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ABSTRACT: The ensemble Kalman filter (EnKF) is a popular technique for data assimilation in high-dimensional

nonlinear state-space models. The EnKF represents distributions of interest by an ensemble, which is a form of dimension

reduction that enables straightforward forecasting even for complicated and expensive evolution operators. However, the

EnKF update step involves estimation of the forecast covariancematrix based on the (often small) ensemble, which requires

regularization. Many existing regularization techniques rely on spatial localization, which may ignore long-range depen-

dence. Instead, our proposed approach assumes a sparse Cholesky factor of the inverse covariance matrix, and the nonzero

Cholesky entries are further regularized. The resulting method is highly flexible and computationally scalable. In our

numerical experiments, our approach was more accurate and less sensitive to misspecification of tuning parameters than

tapering-based localization.
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1. Introduction

In spatiotemporal data assimilation, the goal is to se-

quentially infer the state of a spatial field by combining noisy

and incomplete observations with an evolution operator,

which describes how the field evolves over time. This is a

ubiquitous task across many scientific areas, with numerical

weather prediction as a prominent example. From a statistical

perspective, data assimilation can be viewed as filtering in-

ference in a spatiotemporal state-space model, with the aim

of obtaining the conditional distribution of the state given all

data observed up to the current time point. Because the

spatial field is often discretized at a high resolution, the state

dimension may be very high, making approximations to the

inference problem necessary.

A highly successful approximate filtering technique is the

ensemble Kalman filter (EnKF; e.g., Evensen 1994; Burgers

et al. 1998; Houtekamer and Mitchell 1998; Anderson 2001;

Evensen 2007; Katzfuss et al. 2016; Houtekamer and Zhang

2016), a sequential Monte Carlo algorithm that represents

distributions of interest by an ensemble. However, the EnKF

update step involves estimation of the large forecast covari-

ance matrix based on an often small ensemble, which requires

regularization. See Ueno and Tsuchiya (2009) for a brief re-

view of regularization in spectral or wavelet space.

Many existing EnKF regularization techniques rely on spa-

tial localization via covariance tapering or local updates (e.g.,

Houtekamer and Mitchell 2001; Hamill et al. 2001; Ott et al.

2004; Furrer and Bengtsson 2007; Hunt et al. 2007; Bishop and

Hodyss 2009; Anderson 2012; Bishop et al. 2017). Covariance

tapering results in a sparse forecast covariance matrix, with

zero entries corresponding to state variables that are more

than a small number of grid points apart, which means that

longer-range correlation in the forecast is ignored.

An alternative EnKF-regularization approach is to assume

sparsity in the forecast precision (i.e., inverse covariance)

matrix (Ueno and Tsuchiya 2009). A zero entry in the precision

matrix means that the two corresponding state variables are

conditionally uncorrelated given all other state variables.

Importantly, this is often a weaker assumption than sparsity in

the covariance matrix, in that two variables can be (approxi-

mately) conditionally uncorrelated even if they are strongly

marginally (i.e., unconditionally) correlated. Thus, even a

highly sparse precision matrix can capture nonzero long-range

correlations, and hence may be preferable to sparsity in the

covariance matrix. However, it can be challenging to ensure

that an estimated precision matrix is valid (e.g., positive

definite). In addition, the resulting EnKF update requires

Cholesky factorization (or other decompositions) of the

precision matrix, which introduces additional nonzero entries

and thus increased computational cost.

Hence, it is advantageous to work directly with a sparse

Cholesky factor of the precision matrix, sometimes called an

inverse Cholesky factor. Positive diagonal entries are sufficient

to ensure a valid inverse Cholesky factor. In addition, a zero

inverse-Cholesky entry implies that the corresponding variables

are conditionally uncorrelated given subsequently ordered var-

iables (according to the row/column ordering of the Cholesky

factor); thus, highly sparse inverse-Cholesky factors can often

capture nonnegligible correlations at all spatial scales. This

sparse-inverse-Cholesky idea has been very successful in general

covariance-estimation problems (e.g., Smith and Kohn 2002;

Huang et al. 2006). Related approaches have recently also been

proposed in the EnKF context by Yang (2017, chapter 3) and
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Nino-Ruiz et al. (2018). These approaches require a suitable

ordering of the state variables, which is typically done according

to their corresponding spatial coordinates. Without further ap-

proximations or assumptions, these existing approachesmay not

efficiently scale to high dimensions and large numbers of ob-

servations, or they may be inaccurate for small ensemble sizes.

Here, we extend a recently proposed method for nonpara-

metric inference on spatial covariance matrices (Kidd and

Katzfuss 2021) for use in stochastic EnKF updates, estimating the

forecast covariance matrix based on a sparse inverse Cholesky

factor. In contrast to the coordinate ordering of spatial locations

used in existing Cholesky approaches, our method uses a

maximum-minimum-distance ordering, which can lead to more

accurate approximations for a given sparsity level (e.g., Guinness

2018; Katzfuss and Guinness 2021). Our approach provides ad-

ditional regularization motivated by recent results on the expo-

nential decay of inverseCholesky factors under this ordering.Our

method is highly flexible and computationally scalable to high-

dimensional state and observation vectors. We demonstrate that,

in contrast to localization-based updates, our approach is easier to

tune and can accommodate various dependence scales.

The remainder of this document is organized as follows. In

section 2, we review existing results and describe our proposed

EnKF algorithm. In section 3, we provide numerical compar-

isons of our method to existing approaches. Section 4 con-

cludes. A separate supplemental material document contains

additional details and plots.

2. Methodology

a. State-space model

At time points t 5 1, 2, . . . , let xt denote the n-dimensional

latent spatial field of interest and yt a corresponding vector of

nt noisy observations. Given an initial state distribution,

x0 ; p(x0), we assume a state-space model that, at each time

t5 1, 2, . . . , consists of a linear Gaussian observation model

with diagonal noise covariance Rt:

y
t
jx

t
;N

nt
(H

t
x
t
,R

t
), (1)

and an evolution model with Markov structure:

x
t
jx

1:t21
; p(x

t
jx

t21
) , (2)

which is often a computationally expensive, black-box model

determined by a system of differential equations. Data assim-

ilation essentially means sequential filtering inference on the

distribution p(xtjy1:t)p(xtjy1:t) of the current state xt given all

data y1:t observed so far, for t 5 1, 2, . . . . We are interested in

the setting where n and the nt are large. For simplicity, we as-

sume that the Ht, Rt, and the evolution model are all known,

and that the observation distributions in (1) are Gaussian, al-

though extensions for unknown model parameters and non-

Gaussian observations are possible (e.g., Katzfuss et al. 2020).

b. Review of the ensemble Kalman filter (EnKF)

A popular and successful technique for data assimila-

tion is the EnKF (Evensen 1994), which approximates the

state distribution by an ensemble. At time t, assuming a

previous filtering ensemble x
(1:N)
t21jt21

5 fx(1)
t21jt21

, . . . , x
(N)
t21jt21

g
withx

(j)
t21jt21

; p(xt21jy1:t21),wecandrawx
(j)
tjt21

;p(xtjxt21 5 x
(j)
t21)

for j 5 1, . . . , N using the evolution model (2), to obtain the

forecast ensemble x
(1:N)
tjt21

with x
(j)
tjt21

;p(xtjy1:t21). This forecast

ensemble, which can be thought of as a sample from a prior

distribution, must then be updated based on the new data yt, to

obtain the filtering ensemble x
(1:N)
tjt as a sample from the pos-

terior. The stochastic EnKF update can be shown (e.g., Hunt

et al. 2007) to be equivalent to

x
(j)
tjt 5S

tjt(S
21
tjt21x

(j)
tjt21

1HT
t R

21
t y

(j)
t ), j5 1, . . . ,N , (3)

which requires perturbed observations y
(j)
t ;N (yt, Rt), the

forecast covariance matrix Stjt21, and the posterior preci-

sion S
21
jtjt 5S

21
jtjt21 1HT

t R
21
t Ht.

In practice, the forecast covariance matrix Stjt21 is unknown

and must be estimated from the forecast ensemble x
(1:N)
tjt21

.

Estimating a large n3 nmatrixStjt21 from a sample of small to

moderate size N requires regularization. Existing EnKF reg-

ularization approaches often rely on spatial localization; dis-

cussions and comparisons will be presented in section 3.

c. Review of spatial covariance estimation based on sparse
inverse Cholesky factors

Kidd and Katzfuss (2021) proposed a Bayesian nonpara-

metric estimation method for spatial covariance matrices,

which we briefly review here. Instead of estimating O(n2) en-

tries in the covariance matrix, the basic idea is to infer a near-

linear number of nonzero entries in a sparse Cholesky factor of

the inverse covariance matrix, whose nonzero entries are fur-

ther regularized via prior distributions.

Temporarily drop time subscripts and assume an ensemble

x(1:N) from a distribution with covariance matrix S. Order the

variables x
(j)
1 , . . . , x(j)n in x( j) according to amaximum-minimum-

distance (maximin) ordering (Guinness 2018; Schäfer et al.

2021a), which sequentially selects each variable in the ordering

to maximize the minimum distance to all previously ordered

variables. The ordering is assumed to be the same in each en-

semble member x( j) and implies a corresponding ordering of the

rows and columns of S. For i 5 2, 3, . . . , n, let gm(i) �
(1, . . . , i2 1) be an index vector consisting of the indices of the

min(m, i2 1) nearest neighbors (ordered by increasing distance)

among those ordered previously, for some positive integerm�
n. Thus, the distance to the neighbors decreases with the index i

in the maximin ordering. If each state variable is associated

with a geospatial location, the ordering and conditioning can be

carried out using the physical distance between the corre-

sponding spatial locations. (Other distancemeasures can also be

used; see section 4.) The ordering and neighbor-selection

scheme is illustrated in Fig. 1.

Consider a modified Cholesky decomposition of the preci-

sion matrix:

S
21 5UD21UT , (4)

where D 5 diag(d1, . . . , dn) is a diagonal matrix with positive

entries di . 0, and U is an upper triangular matrix with unit
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diagonal,Uii5 1.Assume thatU is sparse, with atmostm nonzero

off-diagonal elements per column, and define ui 5Ugm(i),i as the

nonzero off-diagonal entries in the ith column.

Kidd and Katzfuss (2021) assumed independent normal-

inverse-gamma (NIG) prior distributions for ui, di, such that

uijdi ;N (0, diVi) and di ; IG(ai, bi). The parameters of the

NIG prior (and m, which determines the length of the ui) are

determined by a vector u5 (u1, u2, u3)
T of tuning parameters as

follows:

a
i
5 6, b

i
5 5 u

1
(12 e2u2/

ffi

i
p
) , (5)

V
i
5 diag(y

i1
, . . . , y

im
), y

ik
5 e2u3k5/b

i
,

m5maxfk: e2u3k . 1022g ,
(6)

for i5 1, . . . , n. To give some intuition, the parameterization of

the yik is inspired by results forMatérn and similar covariances,

which essentially imply an exponential decay in the entries of

the inverse Cholesky factor as a function of the neighbor

number k (Schäfer et al. 2021a, section 6.2), as assumed in (6);

Cholesky entries for large k . m are assumed to be exactly

zero, where m is a function of u3. Further, bi is proportional to

the prior mean of the residual variance di for predicting x
(j)
i

based on its neighbors x
(j)
gm(i)

; this residual variance decreases

with the index i in themaximin ordering, because the neighbors

x
(j)
gm(i)

are closer to x
(j)
i for large i than for small i (e.g., compare

the left and right panels in Fig. 1).

Assuming that the x( j) follow independent n-variate Gaussian

distributions with mean zero and covariance matrix S, the NIG

priors for ui, di are conjugate, resulting in closed-form NIG pos-

teriors. Here, instead of considering the full posterior distribu-

tions, we obtain point estimates given by the posterior means:

û
i
5G21

i XT
i xi, d̂

i
5 ~b

i
=(~a

i
2 1), (7)

whereGi 5XT
i Xi 1V21

i , ~ai 5ai1N/2, ~bi5bi1(xTi yi2ûT
i Giû

T
i )/2,

xi 5 (x
(1)
i , . . . , x

(N)
i )

T
consists of theN ensemble values at the ith

grid location, and Xi is an N 3 m matrix with jth row 2x(j)gi
T

consisting of the ensemble values at the m neighbor locations.

Hence, given u, the entries of U and D can be easily calculated

based on the Cholesky factors of the m 3 m matrices Gi,

i 5 1, . . . , n.

The tuning parameters u can be determined by maximizing

(the log of) the integrated likelihood, which is the distribution

of the ensemble x(1:N) under the Gaussian assumption, with S

(i.e., the ui and di) integrated out:

p(x(1:N)ju)}P
n

i51

f(jG
i
j21

=jV
i
j)1/2 3 (b

ai

i =
~b
~ai

i ) 3 [G(~a
i
)=G(a

i
)]g ,

(8)

where G denotes the gamma function, and (8) depends on u via

(5)–(6). We assume that u1, u2, u3 are all positive, and so the

optimization of (8) is performed on the log scale.

This concludes the review of Kidd and Katzfuss (2021).

d. EnKF update using regularized sparse inverse Cholesky

Let us return to the EnKF setting in section 2b. At time t, given

the forecast ensemble x
(1:N)
tjt21

(and tuning parameters u), the goal

is to carry out the stochastic EnKF update in (3) based on a

regularized estimate of the forecast covariance matrix Stjt21.

We propose to estimate Stjt21 using the method from

section 2c, defining x(1:N) as the centered forecast ensemble

x
(1:N)
tjt21

(i.e., after subtracting the ensemble mean at each loca-

tion). Using the point estimates of ui and di, i 5 1, . . . , n, as

in (7), we can form the sparse triangular matrix U and the di-

agonal matrix D in (4). From this, it is straightforward to

compute a prior Cholesky factor Ltjt21 5 D21/2UT, the prior

precision S
21
tjt21 5LT

tjt21Ltjt21, the posterior precision

S
21
tjt 5S

21
tjt21 1HT

t R
21
t Ht, and finally the posterior Cholesky

factor Ltjt with S
21
tjt 5LT

tjtLtjt. Then, the EnKF update (3) can be

computed efficiently as

x
(j)
tjt 5L21

tjt L
2T
tjt (L

T
tjt21Ltjt21

x
(j)
tjt21

1HT
t R

21
t y

(j)
t ), j5 1, . . . ,N .

(9)

Note that we only compute and work with the sparse pre-

cision matrices S
21
tjt21 and S

21
tjt and their respective Cholesky

FIG. 1. Illustration of maximin ordering and nearest-neighbor selection for n 5 10 000 locations on a 100 3 100 grid (small gray dots).

The panels show, for three different indices i, the ith-ordered location (blue) and the previous i2 1 locations (black diamonds), including

the nearest m 5 6 previously ordered neighbors with indices in gm(i) (orange crosses).
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factors Ltjt21 and Ltjt; the dense covariance matrices Stjt21 and

Stjt are never explicitly computed.

ALGORITHM 1: RSIC-ENKF

1) Using state grid locations, compute maximin ordering and

nearest-neighbor indices g
m*(i), i5 1, . . . , n, for large m*

(e.g., m* 5 50)

2) Initialize ensemble: x
(j)
0j0;

ind:
p(x0) for j 5 1, . . . , N

3) for t 5 1, 2. . . , do

4) Compute forecast ensemble using (2): x
(j)
tjt21

;
p(xtjxt21 5 x

(j)
t21) for j 5 1, . . . , N

5) Optimize u 5 argmaxu logp(x
(1:N)ju) [see (8)], with the

centered x
(1:N)
tjt21

as x(1:N)

6) Updatem, gm(i) � g
m*(i), ai, bi, Vi, i5 1, . . . , n, as in (5)

and (6) based on u

7) Compute ûi, d̂i, i 5 1, . . . , n as in (7); form sparse

matrices U and D [see (4)]

8) Compute Cholesky factors Ltjt21 5 D21/2 UT and Ltjt 5
(LT

tjt21Ltjt21 1HT
t R

21
t Ht)

1/2

9) Update ensemble: x
(j)
tjt 5L21

tjt L
2T
tjt (L

T
tjt21Ltjt21x

(j)
tjt21

1
HT

t R
21
t y

(j)
t ) with y

(j)
t ;N (yt, Rt), for j 5 1, . . . , N

10) end for

e. Summary and computational complexity

Our regularized sparse inverse Cholesky (RSIC) EnKF

procedure is summarized in algorithm 1.

The computational complexity of our RSIC update is es-

sentially linear in n for fixedm andN. Specifically, in algorithm

1, lines 6, 7, and 9, and evaluation of p(x(1:N)ju) in line 5 require

O[n(m2N1m3)] time, wherem# 20 (and often evenm, 10)

in our numerical experiments. However, while S
21
tjt is very

sparse, its Cholesky factor Ltjt can contain additional non-

zeroes, resulting in a complexity for line 8 that may not be

linear in n anymore; in this case, we can maintain the linear

complexity by computing Ltjt using an incomplete Cholesky

algorithm with zero fill-in as described in Schäfer et al.

(2021b, section 4a). This incomplete-Cholesky approach

also allows us to deal with nondiagonal Rt, provided that

R21
t y

(j)
t and entries of HT

t R
21
t Ht can be computed relatively

cheaply. The ordering and nearest neighbors for a largem*

in line 1 can also be computed in near-linear time in n

(Schäfer et al. 2021a,b). For any m # m* implied by a

specific u, gm(i) can then simply be selected as the first m

entries of g
m*(i); if a m . m* does happen to occur, then

the gm(i) must be recomputed. While the optimization in

line 5 requires multiple evaluations of the integrated

likelihood, section S2 in the supplemental material shows

that similar values of u may be obtained even when re-

ducing computational cost via warm starts (i.e., initializing

the optimization at the previous u) or skipping lines 5 and 6

altogether at most time points.

In addition, many of the most expensive computations, such

as evaluating the integrated likelihood in (8) and computing

the estimates in (7), are perfectly parallel for i5 1, . . . , n, while

the ensemble updates in line 9 can be computed in parallel

over j 5 1, . . . , N. Hence, for systems with expensive evolu-

tion operators, we expect the cost of the RSIC update to be

negligible relative to the cost of the forecast step in line 4 (see

Figs. S7 and S8 in the online supplemental material).

3. Numerical comparisons

a. Qualitative comparison to localization in a toy example

EnKF updates typically require regularization of the fore-

cast covariance matrix (see section 2b), often via spatial lo-

calization. We conducted a qualitative comparison of our

updating procedure to two popular localization methods in a

simple toy example with long-range dependence shown in

Fig. 2. Our RSIC-EnKF update (lines 5–9 in algorithm 1)

produced an ensemble mean that was close to the exact pos-

terior mean, despite RSIC being based on a very sparse inverse

Cholesky factor Ltjt21 with at most m 5 2 nonzero entries per

row. Local updating computed the exact update for each state

element xi, but only based on data within a distance of 0.1 (i.e.,

only based on observations at the nearest 100 grid points); by

definition, the posterior mean of state elements located outside

of the interval [0.4, 0.6] ignored the observation at location 0.5

and was thus equal to the prior ensemble mean, which was

roughly zero.

For localization via tapering, the EnKF update in (3) was

based on an estimate of the prior/forecast covariance

matrix Stjt21 given by the sample covariance of the prior

ensemble multiplied element-wise by a Wendland corre-

lation matrix with a radius of 0.1. Thus, the 500 3 500

forecast covariance matrix had roughly 100 nonzero en-

tries per row, and state elements more than 50 grid points

apart were assumed to be independent a priori. Despite

this fairly dense covariance matrix, the taper update was

highly inaccurate. This illustrates a severe limitation of

FIG. 2. Illustration of the limitations of localized updates in a

simple one-dimensional setting: posterior/filtering means E(xjy)
given a single observation y5 1 at location 0.5 with noise variance

R5 0.01, assuming aGaussian prior/forecast distribution for xwith

mean zero and exponential covariance matrix with unit variance

and range 0.4, on a regular grid of size n5 500 on the unit interval.

We show the exact posterior mean, the RSIC-EnKF update (with

m 5 2), a local update based on observations within a distance of

0.1, and a tapered update with radius 0.1, all based on the same

prior ensemble of size N 5 1000.
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tapering-based localization for long-range forecast de-

pendence on high-resolution grids: A small tapering radius

can make the updates inaccurate, while a larger tapering

radius will result in a fairly dense forecast covariance

matrix and hence high computational cost. In addition,

decomposing or inverting a large covariance matrix is of-

ten expensive due to fill-in even if the matrix is very sparse

(e.g., Lipton et al. 1979).

b. Update at a single time point based on a Gaussian

forecast

Figure 3 shows a comparison of different EnKF updates at a

single time point for a Gaussian forecast distribution on a grid

of size n 5 35 3 35 5 1225 on the unit square. We randomly

sampled a true state vector x from the forecast distribution,

generated a corresponding observation vector y from (1), and

quantified the accuracy of the methods by computing the

energy score of the resulting posterior or filtering ensembles

relative to the true x, averaged over 20 repetitions. The en-

ergy score (Gneiting et al. 2008) is a proper scoring rule (e.g.,

Gneiting and Katzfuss 2014) that simultaneously quantifies

the calibration and sharpness of the joint posterior distribu-

tion, as characterized by the updated ensemble. (We also

conducted comparisons based on the mean square error of

the posterior ensemble mean, and the relative results were

very similar).

In Fig. 3a, RSIC-EnKF updates were almost as accurate as

updates using the exact forecast covariance for moderate to

largeN, despite using highly sparse Cholesky factors withm,
10 in all settings. Updates using the sample covariance (without

regularization) performed poorly for small N, as expected.

Updates using tapering-based localization were also relatively

inaccurate, even when based on the true forecast covariance

matrix, which (for fixed radius) provides a lower bound on the

error no matter the ensemble size.

In Fig. 3b, we examined the robustness of various updates

to varying dependence ranges in the forecast distribution.

Tapering updates with a small radius of 0.1 performed in-

creasingly poorly as the range parameter increased; tapering

updates with a large tapering radius of 0.5 (which resulted in

almost completely dense estimates of the forecast covariance

matrix) exhibited the opposite behavior. RSIC-EnKF was

more accurate than all tapering approaches for all levels of

the range parameter; interestingly, when we arbitrarily fixed

m 5 5 or m 5 10 (instead of using the m implied by the es-

timated u as in line 6 of algorithm 1), the results were almost

indistinguishable.

In summary, tapering-based localization was highly sensitive

to the chosen tapering radius, and it generally performed rel-

atively poorly despite relatively dense covariance estimates

and hence high computational cost. In contrast, RSIC-EnKF

was robust with respect to a wide range of dependence scales

and to ‘‘misspecification’’ ofm. Section S1 in the supplemental

material contains additional simulation results for various

signal-to-noise ratios, observation densities, and tapering radii;

the results were consistent with Fig. 3, with RSIC-EnKF per-

forming better than even the optimal tapering updates in vir-

tually all considered settings.

c. Nonlinear Lorenz model

We considered a nonlinear evolution model (Lorenz 2005,

section 4) that replicates features of atmospheric variables

along a latitudinal band. This model (called Model III in

Lorenz 2005) produces trajectories with both long-range and

short-range spatial dependence; thus, we consider it a more

realistic data-assimilation testbed than the popular model of

FIG. 3. Comparison of energy score (relative to exact update) for posterior ensemble based on different updates at a single time point for

aGaussian forecast distributionwith exponential covariancewith unit variance and range l on a grid of size n5 353 355 1225 on the unit

square, with H5 R5 In. Exact denotes update using the exact forecast covariance matrix; Taper Exact and Taper Sample multiplied the

exact and sample covariance, respectively, by aWendland taper; and the taper radii 0.1 and 0.5 indicated in the legends result in covariance

matrices with roughly 38 and 960 nonzero entries per row, respectively. RSIC performed almost as well as the exact update across all

considered spatial ranges in the forecast distribution, even whenmwasmisspecified and fixed at 5 and 10; in contrast, tapering with a small

(0.1) or large (0.5) radius performed poorly for large and small ranges, respectively.
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Lorenz (1996), for which spatial dependence is negligible for

state elements more than one grid point apart. We considered

Model III (henceforth called Lorenz05) with n 5 1920 state

grid points, and parameters K 5 64, F 5 15, b 5 9, c 5 4, and

I5 10 (see Lorenz 2005, for a detailed description of the model

and its parameters). We solved Lorenz05 on a circle with unit

circumference using a fourth-order Runge–Kutta scheme, us-

ing code from Jurek and Katzfuss (2020).

1) LORENZ SIMULATION AT A SINGLE TIME POINT

First, we compared different updating schemes at a single

time point, with the forecast ensemble and true state drawn

from a very long run of Lorenz05. For each of 30 simulations

and true sampled states, we generated nt 5 96 observations

based on the true state as in (1), using a noise variance of

Rt 5 t2Int with t 5 4 and with Ht comprised of randomly sam-

pled rows from the identity matrix In.

Figure 4 shows the averaged energy scores for different

EnKF updates and different ensemble sizes. The fast decay of

the entries of the inverse Cholesky factor exploited by RSIC in

(6) seems to hold for the Lorenz05 covariance matrix (see

Fig. S5 in the supplemental material), and so RSIC again

performed very well for all ensemble sizes despite highly sparse

Cholesky factors with m # 20 in all settings. Tapering-based

updates were only competitive for small ensemble size and a

large tapering radius of 0.3, which implies a fairly dense co-

variance matrix and hence high computational cost.

2) SEQUENTIAL LORENZ SIMULATION

We then considered data assimilation using Lorenz05.

Starting with an initial draw and ensemble as in section 3c(1) at

time t 5 0, we used Lorenz05 as the evolution model in (2),

assimilating nt 5 96 observations at each time t that were

simulated based on the true state xt as in section 3c(1).

As shown in Fig. 5, RSIC-EnKF was able to track the true

state very well. Figure 6 shows a comparison of RSIC to several

tapering approaches. RSIC was more accurate in all settings,

despite relying on much sparser matrices. We also tried to

include tapering with a smaller radius of 0.03, but the resulting

filtering ensembles were wildly oscillatory and resulted in nu-

merical errors (see Fig. S7 in the supplemental material).

Additional figures in section S2 in the supplemental material

show that most of the computational time for RSIC-EnKF was

spent on the forecast steps, with negligible time spent on the

update steps. Also, the estimated tuning parameters u were

relatively stable over time after a short burn-in period, indi-

cating that u optimization may not be necessary at most time

points. Figure S9 provides further comparison results in this

setting on other metrics such as spread and MSE, showing that

RSIC had both lower spread and lower MSE than the tapering

updates. All scores were stable and did not change much after

t 5 20 when running the simulations for more time points.

Further exploratory comparisons of prior (i.e., forecast) scores

and using variance inflation (with inflation factors between 1.05

and 1.2) led to similar conclusions, with RSIC performing

better than tapering updates.

4. Conclusions and future work

We have proposed a new EnKF updating procedure that

relies on a regularized sparse Cholesky factor of the inverse

forecast covariancematrix. The proposedmethod is scalable to

high dimensions, is easy to tune, can accommodate various

dependence scales, and was considerably more accurate than

tapering-based localization in our numerical experiments.

It is straightforward to extend our approach to non-Gaussian

observations or unknown parameters in the evolution or ob-

servation models by combining it with the hierarchical EnKF

methods in (Katzfuss et al. 2020). Our approach can also be

extended to multivariate or strongly nonstationary spatial

processes, by carrying out the maximin ordering and nearest-

neighbor selection using a correlation distance based on an

offline or preliminary estimate of the correlation matrix

(M. Kang and M. Katzfuss 2021, unpublished manuscript; Kidd

and Katzfuss 2020). If the state vector consists of multiple differ-

ent geophysical variables, we recommend standardizing them

to have comparable marginal variances, to ensure a sensible

FIG. 4. For Lorenz05 with n 5 1920 at a single time point

[section 3c(1)], comparison of average energy score as a function of

ensemble size N for different EnKF update methods. RSIC’s

Cholesky factors were highly sparse with m # 20, while the taper

radii 0.025, 0.1, and 0.3 (on a circular domain with unit circum-

ference) indicated in the legend result in covariance matrices with

roughly 15, 61, and 185 nonzero entries per row, respectively.

FIG. 5. For time t 5 21 in the sequential Lorenz05 setting of

section 3c(2), the observations yt, the true state xt, and the RSIC

filtering ensemble with N 5 50 are plotted against the n 5 1920

spatial grid indices.
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regularization of the inverse-Cholesky entries. Our numerical

comparisons focused on the accuracy of the EnKF update

step under the assumption that the observation and evolution

models in (1) and (2) were correctly specified; for real-data

applications, an investigation of the sensitivity of our ap-

proach to model misspecification is warranted. Further, it

would be of interest to extend our method to deterministic

updates and to handle nonlinear observation operators.

Finally, while we only used point estimates of the entries of

the inverse Cholesky factor given by their posterior means, it

would be useful to account for uncertainty in their full pos-

terior distribution.
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