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SPARSE CHOLESKY FACTORIZATION BY KULLBACK--LEIBLER
MINIMIZATION\ast 

FLORIAN SCH\"AFER\dagger , MATTHIAS KATZFUSS\ddagger , AND HOUMAN OWHADI\dagger 

Abstract. We propose to compute a sparse approximate inverse Cholesky factor L of a dense
covariance matrix \Theta by minimizing the Kullback--Leibler divergence between the Gaussian distribu-
tions \scrN (0,\Theta ) and \scrN (0, L - \top L - 1), subject to a sparsity constraint. Surprisingly, this problem has
a closed-form solution that can be computed efficiently, recovering the popular Vecchia approxima-
tion in spatial statistics. Based on recent results on the approximate sparsity of inverse Cholesky
factors of \Theta obtained from pairwise evaluation of Green's functions of elliptic boundary-value prob-
lems at points \{ xi\} 1\leq i\leq N \subset Rd, we propose an elimination ordering and sparsity pattern that
allows us to compute \epsilon -approximate inverse Cholesky factors of such \Theta in computational complexity
\scrO (N log(N/\epsilon )d) in space and \scrO (N log(N/\epsilon )2d) in time. To the best of our knowledge, this is the best
asymptotic complexity for this class of problems. Furthermore, our method is embarrassingly paral-
lel, automatically exploits low-dimensional structure in the data, and can perform Gaussian-process
regression in linear (in N) space complexity. Motivated by its optimality properties, we propose
applying our method to the joint covariance of training and prediction points in Gaussian-process
regression, greatly improving stability and computational cost. Finally, we show how to apply our
method to the important setting of Gaussian processes with additive noise, compromising neither
accuracy nor computational complexity.
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1. Introduction.
The problem. This work is concerned with the sparse inverse Cholesky factoriza-

tion of large dense positive-definite matrices \Theta \in RN\times N , frequently arising as kernel
matrices in machine-learning methods using the ``kernel trick"" [28], as covariance
matrices in Gaussian-process (GP) statistics [47], and as Green's matrices in the nu-
merical analysis of elliptic partial differential equations (PDEs). Naive computations
of quantities such as \Theta v, \Theta  - 1v, logdet\Theta , which are required by the applications
mentioned above, scale as \scrO (N2) or \scrO (N3) and become prohibitively expensive for
N > 105 on present-day hardware.

Existing work. Numerous approaches have been proposed in the literature to
improve this computational complexity by taking advantage of the structure of \Theta .
Many rely on sparse approximations to the kernel matrix (e.g., [19, 36]), its inverse
(e.g., [40, 49, 50, 48]), or the Cholesky factor of its inverse (e.g., [63]); also popular
are low-rank approximations (e.g., [64, 55, 17, 3, 18, 4]) and combinations of low-
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rank and sparse approximations (e.g., [54, 56, 46, 51]). Near-linear computational
complexity can be achieved by applying these mechanisms hierarchically on multi-
ple scales. Examples of hierarchical sparse approximations include wavelet methods
(e.g., [8]), the multiresolution approximation [32, 33], and (implicitly) some versions
of the Vecchia approximation [34]. Hierarchical application of low-rank approxima-
tions leads to hierarchical matrices [24, 26, 25, 9, 1, 27, 11, 12, 62], which are an
algebraic abstraction of the fast multipole method [22]. The authors of [53] proposed
an approximation based on incomplete Cholesky factorization that can be interpreted
as both hierarchical sparse and hierarchical low-rank.

The best asymptotic (in N and \epsilon ) memory complexity for the \epsilon -accurate com-
pression of an N \times N kernel matrix with finitely smooth covariance function and
d-dimensional feature space is \scrO (N logd(N/\epsilon )), which is achieved by wavelets in non-
standard form (see [8], for asymptotically smooth kernels), or sparse inverse Cholesky
factors of \Theta (see [53], based on results in [44, 45]). However, we are not aware of
practical algorithms that provably compute such approximations in near-linear time
from1 \scrO (N logd(N/\epsilon )) entries of \Theta chosen a priori.

Our method. We propose computing a sparse approximate inverse Cholesky fac-
tor L of \Theta , by minimizing with respect to L and subject to a sparsity constraint,
the Kullback--Leibler (KL) divergence between two centered multivariate normal dis-
tributions with covariance matrices \Theta and (LL\top ) - 1. Surprisingly, this minimization
problem has a closed-form solution, enabling the efficient computation of optimally
accurate Cholesky factors for any specified sparsity pattern.

The resulting approximation can be shown to be equivalent to the Vecchia ap-
proximation of GPs [63], which has become very popular for the analysis of geospatial
data (e.g., [60, 13, 61, 23, 34, 35]); to the best of our knowledge, rigorous convergence
rates and error bounds were previously unavailable for Vecchia approximations, and
this work is the first one presenting such results. An equivalent approximation has
also been proposed by [31] and [37] in the literature on factorized sparse approximate
inverse (FSAI) preconditioners of (typically) sparse matrices (see, e.g., [7] for a review
and comparison and [10] for an application to dense kernel matrices); however, its KL
divergence optimality has not been observed before. KL minimization has also been
used to obtain sparse lower-triangular transport maps by [42]; while this literature is
mostly concerned with the efficient sampling of non-Gaussian probability measures,
the present work shows that an analogous approach can be used to obtain fast algo-
rithms for numerical linear algebra if the sparsity pattern is chosen appropriately.

State-of-the-art computational complexity. The computational complexity and
approximation accuracy of our approach depend on the choice of elimination ordering
and sparsity pattern. We propose a particular choice, similar to [23] and [53], that
is motivated by the screening effect (e.g., [58, 59, 5]), which implies (approximate)
conditional independence for many kernels of common interest. By using a grouping
algorithm similar to the heuristics proposed by [16] and [23], we can show that the
approximate inverse Cholesky factor can be computed in computational complexity
\scrO (N\rho 2d) in time and \scrO (N\rho d) in space, using only \scrO (N\rho d) entries of the original
kernel matrix \Theta , where \rho is a tuning parameter trading accuracy for computational
efficiency.

The authors of [53] observe that recent results on numerical homogenization and
operator-adapted wavelets [41, 38, 44] imply the exponential decay of the inverse
Cholesky factors of \Theta if the kernel function is the Green's function of an elliptic

1Hidden constants in all asymptotic complexities may depend on the dimension d of the dataset.
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boundary-value problem. Using these results, we prove that in this setting, an \epsilon -
approximation of \Theta can be obtained by choosing \rho \approx log(N/\epsilon ). This leads to the
best-known trade-off between computational complexity and accuracy for this class
of kernel matrices.

Practical advantages. Our method has important practical advantages comple-
menting its theoretical and asymptotic properties. In many GP regression applica-
tions, large values of \rho are computationally intractable with present-day resources. By
incorporating prediction points in the computation of KL-optimal inverse Cholesky
factors, we obtain a GP regression algorithm that is accurate even for small (\approx 3)
values of \rho , including in settings where truncation of the true Cholesky factor of \Theta  - 1

to the same sparsity pattern fails completely.
For other hierarchy-based methods, the computational complexity depends expo-

nentially on the dimension d of the dataset. In contrast, because the construction
of the ordering and sparsity pattern only uses pairwise distances between points, our
algorithms automatically adapt to low-dimensional structure in the data and operate
in complexities identified by replacing d with the intrinsic dimension \~d \leq d of the
dataset.

An important limitation of existing methods based on the screening effect [23, 53,
35] is that they deteriorate when applied to independent sums of two GPs, such as
when combining a GP with additive Gaussian white noise. Extending ideas proposed
in [53], we are able to fully preserve both the accuracy and asymptotic complexity of
our method over a wide range of noise levels. To the best of our knowledge, this is
the first time this has been achieved by a method based on the screening effect.

Finally, our algorithm is intrinsically parallel because it allows each column of
the sparse factor to be computed independently (as in the setting of the Vecchia ap-
proximation, factorized sparse approximate inverses, and lower-triangular transport
maps). Furthermore, we show that in the context of GP regression, the loglikeli-
hood, the posterior mean, and the posterior variance can be computed in \scrO (N + \rho d)
space complexity. In a parallel setting, we require \scrO (\rho d) communication between
the different workers for every \scrO (\rho 3d) floating-point operations, resulting in a total
communication complexity of \scrO (N). Here, most of the floating-point operations arise
from calls to highly optimized BLAS and LAPACK routines.

Outline. The remainder of this article is organized as follows. In section 2, we
show how sparsity-constrained KL minimization yields a simple formula for approx-
imating the inverse Cholesky factor of a positive-definite matrix. In section 3, we
present elimination orderings and sparsity patterns that provably lead to state-of-
the-art trade-off between computational complexity and accuracy when applied to
Green's functions of elliptic PDEs, and that we recommend more generally for co-
variance matrices of GPs that are subject to a screening effect. In subsection 3.3,
we bound the computational complexity of our algorithm and rigorously quantify
its complexity/accuracy trade-off. In section 4, we showcase three extensions of our
method, allowing the treatment of additive noise due to measurement errors, im-
proving the speed and accuracy of prediction, and enabling GP regression at linear
complexity in space and communication (between workers) in a distributed setting.
In section 5, we present numerical experiments applying our method to GP regression
and to boundary-element methods for the solution of elliptic PDEs. We summarize
our findings in section 6. The proofs of the main results are deferred to an appendix.
Further details on the construction of the ordering and sparsity pattern, as well as on
the implementation of some variants of our method, are provided in the supplementary
material (supplement.pdf [local/web 9.01MB]).
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2. Cholesky factorization by KL minimization. The KL divergence be-
tween two probability measures P andQ is defined as DKL(P \| Q) =

\int 
log( dP/ dQ) dP .

If Q is an approximation of P , then the KL divergence is the expected difference be-
tween the associated true and approximate log-densities, and so its minimization is
directly relevant for accurate approximations of GP inference, including GP prediction
and likelihood-based inference on hyperparameters. By virtue of its connection to the
likelihood ratio test [14], the KL divergence can also be interpreted as the strength
of the evidence that samples from P were not instead obtained from Q. If P and Q
are both N -variate centered normal distributions, the KL divergence is equivalent to
a popular loss function for covariance-matrix estimation [30], and it can be written as

(2.1) 2DKL(\scrN (0,\Theta 1) \| \scrN (0,\Theta 2)) = trace(\Theta  - 1
2 \Theta 1) + logdet(\Theta 2) - logdet(\Theta 1) - N.

Let \Theta be a positive-definite matrix of size N \times N . Given a lower-triangular
sparsity set S \subset I \times I, where I = \{ 1, . . . , N\} , we want to use

(2.2) L := argmin\^L\in \scrS DKL

\Bigl( 
\scrN 
\bigl( 
0,\Theta 

\bigr) \bigm\| \bigm\| \bigm\| \scrN 
\bigl( 
0, (\^L\^L\top ) - 1

\bigr) \Bigr) 

as an approximate Cholesky factor for \Theta  - 1, for \scrS :=
\bigl\{ 
A \in RN\times N : Aij \not = 0\Rightarrow (i, j) \in S

\bigr\} 
.

While solving the nonquadratic program (2.2) might seem challenging, it turns out
that it has a closed-form solution that can be computed efficiently.

Theorem 2.1. The nonzero entries of the ith column of L as defined in (2.2) are
given by

(2.3) Lsi,i =
\Theta  - 1

si,sie1\sqrt{} 
e\top 1 \Theta 

 - 1
si,sie1

,

where si := \{ j : (i, j) \in S\} , \Theta  - 1
si,si := (\Theta si,si)

 - 1, \Theta si,si is the restriction of \Theta to the

set of indices si, and e1 \in R\#si\times 1 is the vector with the first entry equal to one and all
other entries equal to zero. Using this formula, L can be computed in computational
complexity \scrO 

\bigl( 
\#S + (max1\leq i\leq N \#si)

2
\bigr) 
in space and \scrO 

\bigl( \sum N
i=1 (\#si)

3 \bigr) 
in time.

Proof. See Appendix A.1.

Compared to ordinary sparse Cholesky factorization (see Algorithm 4.2), the algo-
rithm implied by Theorem 2.1 has the advantage of giving the best possible Cholesky
factor (as measured by KL) for a given sparsity pattern. Furthermore, it is embarrass-
ingly parallel---all evaluations of (2.3) can be performed independently for different
i. While the computational complexity is slightly worse than the one of in-place
incomplete Cholesky factorization, we will show in Theorem 3.2 that for important
choices of S, the time complexity can be reduced to \scrO 

\bigl( \sum N
k=1 (\#sk)

2 \bigr) 
, matching the

computational complexity of incomplete Cholesky factorization.
The formula in (2.3) can be shown to be equivalent to the formula that has

been used to compute the Vecchia approximation [63] in spatial statistics, without
explicit awareness of the KL-optimality of the resulting L. In the literature on fac-
torized sparse approximate inverses, the above formula was derived for minimizers of
\| Id - L chol(\Theta )\| FRO subject to the constraints L \in \scrS and diag(L\Theta L\top ) = 1 [37], and
for minimizers of the Kaporin condition number (trace(\Theta LL\top )/N)N/ det(\Theta (LL\top ))
subject to the constraint L \in \scrS [31]. The KL divergence, as opposed to \| Id  - 
L chol(\Theta )\| FRO, strongly penalizes zero eigenvalues of \Theta LL\top , which explains the ob-
servation of [15] that adding the constraint diag(L\Theta L\top ) = 1 tends to improve the
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Fig. 1. To obtain the reverse-maximin ordering, for k = N  - 1, N  - 2, . . . , 1, we successively
select the point xik (red) that has the largest distance \ell ik (red) to those points xik+1

, . . . , xiN (blue)
selected previously (shown as enlarged). All previously selected points within distance \rho \ell i (orange)
of xik (red) (here, \rho = 2) form the kth column of the sparsity pattern (orange).

spectral condition number of the resulting preconditioner, despite increasing the size
of the fidelity term \| Id  - L chol(\Theta )\| FRO. The authors of [42] showed that the em-
barrassingly parallel nature of KL minimization is even preserved when replacing the
Cholesky factors with nonlinear transport maps with Knothe--Rosenblatt structure.
As part of ongoing work on the sample complexity of the estimation of transport maps,
the authors of [6] discovered representations very similar to (2.3), independently of
the present work.

Based on the results above, we propose the following procedure to approximate
a large positive-definite matrix \Theta :

1. Order the degrees of freedom (i.e., rows and columns of \Theta ) according to some
ordering \prec .

2. Pick a sparsity set S \subset I \times I.
3. Use formula (2.3) to compute the lower-triangular matrix L with nonzero

entries contained in S that minimizes DKL

\bigl( 
\scrN 
\bigl( 
0,\Theta 

\bigr) \bigm\| \bigm\| \scrN 
\bigl( 
0, (LL\top ) - 1

\bigr) \bigr) 
.

In the next section, we will describe how to implement all three steps of this procedure
in the more concrete setting of positive-definite matrices obtained from the evaluation
of a finitely smooth covariance function at pairs of points in Rd.

3. Ordering and sparsity pattern motivated by the screening effect.
The quality of the approximation given by (2.2) depends on the ordering of the vari-
ables and the sparsity pattern S. For kernel matrices arising from finitely smooth
GPs, we propose specific orderings and sparsity patterns, which can be constructed
in near-linear computational complexity and which lead to good approximations for
many \Theta of practical interest.

3.1. The reverse-maximin ordering and sparsity pattern. Assume that
G is the covariance function of a GP that is conditioned to be zero on (the possibly
empty set) \partial \Omega , and the kernel matrix \Theta \in RI\times I is obtained as \Theta ij := G(xi, xj) for a
set of locations \{ xi\} i\in I \subset \Omega .

The reverse maximum-minimum distance (reverse-maximin) ordering [23, 53] of
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Algorithm 3.1 Without aggregation.

Input: G, \{ xi\} i\in I , \prec , S\prec ,l,\rho 

Output: L \in RN\times N l. triang. in \prec 

1: for k \in I do
2: for i, j \in sk do
3: (\Theta sk,sk)ij \leftarrow G(xi, xj)
4: end for
5: Lsk,k \leftarrow \Theta  - 1

sk,sk
ek

6: Lsk,k \leftarrow Lsk,k/
\sqrt{} 
Lk,k

7: end for
8: return L

Algorithm 3.2 With aggregation.

Input: G, \{ xi\} i\in I , \prec , S\prec ,l,\rho ,\lambda 

output: L \in RN\times N l. triang. in \prec 

1: for \~k \in \~I do
2: for i, j \in s\~k do
3:

\bigl( 
\Theta s\~k,s\~k

\bigr) 
ij
\leftarrow G(xi, xj)

4: end for
5: U \leftarrow P \updownarrow chol(P \updownarrow \Theta s\~k,s\~k

P \updownarrow )P \updownarrow 

6: for k \rightsquigarrow \~k do
7: Lsk,k \leftarrow U - \top ek
8: end for
9: end for

10: return L

Fig. 2. KL minimization with and without using aggregation. For notational convenience,
all matrices are assumed to have row and column ordering according to \prec . P \updownarrow denotes the order-
reversing permutation matrix, and ek is the vector with 1 in the kth component and zero elsewhere.

\{ xi\} i\in I is achieved by selecting the last index as

(3.1) iN := argmaxi\in I dist (xi, \partial \Omega )

(or arbitrarily for \partial \Omega = \emptyset ) and then choosing sequentially for k = N  - 1, N  - 2, . . . , 1
the index that is furthest away from \partial \Omega and those indices that were already picked:

(3.2) ik := argmaxi\in I\setminus \{ ik+1,...,iN\} dist
\bigl( 
xi,

\bigl\{ 
xik+1

, . . . , xiN

\bigr\} 
\cup \partial \Omega 

\bigr) 
.

Write \ell ik = dist
\bigl( 
xik ,

\bigl\{ 
xik+1

, . . . , xiN

\bigr\} 
\cup \partial \Omega 

\bigr) 
, and write i \prec j if i precedes j in the

reverse-maximin ordering. We collect the \{ \ell i\} i\in I into a vector denoted by \ell .
For a tuning parameter \rho \in R+, we select the sparsity set S\prec ,\ell ,\rho \subset I \times I as

(3.3) S\prec ,\ell ,\rho := \{ (i, j) : i \succeq j, dist(xi, xj) \leq \rho \ell j\} .

The reverse-maximin ordering and sparsity pattern is illustrated in Figure 1.
By a minor adaptation of [53, Alg. 3], the reverse-maximin ordering and sparsity

pattern can be constructed using Algorithm SM1.1 (see section SM1) in computational

complexity \scrO (N log2(N)\rho 
\~d) in time and \scrO (N\rho 

\~d) in space, where \~d \leq d is the intrinsic
dimension of the dataset, as will be defined in Condition B.2. The inverse Cholesky
factors L can then be computed using (2.3), as in Algorithm 3.1 (see Figure 2).

3.2. Aggregated sparsity pattern. It was already observed by [16] in the
context of sparse approximate inverses, and by [60, 23] in the context of the Vecchia
approximation, that a suitable grouping of the degrees of freedom makes it possible
to reuse Cholesky factorizations of the matrices \Theta si,si in (2.3) to update multiple
columns at once. The authors of [23, 16] propose grouping heuristics based on the
sparsity graph of L and show empirically that they lead to improved performance. In
contrast, we propose a grouping procedure based on geometric information and prove
rigorously that it allows us to reach the best asymptotic complexity in the literature,
in a more concrete setting.
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Fig. 3. The left figure illustrates the original pattern S\prec ,\ell ,\rho . For each orange point, we need
to keep track of its interactions with all points within a circle of radius \approx \rho . In the right figure,
the points have been collected into a supernode, which can be represented by a list of parents (the
orange points within an inner sphere of radius \approx \rho ) and children (all points within a radius \approx 2\rho ).

prove rigorously that it allows us to reach the best asymptotic complexity in the
literature, in a more concrete setting.

Assume that we have already computed the reverse-maximin ordering \prec and
sparsity pattern S\prec ,\ell ,\rho , and that we have access to the \ell i as defined above. We will
now aggregate the points into groups called supernodes, consisting of points that are
close in both location and ordering. To do so, we pick at each step the first (w.r.t. \prec )
index i \in I that has not been aggregated into a supernode yet and then we aggregate
into a common supernode the indices in \{ j : (i, j) \in S\prec ,\ell ,\rho , \ell j \leq \lambda \ell i\} for some \lambda > 1
(\lambda \approx 1.5 is typically a good choice) that have not been aggregated yet. We proceed
with this procedure until every node has been aggregated into a supernode. We write
\~I for the set of all supernodes; for i \in I,\~i \in \~I, we write i \rightsquigarrow \~i if \~i is the supernode
to which i has been aggregated. We furthermore define s\~i :=

\bigl\{ 
j : \exists i\rightsquigarrow \~i, j \in si

\bigr\} 
and

introduce the aggregated sparsity pattern \~S\prec ,\ell ,\rho ,\lambda :=
\bigcup 

k\rightsquigarrow \~k

\bigl\{ 
(i, k) : k \preceq i \in s\~k

\bigr\} 
. This

sparsity pattern, while larger than S\prec ,\ell ,\rho , can be represented efficiently by keeping
track of the set of parents (the k \in I such that k \rightsquigarrow s\~k) and children (the i \in s\~k) of
each supernode, rather than the individual entries (see Figure 3 for an illustration).
For well-behaved (cf. Theorem 3.2) sets of points, we obtain \scrO (N\rho  - d) supernodes,
each with \scrO (\rho d) parents and children, thus improving the cost of storing the sparsity
pattern from \scrO (N\rho d) to \scrO (N).

While the above aggregation procedure can be performed efficiently once \prec and
S\prec ,\ell ,\rho are computed, it is possible to directly compute \prec and an outer approximation
\=S\prec ,\ell ,\rho ,\lambda \supset \~S\prec ,\ell ,\rho ,\lambda in computational complexity \scrO (N) in space and \scrO (N log(N)) in

time. \=S\prec ,\ell ,\rho ,\lambda can either be used directly, or it can be used to compute \~S\prec ,\ell ,\rho ,\lambda in
\scrO (N) in space and \scrO (N log(N)\rho d) in time, using a simple and embarrassingly parallel
algorithm. Details are given in section SM1.

In addition to reducing the memory cost, the aggregated ordering and sparsity
pattern allows us to compute the Cholesky factors (in reverse ordering) \Theta s\~k,s\~k

= UU\top 

once for each supernode and then use it to compute the Lsk,k for all k \rightsquigarrow \~k as in
Algorithm 3.2 (see Figure 4 for an illustration).

As we show in the next section, this allows us to reduce the computational com-
plexity from \scrO (N\rho 3d) to \scrO (N\rho 2d) for sufficiently well-behaved sets of points.

3.3. Theoretical guarantees. We now present our rigorous theoretical result
bounding the computational complexity and approximation error of our method.
Proofs and additional details are deferred to Appendix B.

Remark 3.1. As detailed in Appendix B, the results below apply to more general

Fig. 3. The left figure illustrates the original pattern S\prec ,\ell ,\rho . For each orange point, we need
to keep track of its interactions with all points within a circle of radius \approx \rho . In the right figure,
the points have been collected into a supernode, which can be represented by a list of parents (the
orange points within an inner sphere of radius \approx \rho ) and children (all points within a radius \approx 2\rho ).

Assume that we have already computed the reverse-maximin ordering \prec and
sparsity pattern S\prec ,\ell ,\rho , and that we have access to the \ell i as defined above. We will now
aggregate the points into groups called supernodes, consisting of points that are close in
both location and ordering. To do so, we pick at each step the first (with respect to \prec )
index i \in I that has not been aggregated into a supernode yet, and then we aggregate
into a common supernode the indices in \{ j : (i, j) \in S\prec ,\ell ,\rho , \ell j \leq \lambda \ell i\} for some \lambda > 1
(\lambda \approx 1.5 is typically a good choice) that have not been aggregated yet. We proceed
with this procedure until every node has been aggregated into a supernode. We write
\~I for the set of all supernodes; for i \in I,\~i \in \~I, we write i \rightsquigarrow \~i if \~i is the supernode
to which i has been aggregated. We furthermore define s\~i :=

\bigl\{ 
j : \exists i\rightsquigarrow \~i, j \in si

\bigr\} 
and

introduce the aggregated sparsity pattern \~S\prec ,\ell ,\rho ,\lambda :=
\bigcup 

k\rightsquigarrow \~k

\bigl\{ 
(i, k) : k \preceq i \in s\~k

\bigr\} 
. This

sparsity pattern, while larger than S\prec ,\ell ,\rho , can be represented efficiently by keeping
track of the set of parents (the k \in I such that k \rightsquigarrow s\~k) and children (the i \in s\~k) of
each supernode, rather than the individual entries (see Figure 3 for an illustration).
For well-behaved (cf. Theorem 3.2) sets of points, we obtain \scrO (N\rho  - d) supernodes,
each with \scrO (\rho d) parents and children, thus improving the cost of storing the sparsity
pattern from \scrO (N\rho d) to \scrO (N).

While the above aggregation procedure can be performed efficiently once \prec and
S\prec ,\ell ,\rho are computed, it is possible to directly compute \prec and an outer approximation
\=S\prec ,\ell ,\rho ,\lambda \supset \~S\prec ,\ell ,\rho ,\lambda in computational complexity \scrO (N) in space and \scrO (N log(N)) in

time. \=S\prec ,\ell ,\rho ,\lambda can either be used directly or be used to compute \~S\prec ,\ell ,\rho ,\lambda in \scrO (N) in
space and \scrO (N log(N)\rho d) in time, using a simple and embarrassingly parallel algo-
rithm. Details are given in section SM1.

In addition to reducing the memory cost, the aggregated ordering and sparsity
pattern allow us to compute the Cholesky factors (in reverse ordering) \Theta s\~k,s\~k

= UU\top 

once for each supernode and then use them to compute the Lsk,k for all k \rightsquigarrow \~k as in
Algorithm 3.2 (see Figure 4 for an illustration).

As we show in the next section, this allows us to reduce the computational com-
plexity from \scrO (N\rho 3d) to \scrO (N\rho 2d) for sufficiently well-behaved sets of points.

3.3. Theoretical guarantees. We now present our rigorous theoretical result
bounding the computational complexity and approximation error of our method.
Proofs and additional details are deferred to Appendix B.

Remark 3.1. As detailed in Appendix B, the results below apply to more general
reverse r-maximin orderings, which can be computed in complexity \scrO (N log(N)),
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\cdot =

Fig. 4. (Left:) By adding a few nonzero entries to the sparsity pattern, the sparsity patterns of
columns in s\~k become subsets of one another. (Right:) Therefore, the matrices \{ \Theta sk,sk\} k\rightsquigarrow \~k, which

need to be be inverted to compute the columns L:,k for k \rightsquigarrow \~k, become submatrices of one another.

Thus, submatrices of the Cholesky factors of \Theta s\~k,s\~k
can be used as factors of \Theta sk,sk for any k \rightsquigarrow \~k.

reverse r-maximin orderings, which can be computed in complexity \scrO (N log(N)),
improving over reverse-maximin orderings by a factor of log(N).

3.3.1. Computational complexity. We can derive the following bounds on
the computational complexity depending on \rho and N .

Theorem 3.2 (Informal). Under mild assumptions on \{ xi\} i\in I \subset Rd, the KL-
minimizer L is computed in complexity CN\rho d in space and CN\rho 3d in time when using
Algorithm 3.1 with S\prec ,\ell ,\rho and in complexity CN\rho d in space and C\lambda ,\ell CN\rho 2d in time

when using Algorithm 3.2 with \~S\prec ,\ell ,\rho ,\lambda . Here, the constant C depends only on d, \lambda ,
and the cost of evaluating entries of \Theta .

A more formal statement and a proof of Theorem 3.2 can be found in Appendix B.
As can be seen from Theorem 3.2, using the aggregation scheme decreases the

computational cost by a factor \rho d. This is because each supernode has \approx \rho d members
that can all be updated by reusing the same Cholesky factorization.

Remark 3.3. As described in Appendix B, the computational complexity only
depends on the intrinsic dimension of the dataset (as opposed to the potentially much
larger ambient dimension d). This means that the algorithm automatically exploits
low-dimensional structure in the data to decrease the computational complexity.

3.3.2. Approximation error. We derive rigorous bounds on the approxima-
tion error from results on the localization of stiffness matrices of gamblets (a class of
operator-adapted wavelets) proved by [44, 45], and their interpretation as Cholesky
factors introduced by [53]. Thus, the bounds hold in the setting of the above refer-
ences. We assume for the purpose of this section that \Omega is a bounded domain of Rd

with Lipschitz boundary, and for an integer s > d/2, we writeHs
0 (\Omega ) for usual Sobolev

the space of functions with zero Dirichlet boundary values and order s derivatives in
L2, and H - s

0 (\Omega ) for its dual. Let the operator

(3.4) \scrL : Hs
0 (\Omega ) \mapsto \rightarrow H - s (\Omega ) ,

be linear, symmetric (
\int 
u\scrL v =

\int 
v\scrL u), positive (

\int 
u\scrL u \geq 0), bijective, bounded (write

\| \scrL \| := supu \| \scrL u\| H - s(\Omega )/\| u\| Hs
0 (\Omega ) for its operator norm), and local in the sense that\int 

u\scrL v dx = 0, for all u, v \in Hs
0 (\Omega ) with disjoint support. By the Sobolev embedding

theorem, we have Hs
0 (\Omega ) \subset C0 (\Omega ) and hence \{ δx\} x\in \Omega \subset H - s (\Omega ). We then define G

as the Green's function of \scrL ,

(3.5) G (x1, x2) :=

\int 
δx1\scrL  - 1δx2 dx.

A simple example when d = 1 and \Omega = (0, 1), is \scrL =  - \Delta , and G(x, y) = 1x<y
1 - y
1 - x +

1y\leq x
y
x . Let us define the following measure of homogeneity of the distribution of

Fig. 4. Left: By adding a few nonzero entries to the sparsity pattern, the sparsity patterns of
columns in s\~k become subsets of one another. Right: Therefore, the matrices \{ \Theta sk,sk\} k\rightsquigarrow \~k, which

need to be be inverted to compute the columns L:,k for k \rightsquigarrow \~k, become submatrices of one another.

Thus, submatrices of the Cholesky factors of \Theta s\~k,s\~k
can be used as factors of \Theta sk,sk for any k \rightsquigarrow \~k.

improving over reverse-maximin orderings by a factor of log(N).

3.3.1. Computational complexity. We can derive the following bounds on
the computational complexity depending on \rho and N .

Theorem 3.2 (informal). Under mild assumptions on \{ xi\} i\in I \subset Rd, the KL min-
imizer L is computed in complexity CN\rho d in space and CN\rho 3d in time when using
Algorithm 3.1 with S\prec ,\ell ,\rho and in complexity CN\rho d in space and C\lambda ,\ell CN\rho 2d in time

when using Algorithm 3.2 with \~S\prec ,\ell ,\rho ,\lambda . Here, the constant C depends only on d, \lambda ,
and the cost of evaluating entries of \Theta .

A more formal statement and a proof of Theorem 3.2 can be found in Appendix B.
As can be seen from Theorem 3.2, using the aggregation scheme decreases the

computational cost by a factor \rho d. This is because each supernode has \approx \rho d members
that can all be updated by reusing the same Cholesky factorization.

Remark 3.3. As described in Appendix B, the computational complexity only
depends on the intrinsic dimension of the dataset (as opposed to the potentially much
larger ambient dimension d). This means that the algorithm automatically exploits
low-dimensional structure in the data to decrease the computational complexity.

3.3.2. Approximation error. We derive rigorous bounds on the approxima-
tion error from results on the localization of stiffness matrices of gamblets (a class of
operator-adapted wavelets) proved by [44, 45] and their interpretation as Cholesky
factors introduced by [53]. Thus, the bounds hold in the setting of the above refer-
ences. We assume for the purpose of this section that \Omega is a bounded domain of Rd

with Lipschitz boundary, and for an integer s > d/2, we write Hs
0 (\Omega ) for the usual

Sobolev space of functions with zero Dirichlet boundary values and order s derivatives
in L2, and H - s

0 (\Omega ) for its dual. Let the operator

(3.4) \scrL : Hs
0 (\Omega ) \mapsto \rightarrow H - s (\Omega )

be linear, symmetric (
\int 
u\scrL v =

\int 
v\scrL u), positive (

\int 
u\scrL u \geq 0), bijective, bounded (write

\| \scrL \| := supu \| \scrL u\| H - s(\Omega )/\| u\| Hs
0 (\Omega ) for its operator norm), and local in the sense that\int 

u\scrL v dx = 0 for all u, v \in Hs
0 (\Omega ) with disjoint support. By the Sobolev embedding

theorem, we have Hs
0 (\Omega ) \subset C0 (\Omega ) and hence \{ δx\} x\in \Omega \subset H - s (\Omega ). We then define G

as the Green's function of \scrL ,

(3.5) G (x1, x2) :=

\int 
δx1\scrL  - 1δx2 dx.

A simple example when d = 1 and \Omega = (0, 1) is \scrL =  - \Delta , and G(x, y) = 1x<y
1 - y
1 - x +

1y\leq x
y
x . Let us define the following measure of homogeneity of the distribution of
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\{ xi\} i\in I :

(3.6) \delta :=
minxi,xj\in I dist(xi, \{ xj\} \cup \partial \Omega )

maxx\in \Omega dist(x, \{ xi\} i\in I \cup \partial \Omega )
.

Using the above definitions, we can rigorously quantify the increase in approximation
accuracy as \rho increases.

Theorem 3.4. There exists a constant C depending only on d, \Omega , \lambda , s, \| \scrL \| ,
\| \scrL  - 1\| , and \delta such that for \rho \geq C log(N/\epsilon ), we have

(3.7) DKL

\bigl( 
\scrN (0,\Theta )

\bigm\| \bigm\| \scrN (0,
\bigl( 
L\rho L\rho ,\top ) - 1

\bigr) \bigr) 
+

\bigm\| \bigm\| \Theta  - (L\rho L\rho ,\top ) - 1
\bigm\| \bigm\| 
FRO

\leq \epsilon .

Thus, Algorithm 3.1 computes an \epsilon -accurate approximation of \Theta in computational
complexity CN logd(N/\epsilon ) in space and CN log3d(N/\epsilon ) in time, from CN logd(N/\epsilon )
entries of \Theta . Similarly, Algorithm 3.2 computes an \epsilon -accurate approximation of \Theta in
computational complexity CN logd(N/\epsilon ) in space and CN log2d(N/\epsilon ) in time, from
CN logd(N/\epsilon ) entries of \Theta .

To the best of our knowledge, the above result is the best known complex-
ity/accuracy trade-off for kernel matrices based on Green's functions of elliptic bound-
ary value problems. Some related but slower or less practically useful approaches were
presented in [53], which showed that the Cholesky factors of \Theta (as opposed to those
of \Theta  - 1) can be approximated in computational complexity \scrO (N log2(N) log2d(N/\epsilon ))
in time and \scrO (N log(N) logd(N/\epsilon )) in space using zero-fill-in incomplete Cholesky
factorization (Algorithm 4.2) applied to \Theta . Similarly, they showed that the Cholesky
factors of \Theta  - 1 can be approximated in computational complexity \scrO (N log2d(N/\epsilon ))
in time and \scrO (N logd(N/\epsilon )) in space using zero-fill-in incomplete Cholesky factoriza-
tion applied to \Theta  - 1. While they also observed that the near-sparsity of the Cholesky
factors of \Theta  - 1 implies that they can in principle be computed in computational com-
plexity \scrO (N log2d(N/\epsilon )) from entries of \Theta by a recursive algorithm (thus improving
the complexity of inverting \Theta ), they did not provide an explicit algorithm for this
purpose. Indeed, we have found that recursive algorithms based on truncation are
unstable to the point of being useless in practice when used to compute the Cholesky
factors of \Theta  - 1 from entries of \Theta .

3.3.3. Screening in theory and practice. The theory described in the last
section covers any self-adjoined operator \scrL with an associated quadratic form

\scrL [u] :=
\int 

\Omega 

u\scrL u dx =
s\sum 

k=0

\int 
\sigma (k)(x)\| D(k)u(x)\| 2 dx

and \sigma (s) \in L2(\Omega ) positive almost everywhere. That is, \scrL [u] is a weighted average
of the squared norms of derivatives of u and thus measures the roughness of u. A
GP with covariance function given by G has density \sim exp( - \scrL [u]/2) and therefore
assigns exponentially low probability to ``rough"" functions, making it a prototypical
smoothness prior. The authors of [53] prove that these GPs are subject to an expo-
nentially strong screening effect in the sense that, after conditioning a set of \ell -dense
points, the conditional covariance of a given point decays exponentially with rate
\sim \ell  - 1, as shown in the first panel of Figure 5. The most closely related model in
common use is the Mat\'ern covariance function [43] that is the Green's function of an
elliptic PDE of order s, when choosing the ``smoothness parameter"" \nu as \nu = s - d/2.
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Fig. 5. To illustrate the screening effect exploited by our methods, we plot the conditional
corelation (orange) with the point in red conditional on the blue points. In the first panel, the points
are evenly distributed, leading to a rapidly decreasing conditional correlation. In the second panel,
the same number of points is irregularly distributed, slowing the decay. In the last panel, we are at
the fringe of the set of observations, weakening the screening effect.

While our theory only covers s \in N, the authors of [53] observe that Mat\'ern kernels
with noninteger values of s and even the ``Cauchy class"" [20] seem to be subject to
similar behavior. In the second panel of Figure 5, we show that as the distribution
of conditioning points becomes more irregular, the screening effect weakens. In our
theoretical results, this is controlled by the upper bound on \delta in (3.6). The screening
effect is significantly weakened close to the boundary of the domain, as illustrated
in the third panel of Figure 5 (see also [53, section 4.2]). This is the reason that
our theoretical results, different from the Mat\'ern covariance, are restricted to Green's
functions with zero Dirichlet boundary condition, which corresponds to conditioning
the process to be zero on \partial \Omega . A final limitation is that the screening effect weakens
as we take the order of smoothness to infinity, obtaining, for instance, the Gaussian
kernel. However, as described in [53, section 2.4], this results in matrices that have
efficient low-rank approximations instead.

4. Extensions. We now present extensions of our method that improve its per-
formance in practice. In subsection 4.1, we show how to improve the approximation
when \Theta is replaced by \Theta + R, for R diagonal, as is frequently the case in statistical
inference where R is the covariance matrix of additive, independent noise. In subsec-
tion 4.2, we show how including the prediction points can improve the computational
complexity (subsection 4.2.1) or accuracy (subsection 4.2.2) of the posterior mean and
covariance. In subsection 4.3, we discuss memory savings and parallel computation
for GP inference when we are only interested in computing the likelihood and the
posterior mean and covariance (as opposed to, for example, sampling from \scrN (0,\Theta )
or computing products v \mapsto \rightarrow \Theta v).

We note that it is not possible to combine the variant in subsection 4.1 with that
in subsection 4.3, and that the combination of the variants in subsections 4.1 and 4.2.2
might diminish accuracy gains from the latter. Furthermore, while subsection 4.3 can
be combined with subsection 4.2.1 to compute the posterior mean, this combination
cannot be used to compute the full posterior covariance matrix.

4.1. Additive noise. Assume that a diagonal noise term is added to \Theta , so
that \Sigma = \Theta + R, where R is diagonal. Extending the Vecchia approximation to this
setting has been a major open problem in spatial statistics [13, 34, 35]. Applying our
approximation directly to \Sigma would not work well because the noise term attenuates
the exponential decay. Instead, given the approximation \^\Theta  - 1 = LL\top obtained using
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Algorithm 4.1 Including independent
noise with covariance matrix R.
Input: G, \{ xi\} i\in I , \rho , (\lambda ), and R

Output: L, \~L \in RN\times N l. triang. in \prec 

1: Comp. \prec and S \leftarrow S\prec ,\ell ,\rho (S\prec ,\ell ,\rho ,\lambda )
2: Comp. L using Alg. 3.1(3.2)
3: for (i, j) \in S do
4: Aij \leftarrow \langle Li,:, Lj,:\rangle 
5: end for
6: A\leftarrow A+R
7: \~L\leftarrow ichol(A,S)
8: return L, \~L

Algorithm 4.2 Zero fill-in incomplete
Cholesky factorization (ichol(A,S)).

Input: A \in RN\times N , S
Output: L \in RN\times N l. triang. in \prec 

1: L\leftarrow (0, . . . , 0)(0, . . . , 0)\top 

2: for j \in \{ 1, . . . , N\} do
3: for i \in \{ j, . . . , N\} : (i, j) \in S do
4: Lij \leftarrow Aij  - \langle Li,1:(j - 1), Lj,1:(j - 1)\rangle 
5: end for
6: L:i \leftarrow A:i/

\surd 
Aii

7: end for
8: return L

Fig. 6. Algorithms for approximating covariance matrices with added independent noise \Theta +R
(left), using the zero fill-in incomplete Cholesky factorization (right). See subsection 4.1.

our method, we can write, following [53],

\Sigma \approx \^\Theta +R = \^\Theta (R - 1 + \^\Theta  - 1)R.

Applying an incomplete Cholesky factorization with zero fill-in (Algorithm 4.2) to
R - 1 + \^\Theta  - 1 \approx \~L\~L\top , we have

\Sigma \approx (LL\top ) - 1 \~L\~L\top R.

The resulting procedure, given in Algorithm 4.1 (see Figure 6), has asymptotic com-
plexity \scrO (N\rho 2d), because every column of the triangular factors has at most \scrO (\rho d)
entries.

Following the intuition that \Theta  - 1 is essentially an elliptic partial differential oper-
ator, \Theta  - 1+R - 1 is essentially a partial differential operator with an added zero-order
term, and its Cholesky factors can thus be expected to satisfy an exponential decay
property just as those of \Theta  - 1. Indeed, as observed by [53, Fig. 2.3], the exponential
decay of the Cholesky factors of R - 1 + \Theta  - 1 is as strong as that for \Theta  - 1, even for
large R. We suspect that this could be proved rigorously by adapting the proof of
exponential decay in [45] to the discrete setting. We note that while independent noise
is most commonly used, the above argument leads to an efficient algorithm whenever
R - 1 is approximately given by an elliptic PDE (possibly of order zero).

For small \rho , the additional error introduced by the incomplete Cholesky factor-
ization can harm accuracy, which is why we recommend using the conjugate gradient
algorithm (CG) to invert (R - 1+ \^\Theta  - 1) using \~L as a preconditioner. In our experience,
CG converges to single precision in a small number of iterations (\sim 10).

Alternatively, higher accuracy can be achieved by using the sparsity pattern of
LL\top (as opposed to that of L) to compute the incomplete Cholesky factorization
of A in Algorithm 4.1; in fact, in our numerical experiments in subsection 5.2, this
approach was as accurate as using the exact Cholesky factorization of A over a wide
range of \rho values and noise levels. The resulting algorithm still requires \scrO (N\rho 2d)
time, albeit with a larger constant. This is because for an entry (i, j) to be part of the
sparsity pattern of LL\top , there needs to exist a k such that both (i, k) and (j, k) are
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part of the sparsity pattern of L. By the triangle inequality, this implies that (i, j)
is contained in the sparsity pattern of L obtained by doubling \rho . In conclusion, we
believe that the above modifications allow us to compute an \epsilon -accurate factorization
in \scrO (N log2d(N/\epsilon )) time and \scrO (N logd(N/\epsilon )) space, just as in the noiseless case.

4.2. Including the prediction points. In GP regression, we are given NTr

points of training data and want to compute predictions at NPr points of test data.
We denote as \Theta Tr,Tr, \Theta Pr,Pr, \Theta Tr,Pr,\Theta Pr,Tr the covariance matrix of the training data,
the covariance matrix of the test data, and the covariance matrices of training and

test data. Together, they form the joint covariance matrix
\Bigl( 

\Theta Tr,Tr \Theta Tr,Pr

\Theta Pr,Tr \Theta Pr,Pr

\Bigr) 
of training

and test data. In GP regression with training data y \in RNTr we are interested in the
following:

\bullet Computation of the log-likelihood \sim y\top \Theta  - 1
Tr,Try + logdet\Theta Tr,Tr +N log(2\pi ).

\bullet Computation of the posterior mean y\top \Theta  - 1
Tr,Tr\Theta Tr,Pr.

\bullet Computation of the posterior covariance \Theta Pr,Pr  - \Theta Pr,Tr\Theta 
 - 1
Tr,Tr\Theta Tr,Pr.

In the setting of Theorem 3.4, our method can be applied to accurately approximating
the matrix \Theta Tr,Tr in near-linear cost. The training covariance matrix can then be
replaced by the resulting approximation for all downstream applications.

However, approximating instead the joint covariance matrix of training and pre-
diction variables improves (1) stability and accuracy compared to computing the
KL-optimal approximation of the training covariance alone, and (2) computational
complexity by circumventing the computation of most of the NTrNPr entries of the
off-diagonal part \Theta Tr,Pr of the covariance matrix.

We can add the prediction points before or after the training points in the elimi-
nation ordering.

4.2.1. Ordering the prediction points first, for rapid interpolation. The
computation of the mixed covariance matrix \Theta Pr,Tr can be prohibitively expensive
when interpolating with a large number of prediction points. This situation is common
in spatial statistics when estimating a stochastic field throughout a large domain. In
this regime, we propose to order the \{ xi\} i\in I by first computing the reverse-maximin
ordering \prec Tr of only the training points as described in subsection 3.1 using the
original \Omega , writing \ell Tr for the corresponding length scales. We then compute the
reverse-maximin ordering \prec Pr of the prediction points using the modified \~\Omega := \Omega \cup 
\{ xi\} i\in ITr

, obtaining the length scales \ell Pr. Since \~\Omega contains \{ xi\} i\in ITr
, when computing

the ordering of the prediction points, prediction points close to the training set will
tend to have a smaller length-scale than in the naive application of the algorithm,
and thus, the resulting sparsity pattern will have fewer nonzero entries. We then
order the prediction points before the training points and compute S(\prec Pr,\prec Tr),(\ell Pr,\ell Tr),\rho 

or S(\prec Pr,\prec Tr),(\ell Pr,\ell Tr),\rho ,\lambda following the same procedure as in subsections 3.1 and 3.2,
respectively. The distance of each point in the prediction set to the training set
can be computed in near-linear complexity using, for example, a minor variation
of [53, Alg. 3]. Writing L for the resulting Cholesky factor of the joint precision
matrix, we can approximate \Theta Pr,Pr \approx L - \top 

Pr,PrL
 - 1
Pr,Pr and \Theta Pr,Tr \approx L - \top 

Pr,PrL
\top 
Tr,Pr based on

submatrices of L. See subsection SM2.1 and Algorithm SM2.1 for additional details.
We note that the idea of ordering the prediction points first (last, in their notation) has
already been proposed by [35] in the context of the Vecchia approximation, although
without providing an explicit algorithm.

If one does not use the method in subsection 4.1 to treat additive noise, then
the method described in this section amounts to making each prediction using only
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\scrO (\rho d) nearby datapoints. In the extreme case where we only have a single prediction
point, this means that we are only using \scrO (\rho d) training values for prediction. On the
one hand, this can lead to improved robustness of the resulting estimator, but on the
other hand, it can lead to some training data being missed entirely.

4.2.2. Ordering the prediction points last, for improved robustness. If
we want to use the improved stability of including the prediction points, maintain
near-linear complexity, and use all NTr training values for the prediction of even a
single point, we have to include the prediction points after the training points in
the elimination ordering. Naively, this would lead to a computational complexity
of \scrO (NTr(\rho 

d + NPr)
2), which might be prohibitive for large values of NPr. If it is

enough to compute the posterior covariance only among mPr small batches of up
to nPr predictions each (often, it makes sense to choose nPr = 1), we can avoid this
increase of complexity by performing prediction on groups of only nPr at once, with the
computation for each batch only having computational complexity \scrO (NTr(\rho 

d+nPr)
2).

A naive implementation would still require us to perform this procedure mPr times,
eliminating any gains due to the batched procedure. However, careful use of the
Sherman--Morrison--Woodbury matrix identity allows us to reuse the biggest part of
the computation for each of the batches, thus reducing the computational cost for
prediction and computation of the covariance matrix to only \scrO (NTr((\rho 

d + nPr)
2 +

(\rho d + nPr)mPr)). This procedure is detailed in subsection SM2.2 and summarized in
Algorithm SM2.3.

4.3. GP regression in \bfscrO (\bfitN + \bfitrho \bftwo \bfitd ) space complexity. When deploying
direct methods for approximate inversion of kernel matrices, a major difficulty is
the superlinear memory cost that they incur. This, in particular, poses difficulties
in a distributed setting or on graphics processing units. In the following, I = ITr
denotes the indices of the training data, and we write \Theta := \Theta Tr,Tr, while IPr denotes
those of the test data. In order to compute the log-likelihood, we need to compute
the matrix-vector product L\rho ,\top y as well as the diagonal entries of L\rho . This can
be done by computing the columns L\rho 

:,k of L\rho individually using (2.3) and setting

(L\rho ,\top y)k = (L\rho 
:,k)

\top y, L\rho 
kk = (L\rho 

:,k)k, without ever forming the matrix L\rho . Similarly,

in order to compute the posterior mean, we only need to compute \Theta  - 1y = L\rho ,\top L\rho y,
which only requires us to compute each column of L\rho twice, without ever forming
the entire matrix. In order to compute the posterior covariance, we need to compute
the matrix-matrix product L\rho ,\top \Theta Tr,Pr, which again can be performed by computing
each column of L\rho once without ever forming the entire matrix L\rho . However, it does
require us to know beforehand at which points we want to make predictions. The
submatrices \Theta si,si for all i belonging to the supernode \~k (i.e., i \rightsquigarrow \~k) can be formed
from a list of the elements of \~sk. Thus, the overall memory complexity of the resulting
algorithm is \scrO (\sum k\in \~I \#\~sk) = O(NTr +NPr + \rho 2d). The above-described procedure is
implemented in Algorithms A.1 and A.2 in Appendix A.3. In a distributed setting
with workers W1,W2, . . . , this requires communicating only \scrO (\#\~sk) floating-point
numbers to worker Wk, which then performs \scrO ((\#\~sk)

3) floating-point operations; a
naive implementation would require the communication of \scrO ((\#\~s)2) floating-point
numbers to perform the same number of floating-point operations.

5. Applications and numerical results. We conclude with numerical exper-
iments studying the practical performance of our method. The Julia code can be
found under https://github.com/f-t-s/cholesky by KL minimization.
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Fig. 7. Accuracy of our approximation with and without aggregation for a Gaussian process
with Mat\'ern covariance (\nu = 3/2) on a grid of size 106 on the unit square. Left: Randomly sampled
2 percent of the training and prediction points. Middle: RMSE, averaged over prediction points
and 1, 000 realizations. Right: Empirical coverage of 90\% prediction intervals computed from the
posterior covariance.

Fig. 8. Time for computing the factor L\rho with or without aggregation (N = 106), as a function
of \rho and of the number of nonzero entries. For the first two panels, the Mat\'ern covariance function
was computed using a representation in terms of exponentials, while for the second two panels they
were computed using (slower) Bessel function evaluations. Computations performed on an Intel
Core i7-6400 CPU with 4.00GHz and 64GB of RAM. The second and fourth panels show that
aggregation leads to faster computation despite producing much denser Cholesky factors (and hence
higher accuracy).

5.1. Gaussian-process regression and aggregation. We begin our numeri-
cal experiments with two-dimensional (d = 2) synthetic data. We use circulant em-
beddings [57, 21][https://github.com/PieterjanRobbe/GaussianRandomFields.jl] for
the creation of 103 samples of a GP with exponential covariance function at 106 lo-
cations on a regular grid in \Omega = [0, 1]2. From these 106 locations, we select 2 \times 104

prediction points and use the remaining points as training data. As illustrated in
Figure 7 (left panel), half of the prediction points form two elliptic regions devoid of
any training points (called ``region""), while the remaining prediction points are inter-
spersed among the training points (called ``scattered""). We then use the ``prediction
points first"" approach of subsection 4.2.1 and the aggregated sparsity pattern \~S\prec ,\ell ,\rho ,\lambda 

of subsection 3.2 with \lambda \in \{ 1.0, 1.3\} to compute the posterior distributions at the pre-
diction points from the values at the training points. In Figure 7, we report the root
mean square error (RMSE) of the posterior means, as well as the empirical coverage of
the 90\% posterior intervals, averaged over all 103 realizations, for a range of different
\rho . Note that while the RMSE between the aggregated (\lambda = 1.3) and nonaggregated
(\lambda = 1.0) is almost the same, the coverage converges significantly faster to the correct
value with \lambda = 1.3.

We further provide timing results for 106 training points uniformly distributed
in [0, 1]

2
comparing the aggregated and nonaggregated versions of the algorithm in

Figure 8. As predicted by the theory, the aggregated variant scales better as we are
increasing \rho . This holds true both when using Intel oneMKL Vector Mathematics

functions library to evaluate the exponential function and when using amos to in-
stead evaluate the modified Bessel function of the second kind. While the former is
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Fig. 9. Comparison of the methods proposed in subsection 4.1 for approximating \Sigma = \Theta + R,
where \Theta is based on a Mat\'ern covariance with range parameter 0.5 and smoothness \nu = 3/2 at
N = 104 uniformly sampled locations on the unit square, and R = \sigma 2I is additive noise. For each
approximation, we compute the symmetrized KL divergence (the sum of the KL divergences with
either ordering of the two measures) to the true covariance. Naive: Directly apply Algorithm 3.2
to \Sigma . Exact: Apply Algorithm 3.2 to \Theta ; then compute \~L as the exact Cholesky factorization of
A := R - 1 + \^\Theta  - 1. IC: Apply Algorithm 3.2 to \Theta ; then compute \~L using incomplete Cholesky
factorization of A on the sparsity pattern of either L or LL\top . Left: Varying \sigma , fixed \rho = 3.0. Middle:
Varying \rho , fixed \sigma = 1.0. Right: Maximal relative error (over the above \sigma , \rho , \nu \in \{ 1/2, 3/2, 5/2\} ,
and 10 random draws) of inverting A using up to 10 conjugate-gradient iterations (x-axis), with IC,
nonzeros (L) as preconditioner.

faster and emphasizes the improvement from \scrO (N\rho 3d) to \scrO (N\rho 2d) for the complex-
ity of computing the factorization, the latter can be used to evaluate Mat\'ern kernels
with arbitrary smoothness. Due to being slower, using Bessel functions highlights the
improvement from needing \scrO (N\rho 2d) matrix evaluations without the aggregation to
just \scrO (N\rho d). By plotting the number of nonzeros used for the two approaches, we see
that the aggregated version is faster to compute despite using many more entries of \Theta 
than the nonaggregated version. Thus, aggregation is both faster and more accurate
for the same value of \rho , which is why we recommend using it over the nonaggregated
variant.

5.2. Adding noise. We now experimentally verify the claim that the methods
described in subsection 4.1 enable accurate approximation in the presence of indepen-
dent noise, while preserving the sparsity, and thus computational complexity, of our
method. To this end, pick a set of N = 104 points uniformly at random in \Omega = [0, 1]

2
,

use a Mat\'ern kernel with smoothness \nu = 3/2, and add independent and identically
distributed (i.i.d.) noise with variance \sigma 2. We use an aggregation parameter \lambda = 1.5.
As shown in Figure 9, our approximation stays accurate over a wide range of values
of both \rho and \sigma , even for the most frugal version of our method. The asymptotic
complexity for both incomplete Cholesky variants is \scrO (N\rho 2d), with the variant using
the sparsity pattern of LL\top being roughly equivalent to doubling \rho . Hence, to avoid
additional memory overhead, we recommend using the sparsity pattern of L as a de-
fault choice; the accuracy of the resulting log-determinant of \Sigma should be sufficient
for most settings, and the accuracy for solving systems of equations in \Sigma can easily
be increased by adding a few iterations of CG.

5.3. Including prediction points. We continue by studying the effects of in-
cluding the prediction points in the approximation, as described in subsections 4.2.1
and 4.2.2. We compare not including the prediction points in the approximation with
including them either before or after training points in the approximation. We com-
pare the accuracy of the approximation of the posterior mean and standard deviation
over three different geometries and a range of different values for \rho . The results,
displayed in Figure 10, show that including the prediction points can increase the
accuracy by multiple orders of magnitude. The performance difference between the
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Fig. 10. To analyze the effects of including the prediction points into the approximation, we
consider three datasets. Each consists of 5\times 104 training points and 102 test points, averaged over
ten independent realizations of the Gaussian process. We use Mat\'ern kernels with range parameter
0.5 and smoothness \nu \in \{ 1/2, 3/2, 5/2\} , with \rho ranging from 1.0 to 10.0. We do not use aggregation
since it might lead to slightly different sparsity patterns for the three variants, possibly polluting the
results. On the y-axis we plot the RMSE of the posterior mean and standard deviation, scaled in each
point by the reciprocal of the true posterior standard deviation. In almost all cases, including the
prediction points into the approximation improves the accuracy. The comparison between ordering
the predictions first or last is complicated, but ``predictions-last"" seems to perform better for lower
smoothness and ``predictions-first"" for higher smoothness.

of points is to order the prediction points first, making this approach the method of
choice. If we only have few prediction points, ordering the prediction variables last
can improve the accuracy for low orders of smoothness, especially in settings in which
only a small part of the training data is used in the prediction-variables-first approach
(e.g., second row in Figure 10).

5.4. Comparison to HSS matrices. As described in the introduction, there
are many existing methods for the approximation and inversion of dense covariance
matrices. Hierarchically semiseparable (HSS) matrices [9, 65] are a natural candidate
for comparison with our method, because they are amenable to a Cholesky factoriza-
tion [39], implementations of which are available in existing software packages. They
are also closely related to hierarchically off-diagonal low-rank (HODLR) matrices,
which have been promoted as tools for Gaussian process regression [2]. We consider a

Fig. 10. To analyze the effects of including the prediction points in the approximation, we
consider three datasets. Each consists of 5\times 104 training points and 102 test points, averaged over
ten independent realizations of the Gaussian process. We use Mat\'ern kernels with range parameter
0.5 and smoothness \nu \in \{ 1/2, 3/2, 5/2\} , with \rho ranging from 1.0 to 10.0. We do not use aggregation
since it might lead to slightly different sparsity patterns for the three variants, possibly polluting the
results. On the y-axis we plot the RMSE of the posterior mean and standard deviation, scaled in
each point by the reciprocal of the true posterior standard deviation. In almost all cases, including
the prediction points in the approximation improves the accuracy. The comparison between ordering
the predictions first or last is complicated, but ``predictions-last"" seems to perform better for lower
smoothness, and ``predictions-first"" seems to perform better for higher smoothness.

two schemes for including prediction points varies over different geometries, degrees
of regularity, and values of \rho . If the number of prediction points is comparable to
the number of training points, the only way to avoid quadratic scaling in the number
of points is to order the prediction points first, making this approach the method of
choice. If we only have few prediction points, ordering the prediction variables last
can improve the accuracy for low orders of smoothness, especially in settings in which
only a small part of the training data is used in the prediction-variables-first approach
(e.g., second row in Figure 10).

5.4. Comparison to HSS matrices. As described in the introduction, there
are many existing methods for the approximation and inversion of dense covariance
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Fig. 11. We compare the accuracy and computational time of our method described in subsec-
tion 4.2.2 with the HSS implementation of H2Pack [29]. Each point corresponds to a different run
with different parameters (\rho , tolerance, and diagonal shift). Throughout this experiment, we use
the aggregation scheme described in subsection 3.2 with \lambda = 1.25. The left plot shows the RMSE
of the posterior mean and the right plot that of the posterior standard deviation. Our method is
significantly faster for a wide range of target accuracies.

matrices. Hierarchically semiseparable (HSS) matrices [9, 65] are a natural candidate
for comparison with our method, because they are amenable to a Cholesky factoriza-
tion [39], implementations of which are available in existing software packages. They
are also closely related to hierarchically off-diagonal low-rank (HODLR) matrices,
which have been promoted as tools for GP regression [2]. We consider a regression
problem with 503 training points on a randomly perturbed regular grid and 50 test
points distributed uniformly at random in the unit cube. Using the Mat\'ern covari-
ance with \nu = 3/2 and length scale l = 0.2, we compute the posterior mean and
standard deviation for 50 samples using the method described in subsection 4.2.2 and
the HSS implementation of H2Pack [29], both using eight threads on an Intel Skylake
CPU with 2.10GHz and 192GB of RAM. In Figure 11, we report the computational
time and accuracy for a wide range of tuning parameters (\rho for our method; error
tolerance and diagonal shift for HSS). We ignore the setup cost for both methods,
which includes the selection of the numerical proxy points for the HSS approach. Our
experiments show that for a given target accuracy, our method is an order of mag-
nitude faster than HSS, despite the highly optimized implementation of the latter.
For very high accuracies, the gap between the methods closes, but the memory cost
of HSS approaches that of the dense problem, preventing us from further increasing
the target accuracy. We note that for three-dimensional problems, \scrH 2-matrices have
better asymptotic complexity than HSS matrices, making them a possibly stronger
competitor; however, the Cholesky factorization of \scrH 2-matrices is considerably more
complicated and not implemented in H2Pack. Another possible approach is the inver-
sion of an \scrH 2 approximation using conjugate gradient methods, using our method, or
HSS matrices [66] as a preconditioner. We defer a more comprehensive comparison
to the various kinds of hierarchical matrices to future work.

5.5. Single-layer boundary element methods. We now provide an applica-
tion to boundary element methods. For a domain \Omega \in Rd with boundary \partial \Omega , let us
assume that we want to solve the Dirichlet boundary-value problem

 - \Delta u(x) = 0 \forall x \in \Omega ,

u(x) = g(x) \forall x \in \partial \Omega .
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For d = 3, the Green's function of the Laplace operator is given by the gravita-
tional/electrostatic potential

GR3(x, y) =
1

4\pi | x - y| .

Under mild regularity assumptions one can verify that

u =

\int 

x\in \partial \Omega 

GR3(x, \cdot )h(x) dx for h the solution of g =

\int 

x\in \partial \Omega 

GR3(x, \cdot )h(x) dx.

Let us choose finite dimensional basis functions \{ \phi i\} i\in IPr
in the interior of \Omega and

\{ \phi i\} i\in ITr
on the boundary of \Omega . We form the matrix \Theta \in R(ITr\cup IPr)\times (ITr\cup IPr) as

(5.1)

\Theta ij :=

\int 

x\in \scrD i

\int 

y\in \scrD j

\phi i(x)GR3 (x, y)\phi j(y) dy dx, where \scrD p =

\Biggl\{ 
\partial \Omega for p \in ITr,

\Omega for p \in IPr

and denote as \Theta Tr,Tr,\Theta Tr,Pr,\Theta Pr,Tr,\Theta Pr,Pr its restrictions to the rows and columns
indexed by ITr or IPr. Defining

\vec{}gi :=

\int 

x\in \partial \Omega 

\phi i(x)g(x) dx \forall i \in ITr and \vec{}ui :=

\int 

x\in \partial \Omega 

\phi i(x)u(x) dx \forall i \in IPr,

we approximate \vec{}u as

\vec{}u \approx \Theta IPr,ITr
\Theta  - 1

ITr,ITr
\vec{}g.(5.2)

This is a classical technique for the solution of PDEs, known as single-layer boundary
element methods [52]. However, it can also be seen as GP regression with u being the
conditional mean of a GP with covariance function G, conditional on the values of
the process on \partial \Omega . Similarly, it can be shown that the zero boundary-value Green's
function is given by the posterior covariance of the same process.

The Laplace operator in three dimensions does not satisfy s > d/2 (cf. subsec-
tion 3.3.2). Therefore, the variance of pointwise evaluations at x \in R3 given by
GR3(x, x) is infinite, and we cannot let \{ \phi i\} i\in IPr

be Dirac functions as in other parts
of this work.

Instead, we recursively subdivide the boundary \partial \Omega and use Haar-type wavelets
as in [53, Ex. 3.2] for \{ \phi i\} i\in ITr

. For our numerical experiments, we will consider

\Omega := [0, 1]3 to be the three-dimensional unit cube. On each face of \partial \Omega , we then
obtain a multiresolution basis by hierarchical subdivision, as shown in Figure 12. In
this case, the equivalent of a maximin ordering is an ordering from coarser to finer
levels, with an arbitrary ordering within each level. We construct our sparsity pattern
as

(5.3) \scrS \prec ,\ell j ,\rho := \{ (i, j) : i \succeq j, dist(xi, xj) \leq \rho \ell j +
\surd 
2(\ell i + \ell j) \} ,

where for i \in ITr, xi is defined as the center of the support of \phi i and \ell i as half of
the side-length of the (quadratic) support of \phi i. The addition of

\surd 
2(\ell i + \ell j) to the

right-hand side ensures that the entries corresponding to neighboring basis functions
are always added to the sparsity pattern.

We construct a solution u of the Laplace equation in \Omega as the sum over Nc = 2000
charges with random signs \{ si\} 1\leq i\leq Nc

located at points \{ ci\} 1\leq i\leq Nc
We then pick a
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Fig. 12. We recursively divide each panel of \partial \Omega . The basis functions on finer levels are
constructed as linear combinations of indicator functions that are orthogonal to functions on coarser
levels.

Fig. 13. Accuracy and computational complexity in boundary value problem. We compare the
root mean square error, number of nonzeros of sparsity pattern, and the computational time for the
exact boundary element method and using our approximation for \rho \in \{ 1, 2, 3\} . The dense solution
is prohibitively expensive for q > 6, which is why accuracy and computational time for these cases
are missing. The reason that the computational time is hardly affected by different choices of \rho is
due to the fact that entries

\bigl( 
\Theta Tr,Tr

\bigr) 
ij

for nearby \phi i, \phi j are significantly more expensive to compute

than for distant ones when using an off-the-shelf adaptive quadrature rule. The computations were
performed on 32 threads of an Intel® Skylake �CPU with 2.10GHz and 192GB of RAM. In the first
figure, we plot the RMSE compared to the true solution of the PDE as a function of q \approx log(N).
In the last figure, we compute the RMSE between dense computation and our method, as well as its
computational time, as a function of \rho .

of the linear system. We use different levels of discretization q \in \{ 3, . . . , 8\} , leading
to a spatial resolution of up to 2 - 8. As shown in Figure 13, even using \rho = 1.0 leads
to near-optimal accuracy, at a greatly reduced computational cost.

There exists a rich literature on the numerical solution of boundary element equa-
tions [52], and we are not yet claiming improvement over the state of the art. Pres-
ently, the majority of the computational time is spent computing the matrix entries of
\Theta Tr,Tr. In order to compete with the state of the art in terms of wall-clock times, we
would need to implement more efficient quadrature rules, which is beyond the scope

Fig. 12. We recursively divide each panel of \partial \Omega . The basis functions on finer levels are
constructed as linear combinations of indicator functions that are orthogonal to functions on coarser
levels.

Fig. 13. Accuracy and computational complexity in boundary value problem. We compare
the RMSE, the number of nonzeros of sparsity pattern, and the computational time for the exact
boundary element method and using our approximation for \rho \in \{ 1, 2, 3\} . The dense solution is
prohibitively expensive for q > 6, which is why accuracy and computational time for these cases
are missing. The reason that the computational time is hardly affected by different choices of \rho is
due to the fact that entries

\bigl( 
\Theta Tr,Tr

\bigr) 
ij

for nearby \phi i, \phi j are significantly more expensive to compute

than for distant ones when using an off-the-shelf adaptive quadrature rule. The computations were
performed on 32 threads of an Intel Skylake CPU with 2.10GHz and 192GB of RAM. In the first
figure, we plot the RMSE compared to the true solution of the PDE as a function of q \approx log(N).
In the last figure, we compute the RMSE between dense computation and our method, as well as its
computational time, as a function of \rho .

set of NPr points \{ xi\} i\in IPr
inside of \Omega and try to predict the values \{ u(xi)\} i\in IPr

using
(5.2) and the method described in subsection 4.2.2. We compare the computational
time, the number of entries in the sparsity pattern, and the mean accuracy of the
approximate method for \rho \in \{ 1.0, 2.0, 3.0\} , as well as the exact solution of the linear
system. We use different levels of discretization q \in \{ 3, . . . , 8\} , leading to a spatial
resolution of up to 2 - 8. As shown in Figure 13, even using \rho = 1.0 leads to near-
optimal accuracy, at a greatly reduced computational cost.
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There exists a rich literature on the numerical solution of boundary element equa-
tions [52], and we are not yet claiming improvement over the state of the art. Pres-
ently, the majority of the computational time is spent computing the matrix entries of
\Theta Tr,Tr. In order to compete with the state of the art in terms of wall-clock times, we
would need to implement more efficient quadrature rules, which is beyond the scope
of this paper. Due to the embarrassing parallelism of our method, together with the
high accuracy obtained even for small values of \rho , we hope that it will become a useful
tool for solving boundary integral equations, but we defer a detailed study to future
work.

6. Conclusions. In this work, we have shown that, surprisingly, the optimal
(in KL divergence) inverse Cholesky factor of a positive definite matrix, subject to
a sparsity pattern, can be computed in closed form. In the special case of Green's
matrices of elliptic boundary-value problems in d dimensions, we show that by apply-
ing this method to the elimination orderings and sparsity patterns proposed by [53],
one can compute the sparse inverse Cholesky factor with accuracy \epsilon in computational
complexity \scrO (N log2d(N/\epsilon )) using only \scrO (N logd(N/\epsilon )) entries of the dense Green's
matrix. This improves upon the state of the art in this classical problem. We also
propose a variety of improvements, capitalizing on the improved stability, parallelism,
and memory footprint of our method. Finally, we show how to extend our approxi-
mation to the setting with additive noise, resolving a major open problem in spatial
statistics.

Appendix A. Computation of the KL minimizer.

A.1. Computation without aggregation. Recall that we write I for the set
indexing the degrees of freedom, \prec for a reverse r-maximin ordering, and S = S\prec ,\ell ,\rho 

for the associated sparsity pattern (which we assume to be fixed). Unless explicitly
mentioned, we assume all matrices have rows and columns ordered according to \prec .
For k \in I, we then write sk := \{ (i, k) : k \preceq i, (i, k) \in S\} for the sparsity set of the kth
column L:,k of L. As before, ek is the vector that is 1 on the kth coordinate and zero
everywhere else.

Proof of Theorem 2.1. By using the formula for the KL divergence of two Gauss-
ian random variables in (2.1), we obtain

L = argmin\^L\in \scrS 

\Bigl( 
trace(\^L\^L\top \Theta ) - logdet(\^L\^L\top ) - logdet(\Theta ) - N

\Bigr) 
(A.1)

= argmin\^L\in \scrS 

\Bigl( 
trace(\^L\top \Theta \^L) - logdet(\^L\^L\top )

\Bigr) 
(A.2)

= argmin\^L\in \scrS 

N\sum 

k=1

\Bigl( 
\^L\top 
sk,k

\Theta sk,sk
\^Lsk,k  - 2 log(\^Lk,k)

\Bigr) 
.(A.3)

The kth summand depends only on the kth column of \^L. Thus, taking the derivative
with respect to the kth column of L and setting it to zero, we obtain \Theta sk,sk

\^Lsk,k =

\bfe 1
\^Lk,k
\leftrightarrow \^Lsk,k =

\Theta  - 1
sk,sk

\bfe 1

\^Lk,k
. Therefore, \^Lsk,k can be written as \lambda \Theta  - 1

sk,sk
e1 for a \lambda \in R. By

plugging this ansatz into the equation, we obtain \lambda =
\sqrt{} \bigl( 

\Theta  - 1
sk,ske1

\bigr) 
1
=

\sqrt{} 
e\top 1 \Theta 

 - 1
sk,ske1

and hence (2.3). By using dense Cholesky factorization to invert the \Theta sk,sk , the right-

hand side of (2.3) can be computed in computational complexity O(\# (sk)
2
) in space

and O(\# (sk)
3
) in time, from which follows the result.

Algorithm 3.1 is a direct implementation of the above formula.
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A.2. Computation for the aggregated sparsity pattern. We first intro-
duce some additional notation, defined in terms of an r-maximin ordering \prec (see
Appendix B) and aggregated sparsity set S = \~S\prec ,\ell ,\rho ,\lambda , which we assume to be fixed.

As before, I is the index set keeping track of the degrees of freedom, and \~I is the index
set indexing the supernodes. For a matrix A and sets of indices \~i and \~j, we denote
as A\~i,\~j the submatrix obtained by restricting the indices of A to \~i and \~j, and as A\~i,:

(A:,\~j) the matrix obtained by only restricting the row (column) indices. We adopt

the convention of indexing having precedence over inversion, i.e., A - 1
\~i,\~j

= (A\~i,\~j)
 - 1.

For a supernode \~k \in \~I and a degree of freedom j \in I, we write j \in \~k if there
exists a k \rightsquigarrow \~k such that k \preceq j and (k, j) \in S, and we accordingly form submatri-
ces A\~i,\~j := (Aij)i\in \~i,j\in \~j . Note that by definition of the supernodes, we have sk \subset \~k

for all k \rightsquigarrow \~k. Since we assume the sparsity pattern S to contain the diagonal, we
furthermore have k \rightsquigarrow \~k \Rightarrow k \in \~k.

We first show how to efficiently compute the inverse Cholesky factor for the
aggregated sparsity pattern (as has been observed before in [16] and [23]). For \~k \in \~I,

we define U
\~k as the unique upper triangular matrix such that \Theta \~k,\~k = U

\~kU
\~k,\top . U

\~k can

be computed in complexity \scrO ((\#\~k)3) in time and \scrO ((\#\~k)2) in space by computing
the Cholesky factorization of \Theta \~k,\~k after reverting the ordering of its rows and columns,
and then reverting the order of the rows and columns of the resulting Cholesky factor.

The upper triangular structure of U
\~k implies the following properties:

\Theta sk,sk = U
\~k
sk,sk

U
\~k,\top 
sk,sk

, U
\~k, - 1
sk,sk

1 =
1

U
\~k
kk

e1,(A.4)

U
\~k, - \top 
sk,sk

1 =
\Bigl( 
U

\~k, - \top ek
\Bigr) 
sk,sk

, U
\~k, - 1
sk,sk

vsk =
\Bigl( 
U

\~k, - 1v
\Bigr) 
sk

,(A.5)

where v \in R\~k is chosen arbitrarily. For any k \rightsquigarrow \~k, the first three properties above
imply

(A.6) L\rho 
:,k =

\Theta  - 1
sk

e1\sqrt{} 
e\top 1 \Theta 

 - 1
sk e1

= U
\~k, - \top 
sk,sk

e1 = U
\~k, - \top ek.

Thus, computing the columns L:,k for all k \rightsquigarrow \~k has computational complexity

\scrO ((\#\~k)3) in time and \scrO ((\#\~k)2) in space. Algorithm 3.2 implements the formulae
derived above.

A.3. GP regression in \bfscrO (\bfitN + \bfitrho \bftwo \bfitd ) space complexity. As mentioned in
subsection 4.3, for many important operations arising in GP regression, the inverse-
Cholesky factors L of the training covariance matrix need never be formed in full.
Instead, matrix-vector multiplies with L or L\top , as well as the computation of the log-
determinant of L, can be performed by computing the columns of L in an arbitrary
order, using them to update the result, and deleting them again. For the example
of computing the posterior mean \mu and covariance C, this is done in Algorithm A.1
(without aggregation) and A.2 (with aggregation). In section SM1, we show how
to compute the reverse-maximin ordering and aggregated sparsity pattern in space
complexity\scrO (N+\rho d), thus allowing the entire algorithm to be run in space complexity
\scrO (N + \rho d) when using the aggregated sparsity pattern.

Appendix B. Postponed proofs. Our theoretical results apply to more
general orderings, called reverse r-maximin orderings, which for r \in (0, 1] have the
following property.
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Algorithm A.1 Without aggregation.

Input: G, \{ xi\} i\in I , \prec , S\prec ,\ell ,\rho 

Output: Cond. mean \mu and cov. C

1: for k \in IPr do
2: \mu k \leftarrow 0
3: end for
4: for i \in ITr, j \in IPr do
5: (\Theta Tr,Pr)ij \leftarrow G(xi, xj)
6: end for
7: for i \in IPr, j \in IPr do
8: (\Theta Pr,Pr)ij \leftarrow G(xi, xj)
9: end for

10: for k \in ITr do
11: for i, j \in sk do
12: (\Theta sk,sk)ij \leftarrow G(xi, xj)
13: end for
14: v \leftarrow \Theta  - 1

sk,sk
ek

15: v \leftarrow v/vk
16: \mu k,: \leftarrow \mu k,: + vk\Theta k,Pr

17: Bk,: \leftarrow v\top \Theta Tr,Pr

18: end for
19: C \leftarrow \Theta Pr,Pr  - B\top B
20: return \mu ,C

Algorithm A.2 With aggregation.

Input:G, \{ xi\} i\in I , \prec , S\prec ,\ell ,\rho ,\lambda 

Output: Cond. mean \mu and cov. C

1: for k \in IPr do
2: \mu k \leftarrow 0
3: end for
4: for i \in ITr, j \in IPr do
5: (\Theta Tr,Pr)ij \leftarrow G(xi, xj)
6: end for
7: for i \in IPr, j \in IPr do
8: (\Theta Pr,Pr)ij \leftarrow G(xi, xj)
9: end for

10: for \~k \in \~I do
11: for i, j \in s\~k do
12:

\bigl( 
\Theta s\~k,s\~k

\bigr) 
ij
\leftarrow G(xi, xj)

13: end for
14: U \leftarrow P \updownarrow chol(P \updownarrow Ks\~k,s\~k

P \updownarrow )P \updownarrow 

15: for k \rightsquigarrow \~k do
16: v \leftarrow U - \top ek
17: \mu k,: \leftarrow \mu k,: + vk\Theta k,Pr

18: Bk,: \leftarrow v\top \Theta Tr,Pr

19: end for
20: end forC \leftarrow \Theta Pr,Pr  - B\top B
21: return \mu ,C

Fig. 14. Prediction and uncertainty quantification using KL minimization with and without

aggregation in \scrO (N + \rho 2
\~d) memory complexity.

Definition B.1. An elimination ordering \prec is called reverse r-maximin with
length scales \{ \ell i\} i\in I if for every j \in I we have

(B.1) \ell j := min
i\succ j

dist(xj , \{ xi\} \cup \partial \Omega ) \geq rmax
j\succ k

min
i\succ j

dist(xk, \{ xi\} \cup \partial \Omega ).

We note that the reverse-maximin ordering from subsection 3.1 is a reverse 1-
maximin ordering; reverse r-maximin orderings with r < 1 can be computed in
computational complexity \scrO (N log(N)) (see section SM1). We define the sparsity
patterns S\prec ,\ell ,\rho and \~S\prec ,\ell ,\rho ,\lambda analogously to the case of the reverse-maximin ordering,
and we will write L\rho for the incomplete Cholesky factors of \Theta  - 1 computed using (2.3)
based on the sparsity pattern S\prec ,\ell ,\rho or \~S\prec ,\ell ,\rho ,\lambda .

B.1. Computational complexity. Our estimates only depend on the intrinsic
dimension of the dataset, which is defined by counting the number of balls of radius
r that can be fit into balls of radius R, for different r,R > 0.

Condition B.2 (intrinsic dimension). We say that \{ xi\} i\in I \subset Rd has intrinsic

dimension \~d if there exists a constant C \~d, independent of N , such that for all r,R > 0,
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x \in Rd, we have
(B.2)

max \{ | A| : i, j \in A\Rightarrow dist(xi, x), dist(xj , x) \leq R, dist(xi, xj) \geq r\} \leq C \~d (R/r)
\~d
.

Remark B.3. Note that we always have \~d \leq d.

We also make a mild technical assumption requiring that most of the points belong
to the finer scales of the ordering:

Condition B.4 (regular refinement). We say that \{ xi\} i\in I \subset Rd fulfills the
regular refinement condition for \lambda and \ell with constant C\lambda ,\ell if

\infty \sum 

k=\lfloor log(\ell 1)/ log(\lambda )\rfloor 
\#\{ i : \lambda k \leq \ell i\} \leq C\lambda ,\ell N.

This condition excludes pathological cases like xi = 2 - i for which each scale
contains the same number of points.

Analogously to the results of [53], we obtain the following computational com-
plexity.

Theorem B.5. Under Condition B.2 with C \~d and \~d, using a reverse r-maximin

ordering \prec and S\prec ,\ell ,\rho , Algorithm 3.1 computes L\rho in complexity CN\rho 
\~d in space and

CN\rho 3
\~d in time. If we assume in addition that \{ xi\} i\in I fulfills Condition B.4 for \lambda 

and l with constant C\lambda ,\ell , then, using \~S\prec ,\ell ,\rho ,\lambda or \=S\prec ,\ell ,\rho ,\lambda , Algorithm 3.2 computes L\rho 

in complexity CN\rho 
\~d in space and C\lambda ,\ell CN\rho 2

\~d in time. Here, the constant C depends

only on C \~d,
\~d, r, \lambda , and the maximal cost of evaluating a single entry of \Theta , but not

on N or d.

Proof. We begin by showing that the number of nonzero entries of an arbitrary

column of S\prec ,\ell ,\rho is bounded above as C\rho 
\~d. Considering the ith column, the reverse

r-maximin ordering ensures that for all j, k \succ i, we have dist(xj , xi) \geq r\ell i. Since
for all (i, j) \in S\prec ,\ell ,\rho we have i \prec j and dist(xi, xj) \leq \rho \ell i, Condition B.2 implies

that \# \{ j : (i, j) \in S\prec ,\ell ,\rho \} \leq C \~d(
\rho \ell i
r\ell i

)
\~d. Computing the ith column of L\rho requires

the inversion of the matrix \Theta si,si , which can be done in computational complexity

C\rho 
\~3d, leaving us with a total time complexity of CN\rho 

\~d. We now want to bound
the computational complexity when using the aggregated sparsity pattern \~S\prec ,\ell ,\rho ,\lambda or
\=S\prec ,\ell ,\rho ,\lambda . As before, we write j \in s if j is a child of the supernode s, that is, if there

exists an i \rightsquigarrow s such that (i, j) is contained in \~S\prec ,\ell ,\rho ,\lambda or \=S\prec ,\ell ,\rho ,\lambda . We write \#s to
denote the number of children of s. By the same argument as above, the number

of children in each supernode s is bounded by C\rho 
\~d. We now want to show that the

sum of the numbers of children of all supernodes is bounded as CN . For a supernode
s we write

\surd 
s \in I to denote the index that was first added to the supernode (see

the construction described in subsection 3.2). We now observe that for two distinct
supernodes s and t with c \leq \ell \surd s, \ell 

\surd 
t \leq c\lambda , we have dist(x\surd 

s, x
\surd 
t) \geq c\rho , since

otherwise we would have either
\surd 
s \rightsquigarrow t or

\surd 
t \rightsquigarrow s. Thus, for every index i \in I and

k \in Z, there exist at most C supernodes s with i \in s, \lambda k \leq \ell \surd s < \lambda k+1. By using
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Condition B.4, we thus obtain

\sum 

s\in \~I

\#s =
\sum 

i\in I

\#
\Bigl\{ 
s \in \~I : i \in s

\Bigr\} 
=

\sum 

k\in Z

\sum 

i\in I

\#
\bigl\{ 
s \in \~s : i \in s, \lambda k \leq \ell \surd s < \lambda k+1

\bigr\} 

\leq 
\sum 

k\in Z

\sum 

i\in I:\ell i\geq \lambda k

C \leq NC.

We now know that there are at most CN child-parent relationships between indices

and supernodes and that each supernode can have at most C\rho 
\~d children. The worst

case is thus that we have CN/\rho 
\~d supernodes, each having C\rho 

\~d children. This leads
to the bounds on time complexity and space complexity of the algorithm.

B.2. Approximation accuracy. Our goal is to prove the following theorem.

Theorem B.6. Using an r-maximin ordering \prec and sparsity pattern S\prec ,\ell ,\rho or
\~S\prec ,\ell ,\rho ,\lambda , there exists a constant C depending only on d, \Omega , r, \lambda , s, \| \scrL \| , \| \scrL  - 1\| , and
\delta such that for \rho \geq C log(N/\epsilon ), we have

(B.3) DKL

\bigl( 
\scrN (0,\Theta )

\bigm\| \bigm\| \scrN (0,
\bigl( 
L\rho L\rho ,\top ) - 1

\bigr) \bigr) 
+

\bigm\| \bigm\| \Theta  - (L\rho L\rho ,\top ) - 1
\bigm\| \bigm\| 
FRO

\leq \epsilon .

Thus, Algorithm 3.1 computes an \epsilon -accurate approximation of \Theta in computational
complexity CN logd(N/\epsilon ) in space and CN log3d(N/\epsilon ) in time, from CN logd(N/\epsilon )
entries of \Theta . Similarly, Algorithm 3.2 computes an \epsilon -accurate approximation of \Theta in
computational complexity CN logd(N/\epsilon ) in space and CN log2d(N/\epsilon ) in time, from
CN logd(N/\epsilon ) entries of \Theta .

The authors of [53] prove that under the conditions of Theorem 3.4 the Cholesky
factor of A = \Theta  - 1 decays exponentially away from the diagonal.

Theorem B.7 ([53, Thm. 4.1]). In the setting of Theorem 3.4, there exists a con-
stant C depending only on \delta , r, d,\Omega , s, \| \scrL \| , and \| \scrL  - 1\| such that for \rho \geq C log(N/\epsilon ),

(B.4) S \supset \{ (i, j) \in I \times I : dist(xi, xj) \leq \rho min(\ell i, \ell j)\} ,

and

(B.5) LS
ij :=

\Biggl\{ \bigl( 
chol(A)

\bigr) 
ij
, (i, j) \in S,

0 otherwise,

we have
\bigm\| \bigm\| A - LSLS,\top \bigm\| \bigm\| 

FRO
\leq \epsilon .

In order to prove the approximation accuracy of the KL minimizer, we have to
compare the approximation accuracy in Frobenius norm and in KL divergence. For
brevity, we write DKL(A \| B) := DKL(\scrN (0, A) \| \scrN (0, B)).

Lemma B.8. Let \lambda min, \lambda max be the minimal and maximal eigenvalues of \Theta , re-
spectively. Then there exists a universal constant C such that for any matrix M \in 
RI\times I , we have

\lambda max

\bigm\| \bigm\| A - MM\top \bigm\| \bigm\| 
FRO

\leq C \Rightarrow DKL

\Bigl( 
\Theta 

\bigm\| \bigm\| \bigm\| 
\bigl( 
MM\top \bigr)  - 1

\Bigr) 
\leq \lambda max

\bigm\| \bigm\| A - MM\top \bigm\| \bigm\| 
FRO

,

DKL

\Bigl( 
\Theta 

\bigm\| \bigm\| \bigm\| 
\bigl( 
MM\top \bigr)  - 1

\Bigr) 
\leq C \Rightarrow 

\bigm\| \bigm\| A - MM\top \bigm\| \bigm\| 
FRO

\leq \lambda  - 1
minDKL

\Bigl( 
\Theta 

\bigm\| \bigm\| \bigm\| 
\bigl( 
MM\top \bigr)  - 1

\Bigr) 
.
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Proof. Writing L := chol(A) and \phi FRO(x) := x2 and \phi KL(x) := (x - log(1+x))/2,
we have

\lambda min

\bigm\| \bigm\| A - MM\top \bigm\| \bigm\| 
FRO

= \lambda min

\bigm\| \bigm\| LL - 1
\bigl( 
A - MM\top \bigr) L - \top L\top \bigm\| \bigm\| 

FRO

\leq 
\bigm\| \bigm\| Id - L - 1MM\top L - \top \bigm\| \bigm\| 

FRO
=

N\sum 

k=1

\phi FRO

\bigl( 
\lambda k

\bigl( 
L - 1MM\top L - \top \bigr)  - 1

\bigr) 

=
\bigm\| \bigm\| L - 1

\bigl( 
A - MM\top \bigr) L - \top \bigm\| \bigm\| 

FRO
\leq \lambda max

\bigm\| \bigm\| A - MM\top \bigm\| \bigm\| 
FRO

and

(B.6) DKL

\Bigl( 
\Theta 

\bigm\| \bigm\| \bigm\| 
\bigl( 
MM\top \bigr)  - 1

\Bigr) 
=

N\sum 

k=1

\phi KL

\bigl( 
\lambda k

\bigl( 
L - 1MM\top L - \top \bigr) \bigr) ,

where (\lambda k(\cdot ))1\leq k\leq N returns the eigenvalues ordered from largest to smallest, while
\lambda min(\cdot ) (\lambda max(\cdot )) returns the smallest (largest) eigenvalue. The leading-order Tay-
lor expansion of \phi KL around 0 is given by x \mapsto \rightarrow x2/4. Thus, there exists a con-
stant C such that for min(| x| , \phi FRO(x), \phi KL(x)) \leq C we have \phi KL(x) \leq \phi FRO(x) \leq 
8\phi KL(x). Therefore, for \lambda max\| A - MM\top \| FRO \leq C we have DKL

\bigl( 
\Theta 

\bigm\| \bigm\| (MM\top ) - 1
\bigr) 
\leq 

\lambda max\| A - MM\top \| FRO. For DKL

\bigl( 
\Theta 

\bigm\| \bigm\| (MM\top ) - 1
\bigr) 
\leq C this implies \| A - MM\top \| FRO \leq 

\lambda  - 1
minDKL

\bigl( 
\Theta 

\bigm\| \bigm\| (MM\top ) - 1
\bigr) 
.

Using Lemma B.8, we can now use the results of [53] to conclude Theorem 3.4.

Proof of Theorem B.6. [53, Thm. 3.16] implies that there exists a polynomial p
depending only on (d, s, \delta ,\scrL ) such that \lambda max, \lambda 

 - 1
min \leq p(N). Thus, by choosing \rho \geq 

C log(N) we can deduce by Theorem B.7 that \lambda max

\bigm\| \bigm\| A - LSLS,\top \bigm\| \bigm\| \leq C for C the con-

stant in Lemma B.8. Thus, We have DKL

\Bigl( 
\Theta 

\bigm\| \bigm\| \bigm\| 
\bigl( 
LSLS,\top \bigr)  - 1

\Bigr) 
\leq \lambda max

\bigm\| \bigm\| A - LSLS,\top \bigm\| \bigm\| .
The KL-optimality of L\rho implies DKL

\Bigl( 
\Theta 

\bigm\| \bigm\| \bigm\| 
\bigl( 
L\rho L\rho ,\top \bigr)  - 1

\Bigr) 
\leq \lambda max

\bigm\| \bigm\| A - LSLS,\top \bigm\| \bigm\| \leq C.

Using Lemma B.8 one more time, we also obtain

(B.7)
\bigm\| \bigm\| A - L\rho L\rho ,\top \bigm\| \bigm\| \leq \lambda  - 1

minDKL

\Bigl( 
\Theta 

\bigm\| \bigm\| \bigm\| 
\bigl( 
L\rho L\rho ,\top \bigr)  - 1

\Bigr) 
\leq \lambda max/\lambda min

\bigm\| \bigm\| A - LSLS,\top \bigm\| \bigm\| .
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