individually penalized

ridge regression

min
β0,β

1

2

n∑
i=1

(yi − β0 − xTi β)2 +
1

2

p∑
j=1

wjνjβ
2
j (17)

with regularization parameter νj ≥ 0 and prespecified weight wj ≥ 0 for j = 1, 2, . . . , p.

The weights wj’s are prespecified in such a way to incorporate our prior knowledge on

the relative importance of different predictors with more (resp. less) important predic-

tors receiving smaller (resp. larger) weights. Denote w = (w1, w2, . . . , wp)
T . Then the
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Figure 1: Solution paths of a toy example for the orthonormal design case: RSO on the

left and aRSO on the right; λ̂ path in the top row and β̂ path in the bottom row.

corresponding optimizer of (β0,β
T )T is given by[

X̃T X̃ +

(
0 0T

0 diag(w)diag(ν)

)]−1
X̃Ty. (18)
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With similar reparametrization ν = λ−1, we denote the corresponding hat matrix for the

above adaptively weighted individually penalized regression by

Hw(λ) = X̃

[
X̃T X̃ +

(
0 0T

0 diag(w)diag(λ−1)

)]−1
X̃T . (19)

4.2 Adaptive ridge selection operator

The corresponding adaptive variable selection is to solve

min
λ

〈y −Hw(λ)y,y −Hw(λ)y〉 (20)

s.t. λj ≥ 0, j = 1, 2, . . . , p;
p∑
j=1

λj ≤ τ

for appropriately tuned τ ≥ 0. The aforementioned potential issue of inverting zero can

happen in Hw(λ) and the objective function of (20) as well. But it can be similarly

addressed as follows by noting that the second term in Hw(λ) can be rewritten as[
X̃T X̃ +

(
0 0T

0 diag(w)diag(λ−1)

)]−1

=

(
1/n 0T

0
[
XTX + diag(w)diag(λ−1)

]−1
)

and[
XTX + diag(w)diag(λ−1)

]−1
= diag(

√
λ)
[
diag(

√
λ)XTXdiag(

√
λ) + diag(w)

]−1
diag(

√
λ).

For the choice of weight parameter wj, we may use the reciprocal of the absolute

value of the corresponding component of the ordinary least squares estimate as done in

the adaptive LASSO (Zou 2006; Zhang and Lu 2007). This adaptive version of our newly

proposed variable selection method is named as adaptive ridge selection operator (aRSO).
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4.3 The orthonormal design case

The above discussion for the orthonormal design case extends straightforwardly to the

aRSO. For the adaptive RSO, (16) simplifies to

min
λ

p∑
j=1

1

(1 + λj/wj)2
β̃2
j (21)

subject to λj ≥ 0, j = 1, 2, . . . , p;
p∑
j=1

λj ≤ τ

in the orthonormal design case.

For the above toy example, the corresponding paths for this adaptive version (21)

with weights w = |β̃|−1 are given in the top-right and bottom-right panels of Figure 1.

A similar pattern is observed. But the rapid early-stage change in β̂ is more dramatic,

making the aRSO estimate even less biased. That is exactly the advantage of the weighted

version by using a smaller weight on the ridge penalty term for predictors with regression

coefficients of a larger magnitude.

5 Simulation studies

In this example, data are generated from the model

Y = β0 + XTβ + σε,

where β0 = 0, β = (3, 1.5, 0, 0, 2, 0, 0, 0)T , and ε ∼ N(0, 1). The predictors are gener-

ated from a multivariate Gaussian distribution with zero mean vector and cov(Xj, Xk) =

0.5|j−k|. This example is taken from Example 1 of Fan and Li (2001). An independent test

set of size 10000 is generated to evaluate prediction performance of each method being

considered. Different signal-to-noise ratios will be considered by varying σ and training

data of different sample sizes will be used to illustrate the performance of the proposed

(adaptive) RSO.

We compare the proposed (adaptive) RSO with the (adaptive) LASSO. Both methods

involve some regularization parameter to be tuned. In our implementation, we tune any

necessary regularization parameter by using BIC as it has been shown that the BIC is

better for variable selection consistency than AIC or cross validation (Wang et al. 2007).

The calculation of BIC requires to gauge the degrees of freedom. For any variable selection

method, its estimate’s number of nonzero components can be used as one measure of the
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degrees of freedom. Note that the (adaptively weighted) individually penalized ridge

regression estimate has a closed-form representation (4) and (18). The corresponding hat

matrix is well defined as presented above in (5) and (19). In this case, the trace of the

corresponding hat matrix can also be used as another measure of the degrees of freedom

according to Ye (1998). But this alternative choice is not available for the (adaptive)

LASSO. For our new method (adaptive) RSO, we implement BIC using both measures

of degrees of freedom. We use BICtr and BIC0 to denote BIC based on the trace of the

hat matrix and the number of nonzero estimate components, respectively.

5.1 Simulation results

As in Fan and Li (2001), we consider three cases: σ = 1 and n = 60, σ = 1 and n = 40,

and σ = 3 and n = 40. For these three cases, Tables 1, S.1 and S.3 (in Supplementary

Materials) summarize the corresponding simulation results of the comparison between

the proposed variable selection method (adaptive) RSO and the (adaptive) LASSO over

100 random repetitions. We report the frequency for each predictor being selected and

average prediction error (with standard errors in parentheses) over the independent test

set. The last column reports the frequency of solution path being consistent, namely the

true model with X1, X2 and X5 is included along the solution path (Yuan and Lin 2007).

It is observed that the important predictors X1, X2, and X5 are selected every time

out of the 100 repetitions for all four methods in the two cases with σ = 1. When the

signal-to-noise ratio decreases as σ increases to 3, the important predictors are not selected

all the time, but still with a high frequency. On the other hand, unimportant predictors

are selected at relatively low frequency. Overall, the (adaptive) LASSO is shown to have

a better variable selection performance than the (adaptive) RSO. Especially, the adaptive

LASSO does much better.

To figure out why the (adaptive) RSO is not performing well in terms of variable

selection, we take a closer look at the (adaptive) RSO solution path. In the last column of

these three tables, we report the frequency of solution path consistency. We are surprised

to observe that the (adaptive) RSO does no worse, even slightly better, than the (adaptive)

LASSO in terms of solution path consistency. It indicates that the unsatisfactory variable

selection performance of the (adaptive) RSO is not due to the method itself. It may be

blamed on the tuning method we have adopted.

Note that the LASSO, RSO, and (adaptive) RSO all lead to a biased estimate. Only

the adaptive LASSO was shown to be asymptotically unbiased. We propose a refitting

step as follows to correct estimation bias for the regression coefficients. For each (adaptive)
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RSO or (adaptive) LASSO estimate β̂ along the solution path, we denote the correspond-

ing estimated set of important predictors by Ã = {j : β̂j 6= 0}. We obtain the refitted

regression coefficients estimate by performing ordinary least squares regression of Y on

{Xj : j ∈ Ã}, where no penalty term is used to avoid introducing estimation bias. To

be more specific, for our proposed RSO, the RSO estimate is β̂(λ̂(τ)) using the above

notations in Section 3. For each τ , the corresponding estimate set of important predictors

is Ã(τ) = {j : β̂j(λ̂(τ)) 6= 0}, and refitting is done by performing ordinary least squares

regression of Y on {Xj : j ∈ Ã(τ)}.
The performance of different methods after the refitting step is shown in Tables 2, S.2

and S.4 (in Supplementary Materials). Note that the BICtr is not appropriate for the

(adaptive) RSO with refitting any more and is not used. We observe that the refitting

improves the variable selection results for all methods. The proposed (adaptive) RSO

performs competitively, even with a slight advantage, and the adaptive RSO does better

than the RSO.

All numerical examples are done in R (R Core Team 2018). The (adaptive) LASSO

was implemented using the “glmnet” package, which provides a full solution path. On

the other hand, the tuning of the proposed (adaptive) RSO is based on a grid search in

our implementation. We know that the solution path-based tuning is computationally

much more efficient. Considering this, we track the CPU time needed to run the RSO or

LASSO for a single tuning parameter. On average the RSO takes 59 milliseconds while

the LASSO is much faster and takes only 1 milliseconds on a laptop equipped with Intel

Core i7-7600U CPT 2.80GHz. We admit that the proposed RSO (resp. adaptive RSO) is

slower than the LASSO (resp. adaptive LASSO). Yet it is fast enough to run all numerical

examples on a laptop.

Upon the request of a reviewer during the review process, we also include comparison

with SCAD (Fan and Li 2001), MCP (Zhang 2010), and SDAR (Huang et al. 2018). It

is observed that SCAD, MCP and SDAR perform better than LASSO, RSO and aRSO

as shown in Tables 1, S.1 and S.3 (in Supplementary Materials). Yet Tables 2, S.2 and

S.4, shows that with a refitting step LASSO, RSO and aRSO perform very similarly as

SCAD, MCP and SDAR.

5.2 Solution path

For a random sample of the case with n = 60 and σ = 1, Figure 2 presents the corre-

sponding solution paths of λ̂ (in top panels) and β̂ (in bottom panels). The left panels

are for the RSO while the right panels for the adaptive RSO. It clearly shows that the
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Table 1: Simulation results for σ = 1 and n = 60.

Selection frequency
test error path

X1 X2 X3 X4 X5 X6 X7 X8

aRSO
BICtr 100 100 28 27 100 29 32 37 1.144 (0.008)

100
BIC0 100 100 19 23 100 24 22 26 1.160 (0.009)

aLASSO BIC0 100 100 3 6 100 3 3 5 1.110 (0.007) 100

RSO
BICtr 100 100 42 49 100 48 53 67 1.188 (0.010)

95
BIC0 100 100 41 43 100 43 41 61 1.198 (0.011)

LASSO BIC0 100 100 28 26 100 21 24 21 1.163 (0.010) 95

SCAD BIC0 100 100 2 6 100 3 5 5 1.109 (0.007) 100

MCP BIC0 100 100 3 7 100 3 5 5 1.114 (0.008) 100

SDAR BIC0 100 100 3 8 100 3 4 6 1.115 (0.008) 98

Table 2: Post-refitting simulation results for σ = 1 and n = 60.

Selection frequency
test error

X1 X2 X3 X4 X5 X6 X7 X8

aRSO BIC0 100 100 2 6 100 3 4 7 1.116 (0.008)

aLASSO BIC0 100 100 3 8 100 3 4 7 1.118 (0.008)

RSO BIC0 100 100 2 10 100 2 2 6 1.114 (0.008)

LASSO BIC0 100 100 2 10 100 2 2 6 1.114 (0.008)

(adaptive) RSO can really perform variable selection and the adaptive RSO produce less

bias with the more rapid early-stage change as explained earlier in the toy orthonormal

design example.
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Figure 2: Solution paths of a random sample of the example in Section 5.

5.3 High dimensional case

We next consider a high dimensional case with p = 1000 predictors. Predictors are

generated in the same way and the response is also generated in the same way Y =

3X1 + 1.5X2 + 2X5 + σε as above. In Table 3, we report the simulation results over 100

repetitions for the case with n = 200 and σ = 1 only. Since the dimensionality p = 1000

is larger than the sample size n = 200, the ordinary least squares estimate is not well

defined. In this case, it is not clear how to specify the adaptive weights in the adaptive
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RSO and adaptive LASSO, and consequently we only apply the RSO and LASSO. For

the simulation results reported above, we have learned that the tuning with BIC0 does

slightly better than the tuning with BICtr. In this example, we only choose to implement

the tuning with BIC0.

In Table 3, we report the selection frequency of important predictors X1, X2, and X5

as well as the average selection frequency of unimportant predictors. It is observed that

all the important predictors are selected across all 100 repetitions while the unimpor-

tant predictors are selected at very low frequency for both methods. The solution path

consistency is also high for both methods.

A refitting step could potentially be added to improve variable selection results as well

as prediction results in terms of test error as done above. In addition, note also that the

number of predictors is larger than the sample size in this example. It was shown that

the BIC is not an optimal tuning method for such a case (Chen and Chen 2008). They

proposed an extended BIC, which has been shown to perform better in terms of variable

selection consistency for the case with a diverging p. We may also try to improve our

simulation results by using the extended BIC. Yet the main goal of this current example

is to illustrate that the proposed RSO can be applied to high dimensional data even when

the dimensionality is larger than the sample size. As a result, we skip the refitting step

and do not implement the extended BIC.

Table 3: Simulation results for a high dimensional case with σ = 1, n = 200, and p = 1000.

Selection frequency

test error pathImportant Average over unimportant

X1 X2 X5 Xj : j 6∈ A
RSO 100 100 100 4.35 (0.34) 1.710 (0.335) 100

LASSO 100 100 100 1.13 (0.14) 1.173 (0.136) 100

SCAD 100 100 100 0.05 (0.02) 1.044 (0.002) 100

MCP 100 100 100 0.28 (0.08) 1.046 (0.002) 100

SDAR 100 100 100 6.57 (0.09) 1.353 (0.008) 100
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6 A real data example

In this section, we are going to use one real dataset to illustrate the performance of

our new methods in comparison with the (adaptive) LASSO. The dataset is available at

the UCI Machine Learning Repository at https://archive.ics.uci.edu/ml/datasets/

Superconductivty+Data. It contains 81 features extracted from 21263 superconductors

along with the critical temperature. The goal is to predict the critical temperature based

on these features. See Hamidieh (2018) for more details on the dataset’s background.

We simply consider the linear regression model by regressing the critical temperature on

these 81 features. We randomly sample 200 observations as training data. The rest is

used at the test set. We apply the proposed (adaptive) RSO or the (adaptive) LASSO on

the training data to perform variable selection with BIC0 tuning. The selected model for

each method is applied to the test set to evaluate its prediction performance in terms of

test error. The whole process is repeated for 20 times. We report the average number of

selected features and the average test error with refitting and without refitting for all four

methods: RSO, LASSO, aRSO, and aLASSO in the first half of Table 4. The performance

of SCAD, MCP and SDAR is reported similarly in the second half of Table 4. Numbers

in parentheses are the corresponding standard errors. It shows that the (adaptive) RSO

and the (adaptive) LASSO perform similarly. The (adaptive) RSO does slightly better in

terms of prediction error by selecting a couple of more features.

Table 4: Results of the real data example.

without refitting with refitting

no. test error no. test error

RSO 12.35(0.66) 452.332(8.140) 10.15(0.93) 457.959(8.385)

LASSO 9.65(0.87) 467.456(8.687) 10.40(1.24) 460.664(9.314)

aRSO 14.05(0.78) 443.133(7.379) 15.30(0.95) 438.644(8.123)

aLASSO 11.95(1.32) 474.880(11.055) 13.55(1.09) 471.784(9.689)

SCAD 12.05(0.74) 457.185(5.823)

MCP 9.65(0.78) 466.867(6.639)

SDAR 8.40(1.06) 470.813(6.467)
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7 Discussion

In this paper, we propose a new variable selection method based on ridge regression, which

has been criticized of not being able to perform variable selection. The proposed method

requires tuning of the corresponding regularization parameter, which is typical for many

variable selection methods. The current implementation is based on a grid search over

a set of candidate regularization parameters. This grid search tuning method has long

been recognized to be computationally inefficient. For many existing variable selection

methods, solution path following algorithms have been developed. Efficient regularization

parameter tuning can be achieved based on solution paths. It is not immediately clear how

to develop a solution path following algorithm for the proposed new methods of variable

selection. This can be a potential future research topic to be investigated. During the

review process, AE and one reviewer asked whether the proposed new method can be

extended to generalized linear model (GLM) and Cox proportional-hazards model (COX).

In theory, the answer is positive as long as the ridge penalized solution for GLM and

COX is well defined. Yet the ridge penalized solution for GLM and COX does not have a

closed-form expression as in the linear regression case. This will make the corresponding

implementation very computationally challenging.
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Supplementary Materials

Additional simulation results: A separate pdf file contains the simulation results of

the simulation example in Section 5.1 for the case with σ = 1 and n = 40, and the

case with σ = 3 and n = 40.

R code: A file (RSO.R) contains the R code for the ridge selection operator and an-

other file (demoRSO.R) demonstrates how to apply the ridge selection operator and

perform refitting.
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