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Abstract. In recent years, the need to exploit digitized document data
has been increasing. In this paper, we address the problem of parsing digi-
tized Vietnamese paper documents. The digitized Vietnamese documents
are mainly in the form of scanned images with diverse layouts and special
characters introducing many challenges. To this end, we first collect the
UIT-DODV dataset, a novel Vietnamese document image dataset that
includes scientific papers in Vietnamese derived from different scientific
conferences. We compile both images that were converted from PDF and
scanned by a smartphone in addition a physical scanner that poses many
new challenges. Additionally, we further leverage the state-of-the-art ob-
ject detector along with the fused loss function to efficiently parse the
Vietnamese paper documents. Extensive experiments conducted on the
UIT-DODV dataset provide a comprehensive evaluation and insightful
analysis.

Keywords: Object detection - Page object detection - Deep learning -
Convolutional neural network.

1 Introduction

The COVID19 pandemic has been changing our lives, which requires us to
have a proactive approach toward accessing future technologies for manufactur-
ing processes. With digital transformation, paper documents are also gradually
converted and replaced by electronic documents for storage on the Cloud Stor-
age, convenient for accessing and searching. The paper documents are stored
in images or PDF files format depending on each organization, which leads to
many challenges to extract necessary information. This requires a good enough
detector model as the foundation for extracting information tasks. The problem’s
input is a document image with objects on a possible page: Caption, Table, Fig-
ure, and Formula. The output is an image containing the position of the objects
expressed by bounding boxes and their labels (as shown in Fig. 1).

Almost of datasets for object detection on the document page are only con-
verted from PDF, Latex, Word documents. In recent years, with smartphone
development, documents are stored in image format using scan apps. Therefore,
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Fig. 1: The problem of detecting objects in Vietnamese document images. a. The
input is the document image (left), b. The output is the formula position (yellow),

figure (blue), caption (red), table (green). [View better in colored version]

in this paper, we have introduced the UIT-DODYV dataset, including images from
PDF and scanned from both scanner and smartphone with more challenges and
more practical, suitable for present and future trends. The first reason for choos-
ing the Vietnamese scientific documents is the lack of current datasets. Secondly,
the semantic complexity is also a more challenging part of the dataset, promis-
ing cause complex problem for the “state of the art” (SOTA) method. We hope
that our dataset will play an important role in future works such as OCR (Op-
tical Character Recognition), VQA (Visual Question Answering) on Vietnamese

documents. The main contributions to this paper include:

— To the best of our knowledge, UI'T-DODYV is the first Vietnamese scientific

documents dataset.

— We explored the performance of four SOTA models: CascadeTabNet, Faster-
RCNN, YOLOv4, YOLOv4x-mish to evaluate challenges encountering from

the dataset.

— We proposed a fused loss function for this task. We believe this work is a
cornerstone for the development of future algorithms for the given problem.

* https://www.icst.pku.edu.cn/cpdp/sjzy/index.htm




Parsing Digitized Vietnamese Paper Documents 3

Table 1: The statistic of publicly available datasets.
Dataset Images Categories Coverage Source Year
English, Chinese,

TableBank [13] |417,234 Table Miscellaneous 2019
Japanese, Arabic

Title, Text, List,

PublayNet [26] | 358,353 Medical PubMed Central 2019
Table, Figure
¢TDaR2019 Printed .
840 Table Miscellaneous 2019
Modern Dataset [5] documents

" . . Founder Apabi Library

Marmot 2,000 Table Chinese, English 2020
and Citeseer website

UIT-DODV Table, Figure, Vietnames |National Conference,
2,394 2021

(Ours) Formula, Caption|research papers| Can Tho University

2 Related Work

In this section, we briefly review the available datasets and the current ap-
proaches to tackle the problem.

2.1 Existing Datasets

TableBank [13] contains more than 278,000 images with more than 47,000
table objects. In which 200,000 images are made of Latex are scientific papers
collected from ArXiv.org. DocBank [12] is an extension of TableBank. Pub-
LayNet [26] is the largest documentary image dataset ever, including 358,353
images from research papers and scientific papers in the medical fields with five
classes: Title, Text, Figure, Table, and List. cTDaR 2019 [5] is a dataset used in
the ICDAR2019 competition with two new versions, including modern printed
documents and archival documents. Marmot consists of 2,000 pages in PDF
format used for the table detection task. Besides, another dataset for formula
detection is taken from 400 pages of research papers with 1,575 formulas and
7,907 embedded formulas from 194 PDF documents. The details of the datasets
mentioned above are described in Table 1.

2.2 Parsing Digitized Paper Documents Problem

Traditional Approaches: Most traditional methods mainly consist of shape-
based methods [3, 24, 7] and texture-based [21, 4]. In 2002, a new table detection
method was proposed by Cesarini et al. [2], which detecting horizontal and ver-
tical lines, then defining the area surrounded by these lines. To reduce candidate
region detection errors, Gatos et al. [6] improved it by adding intersection de-
tection in 2005. Overall, the traditional table detection method made significant
progress, but many problems still exist, such as mistaken or omitted objects.

Deep Learning Approaches: In 2016, Hao et al. [8] proposed a table detection
method based on CNN to determine if each proposed region contains a table or
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Fig.2: Exemplary samples in UIT-DODYV dataset.

not. In 2017, Yang et al. [25] proposed the FCN network for page segmenta-
tion to detect tables, figures, and other page objects. He et al. [9] proposed the
multi-scale multi-task FCN to detect table areas and borders and used contour
detection results to help improve detection tasks. Rashid et al. [16] proposed a
table recognition method based on the AutoMLP algorithm. In 2018, Li et al.
[14] used the layout analysis methods to identify some candidate tablespaces,
then applied a conditional random field (CRF) and CNN to classify it as for-
mula, tables, and images or graphs. In 2018, Vo et al. [23] combined the region
proposals from Fast-RCNN and Faster-RCNN before applying bounding box re-
gression to boost performance. In 2019, Huang et al. [10] proposed a method of
object detection table based on YOLOv3. Sun et al. [22] proposed a method by
combining Faster R-CNN [20] and corner locating. In 2020, Prasad et al. [15]
proposed CascadeTabNet that uses Cascade Mask R-CNN HRNet to recognize
table structures on image documents.

3 UIT-DODYV Dataset
3.1 Dataset Collection

We collected the data from the scientific paper available on the website of
Can Tho University (CTU). In addition, we used the physical scanner and the
scanning app on smartphone to scan the hard-copy of National Conference “Some
Selected Issues of Information Technology and Communication” from the follow-
ing versions:

— The XXI edition with the topic “Internet of Things” was held from July

27-28, 2018, at Hong Duc University, Thanh Hoa Province.

— The XXII edition with the topic “Transforming the number of socio-economic
operating in the Industry 4.0” was held from June 28 to 29, 2019, at Thai

Binh University, Thai Binh Province.
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The images in UIT-DODV are created by converting paper documents to dig-
ital images, using document conversion program, physical scanners and scanning
app on smartphone. The purpose of collecting data from multiple sources is to
create diversity for data in terms of layout, presentation form and data domain
is also expanded with scanned images instead of just using the transferred image
convert from PDF. After collecting the desired data, we proceeded to label at-
tachments. Instead of tagging the data from where, we used the pretrain model
from the PAA [11] method to predict the bounding box for the object before
manually editing those objects. Fig. 2 visualizes some exemplary samples in our
dataset.

3.2 Category Selection

We followed other image-based document datasets to select the categories.
In particular, the first selected object is Table - appearing in most published
datasets. Figure is the simplest and most effective way to turn complex ideas
into a concise form, which can be a statistical graph that helps visualize the re-
sults of research. Shapes include natural sceneries, graphs, charts, layout designs,
block diagrams, or maps. Likewise, Formula is equally important to describe
relationships between concepts and objects concretely and efficiently. The for-
mulas are usually numbered and may occupy several text lines. In addition, the
formula object that contains equations and non-math text in a math region leads
to the challenge of this object. Besides, with the desire to build a dataset that
can be used for many different tasks such as OCR or VQA, we chose to add
a new label, Caption - presenting a brief and yet complete explanation of the
figure or table. The caption for a figure usually appears below the graphic; for
a table, above.

3.3 Dataset Description

UIT-DODYV is the first Vietnamese document image dataset, including 2,394
images with four classes: Table, Figure, Caption, Formula. UIT-DODV converted
1,696 images from PDF with size 1,654 x 2,338, 247 images scanned from the
physical scanner and expanded with 451 images scanned from the smartphone.

UIT-DODV has the following highlights: (1) Variety of images: images
in our dataset are of two types, with images converted from PDF as complete
documents and images. Scan images often have lower resolutions depending on
the scanning angle as well as the lighting conditions that can cause the document
page to be blurred, distorted, skewed, or obscured. (2) Variety of layout: data
collected from other scientific conferences/journals, a common feature of these
conferences/journals is that they often use their templates (typically document
pages can represent document pages in the form of one column or two columns).
(3) The challenge comes from data classes: with the simultaneous use of
two formula objects (Formula) and Caption creates a challenge for our dataset
as well. As in building detection models for these objects. The vast majority of
a document page is represented as text, so spotting these objects quickly is very
difficult.
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Fig. 3: Statistical of experimental data.

4 Computational Model
4.1 Object Detector

In this work, we leveraged the SOTA object detector for the problem. In
particular, we took four object detection methods into consideration. The details
are listed as follows.

CascadeTabNet [15] is a new approach that uses a single CNN to recognize
table structures on document image. CascadeTabNet is a three-phase Cascade
mask R-CNN HRNet model, with each input image, the CNN HRNetV2p W32
backbone is responsible for converting this image into a feature map. “RPN Head”
(Dense Head) predicts preliminary object proposals for this feature map. “Bbox
Heads” takes Rol features as input and delivers Rol-wise predictions. The output
for each section includes two predictions, classification score and box regression
points. “Mask Head” predicts masks for objects. CascadeTabNet uses Cascade R-
CNN’s late-stage segmentation branching strategy, object detection performed
by “Bbox Heads” is complemented with segmentation masks implemented by
“Mask Head”, for all. detected objects.

Faster-RCNN [20] is a revamp of its precursors R-CNN and Fast R-CNN
and achieves near real-time speeds when skipping the time spent on regional
suggestions when using the search algorithm. Selective Search, instead using
pre-trained models to create feature maps, the feature map is then fed through
the CNN Region proposal network (RPN) to find the proposed regions, from
there generating anchor boxes, anchor boxes continue to be layered. Finally,
Non maximum suppression (NMS) algorithm filters out overlapping anchors.

YOLOvV4 is proposed by Bochkovskiy, Wang, and Liao which considered
as the best version in terms of accuracy and calculation speed compared to the
previous 3 versions [19, 17, 18] thanks to the combination of CSPNet architecture
with Darknet-53 (YOLOv3) for the backbone and adding 2 SPP and PANet
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modules. At the same time, the BoF and BoS techniques are utilized to help
YOLOv4 achieve an AP score of 43.5% on the COCO dataset with an execution
speed of 65 FPS.

YOLOv4x-mish is an additional version with some changes from YOLOv4.
Basically, the YOLOv4x-mish change first CSPDarknet stage of backbone to
original Darknet-53 balances speed and accuracy. In the neck, instead of keeping
the PAN architecture the same as YOLOv4, they made CSP-ize PAN block to
decrease about 40% in computational volume. In this CSPPAN block, the SPP
model stays the same as YOLOv4 to increase the receptive field. In Head section,
YOLOv4x-mish change activation function Leaky ReLU to Mish - which is a
non-monotonic activation function, which helps increase accuracy for predicted
model.

4.2 Loss Function

In object detection, the loss function plays a vital role to the detection per-
formance. In literature, the cross-entropy (CE) loss function is widely used. The
idea behind CE loss is to penalize the wrong predictions more than to reward
the right predictions. The cross-entropy loss function is defined as follows.

Lcr(pr) = —log(pt) (1)

where p; is the probability for the class t. Recently, the focal loss (FL) was
proposed as an version of cross-entropy loss that handles the class imbalance
problem by assigning more weights to hard or easily misclassified examples. The
focal loss function is defined as:

Lrr(pt) = —a(l —pi)log(pe), (2)

where « is a balanced form for Focal Loss, defaults to 0.25; the gamma (v) for
calculating the modulating factor, defaults to 2.0.

In this work, we argue that each loss function has its own advantages and
drawbacks. In the given problem of parsing digitized Vietnamese paper docu-
ments, we propose combining different loss functions in order to further improve
the performance. Here, the fused loss function is defined as below.

Liusea(pt) = Ace(pt) + (1 — N LprL(pt), (3)

where the effect of each individual loss function is decided by the weight A. In
our implementation, we set A as 0.6 to emphasize the cross entropy loss.

5 Experimental Results and Discussion

5.1 Experimental Setting

Our dataset is divided into 3 subsets: training (1,440), validation (234) and
testing (720) sets as shown in Fig. 3. The entire experiment was conducted on
a GeForce RTX 2080 Ti GPU with 11019MiB memory. We trained Faster R-
CNN on the MMDetection framework V2.10.0 using the default configuration
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Table 2: Experimental results of different object detection methods with default
configuration. The best performance is marked in boldface.

Architecture |Table|Figure|Formula|Caption|AP5¢|AP75| AP
Faster-RCNN 91.60 | 79.70 45.60 57.70 |86.20|76.20|68.70
CascadeTabNet [95.70| 83.40 | 48.10 67.40 |89.00(80.20(73.60
YOLOv4 84.20 | 78.00 40.20 60.80 |90.20 | 75.20 | 65.80
YOLOv4x_mish| 82.00 | 75.70 45.20 61.30 |90.70|77.70|66.10

Table 3: Ezperimental results of different loss functions. The best performance
is marked in boldface.

Method Cls Loss Table|Figure|Formula|Caption| AP5¢|AP75| AP

Faster R-CNN |Cross-entropy 91.60 | 79.70 45.60 57.70 | 86.20|76.20 | 68.70
Faster R-CNN |Focal 91.60 | 79.30 37.60 64.30 [87.90 | 74.50 | 68.20
Faster R-CNN |Fused loss function| 92.40 | 79.70 45.50 66.40 |89.00|77.90|71.00
CascadeTabNet|Cross-entropy 95.70| 83.40 | 48.10 67.40 |89.00 |80.20 | 73.60
CascadeTabNet|Focal 95.50 | 82.40 44.20 65.20 |87.80|77.60|71.80
CascadeTabNet|Fused loss function| 94.30 | 83.00 47.50 73.30 |89.10|81.60|74.50

with the backbone X-101-64x4d-FPN trained within 24 epochs. For YOLOv4
and YOLOv4x-mish, we implemented it on the Darknet framework. To train
the CascadeTabNet model, we ran it with the default configuration provided by
Prasad et al. . We used mAP to evaluate the effectiveness of the model as in
object detection competition on MS COCO.

5.2 Analysis Results

We used the best weights on the validation set to evaluate and report the
results in Table 2. We found that the two-stage methods gave high accuracy for
object detection. CascadeTabNet gave the best results when achieved AP@0.75
and AP@J0.5: 0.5: 0.95] is 80.05%, 73.40% respectively. Faster-RCNN gives quite
good results in object detection. However, it still missed Caption - the object
that accounts for the largest distribution of the dataset with AP is 57.70%, that
lower than the other three methods. The two one-stage methods gave the best
results on AP@0.5. However, when increasing the IoU threshold to 0.75, the AP
score of YOLOv4 (75.17%), YOLOv4x-mish (77.72%) was lower than that of
the two-stage methods. After visualizing the result shown in Fig. 4, we notice
that YOLOv4, YOLOv4x-mish have difficulty creating a perfect bounding box
compared to the two two-stage methods. The Table and Figure objects also
create a challenge to distinguish, and there are also many cases of overlapping
bounding boxes. We further conducted the experiment on different loss functions
for the top-2 methods, i.e., Faster-RCNN and CascadeTabNet. As shown in

® https://github.com/DevashishPrasad /CascadeTabNet
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Table 3, the fused loss function yields the best performance in terms of AP. The
fused loss function also achieves the best performance in the “caption” semantic
class. This clearly demonstrates the need of using the fused loss function in the
problem of parsing digitized Vietnamese paper documents.

6 Conclusion and Future Work

In this paper, we have introduced the first Vietnamese scientific document
image dataset - UIT-DODV - with 4 main objects that are the elements of a
research paper, namely, Table, Figure, Caption and Formula with a total of
2,394 images. We conducted experiments on SOTA object detection methods:
Faster-RCNN, YOLOv4, YOLOv4x-mish and a method was applied on the table
detection problem - CascadeTabNet on our dataset. In which, the CascadeTab-
Net method achieved the highest mAP result of 74.50%. In the future, we will
build a mobile application that identifies elements in an image document page.
Additionally, we continue to expand and develop the UIT-DODYV dataset to a
larger number along with the diversity of the structure of the documents. Be-
sides, many other problems will be applied to this dataset such as OCR or VQA.
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