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ABSTRACT
This work proposes a nonparametric method to compare the underlying mean functions given two noisy
datasets. The motivation for the work stems from an application of comparing wind turbine power curves.
Comparingwind turbine data presents newproblems, namely the need to identify the regions of difference
in the input space and to quantify the extent of difference that is statistically significant. Our proposed
method, referred to as funGP, estimates the underlying functions for different data samples using Gaussian
processmodels. We build a confidence band using the probability law of the estimated function differences
under the null hypothesis. Then, the confidence band is used for the hypothesis test aswell as for identifying
the regions of difference. This identification of difference regions is a distinct feature, as existing methods
tend to conduct an overall hypothesis test stating whether two functions are different. Understanding the
difference regions can lead to further practical insights and help devise better control and maintenance
strategies for wind turbines. Themerit of funGP is demonstrated by using three simulation studies and four
real wind turbine datasets.
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1. Introduction

Comparing information from two datasets is an important topic
in statistics. Various methods exist to compare datasets arising
from univariate andmultivariate distributions, for example, two
sample t-test (Fisher 1925) and Hotelling’s T2 test (Hotelling
1931), respectively. The literature is not just limited to compar-
ing finite-dimensional objects, but also extends to functions. In
this article, we focus on nonparametric methods that compare
functions.

Our work is motivated by an application in the wind energy
sector, where the goal is to compare two power curves. The
power curve of a wind turbine is a function that maps wind
speed and other environmental inputs to wind power output.
Power curves are used to characterize the performance of wind
turbines (IEC 2005). Hence, comparing power curves plays
a critical role in assessing and benchmarking turbine perfor-
mance, devising maintenance plans, and justifying expensive
overhauls or retrofits (Hwangbo, Johnson, and Ding 2017; Ding
2019). Some important aspects for comparing power curves
are to understand where the power curves differ (in the input
space) and how much is the difference. It is not only important
to check whether two power curves differ, but more crucial to
identify the regions of difference and quantify the difference
for guiding economically justifiable maintenance and repairs. In
addition to the need for identifying the regions of difference, the
datasets arising from wind turbines entails two other features:
the input conditions (e.g., wind speed or wind direction) for
the observations cannot be controlled, and as a result, the input
points for any two datasets are not the same, and there lacks
replicates for any input point. Taken altogether, our research
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objective is to develop a nonparametric function comparison
method that meets the following three requirements:

• The method can identify the regions between two functions
that are statistically different and quantify the difference,

• The input data points associated with the two functions are
not necessarily the same.

• There are no replications in the data points.

The problem of testing the equality of two nonparametric
functions has been studied extensively in the literature. One
early work is Hall and Hart (1990). They defined a test statistic
for the problem using the smoothed (estimated) function val-
ues and obtained a distribution of their test statistic using the
bootstrap method. King, Hart, and Wehrly (1991) also studied
the same problem using smoothing techniques and proposed
an exact distribution for their test statistic under the normality
assumption for the errors. Delgado (1993) proposed another test
statistic using themarked empirical process. Fan and Lin (1998)
worked on reducing the dimension of the problemusing discrete
Fourier transforms so that standardmultivariate techniques can
be used to test the hypothesis. These works assume that the
two datasets under comparison have identical input points. This
assumption is relaxed in Kulasekera (1995), Kulasekera and
Wang (1997), Munk andDette (1998), and Neumeyer and Dette
(2003), which proposed tests that are valid under different input
points among the datasets. The literaturementionedhitherto are
global tests, providing a binary answer on whether the functions
are statistically the same or not. They do not provide any insights
on the regions of the input space where the functions are differ-
ent, or which function has higher or lower function values.

© 2021 American Statistical Association and the American Society for Quality
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Cox and Lee (2008) addressed this problem of identifying
difference regions using a pointwise testing procedure based
on the Westfall-Young randomization technique (Westfall and
Young 1993). However, Cox and Lee’s method does not meet
our aforementioned requirements, because (a) Cox and Lee
(2008) required replications of data points, as Cox and Lee’s
method is based on permutation, which requires data repli-
cation. (b) Their method produces pointwise p-values rather
than a coherent confidence band for functional differences. It
is not straightforward to convert the pointwise p-values into
functional differences. (c) Cox and Lee (2008) developed their
method for the cases when the input points for the two functions
are at the same locations.

In this work, we propose a new nonparametric function
comparison method that satisfies the three requirements posed
above. We first use a Gaussian process (GP) regression model
to recover the functions from the noisy datasets. Given a pre-
scribed Type I error, we then build a confidence band on the
difference between the functions throughout the input space
under the null hypothesis. If the actual difference between the
functions computed using the data are beyond the confidence
band, then we reject the null hypothesis. We call the method
function comparison using Gaussian Process or funGP.

When the null hypothesis is rejected, funGP identifies the
regions of difference in the input space and quantifies the
estimated difference using the established confidence band.
Although we assume the functions as realizations of GPs, we
demonstrate that the method works well for deterministic
functions also. We apply our method to real wind turbine
datasets and compare the results with some existing work
for turbine performance characterization. That GP regression
works for a large class of functions makes the proposed method
applicable to many problems.

We organize the rest of the article as follows. Section 2 pro-
vides the details of the proposed method. Section 3 presents the
simulation examples and comparison studies with two existing
functional tests. We apply the funGP method to wind turbine
datasets in Section 4. We conclude the work with some discus-
sions in Section 5.

2. The funGPMethod

In this section, we describe the mathematical formulation and
the implementation details of the proposed funGP method.

2.1. Problem Formulation

Let us consider two datasets, {Di | i = 1, 2}, with n1 and n2
data points, respectively. Assume that D1 can be denoted by an
ordered pair {X(1), y(1)}, whereX(1) is an n1×dmatrixwith each
row corresponding to input variable values for one data point
and y(1) is a vector of lengthn1 with each component as response
for one data point. Similarly, D2 can be denoted as {X(2), y(2)}.
Specifically,

y(1) =

⎡
⎢⎢⎢⎣
y11
y12
...

y1n1

⎤
⎥⎥⎥⎦ , X(1) =

⎡
⎢⎢⎢⎣

−x�
11−

−x�
12−
...

−x�
1n1−

⎤
⎥⎥⎥⎦ ,

y(2) =

⎡
⎢⎢⎢⎣
y21
y22
...

y2n2

⎤
⎥⎥⎥⎦ , X(2) =

⎡
⎢⎢⎢⎣

−x�
21−

−x�
22−
...

−x�
2n2−

⎤
⎥⎥⎥⎦ .

We also assume that these datasets come from underlying mod-
els given by

yij = fi(xij) + εij, i = 1, 2, j = 1, . . . , ni, (1)

where f1(·) and f2(·) are two smooth continuous functions with
the same compact domain X ⊂ R

d and εij
iid∼ N (0, σ 2

ε ) with a
constant variance σ 2

ε < ∞.
The goal is to test the following null and alternative hypothe-

ses. The null hypothesis is that the functions are identical,
whereas the alternative hypothesis is that the functions differ for
at least one x ∈ X . Under the null hypothesis, H0

f1(x) = f2(x) for all x ∈ X .

And, under the alternative hypothesis, H1

there exists x ∈ X such that f1(x) �= f2(x).

A rigorous frequentist testing of the null hypothesis H0 usu-
ally relies on a test statistic whose distribution is (approximately)
independent of the underlying function f := f1 = f2 under H0.
One would consider using the estimator of f1 − f2 to build a test
statistic. Specifically, we in this work invoke a GP framework
for calculating the distribution in the presence of an unknown
f . This assumption allows for calculating the distribution of an
intuitive estimator of f1 − f2. Of course, doing this requires us to
replace the null hypothesis H0. Details will be presented in the
next subsection.

In addition to the above discussion, we stress that our appli-
cation requires the test statistic to be a functional statistic, as we
are interested in identifying the region of input space where the
functions are different. Specifically, whenH0 is rejected, we need
to identify the set S = {x : f1(x) �= f2(x)}. Most of the existing
methods reviewed in Section 1, such as Munk and Dette (1998),
use a univariate statistic to test the hypothesis and cannot iden-
tify the region of difference. Under certain conditions, such as
the input points of the two datasets are identical and replicated
response, a functional test is available; see Cox and Lee (2008).
To the best of our knowledge, no statistics have been proposed
in the literature under the general conditions as in the current
context.

2.2. Hypothesis TestingWith a GP Prior

The general idea for a hypothesis testing is to find a test statistic
and subsequently have a decision rule to either accept or reject
the null hypothesis based on the value of the test statistic. In the
application described, we are not only interested in the binary
answer that whether the two functions are different, but also
want to understand where the difference lies in the input space.
This requires us to obtain a test statistic at the input points for
which we do not have any data. We also assume that the input
points for the two datasets are not the same. Thus, we would
have to assume some structure in the functions (such as the
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functions are smooth and continuous) in order to recover the
functions and estimate the noise in the model. Here, we adopt
a Bayesian idea that imposes a prior structure on the functions.
Specifically, we use a GP prior with zero mean and a covariance
function given by k(x, x′). The zero mean assumption is for
mathematical simplicity, and we can assume a different mean
function, if necessary.

Despite the use of the GP prior, we still follow a frequen-
tist hypothesis testing framework, by considering a new null
hypothesis HGP

0 y, still stating f1(x) = f2(x) for all x ∈ X , but
incorporating the following prior information:

yij = f (xij) + εij,
f ∼ GP(0, k(x, x′)),

where εij
iid∼ N (0, σ 2

ε ). In Sections 2.2 and 2.3, we assume that
k(·, ·) and σ 2

ε are known.
So far, our goal can be described as testing HGP

0 against the
alternative hypothesis H1. We will propose a test method, so
that its Type I error under HGP

0 has a probability controlled by
a prespecified significance level α. Note that the Type I error
under HGP

0 is∫
f
P(HGP

0 is rejected|f1 = f2 = f )dPGP,

where PGP denotes the probability measure of the GP prior. It is
worth noting that the Type I above is not identical to the Type I
error under the original null hypothesisH0. However, we expect
that the proposed method can serve as an approximate method
for the fixed-function testing problems, and we will verify this
expectation via numerical studies in Section 3.

The main idea of our test is as follows. First, we can recon-
struct f based on the datasetsD1 andD2 separately, and denote
the reconstructed functions as f̂1 and f̂2, respectively. Under
HGP
0 , f̂1 and f̂2 should be close. Thus, we can test HGP

0 by
computing the difference between f̂1 and f̂2.

To reconstruct f , we start off by defining a cross-covariance
matrix KX,X′ between a pair of input variable matrix X and X′,
and a covariance vector r(x) between the input data X and any
point x as follows:

KX,X′ =

⎡
⎢⎢⎢⎣
k(x1, x′

1) k(x1, x′
2) . . . k(x1, x′

n)
k(x2, x′

1) k(x2, x′
2) . . . k(x2, x′

n)
...

...
. . .

...
k(xm, x′

1) k(xm, x′
2) . . . k(xm, x′

n)

⎤
⎥⎥⎥⎦ ,

r(x) =

⎡
⎢⎢⎢⎣
k(x1, x)
k(x2, x)

...
k(xm, x)

⎤
⎥⎥⎥⎦ , (2)

where x1 . . . xm are the vectors in the rows of the matrix X, and
x′
1 . . . x′

n are the vectors in the rows of the matrixX′. WhenX =
X′, KX,X is then a symmetric covariance matrix. The standard
GP prediction theory suggests (Rasmussen and Williams 2006)

f̂1(x) = r1(x)�[KX(1),X(1) + σ 2
ε In1 ]−1y(1), (3)

f̂2(x) = r2(x)�[KX(2),X(2) + σ 2
ε In2 ]−1y(2), (4)

where r1(x) is the covariance vector between X(1) and any
point x, KX(1),X(1) is the covariance matrix for X(1), and In1 is
the identity matrix of proper size—n1 × n1 in this case. The
notations in Equation (4) are likewise defined.

It is worth noting that although f̂1(x) and f̂2(x) are posterior
means from a Bayesian perspective, here we take a frequentist
point of view and regard them merely as statistics, that is,
functions of the data. To test the null hypothesis HGP

0 , we use
the statistic G(x) := f̂1(x) − f̂2(x). Clearly, given (X(1),X(2))T ,
the randomness ofG(x) comes solely from the data (y(1), y(2))T ,
which follows a zero-mean multivariate normal distribution
under HGP

0 . Therefore, under HGP
0 and given the input data,

G(x) is a centered GP and we write

G(·)|X(1),X(2),HGP
0 ∼ GP(0, c(·, ·)). (5)

The expression for covariance function c(·, ·) is given as follows
(see supplementary material of Section S.1 for details):

c(x, x′) = r2(x)�[KX(2),X(2) + σ 2
ε In2 ]−1r2(x′)

+ r1(x)�[KX(1),X(1) + σ 2
ε In1 ]−1r1(x′)

− 2r2(x)�[KX(2),X(2)

+ σ 2
ε In2]−1KX(2),X(1) [KX(1),X(1)

+ σ 2
ε In1]−1r1(x′).

Therefore, to testHGP
0 , it suffices to find a 1−α probability band

ofG(·) underHGP
0 , that is, a pair of functions l(x) and u(x) such

that

PG∼GP(0,c(·,·))
(
l(x) ≤ G(x) ≤ u(x) for all x

) ≥ 1 − α.

With a slight abuse of terminology, we shall call the band
between l(x) and u(x) a 1−α confidence band for GP(0, c(·, ·)).
It is worth noting that this band is related to the distribution of
G(x) only under the null hypothesisHGP

0 . The test then proceeds
by checking whether G(·) remains within the confidence band.
If there exists an x for which G(x) is outside the band, then we
reject the null hypothesis. Clearly, such a testingmethod ensures
a 1 − α Type I error under HGP

0 . The question now is how to
efficiently build an effective confidence band for GP(0, c(·, ·)).

2.3. Building the Confidence Band

To build a 1 − α confidence band for GP(0, c(·, ·)), the main
idea is to sample from a set with a coverage probability of 1−α.
For notational simplicity, we suppose G(x) ∼ GP(0, c(·, ·)) in
this subsection, that is, the null hypothesis HGP

0 is true. Since
G(x) is an infinite-dimensional object, it is more convenient to
work with a finite-dimensional representation of it. To this end,
we employ the Karhunen Loève (KL) expansion on G(x). The
KL expansion for the zero mean GP G(x) is given as follows:
G(x) = ∑∞

k=1
√

λkφk(x)zk, where {zk}∞k=1 are uncorrelated
standard normal random variables, {φk(·)}∞k=1 are the basis
functions, {λk}∞k=1 are the eigenvalues. In practice, this infinite
sum is truncated for two reasons: (i) If the process is smooth, the
eigenvalues would decay rapidly, (ii) To make the computation
tractable. Under the assumption that the underlying functions
under comparison are smooth, we discard all the eigenvalues
smaller than a certain threshold. For practical purposes, we find
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a threshold value of 10−6 × λmax to work well, where λmax
is the largest eigenvalue. Thus, the KL expansion decomposes
the process into independent components and also reduces the
dimension of the problem by finding a sparse representation of
the process using its eigenfunction basis.

Let the truncation number computed from the aforemen-
tioned rule be m, that is, only the m largest eigenvalues are
significantly “large”. Then, we write the truncated KL expansion
for G(x) as follows:

G(x) ≈
m∑
k=1

√
λkφk(x)zk. (6)

In Equation (6), the randomness is introduced by zk’s. Hence, in
order to build a 1 − α confidence band on G(x), we build the
same level confidence band for the joint distribution of zk | k =
1, . . . ,m, which can be constructed as follows. We know that
for an m-dimensional uncorrelated standard normal vector, a
confidence region R, with probability P(R) = 1 − α, can be
described using a hypersphere of radius r. This radius can be
expressed as r = ||z||, where ||z|| = ||z21+z22+· · ·+z2m|| is the �2

norm. The sum of squares of m uncorrelated standard normals
follows a chi-square distributionwithmdegrees of freedom, that
is, r2 = z21 + z22 + · · · + z2m ∼ χ2

m. Hence, r is computed by
inverting the CDF of a chi-square distribution in the following
way:

r =
√
F−1
m (1 − α), (7)

where F−1
m (·) is the inverse CDF of χ2

m. Once we have the radius
r, we sample z from the region with a coverage probability of
1 − α using the following rule:

• sample zi fromN (0, 1) | i ∈ {1 . . .m},
• if

∑m
i=1 z2i ≤ r2, accept z = (z1, z2, . . . , zm)�; else, reject it.

The samples of z obtained as above can be easily converted to
samples from G(x) that are from 1 − α confidence set using
Equation (6). In order to test the hypothesis, we would need to
compare the actual difference in the predictive means g(x) with
the confidence band at all the points x ∈ X . This is practically
intractable, as for any continuous function, there are infinitely
many points in the domain. Hence, we discretize the domain
using a finite-sized evenly spaced test grid to approximate X .
Let Xtest be a ntest × d matrix with each row corresponding
to one grid point xtj | j = 1, . . . , ntest. We compare the func-
tion difference with the confidence band on these grid points.
Testing on this regular grid is a reasonable approximation to
testing for all x ∈ X because of our underlying assumption
that the functions are continuous and smooth. Let CXtest,Xtest be
the covariance matrix generated using the covariance function
c(x, x′) using all the points in Xtest in a similar way as KX,X′ is
defined in Equation (2). Let � be an m × m diagonal matrix
withm largest eigenvalues of CXtest,Xtest and letU be an ntest ×m
matrixwhose columns are the eigenvectors corresponding to the
m largest eigenvalues ofCXtest,Xtest . Then, the KL expansion at all
the points in Xtest, denoted by a random vector G such that its
jth component (G)j = G(xtj), can be expressed using thematrix

notation as follows (see Supplementary Material Section S.2 for
details):

G = U�
1
2 z. (8)

In order to construct the confidence band, we sample a large
number (say 1000) of z from its confidence set, then the values of
the confidence band at all points in Xtest is given by the vectors

ub = maxzU�
1
2 z,

lb = −ub,
(9)

where ub is the vector of upper bounds and lb is the vector
of lower bounds for the confidence band. We accept the null
hypothesis HGP

0 at the confidence level of 1 − α if the value of
g(xtj) are within the band, that is,

(lb)j ≤ g(xtj) ≤ (ub)j for all j = 1 . . . ntest,

where the notation (a)j is the jth component of a vector a. Sim-
ilarly, we reject the null hypothesisHGP

0 at the 1− α confidence
level if there is at least one violation, that is,

there exists j ∈ {1 . . . ntest} such that g(xtj) /∈ [(lb)j, (ub)j].

It is also worth noting that we are getting an approximate
band because of using a truncated KL expansion. This may
result in losing some confidence on the test. In other words, the
probability of the confidence band would be less than 1 − α. A
possible compensation can be made by setting a slightly higher
confidence level than the nominal level.

The points for which the null hypothesis is rejected would
form a discrete grid on the difference region(s) and the absolute
value of the statistically significant difference at these points
would be given as: δ(xtj) = |g(xtj)| − (ub)j. Needless to say
that the difference at the points where the null hypothesis is not
rejected would be considered zero.

2.4. Estimating the Hyperparameters

Until now, we have assumed the values of the hyperparameters
of the covariance matrix and the nugget σε are known. Next, we
describe the method we use to estimate these hyperparameters.

Let us assume that θ is the vector containing all the hyper-
parameters of the covariance function and the nugget σε . We
estimate these hyperparameters by merging the two datasets as
y = (y(1), y(2)) and X = (X(1),X(2)), and jointly maximizing
the likelihood as follows:

θ̂ = argmax L(θ ;D1,D2), (10)

where L(θ ;D1,D2) = (2π)−(n1+n2/2)|KX,X + σ 2
ε I|−1/2

exp (−0.5(y�[KX,X + σ 2
ε I]−1y)). We formally state the funGP

algorithm in Section 2.5.
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2.5. funGP Algorithm

Algorithm 1: funGP: function comparison using GP
Input:D1 = {X(1), y(1)},D2 = {X(2), y(2)}, Xtest, α
Procedure:
1: Choose a covariance function.
2: Estimate the hyperparameters for the covariance
function and the nugget, σε , by optimizing the likelihood
function given in Equation (10).
3: Compute the predictive mean functions f̂1 usingD1,
and f̂2 usingD2 using Equations (3) and (4).
4: Compute the covariance matrix CXtest,Xtest using the
covariance function in Equation (6) for the points in Xtest.
5: Compute the difference between predictive means for
the points in Xtest,
g(xtj) = f̂2(xtj) − f̂1(xtj) | j = 1, . . . , ntest.
6: Do the eigen decomposition of CXtest,Xtest and store the
m largest eigenvalues following the truncation rule in
Section 2.3 in a diagonal matrix � and the corresponding
eigenvectors in a matrix U.
7: Compute the radius, r, of a standard normal vector of
dimensionm with a coverage probability of 1 − α using
Equation (7).
8: Sample a large number (say 1000) of standard normal
vector z such that ||z|| ≤ r.
9: Compute the vector of upper bounds, ub, and lower
bounds, lb, for all the test points using Equation (9).
Output:
If (lb)j ≤ g(xtj) ≤ (ub)j ∀ j = 1, . . . , ntest, functions are
same at 1 − α confidence level.
Else, functions are different at 1 − α confidence level.

3. Simulation Study

In this section, we present three simulation studies for the
funGP method to estimate the Type I and the Type II errors
and compare it with two methods from the existing literature.
We estimate the Type II error for some small perturbations.
In order to quantify the difference between a function and
its perturbation, we use an L2-distance percentage defined as
follows:

L2 dist % = ‖f − g‖L2
‖f ‖L2

× 100%,

where f is the underlying function, and g is its perturbation.
After fixing the nominal level of HGP

0 to α = 0.05, we conduct
1000 runs for each simulation example to estimate the Type
I/Type II errors. We also examine the effect of the sample size,
the number of points in the test grid, and the truncation number
in the KL expansion on the Type I and Type II errors using
different experiments.

3.1. Functions Used in the Simulations

The first simulation study is based on functions sampled from
a known GP. Our method also assumes the functions to be
GP samples, so this study represents a case when there is no
model misspecification, that is, the GP part in HGP

0 is indeed

true. Whereas the other two simulation studies are based on
some parametric functions available in the literature; we use
GP as a surrogate for the true function. Thus, for these two
fixed functions, the estimated Type I/Type II errors are for the
original hypothesis test H0, even though we are controlling the
Type I error only under HGP

0 . Hence, the last two simulations
evaluate the efficacy of the funGP method under a potential
model misspecification. In order to generate the datasets, we
randomly sample two sets of points from the input domain
of the functions. We then generate response by adding some
iid Gaussian noise to the function values at the sampled input
points. For conducting all the simulation studies, we use a
constant mean and a squared exponential covariance function
for the GP modeling.

The following are the specifications of the simulated
functions. We consider a one-dimensional input x ∈ [0, 1]
for the first simulation study, the GP sample. The model can
be described as: y = f (x) + ε; f (x) ∼ GP(0, k(x, x′)); ε ∼
N (0, σ 2

ε ). The covariance function k(x, x′) is squared exponen-
tial with the following form: k(x, x′) = σ 2

f exp (−0.5[(x − x′)/θ ]2).
The hyperparameters for the covariance function, k(x, x′), are
set to σf = 5, and θ = 0.2. The standard deviation of the
noise, σε , is set to 0.5. For each simulation run, a different
sample is generated from the givenGPmodel, and the estimated
Type I error is the percentage of runs for which the null
hypothesis is rejected. For estimating the Type II error, we create
a perturbation g(x) in the following way:

g(x) =
{

f (x) + 1
3 sin

(
π

(
x−0.2
0.8−0.2

))
, x ∈ [0.2, 0.8],

f (x), otherwise.

The functions f (x) and g(x) sampled for one simulation run (left
panel) along with two noisy datasets generated from it (right
panel) are shown in Figure 1. One can see that the difference
between the functions is small and gets masked visually in the
noisy data.

For the other two studies, we use two parametric functions
available in the literature: piston simulation function (Kenett
and Zacks 1998) and borehole simulation function (Harper and
Gupta 1983). We use these functions with two dimensional
input by fixing the rest of their input variables to certain values.
More details about these functions, including the function plots,
are provided as supplementary material S.3 to maintain the flow
for the readers and save space.

3.2. Results

Table 1 shows the estimated Type I and Type II errors for
all the simulation studies, along with the L2 distance between
the function f and its perturbation, g. The results in Table 1
are based on the following specifications. The sample size for
one-dimensional function (GP sample) and two-dimensional
functions (piston and borehole) are 500 and 1000, respectively,
randomly sampled from their respective input domain. The test
grid is 500 evenly spaced points in the domain for theGP sample
and 50 × 50 evenly spaced grid for the piston and the borehole
functions.We follow the same truncation rule for the truncation
number m as described in Section 2.3. The L2 distance varies
between 3% and 5 %.
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Figure 1. Plots for GP sample. Left panel: f (x) and its perturbation, g(x); Right panel: Noisy realizations from f (x) and g(x).

Table 1. Estimated Type I and Type II errors for the simulated functions.

Function Type I error Type II error L2 dist %

GP sample 0.049 0.031 4.7
Piston 0.041 0.008 3.8
Borehole 0.065 0.022 3.4

For the first case study, when the true functions are GP
samples, the estimated Type I error is very close to the nominal
level of 0.05 (5%). This result is very much expected, as both
we are controlling the Type I error under HGP

0 and the GP
assumption is indeed true. In the other two simulation stud-
ies, the estimated Type I error is not as close to the nominal
value as the first simulation study. This can be attributed to
the fact that the estimated Type I error is for H0, and we are
controlling the Type I error forHGP

0 . The form of the mean and
covariance function required to sample these functions from a
GP is not known and we use approximations in these studies.
The agreement between the estimated Type I error and the
nominal value would depend on how well the GP approximates
the function. If it is difficult to approximate a function using a
knownparametric covariance function, thenwe can either come
up with more sophisticated mean and covariance functions,
or we can increase the confidence level of the test to a value
greater than the desired level to account for model uncertainty.
For the given sample size, we are satisfied that the method can
identify the difference in the underlying functions even with
small perturbations. We would, next, conduct experiments to
see how the method performs under different sample sizes, test
grid sizes and truncation numbers.

3.3. Further Experiments

We repeat the three simulation experiments carried out previ-
ously under different sample sizes while keeping the test grid
and the truncation rule fixed. The sample sizes are set at four
levels: 100, 200, 500, and 1000. Table 2 presents the results of
these experiments. The table clearly shows a reduction inType II
error as the sample size increases while keeping the Type I error
stable, which is consistent with our understanding of statistical
hypothesis tests. The numerical results indicate that in order

Table 2. Estimated Type I and Type II errors under different sample sizes.

Sample size for each dataset

Function Estimate 100 200 500 1000

GP
sample

Type I error 0.032 0.040 0.049 0.049
Type II error 0.721 0.450 0.031 0.001

piston Type I error 0.031 0.032 0.027 0.041
Type II error 0.845 0.639 0.201 0.008

borehole Type I error 0.058 0.058 0.070 0.065
Type II error 0.757 0.460 0.091 0.022

Table 3. Estimated Type I and Type II errors under different test grid sizes.

Number of test points

Function Estimate 100 400 900 2500

GP
sample

Type I error 0.039 0.038 0.059 0.049
Type II error 0.033 0.033 0.034 0.022

piston Type I error 0.025 0.032 0.044 0.041
Type II error 0.020 0.014 0.014 0.008

borehole Type I error 0.035 0.050 0.046 0.065
Type II error 0.063 0.027 0.024 0.022

to render sufficient detection power, a large enough sample is
needed for detecting small difference between two functions.

The test grid size experiment is carried out while keeping the
sample size fixed at the same value as used for the main result in
Section 3.2.We use a test grid of size 100, 400, 900, and 2,500 for
each simulated function so that it corresponds to 10×10, 20×20,
30×30, and 50×50 test grid, respectively, for two-dimensional
functions (piston and borehole). Table 3 presents the results of
this experiment. There is no significant effect of the test grid size
on theType I andType II errors. This is expected as our test relies
on the truncated KL expansion and the number of eigenvalues
(m) remains constant for different test grid sizes because we use
the same truncation rule.

We contemplate how the results may change when we use
any arbitrary truncation number instead of using the afore-
mentioned rule for calculating the truncation number. Table 4
displays the result of using different truncation numbers on
the Type I and Type II errors. We note that the hypothesis
test remains a level-α test as long as the truncation number is
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Table 4. Estimated Type I and Type II errors under different truncation numbers.

Truncation number

Function Estimate 10 50 100

GP
sample

Type I error 0.051 0.034 0.029
Type II error 0.023 0.043 0.048

piston Type I error 0.036 0.013 0.024
Type II error 0.016 0.020 0.026

borehole Type I error 0.260 0.046 0.039
Type II error 0.014 0.020 0.018

larger than a certain threshold, of which the specific value would
depend on the function under study. For the first two cases, a
truncation number of 10 or greater appears sufficient, whereas
for the third case, a truncation number may need to be as large
as 50. When one chooses a smaller truncation number than the
problem demands, then one cuts off a significant portion of the
1−α confidence band, resulting in a high Type I error. Thus, we
suggest using the recommended truncation rule, which adapts
the truncation number according to the problem.

3.4. ComparisonWith OtherMethods

We compare our method with two other methods available in
the literature. The first comparison is with Munk and Dette
(1998), which is a global test that works for datasets without
requiring common input points and replicates. Although it is
a global test, we can still use this method to compare with the
funGP method in terms of the Type I and Type II errors. This
method builds its test statistic based on the L2-distance between
the functions. The method is developed for functions with one-
dimensional input. For this reason, we use this method only for
the first simulation study, the GP sample.

Table 5 presents the results for the comparison. We note
that out method is significantly more powerful than Munk and
Dette’s method. Munk and Dette (1998) provided an expression
for approximating the power of their test, given the L2-distance
between the functions, the sample size, and the noise level;
see Equation (17) in Munk and Dette (1998). The approximate
power computed using that expression is 0.435, which is con-
sistent with the empirically estimated Type II error in Table 5
(power = 1−Type II error).

We also compare our method with Cox and Lee (2008),
which identifies the difference region in terms of p-values. Cox
and Lee (2008) is based on a permutation test and requires the
datasets to have replicates and the same input points. Since the
datasets simulated for the funGPmethod do not have replicates
and do not share the same input points, we simulate different
sets of samples with replicates keeping the input points the
same for the two functions. We apply both funGP and Cox
and Lee’s methods to these newly generated datasets to estimate

Table 5. Comparison between the funGP and Munk and Dette (1998) methods for
the GP sample simulation study.

Function Method Type I error Type II error

GP sample funGP 0.049 0.031
Munk & Dette 0.117 0.570

Table 6. Comparison between funGP and Cox and Lee methods.

Function Method Type I error Type II error

GP
sample

funGP 0.039 0.042
Cox & Lee 0.023 0.160

piston funGP 0.027 0.011
Cox & Lee 0.017 0.071

borehole funGP 0.042 0.098
Cox & Lee 0.020 0.017

the Type I and Type II errors. We still use 1000 runs for the
simulation. We use 50 input points with 10 replications each for
1-dimensional case (GP sample function) and 100 input points
with 10 replications each for two-dimensional cases (piston
and borehole functions). The sample sizes are chosen such that
the total number of the samples is equal to that of the main
simulation study, that is, 500 for one-dimensional case and 1000
for two-dimensional case. In each case, the nominal level of the
test is set to α = 0.05.

The results for this comparison are presented in Table 6. The
proposed funGP method performs better than Cox and Lee in
two out of three cases—the GP sample and the piston cases,
and worse for the borehole case, in terms of the Type II error.
We would like to articulate that we advocate the merit of our
method as identifying the difference region and quantifying the
difference for datasets arising from a broader setting, namely
without the same input points and replicates, and not purely
in terms of its power in a binary decision. Yet, our method
performs comparably, and sometimes even better, than other
methods such as Cox and Lee (2008) and Munk and Dette
(1998).

4. Application

In this section, we apply the funGP method to a wind energy
problem. A common technique to characterize the performance
of a wind turbine is through the use of its power curve (Ding
2019, chap. 5 and 6). A univariate power curve is a functional
curve with wind speed as the input and the generated wind
power as the output. But researchers realize that the wind power
output is affected by other inputs more than just the wind speed.
Consequently, multivariate power curves have been developed;
see, for instance Ding (2019, chap. 5) or Lee et al. (2015).

A nominal wind power curve is shown in Figure 2. The
turbine does not produce power below the cut-in wind speed
Vci. Above the cut-in speed, the power gradually rises till the
rated power and then capped at that level till the cut-out wind
speed Vco, at which the turbine operation is stopped in order
to protect its components against damage. The pitch control is
one of the main mechanisms to regulate a wind turbine’s power
output (Senjyu et al. 2006); in Figure 2, we mark the wind speed
region where the pitch control is active.

The power curve (univariate or multivariate) is generally
learned through data; please see Chapter 5 of Ding (2019) for
various methods. If one wants to compare the performance of
two turbines or the same turbine over multiple time periods,
then they can do so by comparing the learned power curves.
This raises a question that whether the difference in the learned
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Figure 2. A nominal wind power curve. Vci : the cut-in wind speed, Vr : the rated
wind speed; Vco : the cut-out wind speed.

curves is due to the randomness in the samples, or the difference
is genuine in turbine performance beyond random fluctuation.
Our proposed method can, hence, be employed to answer this
question.

We apply ourmethod to the four datasets as used byHwangbo,
Johnson, andDing (2017), which also constitutes a large portion
of (Ding 2019, chap. 6), and we download the four datasets
from the book website of Ding (2019) (https://aml.engr.tamu.
edu/book-dswe/dswe-datasets, Inland and Offshore Wind Farm
Dataset2). Each dataset corresponds to a different turbine. The
four turbines are labeled as WT1, WT2, WT3, and WT4. The
datasets WT1 andWT2 are from onshore turbines and have the
following five input variables: wind speed (V), wind direction
(D), air density (ρ), turbulence intensity (I), and wind shear (S).
The other two datasets (WT3 andWT4) correspond to offshore
wind turbines with the input variable S replaced with humidity
(H), with the rest of the variables the same as that of the onshore
turbines. Each of the four datasets comprises four years of data.
We conduct a year to year comparison for each turbine, as done
in Hwangbo, Johnson, and Ding (2017). For this reason, each
turbine’s dataset is divided into four annual datasets.

The marginal distributions of the covariates are different
for each year, thus before computing their metric, Hwangbo,
Johnson, and Ding (2017) applied a method called covariate
matching to the annual datasets. Covariate matching tries to
match the marginal distributions of all the available environ-
mental variables among the annual datasets by selecting the
proper data subsets. Covariate matching is applied here in order
to enable a fair comparison in turbine performance by ensuring
that the distributions of the environmental variables are similar.
We follow the same strategy with the same specifications as
given in Hwangbo, Johnson, and Ding (2017). After the covari-
ate matching, Hwangbo, Johnson, and Ding (2017) used only
the wind speed as the input variable to estimate the power
curve. We also proceed in a similar way. In other words, we
have wind speed as the input and wind power as the output. We
input these datasets to our funGP algorithm and do a pairwise
comparison between the annual datasets for each turbine using
the following specification. We select 1000 evenly spaced points
from the range of the input variable (wind speed) as the test grid
and compare the power curves for any two annual datasets for

Table 7. Percentage of test points with statistically significant difference between
annual datasets.

Turbine Year 1 & 2 Year 1 & 3 Year 1 & 4 Year 2 & 3 Year 2 & 4 Year 3 & 4

WT1 49.5 58.1 53.6 13.9 0 0
WT2 40.6 41.3 41.3 0 0 0
WT3 85.6 81.4 73.1 55.4 72.7 41.9
WT4 74.9 60.8 64.3 44.4 69.6 2.7

a given turbine on the defined test grid. A typical wind turbine
operates at wind speeds between 5 m/s to 15 m/s for most of the
time. Thus, we select this range to test the difference. Hwangbo,
Johnson, and Ding (2017) developed a 90 % confidence interval
for their performance metric using the bootstrap method. For
comparison, we also build a 90 % confidence band on the
difference of the power curves.

The outputs from our method are the pointwise difference
in the power curves and the 90 % confidence band on the
difference for the power curves to be the same. In Table 7, we
report the percentage of points, out of the 1000 test points, where
the difference between two given yearly datasets is statistically
significant. Whenever the percentage is greater than zero, we
claim that the difference between corresponding two curves is
statistically significant.

Speaking of the current industry practice for turbine perfor-
mance comparison in the wind energy sector, the most popular
method is to compare their peak power coefficient estimated
from the data (IEC 2005). The power coefficient,Cp, of a turbine
is computed by using the following formula:

Cp = 2y
ρAV3 ,

where y is the wind power output and A is the sweeping area
of the turbine blades. Here, Cp is not a constant but rather
a function of wind speed and a few other factors. The exact
formula linking Cp to other physical variables does not exist. So
it is empirically estimated. Using a functionalCp is not easy, and
because of that, practitioners simply choose the peak value on
the Cp-versus-wind-speed curve to represent the performance
of a turbine. The power coefficient has a theoretical upper
bound, known as the Betz limit, which is 0.593 (Ding 2019) but
the practical Cp is generally smaller than 0.5. It is obvious that
this Cp metric is just a point metric of an otherwise functional
difference.

Hwangbo, Johnson, andDing (2017) suggested another tech-
nique to compare the performance of wind turbines using the
concepts of production economics. They devise a performance
metric called productive efficiency which takes into account the
overall power curve andnot just the peak performance. But their
final output is again a point metric of the functional difference,
much like the power coefficient. Hwangbo, Johnson, and Ding
(2017)’s study found the productive efficiency metric has a
good similarity with the power coefficient metric, although not
exactly the same. Using the four datasets mentioned above, the
performance quantifications using the two metrics registered a
correlation of 0.75 (Hwangbo, Johnson, and Ding 2017). Other
than being a point metric, both the power coefficient and the
productive efficiency methods do not quantify the estimation
uncertainty on their own—one can go through an expensive

https://aml.engr.tamu.edu/book-dswe/dswe-datasets
https://aml.engr.tamu.edu/book-dswe/dswe-datasets
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bootstrap approach to get a confidence interval on the perfor-
mance metrics. The funGP method, on the other hand, can
lead to any level of confidence bands on the difference of the
performance.

We compare our results with the metrics, peak power coeffi-
cient and productive efficiency, obtained by Hwangbo, Johnson,
and Ding (2017, Table II). We illustrate the comparison in a
chart (see Figure 3) using vertical and horizontal lines with the
following criteria:

• If the two metrics used by Hwangbo, Johnson, and Ding
(2017) agreed with each other (i.e., they both say the two
annual periods are different or they both say the same), and
they also agree with our result, then we use vertical lines to
demonstrate that.

• If the two metrics do not agree with each other, but one of
them agree with our result, then we still use vertical lines.

• However, if the two metrics agree with each other, but they
do not agree with our method, then we use horizontal lines
to show that.

In other words, the vertical lines imply an agreement between
our method and at least one of the two metrics, whereas
the horizontal lines mean a disagreement between the two
metrics and the funGP method. We observe that when the
difference between two power curves is statistically significant,
the confidence intervals of the peak power coefficient or the
productive efficiency for the same two curves tend not to
overlap, leading naturally to the overwhelming agreement
pattern observed in Figure 3.

There is one comparison outcome for which using funGP
and either metric in Hwangbo, Johnson, and Ding (2017) dis-
agree: WT1 for Year 2 versus Year 3. Taking a closer look reveals
that the percentages of test points where the two curves are
different, as reported in Table 7, is 13.9%. The percentage is
much smaller than the percentage values in other cases for
which two curves are declared different. When we look at the
power coefficient and productive efficiency values in Hwangbo,
Johnson, and Ding (2017, Table II), they are as such:

• WT 1’s power coefficient. Year 2: 0.388 with the 90% confi-
dence intervals as [0.386, 0.392], and Year 3: 0.393 with the
90% confidence intervals as [0.390, 0.397].

• WT1’s productive efficiency. Year 2: 0.969 with the 90%
confidence intervals as [0.966, 0.973], and Year 3: 0.972 with
the 90% confidence intervals as [0.969, 0.975].

Apparently, for the power coefficient and productive efficiency
metrics, their 90% confidence intervals are only marginally
overlapping, not really contradicting with the small regions of
difference detected by using the funGP method. It is not unrea-
sonable to consider that the funGP method is more sensitive to
the difference between the two curves.

The funGP method provides a quantification of the regions
of difference. Better yet, funGP can be used to compute the
difference in the power curves at any point in the domain of the
curve, and thus, gives a more detailed picture of the difference
between any two curves, so that the practitioners can see where
the difference lies and thus make an informed decision regard-
ing whether the difference regionmatters or not. Figure 4 shows
this difference vs. wind speed plot for all the annual datasets for
the first turbine (WT1).

As described in Section 1, knowing the regions of difference
is helpful in deciding the maintenance plan for the turbine. For
instance, if the difference occur in low power range, onemay not
necessarily need to go for expensive maintenance as doing so is
unlikely to result in large change in the power output. Another
important implication of knowing the difference regions is to
decide the pitch control configuration of the turbine. As Creaby,
Li, and Seem (2009) explained, wind turbine’s aerodynamic
characteristics change with time because of surface wear, dirt
and other factors. Therefore, knowing the region of difference
can help adjust the control laws to optimize the pitch control for
different regions of operations, in order to maximize the power
output. The funGP method is better suited in this application
as a more powerful and informative testing and comparison
method.

5. Discussions

This work presents a new nonparametric method that com-
pares functions, referred to as the funGP method. Unlike many
methods in the literature, the novelty of funGP lies in its abil-
ity to identify the regions of difference in the input space of
the functions and quantify this difference, rather than simply

Figure 3. Comparison chart for the results obtained using funGP method to that of the peak power coefficient and the productive efficiency method. Vertical lines imply
that the results agree. Horizontal lines imply that the results differ.
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Figure 4. Difference in curves vs wind speed for WT1.

returning a binary answer on whether the difference exists or
not. This ability makes the funGP method a truly functional
test.

From an application point of view, particularly in engi-
neering, comparing processes often mean subsequent decision
making. For instance, comparing wind power curves guides
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the maintenance strategy. Under these circumstances, a binary
answer for function comparison can easily run to its limit, as
it may not be of much help in driving the decision-making
process. Understanding a fuller picture of function difference
through region identification and subsequent quantification, on
the other hand, could lead to better engineering and economic
decisions. We hope that our work paves the way and shifts the
focus of function comparison research towardmore informative
function tests, which would have broader applications and
impact in the engineering fields.

In the work, we use evenly spaced input points to conduct
the comparison of the curves. In the higher dimensions, the
numbers of grid points can grow rapidly and may become com-
putationally burdensome. One worthy future research direction
that would directly advance this work is to devise an adaptive
grid—based on the characteristics of the function under study—
to quickly identify and quantify the differences while reducing
the computational time.

Supplementary Material

Supplementary Material: The PDF file contains: (i) Derivation of the
covariance function c(x, x′), (ii) Brief description of the Karhunen-
Loève expansion of a Gaussian process, and (iii) Details on borehole
and piston functions.

Computer Code: The computer code to reproduce all the results in this
article are available on GitHub at https://github.com/TAMU-AML/
funGP-Paper. A generic R function for applying the funGP algorithm to
any dataset is available in DSWE package in R available through CRAN
at https://CRAN.R-project.org/package=DSWE.
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