Sparta: High-Performance, Element-Wise Sparse
Tensor Contraction on Heterogeneous Memory

Jiawen Liu*
jliu265@ucmerced.edu
University of California, Merced

Dong Li
dli35@ucmerced.edu
University of California, Merced

Abstract

Sparse tensor contractions appear commonly in many appli-
cations. Efficiently computing a two sparse tensor product
is challenging: It not only inherits the challenges from com-
mon sparse matrix-matrix multiplication (SpGEMM), i.e.,
indirect memory access and unknown output size before
computation, but also raises new challenges because of high
dimensionality of tensors, expensive multi-dimensional in-
dex search, and massive intermediate and output data. To ad-
dress the above challenges, we introduce three optimization
techniques by using multi-dimensional, efficient hashtable
representation for the accumulator and larger input tensor,
and all-stage parallelization. Evaluating with 15 datasets, we
show that Sparta brings 28 — 576X speedup over the tradi-
tional sparse tensor contraction with sparse accumulator.
With our proposed algorithm- and memory heterogeneity-
aware data management, Sparta brings extra performance
improvement on the heterogeneous memory with DRAM
and Intel Optane DC Persistent Memory Module (PMM) over
a state-of-the-art software-based data management solution,
ahardware-based data management solution, and PMM-only
by 30.7% (up to 98.5%), 10.7% (up to 28.3%) and 17% (up to
65.1%) respectively.

CCS Concepts: - Mathematics of computing — Mathe-
matical software performance; - Computing method-
ologies — Shared memory algorithms.

Keywords: sparse tensor contraction, tensor product, multi-
core CPU, non-volatile memory, heterogeneous memory

*This work was done when the author was an intern at PNNL.

ACM acknowledges that this contribution was authored or co-authored
by an employee, contractor, or affiliate of the United States government.
As such, the United States government retains a nonexclusive, royalty-free
right to publish or reproduce this article, or to allow others to do so, for
government purposes only.

PPoPP 21, 2/27 - 3/3, 2021, Republic of Korea

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8294-6/21/02...$15.00
https://doi.org/10.1145/3437801.3441581

Jie Ren
jren6@ucmerced.edu
University of California, Merced

318

Roberto Gioiosa
roberto.gioiosa@pnnl.gov
Pacific Northwest National
Laboratory

Jiajia Li
jiajia.li@pnnl.gov
Pacific Northwest National
Laboratory, William & Mary

1 Introduction

Tensors, especially those high-dimensional sparse tensors are
attracting increasing attention, because of their popularity
in many applications. High-order sparse tensors have been
studied well in tensor decomposition on various hardware
platforms [9, 27, 35-38, 41, 50, 51, 54, 63-65] with a focus on
the product of a sparse tensor and a dense matrix or vector.

Nevertheless, the two sparse tensor contraction (SpTC),
foundation for a spectrum of applications, such as quantum
chemistry, quantum physics and deep learning [4, 18, 31, 39,
58, 59], still lacks sufficient research, especially with element-
/pair-wise sparsity. In essence, SpTC, a high-order extension
of sparse matrix-matrix multiplication (SpGEMM), multiplies
two sparse tensors along with their common dimensions.
Efficient SpTC introduces multiple challenges.

First, the size and non-zero pattern of the output tensor are
unknown before computation. Thus, memory allocation for
the output tensor is difficult. Unlike operations such as the
multiplication of a sparse tensor and a dense matrix/vector
where the size of the output data is predictable, the output
tensor of an SpTC is usually sparse and the non-zero pattern
(e.g., the number of non-zero elements and their distribution)
is unpredictable before the actual computation. Sparse data
objects and unpredictable output size also exist in Sp GEMM.
Two popular approaches have been proposed to solve these
issues for SpGEMM, while they are not efficient for SpTC.
The first approach, using an extra symbolic phase [47] to
predict the accurate output size and non-zero pattern, suf-
fers from expensive pre-processing and is unaffordable in a
dynamic sparsity environment. This issue is especially se-
vere in SpTC, because an SpTC with the exact same input
is usually computed only once in a long sequence of ten-
sor contractions [4]. However, with the symbolic approach,
every SpTC is attached to both a symbolic phase and SpTC
computation, which is very expensive, especially for large ap-
plications. The second approach makes a loose upper-bound
prediction on the memory consumption of the output tensor.
However, a tight prediction for SpTC of high-order tensors is

Corrected Version of Record. V.1.1. Published March 1, 2021.

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3437801.3441581

PPoPP 21, 2/27 - 3/3, 2021, Republic of Korea

very difficult because its more contract dimensions (see Sec-
tion 2.2) make the prediction less accurate, using the existed
prediction algorithms [2, 11].

Second, irregular memory accesses along with multi-dimen-
sional index search to the second input tensor and accumu-
lator introduce performance problems. Similar to SpGEMM,
SpTC has indirect memory accesses to the second input ten-
sor, caused by the non-zero indices of the first input tensor.
Take an SpGEMM C = A X B as an example. A non-zero
A(0,1) gets, e.g., B(1, 1), to perform multiplication; while
A(0,10) computes with, e.g. B(10, 2). Those irregular mem-
ory accesses of B and the sparse accumulator, which happen
more often with the high-dimensional tensors, are not cache-
friendly. In addition, index search and accumulator, which
are used to address irregular memory accesses in SpTC, are
more expensive than that in SpGEMM. Our evaluation shows
that they take 54% of SpTC execution time on average.

Third, massive memory consumption caused by large input
and output tensors and intermediate results creates pressure
on the traditional DRAM-based machine. Sparse tensors from
real-world applications easily consume a few to dozens of
GB memory, while the output tensor could be even larger,
because it contains more non-zero elements than any of
the input sparse tensor. The intermediate results could be
large as well, especially for multi-threading environment
where each thread has its own intermediate results. Com-
pared to the well-studied sparse tensor times dense matri-
ces/vectors [27, 35, 37, 64], SpTC results in substantial mem-
ory consumption easily, which can be beyond typical DRAM
capacity (up to a few hundreds of GB) on a single machine.
However, expanding DRAM capacity is not cost-effective,
while adding cheap but much slower SSD causes significant
performance drop. This memory capacity problem is becom-
ing more serious in those HPC applications with increasing
dimension size in tensors [4, 10, 15, 18, 45, 53, 66].

To address the first two challenges, we propose Sparta
(Algorithm 2) with performance optimizations conducted
in five stages: input processing, index search, accumulation,
writeback, and output sorting. In particular, we employ dy-
namic arrays to accurately allocate memory space for the
accumulator and output tensor to avoid the challenge of
unknown output. For multi-threading environment, we in-
troduce a thread-private, dynamic object to store the output
tensor from each thread for better parallelization. To address
the challenge of irregular memory accesses, we perform per-
mutation and sorting on input sparse tensors before compu-
tation, thus significantly improve temporary locality of non-
zeros in the first input tensor and spatial locality of non-zeros
in the second input tensor. Furthermore, we adopt hash table-
based approaches based on a large-number representation
for the second tensor and accumulator to significantly speed
up the process of multi-dimensional search in SpTC. With
the above optimizations, Sparta substantially outperforms
the traditional SpTC algorithm extended from SpGEMM. By

319

Jiawen Liu, Jie Ren, Roberto Gioiosa, Dong Li, and Jiajia Li

1 |nput Processing Computation 5 Output Sorting

F _¢C C F i
(1 Ja)(ir J2) Vel (i J2)(s Jo) val i

|
i
4.0 i F val -~
50 'E (s Ja) 7 4
Y: — i 1st SPA: ! F _F.
— o 1 220 R R [A IR
- = 05 60 0 0 oI 220
/N
E e F‘?c f‘—liib PPN YirZ 0 O [01[51 [610
(i i2)(is iq) val (i)G i) VAl EERET] 0 1 [013111210
o R A
X: 20muHl 0 o B mzomf)
3.0 i: 0 1 M w30 ;i "
| -
e §
@ Index Search T 2 Y
© Accumulation /:"? o ﬁ-lo ED Index
- ey alue _ _ ey alue i
@ Writeback 1\ 1N s i}{LN (s o) val) e‘l(LN Gisje}t {val) ED"a'“e (val)
Ty STeRVHA O o@D o e
.SPA ImmmTmmm---—=—oeo—o-| 1st HtA: = 1O hash tabl,
- —p SpTC-SPA] H ash table
) (@) — o@&E@® !
Build hash table G ! Value in
PermutelSort [@) 4 HtA: @) ;C’ hash table

Figure 1. Workflow of the traditional SpTC-SPA and Sparta
on%=Xx{4Y.
evaluating real data from quantum chemistry and physics,
our element-wise Sparta beats their block-sparse algorithms
by 7.1X on average.

To address the third challenge, we explore the emerging
persistent memory-based heterogeneous memory (HM). In
particular, recent Intel Optane DC Persistent Memory Mod-
ule (PMM) provides bandwidth and latency only slightly
inferior to that of DRAM but with only half of the price.
PMM often pairs with a small DRAM to build HM, where
frequently accessed data objects are placed in DRAM and
the rest reside in PMM with large memory capacity of sev-
eral TBs. It is performance-critical to decide the placement
of data objects of SpTC (input and output tensors and in-
termediate results) on PMM-based HM, to make the best
use of DRAM’s high bandwidth and low latency without
causing frequent data movement between PMM and DRAM.
We first characterize memory read/write patterns associ-
ated with those data objects in SpTC, and reveal the perfor-
mance sensitivity of SpTC to the placement of those data
objects on PMM and DRAM. Sparta then prioritizes the
data placement between DRAM and PMM statically based
on our knowledge of the SpTC algorithm and characteri-
zation of data objects for best performance. Sparta effec-
tively avoids unnecessary data movement suffered in the
traditional application-agnostic solutions (such as hardware-
managed DRAM caching [55, 70, 80] or software-based page
hotness tracking [1, 13, 24, 25, 72, 74, 76, 81]).

Our main contributions are summarized as follows:

e We introduce the first, high-performance SpTC sys-
tem for arbitrary-order element-wise sparse tensor
contraction, named Sparta. Its implementation is open-
sourced !. (Section 3).

e We explore the emerging PMM-based HM to address
memory capacity limitation suffered in the traditional
tensor computations (Section 4).

Lhttps://github.com/pnnl/HiParTl/tree/sparta

https://github.com/pnnl/HiParTI/tree/sparta

Sparta: High-Performance, Element-Wise Sparse Tensor Contraction on Heterogeneous Memory

Table 1. List of symbols and notation.

Symbols | Description
X,Y,% | Sparse tensors
=X Xg;n}} Y | Tensor contraction between two tensors
Nx | Tensor order of X
I,J,K,L, I, | Tensor mode sizes
nnzx | #Non-zeros of the input tensor X
Nr | #Mode-FX sub-tensors of X
nnzp | The #Non-zeros of sub-tensors of X
ptrr | Pointers for mode-FX sub-tensor locations of X
CX | A set of contract modes in X, {n} in X&H}} contraction
FX | A set of free modes in X, [FX| + |CX| = Nx
Cffz Contract mode indices of a non-zero element in X
F,)fz Free mode indices of a non-zero element in X
val* | A set of non-zero values in X
val,)fz Value of a non-zero element in X

e Evaluating with 15 datasets, Sparta brings 28 — 576X
speedup over the traditional SpTC with SPA. With
our proposed algorithm- and memory heterogeneity-
aware data management, Sparta brings extra perfor-
mance improvement on HM built with DRAM and
PMM over a state-of-the-art software-based data man-
agement solution, a hardware-based data management
solution, and PMM-only by 30.7% (up to 98.5%), 10.7%
(up to 28.3%) and 17% (up to 65.1%) respectively (Sec-
tion 5).

2 Background
2.1 Sparse Tensors

A tensor can be regarded as a multidimensional array. Each
of its dimensions is called a mode, and the number of dimen-
sions or modes is its order. For example, a matrix of order 2
means it has two modes (rows and columns). We represent
tensors with calligraphic capital letters, e.g., X € RPVXKXL
(a tensor with four modes), and x; jx; is its (i, j, k, [)-element.
Table 1 summarizes notation and symbols for tensors.

Sparse data, in which most of its elements are zeros, is
common in various applications. Compressed representa-
tions of the sparse tensor have been proposed to save its
storage space. In this work, we employ the most common
representation, coordinate (COO) format, which is used in
Tensor Toolbox [7] and TensorLab [68] (Refer to Section 3.2
for more reasons). A non-zero element is stored as a tuple
for its indices, e.g., (i, j, k, I) for a fourth-order tensor, in a
two-level pointer array inds, along with its non-zero value
in a one-dimensional array val.

2.2 Sparse Tensor Contraction

Tensor contraction, a.k.a. tensor-times-tensor or mode-
({n}, {m}) product [10], is an extension of matrix multipli-
cation, denoted by
_ {m}
Z=Xx0 Y, (1)

where {n} and {m} are tensor modes to do contraction.

320

PPoPP °21, 2/27 - 3/3, 2021, Republic of Korea
Example:Z =X Xi;ﬂ Y. This contraction operates on I3
and Iy inX and J; and J, inY (I; = J;) and (I, = J,). All of the
four modes are contract modes (annotated with Cx = {3, 4}
and Cy = {1, 2}), and the other modes are free modes. This
example’s operation is formally defined as:

L) L(R)

Xiyipisis X jijojsja-
i3(j1)=114(j2)=1

Ziyigjsju = (2)

The number of modes of the output %, Nz = |Fx|+|Fy| =
(Nx —|Cx|) + (Ny —|Cy]). This is our walk-through example
in the following discussion.

2.3 Intel Optane DC Persistent Memory Module

The recent release of the Intel PMM marks the first mass pro-
duction of byte-addressable NVM. PMM can be configured
in Memory or AppDirect mode. In Memory mode, DRAM
becomes a hardware-managed direct-mapped write-back
cache to PMM and is transparent to applications. In Ap-
pDirect mode, the programmer can explicitly control the
placement of data objects on PMM and DRAM. Sparta works
on AppDirect mode and performs better than Memory mode.

PMM brings up to 6TB memory capacity on a single ma-
chine with higher latency and lower bandwidth than DRAM.
The read latency of PMM is 174 ns and 304 ns for sequential
and random reads respectively, while the counterpart read
latency of DRAM is 79 ns and 87 ns. The write latency of
PMM is 104 ns and 127 ns for sequential and random writes
respectively, while 86 ns and 87 ns for DRAM. In our evalua-
tion platform (Section 5.1), the PMM bandwidth is 39 GB/s
and 13 GB/s for read and write respectively, while 104 GB/s
and 80 GB/s for DRAM.

3 Sparse Tensor Contraction Algorithm

This section introduces our SpTC algorithms, SpTC-SPA and
Sparta, to address the challenges of unknown output and
irregular memory accesses along with multi-dimensional
index search.

3.1 Overview

Figure 1 depicts the workflow of our SpTC algorithm. Our al-
gorithm has five stages: @ input processing, @ index search,
© accumulation, @ writeback, and @ output sorting, where
@ and @ are called input/output processing collectively, and
D, © and @ are computation collectively. We describe the
input/output processing stages in this section and the compu-
tation stages are illustrated in Sections 3.2 to 3.5.

Input processing @. Figure 1 uses two tiny sparse ten-
sors X and Y as input examples. When the modes of X or
Y are not in the "correct mode order", permutation and sort-
ing are needed. "Correct mode order” means: The contract
modes Cx ((i3, i4) in Figure 1) are the rightmost modes of
X and Cy ((ji, j2)) are the leftmost modes of Y. X is first
permuted to the “correct mode order” by exchanging mode

PPoPP 21, 2/27 - 3/3, 2021, Republic of Korea

Algorithm 1: SpTC-SPA: Sparse tensor contraction
of Example 2: % = X xgii Y, extended from
SpGEMM [20] with sparse accumulator (SPA)
Input: Input tensors X € RAXEXBXl and Y e RAXEX,
contract modes Cx = {3,4}, Cy = {1,2}
Output: The output tensor Z € RAXEXBX]

1 Permute and sort X, Y if not yet;
2 for X(iy, i2,::) in X do

3 Initiate a sparse accumulator SPA

4 for Non-zero x(iy, io, i3, is) in X (iy, iz, :) do

5 for Non-zero y(is, i4, j3, ja) in Y (i3, is, :,:) do
6 0 = x(i1, iz, i3, ia) X y(i3, i, j3, ja)

7 if SPA(js3, jg) exists then

‘ Accumulate SPA(j3, jy)+ =0

9 else
L Append v to SPA

11

| Write SPA back to Z(iy, i,)

12 Permute and sort Z as needed
13 return %

indices, which is cheap for COO format 2 Then according
to the new mode order, all the non-zero elements of X are
sorted using a quick sort algorithm with the complexity of
O(nnzxlog(nnzy) where nnzy is the number of non-zero
elements in X. In Figure 1, X only needs sorting (but not
permutation) due to its correct mode order; Permutation
and sorting are both needed for Y. Permutation and sort-
ing are necessary to improve data locality for an efficient
implementation of our SpTC algorithms.

Output sorting @. The output Z is not sorted in the
computation stages (see Sections 3.2 and 3.5 for details). De-
pending on the needs, sorting could be acted on % after the
computation stages, using the quick sort algorithm. This
could avoid potential sorting when using 2 as an input for
any subsequent SpTC computations. In our algorithms and
evaluation, sorting on % is considered by default to get a
thorough understanding of all stages.

3.2 Sparse Accumulator for High-order Sparse
Tensors

Sparse accumulator (SPA) is a popular approach in sparse
matrix-sparse matrix multiplication (SpGEMM) [19, 20], which
uses a sparse representation to hold the indices and non-zero
values of the current active matrix row to do accumulation
and is conceptually parallel. We extend SPA to SpTC (named
SpTC-SPA) for an arbitrary-order sparse tensor and any con-
traction operation. Figure 1 uses the fourth-order tensor con-
traction example in Section 2.2 to illustrate the five stages.
Index search @. Take x(0, 1,0, 0) in Figure 1 to illustrate.
The indices (0, 0) in mode-3 and 4 are used to search in Y for

ZFor example, to exchange modes i; and iz, we only need to switch the
pointers of their indices.

321

Jiawen Liu, Jie Ren, Roberto Gioiosa, Dong Li, and Jiajia Li

sub-tensor Y(0, 0, ;, :) to multiply with. A linear search iter-
ates non-zeros of Y until Y(0, 0, :, :) is found. As shown in Al-
gorithm 1, we loop all non-zeros of X by units of sub-tensors
(see Line 2). For each non-zero x(iy, iy, i3, i4), we use the in-
dices (i3, i4) to do linear search in Y to locate the sub-tensor
Y(is, i4, ;, :) to perform multiplication. The linear search has
the complexity of O(nnzy) because of searching all non-
zeros of Y in the worst case. To solve the multi-dimensional
index search challenge, we construct Y as a hash table dis-
cussed in Section 3.3.

We explain the reason of using COO format in our algo-
rithms by comparing with the popular compressed storage
row (CSR) [69] and its generalized, compressed sparse fiber
(CSF) [65] format as follows. For example, we can directly lo-
cate row indices in a CSR-represented sparse matrix, but not
column indices. Similarly, except the first mode, all the other
contract modes have to do linear search as well in a CSF-
represented sparse tensor (Refer to [64, 65] for more details).
Thus, index search on CSF-represented Y is not significantly
better than its COO representation.

Accumaulation @. In Figure 1, if 4(0,0, ;, :) is found,

x(0, 1,0,0) times every non-zero in Y(0,0, ,:), and accumu-
lates the result to SPA. For example, z(0, 1,0, 3) accumulates
the product of x(0, 1,0, 0) and y(0, 0, 0, 3). If SPA(0, 3) already
exists, this product is added; Otherwise, the product along
with its indices (0, 3) are appended to SPA.

In Algorithm 1, since every X(iy, iz,::) independently
accumulates to Z(iy, is, ;,:), SPA is allocated for each sub-
tensor of X. For each non-zero x(iy, iy, i3, i4), if Y (i3, is,:,:)
is found by the index search, all non-zeros in Y(is, is, :, :)
are stored contiguously and have good spatial data-locality
due to the permutation and sorting of Y in the input pro-
cessing stage. Since every non-zero in Y(is, iy, ;, :) computes
with x(iy, iy, i3, is), X gets good temporary data-locality. If
SPA(js, ja) already exists, the product v is added; Otherwise,
v along with its indices (s, js) are dynamically appended to
SPA. We also employ the linear search to locate SPA(s, j4)
with the complexity of O(|SPA|) (|[SPA] is the size of SPA).
Once the traverse of all non-zeros in X(iy, iy, :,:) is done,
SPA contains the final results of Z(iy, is, ;, :). The same multi-
dimensional search challenge occurs in the index search
stage, which is optimized with hash tables discussed in Sec-
tion 3.4.

Writeback @. Figure 1 shows the write-back stage which
copies SPA to Z(0, 1,:,:). In Section 3.5, we introduce tem-
porary data for better parallelization and memory locality
for the write-back stage.

To solve the challenge of the unknown output size, tradi-
tionally two approaches, a two-phase method with symbolic
and numeric phases [47] and a loose upper-bound size pre-
diction [2, 11], have been introduced. The symbolic phase
counts the number of non-zero elements of the output, which
is expensive. Then, a precise memory space is allocated to
perform the computation (the numeric phase). The approach

Sparta: High-Performance, Element-Wise Sparse Tensor Contraction on Heterogeneous Memory

Mindex Search [@Accumulation O erte Back ® Input/output Processing

I7 I'”II ”II I// I

Uber Vast

100% 7
80% %

60%
40%

%

Chicago NIPS |Chicago NIPS

20%

0%

Uracil |Chicago NIPS Uber Vast Uracil

1-Mode 2-Mode 3-Mode

Figure 2. Percentage of execution time breakdown of SpTC-
SPA (Algorithm 1).

of loose upper-bound size prediction allocates large enough
memory based on probabilistic or upper bound prediction,
which is more than sufficient for the output. In SpTC-SPA,
we use dynamic vectors for the SPA and output tensor, like
the progressive method [19] but more precise. The total time
complexity of SpTC-SPA is

Tspa = O(nnzxlog(nnzx) + nnzylog(nnzy))

+ O0(2 X nnzx X nnzy + nnzz) + O(nnzzlog(nnzz))

where the three terms correspond to the time complexity
of input processing, computation with index search, accu-
mulation, writeback, and output sorting. Figure 2 illustrates
the execution time breakdown of the stages of SpTC-SPA
(Refer to x-axis meanings in Section 5 and Table 3). This
evaluation matches theoretical analysis in Eq. (3): The SpTC
time is dominated by the computation stages. Stages @ and
@, shown together as input/output processing, take less than
1% of execution time of the algorithm. Compared to the two-
phase method, our SpTC-SPA approach significantly reduces
the input processing time; Compared to the prediction meth-
ods, SpTC-SPA can significantly reduce SPA and the output
space. Thus, our SpTC-SPA algorithm is a good baseline for
SpTCs, by following the spirit of SpGEMM SPA approach
with dynamic, precise memory allocation, and good data
locality, to support arbitrary-order sparse tensors and any
tensor contraction operation. Figure 2 for all of our test cases
and Eq. 3 show that the stages @ and @ are the performance
bottleneck. We focus on these two stages for performance
optimization in Sections 3.2 to 3.5.

3.3 Hash Table-Represented Sparse Tensor

To address the problems of the multi-dimensional index
search and inherit good data locality from SpTC-SPA, we
propose to represent the input tensor Y with hash table.
Figure 1 depicts the process of converting Y represented
in the COO format into a hash table HtY with a large-number
representation and its usage in the example SpTC. The index
search for Y(0,0, :,:) uses X’s contract indices (0, 0), which
is taken as the keys in HtY naturally. Since we need to keep
the information of free indices of Y, (0,3), and non-zero
values 4.0 for the next stage @, the tuple ((0, 3), 4.0) is put as
the values in HtY. Since the keys in HtY are index tuples, as
the tensor order grows, it is difficult and time-consuming to
do key matching on multi-dimensional tuples. We introduce

322

PPoPP °21, 2/27 - 3/3, 2021, Republic of Korea

Algorithm 2: Sparta: Sparta sparse tensor contrac-
tion for arbitrary-order data.

Input: Input tensors X € RI**INx and Y e R/*>/ny |

contract modes Cyx, Cy
Output: The output tensor 2

1 Permute and sort X if needed;

2 Obtain NF, |FX|, sub-tensors of X, and its ptrr;

3 ConvertY to HtY with LN(CY) as keys and

(LN(FY),valY) as values;

4 // Compute: Z =X Xg; Y

5 for fin1,...,Nr do

6 Initiate thread-local HtA with FY as keys

7 fornzinptrF[f] .., ptre[f+1] do
8 if LN(C) is not found in HtY then
9 L continue

for (LN(FY,),valY,) in (LN(FY),VY) of HtY do
v =vall,* ualzz
if LN(FY,) is found in HtA then

‘ Accumulate valllT+ =

10
11
12
13
else

| Insert (LN(FY,),0) to HtA

14

15

Form (F,5, FY,) as coordinates and valfll

value and append to 2,041

16 as non-zero

17 Gather thread-local Z;,.,; independently to Z
18 Permute and sort % if needed
19 return 2

a large-number representation, noted as the LN function in
Figure 1, which converts a sparse index tuple to a large index
in a dense pattern. For example, (0, 3) tuple is converted
to 3 = 0 X J; + 3. Having unique identifiers is extremely
important for a fast hash table search. The large-number
representation obtains unique numbers for every tuple of
keys in HtY. As a result, the index search becomes faster on
HtY by doing integer comparison for key comparison. To
create HtY from Y in the COO format, we use the separate
chaining hash table [71] with fix-sized buckets to distribute
the keys. Compared to the COO format, the contract indices
have no duplication due to the unique key feature of the hash
table, which reduces the index search space. To maintain
the good spatial data locality from Algorithm 1, we adopt
dynamic arrays to store the non-zeros having the same key
inYy.

The creation and usage of HtY for an arbitrary-order SpTC
with random contract modes Cx and Cy are illustrated in Al-
gorithm 2. The three for-loops in Algorithm 2 are in the same
order as those in Algorithm 1. The first and second loops enu-
merate sub-tensors in X and non-zeros in the sub-tensor us-
ing ptrr to indicate locations. The indices of contract modes
Cy, and the tuple of free modes and non-zero value (F Y val")
are taken as the keys and values in HtY respectively in Line 3.

PPoPP 21, 2/27 - 3/3, 2021, Republic of Korea

For each non-zero element nz, we use LN (CnXZ), the large-
number representation of the contract indices Cx in X to
search in HtY (Line 8). Compared with the linear search in
SpTC-SPA with the complexity of O(nnzy), the time complex-
ity of hash table search on HtY is significantly reduced to
O(1) [71]. We also optimize input processing. The COO-to-
hashtable conversion is faster than permutation and sorting
of Y (i.e., O(nnzy) versus O(nnzylog(nnzy))).

Our proposed hash table-represented sparse tensor with
the large-number compressed keys significantly improves
the SpTC performance by efficiently addressing the multi-
dimensional index search issue and maintaining temporary
and spatial data locality. To reduce the frequency of index
search, we always treat the larger input tensor as Y in our
SpTC algorithms.

3.4 Hash Table-based Sparse Accumulator

The hash table [3, 47-49], hashmap [12], and heap [6] are
popular data structures to represent the accumulator in state-
of-the-art SpPGEMM research, where the hash table performs
best according to prior evaluations [47]. As mentioned in
Section 3.2 and Figure 2, the stage @ in SpTC-SPA could dom-
inate the performance of an SpTC. To efficiently accumulate
the intermediate results, we propose a hash table-based accu-
mulator HtA, illustrated in Figure 1. We take the free indices
of Y, (0,3), as the key and refer to the intermediate result as
the values in the hash table. The separate chaining hash table
and the large-number representation LN are also adopted
here for fast key matching and hash search.

We observe that the key in HtA ((0, 3) in Figure 1) is the
same as the free indices in Y in the value tuples of HtY.
To avoid the key conversion for HtA, we convert the free
indices of Y to the large-number representation in the stage
@ (Line 3 in Algorithm 2). We directly retrieve the keys
from the values of HtY, avoiding indices-key conversion
between HtY and HtA during computation. As depicted in
Figure 1 and Algorithm 2, the accumulation performs similar
to SpTC-SPA but on the hash table HtA instead.

By far, we form the Sparta SpTC algorithm (Algorithm 2).
Compared to SpTC-SPA, we replace Y and SPA with the two
hash tables HtY and HtA based on large-number representa-
tion respectively. Sparta solves the multi-dimensional index
search challenge (Section 1), gets faster processing for input
Y, extracts unnecessary index computation/conversion out
of the computation, while maintains the good data locality
shown in SpTC-SPA, to reduce the SpTC execution time. The
total time complexity of Sparta:

Tsparta = O(nnzxlog(nnzx) + nnzy)
+ 0(2 X nnzx X NNZpgyy + nnzz) + O(nnzzlog(nnzz))

where nnzrq., is the average size of all sub-tensors (e.g.
Y (1, Jo» 5, 1) in Algorithm 1). The three terms in Eq. (4) corre-
spond to the time complexity of the stages @, computation

323

Jiawen Liu, Jie Ren, Roberto Gioiosa, Dong Li, and Jiajia Li

with @, @ and @, and @. Eq. (4) shows that depending on
different sparse tensors, the SpTC time could be dominated
by different stages (more details are found in Section 5).

3.5 Parallelization

We parallelize all the five stages of SpTC-SPA and Sparta
algorithms. For the stage @, since permutation takes negligi-
ble time, we only parallelize the quick sort algorithm using
OpenMP tasks, which is also used in the stage @. Sparta has
the COO-to-hashtable representation for Y in the stage @.
We parallelize sub-tensors of Y and use locks on the buckets
of HtY to ensure correct insertion and updates. Since the
separate chaining hash table almost evenly distributes search
requests between threads, using locks for multi-threading
still gets an acceptable performance (7.8X speedup on aver-
age using 12 threads over a sequential version in our experi-
ments).

In the computation stages, we parallelize the outermost
loop for sub-tensors of X (Line 2 in Algorithm 1 and Line 5 in
Algorithm 2). Thus, the sparse accumulator SPA in SpTC-SPA
and hash table accumulator HtA in Sparta are both thread-
private and each thread can do accumulation independently.
Because of the dynamic output structure, directly writing the
intermediate, thread-local SPA or HtA to % is not feasible.
We introduce thread-local dynamic Zj,c,; in Algorithm 2 to
write the intermediate results. In particular, after a thread
completes its execution, we have the size of Zj,.,; which
can be used to allocate the space for Z. Then all threads
write their Zj,. to 2 in a parallel pattern. The introduc-
tion of Zjycq1 helps to solve the unknown output challenge
(Section 1) in multi-threading parallel environment and im-
proves the performance of the stage @ with the cost of an
affordable thread-local storage Zjocq;-

4 Data Placement on PMM-based
Heterogeneous Memory Systems

We discuss our approaches to leveraging HM to address the
memory capacity bottleneck of SpTC.

4.1 Characterization Study

To motivate our solution of data placement on heterogeneous
memory, we characterize memory accesses to major data ob-
jects in Sparta (Algorithm 2). We summarize memory access
patterns (sequential/random and read/write) in Table 2. We
consider six major data objects in the five stages (i.e., input
processing, computation (combining index search, accumu-
lation, writeback) and output sorting). The six major data
objects are the two input tensors (X and Y), the hash table-
represented second input tensor (HtY), thread-local hash
table-based accumulator (HtA), the thread-local temporary
data (Zocqr), and the output tensor ().

We study the performance impact of the placement of the
six data objects with the tensor Nell-2 (2-Mode contraction)

Sparta: High-Performance, Element-Wise Sparse Tensor Contraction on Heterogeneous Memory

Table 2. Memory access patterns associated with data ob-
jects in five stages ("Ran" = Random; "Seq" = Sequential;
"RW" = Read-Write; "RO" = Read-Only; "WO" = Write-Only).

Stages ‘ Data Objects

X Y HtY HtA Zolocal Z
Input Processing @ | Ran, RW Seq, RO | Ran, RW - - -
Index Search @ Seq, RO - Ran, RO - - -
Accumulation @ - - - Ran, RW | Seq, WO -
Writeback @ - - - - Seq, RO | Seq, WO
Output Sorting @ - - - Ran, RW

in Figure 3, by evaluating Sparta on a server with an HM with
PMM and DDR4 (described in Section 5.1). We use the execu-
tion time to reflect the underneath PMM and DRAM memory
characteristics and their impact on SpTC performance. Our
baseline is the Sparta execution time when placing all data
in DRAM, which achieves the best performance. We perform
six tests: each one by placing only one data object in PMM,
while leaving the others in DRAM. We have three interesting
observations to guide our data placement in HM.

Observation 1: Performance difference between read
and write matters a lot to performance of Sparta. For
example, the memory access pattern associated with Y in the
input processing stage is sequential read-only, and placing
it on PMM causes ignorable performance loss; In contrast,
the memory access pattern associated with Zj,.,; in the
accumulation stage is sequential write-only, and placing it
on PMM causes 12.9% performance loss. The bandwidth
difference between read and write on PMM is about 3X,
which leads to the difference in Sparta’s performance.

Observation 2: Sequential and random accesses have
large performance difference. For example, the memory
access pattern associated with Y in the input processing
stage is sequential read-only, and placing it on PMM causes
ignorable performance loss; In contrast, the memory access
pattern associated with HtY in the index search stage is ran-
dom read-only, and placing it on PMM causes 30.8% perfor-
mance loss. The performance difference between sequential
and random accesses on PMM is due to the unique architec-
ture of PMM (e.g., the combining buffer in devices [73, 79]);
Sequential accesses also makes hardware prefetching more
effective for improving data locality.

Observation 3: The performance of Sparta is not sen-
sitive to the placement of some data objects on PMM. For
example, placing X and Y on PMM, Sparta has ignorable
performance loss, because of the memory access patterns
discussed in the above two observations.

The first two observations are unique to PMM (not seen
in DRAM). In DRAM, both read and write, and sequential
and random accesses have small performance difference. We
get the same observations for other 14 datasets.

4.2 Data Placement Strategy

Driven by the characterization results, we use the following
data placement strategy. X and Y are always on PMM, be-
cause of the observation 3. For the other four data objects,

324

PPoPP °21, 2/27 - 3/3, 2021, Republic of Korea

210 [Input Pr ing @Index Search WA O Writeback O Output Sortin,
=z 179.1 168.0 161.6
£ - 142.7
E g | 1368 1374 1369] []
< (I O I
2
§ 70
x 7 v,
S 7% % %

AllinDRAM X Y HtY HtA Z_local z

Figure 3. Performance after placing a data object in PMM
while leaving others in DRAM. The x-axis shows the data
object placed in PMM. “All in DRAM” means all data objects
are placed in DRAM.

we decide their placement in DRAM, following the priority
of HtY > HtA > Zjocq > %, according to their importance
to the performance summarized from the characterization
results. For each of the four data objects, we make the best
efforts to place them into DRAM. This means that given a
data object, if there is remaining DRAM space after exclud-
ing the memory consumed by the data objects with higher
priority, that object is placed into DRAM as much as possible;
If there is no remaining DRAM space, that object is placed
into PMM.

To implement the above data placement strategy, we must
estimate the memory consumption of the four data objects,
to decide whether they should be placed into DRAM or not.
We discuss it as follows.

The placement of HtY. We estimate the memory con-
sumption of HtY using Eq. 5 based on tensor information
and knowledge on data structures used in HtY. In Eq. 5,
Sizey;y is the memory consumption of HtY; Size), Size;qx
and Size,, are the size of the entry pointer for a bucket in
HtY, the size of an index, and the size of a value, respec-
tively; #Bucketsp;y is the number of buckets in HtY; nnzy
is the number of non-zero elements in Y; Ny is the number
of modes of Y.

Sizegy = Sizeep - #Bucketsyy + nnzy - (Sizejgy - Ny

©)

+ Sizeyq) + Sizeep)

Eq. 5 includes the memory consumption for metadata
(i.e., the pointers pointing to each bucket in the hash table,
modeled as Size,, - #Bucketsy;y); Eq. 5 also includes the
memory consumption for storing all non-zero elements of
Y in HtY, each of which consumes memory for an index, a
value, and a pointer pointing to another element, modeled
as Sizejgy - Ny + Sizeyq + Sizeep.

To use Eq. 5, we must know nnzy and #Bucketsy,y. nnzy
as a tensor feature is typically known; #Bucketsg;y is defined
by the user, and hence is known.

The placement of HtA. We use Eq. 6 to estimate the
memory consumption of HtA. While Eq. 5 estimates the
exact memory consumption, Eq. 6 gives an upper bound on
the memory consumption (Sizeg4).

PPoPP 21, 2/27 - 3/3, 2021, Republic of Korea

1000

133 179

83

100

Speedup

10

Chicago NIPS

Chicago
1-Mode

Jiawen Liu, Jie Ren, Roberto Gioiosa, Dong Li, and Jiajia Li

HHtY+HtA mCOOY +HtA COOY +SPA

576
193

1.07 1 1.02 1

Chicago NIPS Uber Vast Uracil

3-Mode

Figure 4. Speedups of HtY+HtA (i.e., Sparta) and COOY+HtA over COOY+SPA (i.e., SpTC-SPA) for SpTCs on Chicago, NIPS,

Uber, Vast and Uracil with 1-mode, 2-mode and 3-mode.

Y

Fmax * (SiZ€idx

(6)

Sizepra = Sizeep - #Bucketsgia + nnzy - nnz

Fmax

|FY| + Sizeygy + Sizeep)

In Eq. 6, |F Y| is the number of free modes of Y; nnz;(max is
50);
Fmayx TEPTEsents the maximum size of all non-zero sub-
tensors Y(CY,:,...,:). The product of nnszmax and nnz;max
gives an upper bound on the number of non-zero elements
stored in HtA.

Eq. 6 gives an upper bound, because we do not know
the exact number of non-zero elements in Y that have the
same contract indices as those in X; We use the maximum
number to give an upper bound and ensure there is enough
space allocated in DRAM for HtA. Using the upper bound
does not cause significant waste of DRAM space, because
HtA per thread is usually 10-50 MB (even with the largest
dataset using 768GB memory in our evaluation). Given tens
of threads in a machine, the upper bound takes only a few
GB of DRAM, which is typically a small portion of DRAM
space in an HPC server.

To use Eq. 6, we must know nnz

the maximum size of all non-zero sub-tensors ?C(FX L.
nnz¥

X
Fma

and nnzj, _are known after the input processing stage, and
the dynamic allocation of HtA can happen after the input
processing stage but before the index search stage where
HtA is accessed. Hence, Eq. 6 can be used to effectively direct
data placement. In addition, DRAM is evenly partitioned be-
tween threads for placing HtA per thread, in order to avoid
load imbalance.

The placement of Zj,.4;. The memory consumption of
Z1ocql can be estimated after HtA is filled (Line 16 in Algo-
rithm 2) and before memory allocation for Z,.,; happens.
The memory consumption of Zj,c4 is equal to the size of
HtA plus the size of Fffz - nnzg:a, where F,)fz refers to free
indices of a non-zero element in X and nnzy; 4 is the number
of non-zero elements in HtA. In addition, DRAM is evenly
partitioned between threads for placing Z;,.4 per thread, in
order to avoid load imbalance.

The placement of Z. The size of % is the summation of
the size of Zjycq in each thread. The size of Z is estimated
in Line 17 in Algorithm 2, before memory allocation for %
happens.

andnnz¥ nnz¥
X Fmax Fmax

325

Static placement vs. dynamic migration. The data place-
ment strategy in Sparta is static, which means a data object,
once placed in DRAM or PMM, is not migrated to PMM or
DRAM in the middle of execution. The traditional solutions
are application-agnostic and dynamic. They track page (or
data) access frequency [1, 13, 24, 25, 56, 57, 72, 74, 76, 81] or
manage DRAM as a hardware cache for PMM [42, 55, 70, 80]
to decide the placement of data objects on DRAM and PMM.
The traditional solutions, once determining frequently ac-
cessed data (hot data), dynamically migrate hot or cold data
between DRAM and PMM for high performance. However,
those dynamic migration solutions cannot work well in our
case because they can cause unnecessary data movement.
For example, the performance of Sparta is not sensitive to
the placement of X and Y on PMM and DRAM, because of
their sequential read patterns. The dynamic solutions can
unnecessarily migrate them to DRAM for high performance.
For another example, HtY has a random access pattern. Any
dynamic migration solution cannot effectively capture its
pattern and hence causes unnecessary data migration. Our
evaluation results in Section 5.5 show that two dynamic mi-
gration solutions (i.e., the hardware-based Memory mode
and software-based IAL [77]) perform worse than Sparta by
10.7% (up to 28.3%) and 30.7% (up to 98.5%) respectively.

Other datasets. We evaluate 15 datasets in total, and 11
of them show the same priority for data placement (i.e., HtY
> HtA > Zjcq1 > %). However, there are four cases showing
different priorities (i.e., HtA > HtY > Zj,cq; and Z). For those
uncommon cases, we can use the same method to determine
data placement; The above methods to determine the sizes
of the data objects are still valid.

Table 3. Characteristics of sparse tensors in the evaluation.

Tensors Order Dimensions #Non-zeros Density
Nell-2 3 12K x 9K x 28K 76M 2.4%107°
NIPS 4 2K x 3K x 14K x 17K 3M 1.8 x 107
Uber 4 183 x 24 X 1K x 1K 3M 2x107*
Chicago 4 6K X 24 X 77 X 32 5M 1x1072
Uracil 4 90 X 90 X 174 x 174 10M 4.2 % 1072
Flickr 4 320K X 28M x 2M x 731 113M 1.1x 1074
Delicious 4 533K x 17M x 2M x 1K 140M 43x 1070
Vast 5 165K x 11K x 2 X 100 X 89 26M 8x 1077

Sparta: High-Performance, Element-Wise Sparse Tensor Contraction on Heterogeneous Memory

5 Evaluation
5.1 Evaluation Setup

Platforms. The experiments in Sections 5.2, 5.3 and 5.4 are
run on a Linux server consisting of 96 GB DDR4 memory and
Intel Xeon Gold 6126 CPU including 12 physical cores at 2.6
GHz frequency on a socket. The experiments in Section 5.5
are run on an Intel Optane Linux server containing Intel Xeon
Cascade-Lake CPU including 24 physical cores at 2.3 GHz
frequency. The socket has 6 X 16 GB of DRAM and 6 X 128 GB
Intel Optane DIMMs. All implementations (Sparta and other
approaches) are compiled by gcc-7.5 and OpenMP 4.5 with
-O3 optimization option. All experiments were conducted on
a single socket with one thread per physical core. Similar to
recent work ([25], [72], [75]), we use a one-socket evaluation
to highlight the data movement across DRAM and Optane.
Each workload is run 10 times and we report the average
execution time.

Datasets and expression. We use sparse tensors summa-
rized in Table 3 and ordered by modes and non-zero density.
Those tensors are derived from real-world applications. The
tensors are included in FROSTT [62]. Tensor Uracil [4, 14]
is from a real-world CCSD model in quantum chemistry,
formed by cutting off values smaller than 1 x 1078 verified
by chemists.

For some SpTC, the memory requirement is larger than
the system memory capacity. We do not evaluate the per-
formance of those SpTC. For a tensor with different expres-
sions, we use a “*” to distinguish. For example, Chicago and
Chicago™ are the same tensors with different expressions.

5.2 Overall Performance

Figure 4 shows the performance of using HtY+HtA (i.e.,
Sparta), COOY+HtA and COOY+SPA (i.e., SpTC-SPA) on the
tensors Chicago, NIPS, Uber, Vast and Uracll with 1-mode,
2-mode and 3-mode SpTC respectively. In Figure 4, we ob-
serve that HtY+HtA significantly outperforms COOY+HtA
by 1.4 — 565X. The results show that HtY is more efficient
than COQY. Also, we found that COOY+HtA significantly
outperforms COOY+SPA by 1% — 42X. The results demon-
strate that HtA is more efficient than SPA.

We observe that the performance improvement of Sparta
over COOY-SPA on Uracil with 3-mode is larger than others.
This is because the execution time of the index search stage
dominates the total execution time (99.3%) and the total exe-
cution time of this case is larger (1072 seconds) than that of
others. Because of the time complexity difference between
HtY and COQY in the index search stage, the larger execu-
tion time SpTC spends, the larger performance improvement
Sparta can achieve. In Figure 2, the total execution time is
dominated by the index search and accumulation stages in
COOY-SPA (99.6%). Since the execution time of the index
search and accumulation is significantly reduced by Sparta,
the execution time of the index search and accumulation

326

PPoPP °21, 2/27 - 3/3, 2021, Republic of Korea

10.0
8.0
6.0

W Sparta

m ITensor
6.9 6.8 7.5

7.1
6.3

4.0

Speedup

2.0

0.0

SpTC1 SpTC2 SpTC3 SpTC4 SpTCS SpTC6 SPTC7 SPTC8 SpTCY SpTCLO

Figure 5. Speedups of Sparta over ITensor on Hubbard-2D
model using different SpTC expressions with different sparse
input tensors.

180 1461 12720 1671 12 | 600 555 12

N
&
S
-
S

600 10 | 500 10

-
]
S

480 400

360 300

Speedup

240 19 200 16

Execution Time (s)
"
8
o
8

w
s

120 72 100 52

o N & o ®
o N » o ®
o N & o ®

o

4
2 4 8 12 1
#of Threads

0

12 1 12

2 4 8
#ofThreads
3-Mode

2 4 8
#of Threads
2-Mode

1-Mode

Figure 6. Thread scalability of parallel Sparta on SpTCs on
NIPS with 1-mode, Vast with 2-mode and NIPS with 3-mode.

stages might not be the bottleneck of an SpTC. In our ex-
periments with Sparta, the time in the index search stage
accounts for 4.7%; the time of the accumulation stage is 61.6%;
the time of the writeback stage is 9.6%; the input processing
stage accounts for 3.3% and the output sorting stage is 20.8%.

5.3 Performance Comparison to ITensor

In this experiment, we compare the performance of Sparta
and ITensor. ITensor [18] is a state-of-the-art library for
multi-threading, block-sparse tensor contraction on a single
machine, which is the most related to Sparta among other
works. ITensor is configured with its best configurations
described in its repository [17]. SpTC expressions with dif-
ferent tensors (SpTC1 to SpTC10) are from a well-known
quantum physics model (Hubbard-2D) [16] in ITensor [17],
and those tensors are formed by cutting off 3 values smaller
than 1 x 107, More details of those tensors are shown in
Table 4 in Appendix. We choose ITensor as a representative
for comparison rather than others (such as libtensor [45],
TiledArray [53], CTF [66] and TACO [30]), because libten-
sor only supports sequential block-wise SpTC [45], while
TiledArray and CTF are distributed, and TACO does not sup-
port high-order SpTC yet. Figure 5 shows the performance
comparison between Sparta and ITensor. We observe that
Sparta significantly outperforms ITensor with 7.1X perfor-
mance improvement on average. We also demonstrate that
Sparta can be employed for applications featured with block-
wise SpTC.

5.4 Thread Scalability

Figure 6 shows the performance of parallel Sparta over the
sequential version. Sparta achieves 10.2X, 9.3x and 10.7x
speedup on NIPS with 1-mode, Vast with 2-mode, and NIPS

30ther truncating methods will be considered in the future.

PPoPP 21, 2/27 - 3/3, 2021, Republic of Korea

Jiawen Liu, Jie Ren, Roberto Gioiosa, Dong Li, and Jiajia Li

1.8
M Sparta MIAL Memory mode Optane-only DRAM:-only 1.65

1.6
[-% 1.48
=] 1.4 1.31
g 1.24 1.26 122
v 1.2 1.09 1.12

1.02 104 1.03 1.02 1.08 1.03 1.02
1.0
0.8
Chicago* NIPS* Vast* Flickr | Chicago* NIPS* Vast* Flickr Delicious Nell-2 | Chicago* NIPS* Vast* Flickr Delicious
1-Mode 2-Mode 3-Mode

Figure 7. Speedups of Sparta, IAL, Memory mode and Dram-only over Optane-only for SpTCs on Chicago™®, NIPS*, Vast”,
Flickr, Delicious and Nell-2 with 1-mode, 2-mode and 3-mode.

——Sparta-DRAM ———IALDRAM Memory Mode-DRAM

Optane-Only-DRAM

w
&

N ow
a8

"
&

Memory Bandwdith (GB/s)
b oe N
558

o«

e ARSI RINI 88BN R ABREREBNRNININIIRSBAIINIRRY
mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm

Only-PMM

J—
| =

Memory Bandwidth (GB/s)

B R NN W W
cws G3REH

"R ARS YIRS 888N RYIBREREB R RIRENRIZDLLATIINZRRE
mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm |

|
Figure 8. Memory bandwidth of Sparta, IAL, PMM Memory
mode and Optane-only on Vast with 1-mode SpTC.

800

Peak Memory Consumption (GB)

Figure 9. Peak memory consumption of SpTCs on Chicago®,
NIPS*, Vast*, Flickr, Delicious and Nell-2 with 1-mode, 2-
mode and 3-mode.

with 3-mode using 12 threads. Different stages have different
thread scalability. Evaluation with 15 datasets using Sparta
shows that the average speedup of parallel execution over
sequential execution is: 10.4 X in the index search stage; 10.9
X in the accumulation stage; 9.5 X in the writeback stage; 6.8
X in the input processing stage and 6.2 X in the output sorting
stage. The thread scalability in the stages of input processing
and output sorting is not as good as that of the computation
stages (i.e., index search, accumulation and writeback stages).
However, the SpTC is always dominated by the computation
stages. Thus, Sparta achieves high thread scalability overall.

5.5 Sparta on Heterogeneous Memory Systems

We study the performance of Sparta on HM, compared with
a state-of-the-art solution for HM management (i.e., IAL
(Improved Active List) [77]), the hardware-managed cache
approach (i,e, PMM Memory mode), Optane-only (i.e., the
AppDirect mode assigning all data objects to Optane) and

327

DRAM-only (i.e., assign all data objects to DRAM). IAL is
configured with its best configurations based on the IAL
repository [78]. Figure 9 shows the peak memory consump-
tion of SpTCs in the experiment.

As shown in Figure 7, Sparta outperforms IAL by 30.7%
on average (up to 98.5%). Also, Sparta achieves 10.7% (up to
28.3%) and 17% (up to 65.1%) performance improvement on
average than PMM Memory mode and Optane-only respec-
tively. Furthermore, Sparta is comparable to the DRAM-only
approach with only 6% performance difference. For some
SpTC (e.g., Chicago® with 3-mode), because the memory
bandwidth requirement is small, the performance difference
between Sparta and Optane-only is small. For example, with
the Chicago® with 3-mode, if we place all data objects to
DRAM (i.e., DRAM-only), the performance improvement is
only 6%, compared to Optane-only.

In Figure 8, we observe that the average PMM memory
bandwidth of IAL is larger than that of Sparta. This is be-
cause IAL causes undesirable data movement and such data
movement consumes higher PMM memory bandwidth. The
average DRAM memory bandwidth of PMM memory mode
is larger than that of Sparta, because PMM Memory mode
manages DRAM as a hardware cache for PMM and unneces-
sarily migrates data objects to DRAM for high performance
without being able to be aware of access patterns of data
objects.

6 Related Work

Tensor contraction. Tensor contraction has a long history
in scientific computing in chemistry, physics, and mechanics.
Dense tensor contraction has been studied for decades on
diverse hardware platforms [5, 21, 23, 28, 29, 32, 33, 40, 46,
60, 66, 67]. The state-of-the-art sparse tensor contractions
emphasize on block-sparse tensor contractions, between two
tensors with non-zero dense blocks. The general approaches
extract dense block-pairs of the two input tensors, and then
do multiplication by calling dense BLAS linear algebra and
have the output tensor pre-allocated using domain knowl-
edge or a symbolic phase [22, 26, 52, 53, 61], such as libten-
sor [15, 45], TiledArray [53], and Cyclops Tensor Frame-
work [34]. Our work proposes an efficient element-sparse
tensor contraction and shows its performance advantages if
a practical cutoff value gets quantum chemistry or physics

Sparta: High-Performance, Element-Wise Sparse Tensor Contraction on Heterogeneous Memory

data below 5% of non-zero density. Our work is also valuable
for deep learning when the sparsity is introduced because
of model or data compression.

Sparse tensor formats. Researchers are making continu-
ous effort on developing sparse tensor formats for high-order
data, including compressed sparse fiber (CSF) [65], balanced
and mixed-mode CSF (BCSF, MM-CSF) [50, 51], flagged COO
(F-COO) [41], and hierarchical coordinate (HiCOO) [37] for
general sparse tensors, and mode-generic and -specific for-
mats for structured sparse tensors [8]. We choose COO for-
mat in this work as a start because CSF format needs ex-
pensive search to locate Y due to multi-dimensionality. Our
hashtable-represented Y is a new approach to compress a
sparse tensor customized to the tensor contraction. This
work is orthogonal to the tensor format works and will adopt
a more compressed format for the sparse tensor X according
to SpTC operations.

Sparse matrix-matrix multiplication. Sparse matrix-matrix

multiplication (SpGEMM) has been well-studied [2, 3, 6, 12,
20, 30, 43, 47-49]. Our hash table implementations can be im-
proved by using more advanced algorithms in [3, 44, 48, 49].
Data management on heterogeneous memory systems
attracts a lot of attention recently. Many research efforts [1,
13, 24, 25,72,74,76, 81] use a software-based solution to track
data objects or page hotness to decide data placement on HM;
Many research efforts [42, 55, 70, 80] use a hardware-based
solution to profile memory accesses and decide data place-
ment on HM. All of those solutions use dynamic migration
and are application-agnostic. Sparta is different from them
in terms of static data placement and application awareness.

7 Conclusions

SpTC plays an important role in many applications. However,
how to efficiently implement SpTC faces multiple challenges,
such as unpredictable output size, time-consuming process
to handle irregular memory accesses, and massive memory
consumption. In this paper, we introduce Sparta, a high per-
formance SpTC algorithm to address the above challenges
based on the innovation of leveraging new data representa-
tion, data structures, and emerging HM architecture. Sparta
shows superior performance: evaluating with 15 datasets,
we show that Sparta brings 28 — 576X speedup over the
traditional sparse tensor contraction; With our algorithm-
and memory heterogeneity-aware data management, Sparta
brings extra performance improvement on HM built with
DRAM and PMM over a state-of-the-art software-based data
management solution, a hardware-based data management
solution and PMM-only by 30.7% (up to 98.5%), 10.7% (up to
28.3%) and 17% (up to 65.1%) respectively.

Acknowledgment

We thank Dr. Miles Stoudenmire and Dr. Matthew Fishman’s
help for using ITensor software and Dr. Ajay Panyala for
helping us obtain the Uracil tensor and cutoff information.

328

PPoPP °21, 2/27 - 3/3, 2021, Republic of Korea

This research is partially funded by US National Science
Foundation (CNS-1617967, CCF-1553645 and CCF-1718194).
This research is also partially funded by the US Department
of Energy, Office for Advanced Scientific Computing (ASCR)
under Award No. 66150: "CENATE: The Center for Advanced
Technology Evaluation" and the Laboratory Directed Re-
search and Development program at PNNL under contract
No. ND8577. The Pacific Northwest National Laboratory
(PNNL) is a multiprogram national laboratory operated for
DOE by Battelle Memorial Institute under Contract DE-AC05-
76RL01830.

References

[1] Neha Agarwal and Thomas F. Wenisch. Thermostat: Application-
transparent page management for two-tiered main memory. In Pro-
ceedings of the Twenty-Second International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS
2017, Xi’an, China, April 8-12, 2017, pages 631-644, 2017.
Rasmus Resen Amossen, Andrea Campagna, and Rasmus Pagh. Better
size estimation for sparse matrix products. In Approximation, Random-
ization, and Combinatorial Optimization. Algorithms and Techniques,
pages 406-419. Springer, 2010.
Pham Nguyen Quang Anh, Rui Fan, and Yonggang Wen. Balanced
hashing and efficient gpu sparse general matrix-matrix multiplication.
In Proceedings of the 2016 International Conference on Supercomputing,
pages 1-12, 2016.
Edoardo Apra, Eric] Bylaska, Wibe A De Jong, Niranjan Govind, Karol
Kowalski, Tjerk P Straatsma, Marat Valiev, HJJ van Dam, Yuri Alexeev,
James Anchell, et al. Nwchem: Past, present, and future. The Journal
of chemical physics, 152(18):184102, 2020.
Alexander A Auer, Gerald Baumgartner, David E Bernholdt, Alina
Bibireata, Venkatesh Choppella, Daniel Cociorva, Xiaoyang Gao,
Robert Harrison, Sriram Krishnamoorthy, Sandhya Krishnan, et al.
Automatic code generation for many-body electronic structure meth-
ods: the tensor contraction engine. Molecular Physics, 104(2):211-228,
2006.
Ariful Azad, Grey Ballard, Aydin Buluc, James Demmel, Laura Grigori,
Oded Schwartz, Sivan Toledo, and Samuel Williams. Exploiting multi-
ple levels of parallelism in sparse matrix-matrix multiplication. SIAM
Journal on Scientific Computing, 38(6):C624-C651, 2016.
[7] Brett W. Bader, Tamara G. Kolda, et al. Matlab tensor toolbox version
3.1. Available online, June 2019.
[8] M. Baskaran, B. Meister, N. Vasilache, and R. Lethin. Efficient and scal-
able computations with sparse tensors. In High Performance Extreme
Computing (HPEC), 2012 IEEE Conference on, pages 1-6, Sept 2012.
Venkatesan T. Chakaravarthy, Jee W. Choi, Douglas J. Joseph, Prakash
Murali, Shivmaran S. Pandian, Yogish Sabharwal, and Dheeraj Sreed-
har. On optimizing distributed Tucker decomposition for sparse ten-
sors. In Proceedings of the 32nd ACM International Conference on
Supercomputing, ICS °18, 2018.
Andrzej Cichocki. Era of big data processing: A new approach via
tensor networks and tensor decompositions. CoRR, abs/1403.2048,
2014.
Edith Cohen. On optimizing multiplications of sparse matrices. In
International Conference on Integer Programming and Combinatorial
Optimization, pages 219-233. Springer, 1996.
Mehmet Deveci, Christian Trott, and Sivasankaran Rajamanickam.
Performance-portable sparse matrix-matrix multiplication for many-
core architectures. In 2017 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW), pages 693-702. IEEE, 2017.
Subramanya R. Dulloor, Amitabha Roy, Zheguang Zhao, Narayanan
Sundaram, Nadathur Satish, Rajesh Sankaran, Jeff Jackson, and Karsten

[2

—

3

[t

[4

=

(5

[

[6

—

[9

—

[10]

[11]

[12]

[13]

PPoPP 21, 2/27 - 3/3, 2021, Republic of Korea

[14

=

[15

[

(16]

(17]

(18]

(19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

Schwan. Data Tiering in Heterogeneous Memory Systems. In European
Conference on Computer Systems, 2016.

Evgeny Epifanovsky, Karol Kowalski, Peng-Dong Fan, Marat Valiev,
Spiridoula Matsika, and Anna I Krylov. On the electronically excited
states of uracil. The Journal of Physical Chemistry A, 112(40):9983-9992,
2008.

Evgeny Epifanovsky, Michael Wormit, Tomasz Ku§, Arie Landau,
Dmitry Zuev, Kirill Khistyaev, Prashant Manohar, Ilya Kaliman, An-
dreas Dreuw, and Anna I Krylov. New implementation of high-level
correlated methods using a general block tensor library for high-
performance electronic structure calculations. Journal of computational
chemistry, 34(26):2293-2309, 2013.

Tilman Esslinger. Fermi-hubbard physics with atoms in an optical
lattice. 2010.

Matthew Fishman, Steven R. White, and E. Miles Stoudenmire. ITensor:
A C++ library for efficient tensor network calculations. Available from
https://github.com/ITensor/ITensor, August 2020.

Matthew Fishman, Steven R White, and E Miles Stoudenmire. The
ITensor software library for tensor network calculations. arXiv preprint
arXiv:2007.14822, 2020.

John R Gilbert, Cleve Moler, and Robert Schreiber. Sparse matrices in
matlab: Design and implementation. SIAM Journal on Matrix Analysis
and Applications, 13(1):333-356, 1992.

Fred G Gustavson. Two fast algorithms for sparse matrices: Multiplica-
tion and permuted transposition. ACM Transactions on Mathematical
Software (TOMS), 4(3):250-269, 1978.

Albert Hartono, Qingda Lu, Thomas Henretty, Sriram Krishnamoor-
thy, Huaijian Zhang, Gerald Baumgartner, David E Bernholdt, Marcel
Nooijen, Russell Pitzer,] Ramanujam, et al. Performance optimization
of tensor contraction expressions for many-body methods in quantum
chemistry. The Journal of Physical Chemistry A, 113(45):12715-12723,
2009.

Thomas Hérault, Yves Robert, George Bosilca, Robert Harrison, Can-
nada Lewis, and Edward Valeev. Distributed-memory multi-GPU block-
sparse tensor contraction for electronic structure. PhD thesis, Inria-
Research Centre Grenoble-Rhone-Alpes, 2020.

So Hirata. Tensor contraction engine: Abstraction and automated par-
allel implementation of configuration-interaction, coupled-cluster, and
many-body perturbation theories. The Journal of Physical Chemistry
A, 107(46):9887-9897, 2003.

Takahiro Hirofuchi and Ryousei Takano. Raminate: Hypervisor-based
virtualization for hybrid main memory systems. In Proceedings of
the Seventh ACM Symposium on Cloud Computing, SoCC ’16, pages
112-125, New York, NY, USA, 2016. ACM.

S. Kannan, A. Gavrilovska, V. Gupta, and K. Schwan. Heteroos —
os design for heterogeneous memory management in datacenter. In
2017 ACM/IEEE 44th Annual International Symposium on Computer
Architecture (ISCA), pages 521-534, June 2017.

Daniel Kats and Frederick R Manby. Sparse tensor framework for
implementation of general local correlation methods. The Journal of
Chemical Physics, 138(14):144101, 2013.

O. Kaya and B. Ucar. Parallel Candecomp/Parafac decomposition
of sparse tensors using dimension trees. SIAM Journal on Scientific
Computing, 40(1):C99-C130, 2018.

[28] Jinsung Kim, Aravind Sukumaran-Rajam, Changwan Hong, Ajay Pa-

nyala, Rohit Kumar Srivastava, Sriram Krishnamoorthy, and Pon-
nuswamy Sadayappan. Optimizing tensor contractions in ccsd (t)
for efficient execution on gpus. In Proceedings of the 2018 International
Conference on Supercomputing, pages 96-106, 2018.

[29] Jinsung Kim, Aravind Sukumaran-Rajam, Vineeth Thumma, Sriram Kr-

ishnamoorthy, Ajay Panyala, Louis-Noél Pouchet, Atanas Rountev, and
Ponnuswamy Sadayappan. A code generator for high-performance
tensor contractions on gpus. In 2019 IEEE/ACM International Sympo-
sium on Code Generation and Optimization (CGO), pages 85-95. IEEE,

329

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

Jiawen Liu, Jie Ren, Roberto Gioiosa, Dong Li, and Jiajia Li

2019.

Fredrik Kjolstad, Shoaib Kamil, Stephen Chou, David Lugato, and
Saman Amarasinghe. The tensor algebra compiler. Proc. ACM Program.
Lang., 1(0O0OPSLA):77:1-77:29, October 2017.

Christoph Koppl and Hans-Joachim Werner. Parallel and low-order
scaling implementation of hartree—fock exchange using local density
fitting. Journal of chemical theory and computation, 12(7):3122-3134,
2016.

Jean Kossaifi, Yannis Panagakis, Anima Anandkumar, and Maja Pantic.
TensorLy: Tensor learning in Python. CoRR, abs/1610.09555, 2018.
Pai-Wei Lai, Kevin Stock, Samyam Rajbhandari, Sriram Krishnamoor-
thy, and Ponnuswamy Sadayappan. A framework for load balancing
of tensor contraction expressions via dynamic task partitioning. In
Proceedings of the International Conference on High Performance Com-
puting, Networking, Storage and Analysis, pages 1-10, 2013.

Ryan Levy, Edgar Solomonik, and Bryan K Clark. Distributed-memory
dmrg via sparse and dense parallel tensor contractions. arXiv preprint
arXiv:2007.05540, 2020.

Jiajia Li, Jee Choi, Ioakeim Perros, Jimeng Sun, and Richard Vuduc.
Model-driven sparse cp decomposition for higher-order tensors. In
2017 IEEE international parallel and distributed processing symposium
(IPDPS), pages 1048-1057. IEEE, 2017.

Jiajia Li, Yuchen Ma, Chenggang Yan, and Richard Vuduc. Optimizing
sparse tensor times matrix on multi-core and many-core architectures.
In Proceedings of the Sixth Workshop on Irregular Applications: Archi-
tectures and Algorithms, IA"3 ’16, pages 26-33, Piscataway, NJ, USA,
2016. IEEE Press.

Jiajia Li, Jimeng Sun, and Richard Vuduc. HiCOO: Hierarchical stor-
age of sparse tensors. In Proceedings of the ACM/IEEE International
Conference on High Performance Computing, Networking, Storage and
Analysis (SC), Dallas, TX, USA, November 2018.

Jiajia Li, Bora Ugar, Umit V. Catalyiirek, Jimeng Sun, Kevin Barker, and
Richard Vuduc. Efficient and effective sparse tensor reordering. In
Proceedings of the ACM International Conference on Supercomputing,
ICS ’19, pages 227-237, New York, NY, USA, 2019. ACM.

Lingjie Li, Wenjian Yu, and Kim Batselier. Faster tensor train decom-
position for sparse data. arXiv preprint arXiv:1908.02721, 2019.

Rui Li, Aravind Sukumaran-Rajam, Richard Veras, Tze Meng Low,
Fabrice Rastello, Atanas Rountev, and P Sadayappan. Analytical cache
modeling and tilesize optimization for tensor contractions. In Proceed-
ings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, pages 1-13, 2019.

Bangtian Liu, Chengyao Wen, Anand D Sarwate, and Maryam Mehri
Dehnavi. A unified optimization approach for sparse tensor operations
on gpus. In 2017 IEEE international conference on cluster computing
(CLUSTER), pages 47-57. IEEE, 2017.

Jiawen Liu, Hengyu Zhao, Matheus A Ogleari, Dong Li, and Jishen
Zhao. Processing-in-memory for energy-efficient neural network
training: A heterogeneous approach. In 2018 51st Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), pages 655-668.
IEEE, 2018.

Weifeng Liu and Brian Vinter. An efficient gpu general sparse matrix-
matrix multiplication for irregular data. In 2014 IEEE 28th International
Parallel and Distributed Processing Symposium, pages 370-381. IEEE,
2014.

Baotong Lu, Xiangpeng Hao, Tianzheng Wang, and Eric Lo. Dash:
scalable hashing on persistent memory. arXiv preprint arXiv:2003.07302,
2020.

Samuel Manzer, Evgeny Epifanovsky, Anna I Krylov, and Martin Head-
Gordon. A general sparse tensor framework for electronic structure
theory. Journal of chemical theory and computation, 13(3):1108-1116,
2017.

Devin Matthews. High-performance tensor contraction without BLAS.
CoRR, abs/1607.00291, 2016.

https://github.com/ITensor/ITensor

Sparta: High-Performance, Element-Wise Sparse Tensor Contraction on Heterogeneous Memory

(47]

(48]

(49]

(50

=

(51]

(52]

(53]

(54]

(55]

(56]

(57]

(58]

[59]

(60]

[61

—

[62]

(63]

Yusuke Nagasaka, Satoshi Matsuoka, Ariful Azad, and Aydin Bulug.
High-performance sparse matrix-matrix products on intel knl and mul-
ticore architectures. In Proceedings of the 47th International Conference
on Parallel Processing Companion, pages 1-10, 2018.

Yusuke Nagasaka, Satoshi Matsuoka, Ariful Azad, and Aydin Bulug.
Performance optimization, modeling and analysis of sparse matrix-
matrix products on multi-core and many-core processors. Parallel
Computing, 90:102545, 2019.

Yusuke Nagasaka, Akira Nukada, and Satoshi Matsuoka. High-
performance and memory-saving sparse general matrix-matrix multi-
plication for nvidia pascal gpu. In 2017 46th International Conference
on Parallel Processing (ICPP), pages 101-110. IEEE, 2017.

Israt Nisa, Jiajia Li, Aravind Sukumaran-Rajam, Prasant Singh Rawat,
Sriram Krishnamoorthy, and P. Sadayappan. An efficient mixed-mode
representation of sparse tensors. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis, SC ’19, pages 49:1-49:25, New York, NY, USA, 2019. ACM.
Israt Nisa, Jiajia Li, Aravind Sukumaran-Rajam, Richard Vuduc, and
P Sadayappan. Load-balanced sparse mttkrp on gpus. In 2019 IEEE
International Parallel and Distributed Processing Symposium (IPDPS),
pages 123-133. IEEE, 2019.

David Ozog, Jeff R Hammond, James Dinan, Pavan Balaji, Sameer
Shende, and Allen Malony. Inspector-executor load balancing algo-
rithms for block-sparse tensor contractions. In 2013 42nd International
Conference on Parallel Processing, pages 30-39. IEEE, 2013.

Chong Peng, Justus A Calvin, Fabijan Pavosevic, Jinmei Zhang, and
Edward F Valeev. Massively parallel implementation of explicitly corre-
lated coupled-cluster singles and doubles using tiledarray framework.
The Journal of Physical Chemistry A, 120(51):10231-10244, 2016.
Ioakeim Perros, Evangelos E. Papalexakis, Fei Wang, Richard Vuduc,
Elizabeth Searles, Michael Thompson, and Jimeng Sun. SPARTan:
Scalable PARAFAC? for large & sparse data. In Proceedings of the 23rd
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD ’17, pages 375-384, New York, NY, USA, 2017. ACM.
Luiz E. Ramos, Eugene Gorbatov, and Ricardo Bianchini. Page Place-
ment in Hybrid Memory Systems. In International Conference on
Supercomputing (ICS), May 2011.

Jie Ren, Jiaolin Luo, Kai Wu, Minjia Zhang, Hyeran Jeon, and Dong Li.
Sentinel: Efficient Tensor Migration and Allocation on Heterogeneous
Memory Systems for Deep Learning. In IEEE International Symposium
on High Performance Computer Architecture, 2021.

Jie Ren, Minjia Zhang, and Dong Li. HM-ANN: Efficient Billion-Point
Nearest Neighbor Search on Heterogeneous Memory. In Neurips, 2020.
Christoph Riplinger, Peter Pinski, Ute Becker, Edward F Valeev, and
Frank Neese. Sparse maps—a systematic infrastructure for reduced-
scaling electronic structure methods. ii. linear scaling domain based
pair natural orbital coupled cluster theory. The Journal of chemical
physics, 144(2):024109, 2016.

Chase Roberts, Ashley Milsted, Martin Ganahl, Adam Zalcman, Bruce
Fontaine, Yijian Zou, Jack Hidary, Guifre Vidal, and Stefan Leichenauer.
Tensornetwork: A library for physics and machine learning. arXiv
preprint arXiv:1905.01330, 2019.

Yang Shi, Uma Naresh Niranjan, Animashree Anandkumar, and Cris
Cecka. Tensor contractions with extended blas kernels on cpu and
gpu. In 2016 IEEE 23rd International Conference on High Performance
Computing (HiPC), pages 193-202. IEEE, 2016.

Ilia Sivkov, Patrick Seewald, Alfio Lazzaro, and Jirg Hutter. DBCSR: A
blocked sparse tensor algebra library. arXiv preprint arXiv:1910.13555,
2019.

Shaden Smith, Jee W Choi, Jiajia Li, Richard Vuduc, Jongsoo Park,
Xing Liu, and George Karypis. Frostt: The formidable repository of
open sparse tensors and tools, 2017.

Shaden Smith and George Karypis. A medium-grained algorithm for
distributed sparse tensor factorization. In Parallel and Distributed

330

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

(78]

[79]

[80]

PPoPP °21, 2/27 - 3/3, 2021, Republic of Korea

Processing Symposium (IPDPS), 2016 IEEE International. IEEE, 2016.
Shaden Smith and George Karypis. Accelerating the Tucker decom-
position with compressed sparse tensors. In European Conference on
Parallel Processing. Springer, 2017.

Shaden Smith, Niranjay Ravindran, Nicholas Sidiropoulos, and George
Karypis. SPLATT: Efficient and parallel sparse tensor-matrix mul-
tiplication. In Proceedings of the 29th IEEE International Parallel &
Distributed Processing Symposium, IPDPS, 2015.

Edgar Solomonik, Devin Matthews, Jeff Hammond, and James Demmel.
Cyclops tensor framework: Reducing communication and eliminating
load imbalance in massively parallel contractions. In 2013 IEEE 27th
International Symposium on Parallel and Distributed Processing, pages
813-824. IEEE, 2013.

Edgar Solomonik, Devin Matthews, Jeff R Hammond, John F Stanton,
and James Demmel. A massively parallel tensor contraction framework
for coupled-cluster computations. Journal of Parallel and Distributed
Computing, 74(12):3176-3190, 2014.

N. Vervliet, O. Debals, L. Sorber, M. Van Barel, and L. De Lathauwer.
Tensorlab (Version 3.0). Available from http://www.tensorlab.net,
March 2016.

Richard Wilson Vuduc and James W Demmel. Automatic performance
tuning of sparse matrix kernels, volume 1. University of California,
Berkeley Berkeley, CA, 2003.

Wei Wei, Dejun Jiang, Sally A. McKee, Jin Xiong, and Mingyu Chen.
Exploiting Program Semantics to Place Data in Hybrid Memory. In
PACT, 2015.

Wikipedia. Hash table. https://en.wikipedia.org/wiki/Hash_table, July
2020.

Kai Wu, Yingchao Huang, and Dong Li. Unimem: Runtime data man-
agementon non-volatile memory-based heterogeneous main memory.
In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, pages 1-14, 2017.

Kai Wu, Jie Ren Ivy Peng, and Dong Li. ArchTM: Architecture-Aware,
High Performance Transaction for Persistent Memory. In USENIX
Conference on File and Storage Technologies, 2021.

Kai Wu, Jie Ren, and Dong Li. Runtime Data Management on Non-
Volatile Memory-Based Heterogeneous Memory for Task Parallel Pro-
grams. In ACM/IEEE International Conference for High Performance
Computing, Networking, Storage and Analysis, 2018.

Kai Wu, Jie Ren, and Dong Li. Runtime data management on non-
volatile memory-based heterogeneous memory for task-parallel pro-
grams. In Proceedings of the International Conference for High Perfor-
mance Computing, Networking, Storage, and Analysis, page 31. IEEE
Press, 2018.

Zi Yan, Daniel Lustig, David Nellans, and Abhishek Bhattacharjee.
Nimble page management for tiered memory systems. In Proceedings
of the Twenty-Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS 19, pages
331-345, New York, NY, USA, 2019. ACM.

Zi Yan, Daniel Lustig, David Nellans, and Abhishek Bhattacharjee.
Nimble Page Management for Tiered Memory Systems. In ASPLOS,
2019.

Zi Yan, Daniel Lustig, David Nellans, and Abhishek Bhattacharjee.
Repository of Nimble Page Management for Tiered Memory Systems in
ASPLOS2019. Available from https://github.com/ysarch-lab/nimble_
page_management_asplos_2019, July 2020.

Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph Izraelevitz, and
Steve Swanson. An empirical guide to the behavior and use of scalable
persistent memory. In 18th USENIX Conference on File and Storage
Technologies (FAST 20), 2020.

HanBin Yoon, Justin Meza, Rachata Ausavarungnirun, Rachael A Hard-
ing, and Onur Mutlu. Row buffer locality aware caching policies for
hybrid memories. In 2012 IEEE 30th International Conference on Com-
puter Design (ICCD), pages 337-344. IEEE, 2012.

http://www.tensorlab.net
https://github.com/ysarch-lab/nimble_page_management_asplos_2019
https://github.com/ysarch-lab/nimble_page_management_asplos_2019

PPoPP 21, 2/27 - 3/3, 2021, Republic of Korea Jiawen Liu, Jie Ren, Roberto Gioiosa, Dong Li, and Jiajia Li

[81] Seongdae Yu, Seongbeom Park, and Woongki Baek. Design and Im-
plementation of Bandwidth-aware Memory Placement and Migration
Policies for Heterogeneous Memory Systems. In International Confer-
ence on Supercomputing (ICS), 2017.

331

Sparta: High-Performance, Element-Wise Sparse Tensor Contraction on Heterogeneous Memory PPoPP °21, 2/27 - 3/3, 2021, Republic of Korea

A Appendix On a server with Intel Optane DC PMM:
The sparse tensors are derived from Hubbard-2D in ITen- /sparta/run_optane/test_run.sh

sor and summarized in Table 4 which includes the order,

dimensions, #Non-zeros, density and #Blocks of both input B.3 More Support

tensors. Tensor Contraction Parameters
You can check the parameters options with path/to/sparta/
B Artifact Appendix build/ttt ~help
B.1 Build requirements O)?EIOI?SST INPUT TENSOR
e GNU Compiler (GCC) (>=v7.5) Y FIRST INPUT TENSOR

e CMake (>=v3.0) -Z OUTPUT TENSOR (Optinal)

* OpenBLAS -m NUMBER OF CONTRACT MODES
o NUMA ~x CONTRACT MODES FOR TENSOR X (0-based)
You may use the following steps to install the required -y CONTRACT MODES FOR TENSOR Y (0-based)
libraries: -t NTHREADS, -nt=NT (Optinal)
e OpenBLAS ~help
git clone https://github.com/xianyi/OpenBLAS
cd OpenBLAS B.4 ITensor Results Generation
make -j We have generated the sparse tensors and performance from
mkdir path/to/OpenBLAS_install ITensor library and stored them in itensor/results. If you
make install PREFIX=path/to/OpenBLAS_install want to recollect all these tensors, you can use the following
Append export OpenBLAS_DIR=path/to/OpenBLAS _install steps.
to /.bashre e git clone https://gitlab.com/jiawenliu64/itensor (forked
¢ CMake . from ITensor repo, also provided in the "Artifact down-
. E‘S&j\pt'get install cmake load URL" in the PPoPP AE submission.)

o export ITENSOR_DIR=path/to/itensor

o mkdir path/to/itensor_results & export ITENSOR_RES
ULTS=path/to/itensor_results

B.2 Download and Set Up Projects e cd SITENSOR_DIR & run.sh

e cd $SITENSOR_DIR/hubbard & OMP_NUM_THREADS
=12 ./main "parity’ 1. After the execution, all results are
stored in $ITENSOR_RESULTS. The result (execution
time) is included in the second line of each generated
file (e.g., tensor_2137.txt).

sudo apt-get install libnuma-dev
sudo apt-get install numactl

Download
git clone https://github.com/pnnl/HiParTI/tree/sparta (Sparta)
git clone https://gitlab.com/jiawenliu64/ial (IAL)
git clone https://gitlab.com/jiawenliu64/tensors (Datasets)

Bucléiparta & /build.sh If you also want to convert the data to the .bin format

Set the Path Environments as they are shown in path/to/itensor/results, you can use
You can execute the commands, e.g., export SPARTA_DIR= the following steps to process data using SPLATT, another

path/to/sparta, prior to the execution or append these com- sparse tensor library.

mands to /.bashrc. e git clone https://github.com/ShadenSmith/splatt
SPARTA_DIR (path/to/sparta, e.g., /home/ae/sparta) e /configure —prefix=SPLATT_DIR & make & make in-
IAL_SRC (path/to/IAL, e.g., /home/ae/ial/src) stall
TENSOR_DIR (path/to/tensors, /home/ae/tensors) e Replace all Block in tensor A to A-Block. For exam-
You can execute a command like "export EXPERIMENT _ ple, in vim, you can execute x,ys/Block/A-Block/g to

MODES=x" to set up the environment variable for different replace from line x to line y.

test purposes. (This step has been included in our scripts e Replace all Block in tensor B to B-Block. For exam-

below, so you don’t need to explicitly specify it.) ple, in vim, you can execute x,ys/Block/B-Block/g to
export EXPERIMENT_MODES=0: COOY + SPA replace from line x to line y.
export EXPERIMENT MODES=1: COOY + HtA e python path/to/sparta/output_scripts/gen_tns_itensor.py
export EXPERIMENT_MODES=3: HtY + HtA path/to/itensor_results/tensor_x.txt 0.00000001 for data
export EXPERIMENT_MODES=4: HtY + HtA on Optane tensor_x.

A Test Run o path/to/splatt/build/Linux-x86_64/bin/splatt convert -
On a general multicore CPU server with Linux: t bin path/to/itensor_results/tensor_x_A.tns path/to/it
./sparta/run/test_run.sh ensor_results/tensor_x_A.bin for A in x.

332

https://github.com/pnnl/HiParTI/tree/sparta
https://gitlab.com/jiawenliu64/ial
https://gitlab.com/jiawenliu64/tensors

PPoPP 21, 2/27 - 3/3, 2021, Republic of Korea Jiawen Liu, Jie Ren, Roberto Gioiosa, Dong Li, and Jiajia Li

Table 4. Characteristics of tensors of ITensor in the evaluation.

SpTC | Tensors Order Dimensions #Non-zeros Density #Blocks ‘ Tensors Order Dimensions #Non-zeros Density #Blocks
1 X 5 129 X4 X 184 X 24 X 4 109287 48x1073 10453 Y 4 24 X36X4%X4 360 6.9 x 1073 218
2 X 5 129 X4 X 184 X 24 X 4 114877 5.0 x 1073 12044 Y 4 24 X36xX4X%X4 360 6.9 x 1073 218
3 X 5 4XxX 129X 184 x 24 x4 114877 5.0 %1073 12044 Y 4 24 X36X4%x4 360 6.9 x 1073 218
4 X 5 4 X 131 X4 X 24 X413 262218 6.3 %1073 12345 Y 4 24 X36x4x%x4 360 6.9 x 1073 218
5 X 5 131 X4 X413 X 36 X 4 377629 48 %1073 17594 Y 4 36 X24X4%X4 360 59 %1073 218
6 X 5 4 X 131 X4 X 24 X413 268813 6.4 %1073 13288 Y 4 24 X36x4x%x4 360 6.9 x 1073 218
7 X 5 131 X4 X413 X 36 X 4 388132 52x1073 19367 Y 4 36 X24X4%X4 360 59 %1073 218
8 X 5 4 X4 X131 X 24 X413 268813 6.5 %1073 13288 Y 4 24 X36 X4X4 360 6.9 x 1073 218
9 X 5 4 X131 X413 x36 x4 388132 52x1073 19367 Y 4 36 X24X4X%X4 360 59 %1073 218

10 X 5 4 X 110 X 4 X 36 X 486 396193 6.4 %1073 17152 Y 4 36 X24X4%X4 360 59 %1073 218

e path/to/splatt/build/Linux-x86_64/bin/splatt convert
-t bin path/to/itensor_results/tensor_x_B.tns path/to/it
ensor_results/tensor_x_B.bin for B in x.

333

	Abstract
	1 Introduction
	2 Background
	2.1 Sparse Tensors
	2.2 Sparse Tensor Contraction
	2.3 Intel Optane DC Persistent Memory Module

	3 Sparse Tensor Contraction Algorithm
	3.1 Overview
	3.2 Sparse Accumulator for High-order Sparse Tensors
	3.3 Hash Table-Represented Sparse Tensor
	3.4 Hash Table-based Sparse Accumulator
	3.5 Parallelization

	4 Data Placement on PMM-based Heterogeneous Memory Systems
	4.1 Characterization Study
	4.2 Data Placement Strategy

	5 Evaluation
	5.1 Evaluation Setup
	5.2 Overall Performance
	5.3 Performance Comparison to ITensor
	5.4 Thread Scalability
	5.5 Sparta on Heterogeneous Memory Systems

	6 Related Work
	7 Conclusions
	References
	A Appendix
	B Artifact Appendix
	B.1 Build requirements
	B.2 Download and Set Up Projects
	B.3 More Support
	B.4 ITensor Results Generation

