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Abstract

Morgan and Parker proved that if G is a group with Z(G) = 1, then the connected components of the

commuting graph of G have diameter at most 10. Parker proved that if, in addition, G is solvable, then the

commuting graph of G is disconnected if and only if G is a Frobenius group or a 2-Frobenius group, and if

the commuting graph of G is connected, then its diameter is at most 8. We prove that the hypothesis Z(G) =

1 in these results can be replaced with G′ ∩ Z(G) = 1. We also prove that if G is solvable and G/Z(G) is

either a Frobenius group or a 2-Frobenius group, then the commuting graph of G is disconnected.

2020 Mathematics subject classification: primary 20E34; secondary 05C25.
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1. Introduction

In this paper, all groups are finite. Given a group G, the commuting graph of G, denoted

by Γ(G), is defined as the graph whose vertex set is the noncentral elements of G, and

two vertices are adjacent if and only if they commute in G. Giudici and Pope in [7]

state that commuting graphs were first studied by Brauer and Fowler in [3] in relation

to the classification of simple groups. They go on to say that commuting graphs were

first studied in their own right by Segev and Seitz in [11] in terms of the classical

simple groups. In fact, much of the research regarding the commuting graph is related

to simple groups. We are not going to try to describe all of this research, but note that

it culminates in the work of Solomon and Woldar in [12] where they complete the final

step in proving that if S is a simple group and X is any group where Γ(S) � Γ(X), then

S � X.

In the course of this research, Iranmanesh and Jafarzadeh conjecture in [8] that

there is a universal bound on the diameter of commuting graphs. Giudici and Pope

in [7] study the diameters of commuting graphs for a number of families of groups.

Surprisingly, Giudici and Parker produced in [6] a family of 2-groups of nilpotence

class two where there is no bound on the diameter of the commuting graphs. On the
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2 N. F. Beike et al. [2]

other hand, in the seminal 2013 paper [10], Parker proves that the commuting graph of

a solvable group G with a trivial centre is disconnected if and only if G is a Frobenius

or 2-Frobenius group. We state the definition of 2-Frobenius groups in Section 2. In

addition, when the commuting graph of G is connected, he proves that it has diameter

at most 8. He also provides an example of a solvable group where this bound is met.

Parker and Morgan remove the solvability hypothesis on G in [9] by proving, for the

commuting graph of any group with a trivial centre, that all the connected components

have diameter at most 10.

In this paper, we look to extend the results of Parker and Parker and Morgan. In

particular, we would like to extend the class of groups where we can determine which

commuting graphs are disconnected and determine further classes of groups where we

can show that diameters of the commuting graph are bounded by the constants 8 and

10. In particular, we show that we can replace the hypothesis that Z(G) = 1 with the

hypothesis that G′ ∩ Z(G) = 1.

THEOREM 1.1 (Main Theorem). Let G be a group and suppose that G′ ∩ Z(G) = 1.

(1) Γ(G) is connected if and only if Γ(G/Z(G)) is connected.

(2) Every connected component of Γ(G) has diameter at most 10.

(3) If G is solvable and Γ(G) is connected, then Γ(G) has diameter at most 8.

(4) If G is solvable, then Γ(G) is disconnected if and only if G/Z is either a Frobenius

group or a 2-Frobenius group.

In fact, we will see that we can relax the hypothesis that G′ ∩ Z(G) = 1 even

further. In particular, we show that it suffices to assume that C(G) ∩ Z(G) = {1} where

C(G) = {[x, y] | x, y ∈ G}, that is, we only need the set of commutators, not the whole

commutator subgroup. (Note that we use 1 to denote the trivial subgroup. Since C(G)

is not a subgroup, it is not appropriate to view C(G) ∩ Z(G) as a subgroup, so we

use {1} to denote the set consisting only of the identity.) We will present examples

of groups G where C(G) ∩ Z(G) = {1} but G′ ∩ Z(G) > 1, so this replacement does

actually improve the result.

Following the literature, we say that a group G is an A-group if every Sylow

subgroup of G is abelian. We show that if G is an A-group, then G′ ∩ Z(G) = 1. In

particular, this shows that the results of the Main Theorem apply to A-groups; however,

we would not be surprised if one could show that the diameter bounds can be lowered

for A-groups, especially solvable A-groups, but we have not investigated this at this

time.

One other consequence of G′ ∩ Z(G) = 1 is that Z(G/Z(G)) = 1, and so it makes

sense to ask whether we can determine which groups satisfying Z(G/Z(G)) = 1

have a disconnected commuting graph and if we can bound the diameter of the

commuting graphs of groups where the commuting graph is connected. At this point,

we can find one class of groups where the commuting graph is disconnected, as seen

in the following theorem, but we will present examples of other groups satisfying

this condition where the commuting graph is disconnected. We are including the

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0004972721000332
Downloaded from https://www.cambridge.org/core. IP address: 174.104.102.205, on 12 May 2021 at 15:10:38, subject to the Cambridge Core terms of use, available

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0004972721000332
https://www.cambridge.org/core
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hypothesis that G is solvable since we refer to Parker’s theorem which includes the

solvable hypothesis. However, it is not difficult to see that nonsolvable Frobenius

groups also have disconnected commuting graphs, and we note that there are no

nonsolvable 2-Frobenius groups. Hence, we could probably also dispense with the

solvable hypothesis on this theorem.

THEOREM 1.2. If G is a solvable group where G/Z(G) is either a Frobenius or a

2-Frobenius group, then Γ(G) is disconnected.

2. Results

Let G be a finite group and let Γ(G) be the commuting graph of G. When x = y or

x and y are adjacent in Γ(G), we write x ∼ y. In particular, writing x ∼ y emphasises

that x, y ∈ G \ Z(G). Viewing x, y as vertices of Γ(G), we use d(x, y) to denote the

distance between x and y (that is, the number of edges in the shortest path between x

and y). For the remainder of the paper, we set Z = Z(G), the centre of the group, and

let Z2 = Z2(G), the preimage of Z(G/Z(G)). We also set C = C(G). Note that G′ is the

group generated by C, but C itself is not always a group.

The following lemma addresses the relationship between adjacent elements in Γ(G)

and adjacent elements in Γ(G/Z).

LEMMA 2.1. Let G be a group and fix x, y ∈ G \ Z2. If x ∼ y in Γ(G), then xZ ∼ yZ in

Γ(G/Z). If C ∩ Z = {1} and xZ ∼ yZ in Γ(G/Z), then x ∼ y in Γ(G).

PROOF. Suppose that x ∼ y in Γ(G). Then xy = yx, and hence, xZyZ = yZxZ in G/Z.

Thus xZ ∼ yZ.

Now suppose that C ∩ Z = {1} and xZ ∼ yZ. This implies that [x, y] ∈ Z. Also,

[x, y] ∈ C, and since C ∩ Z = {1}, we obtain [x, y] = 1. Therefore xy = yx and so

x ∼ y. �

We now consider the relationship between Γ(G) and Γ(G/Z) when Z2 = Z and, in

particular, when C ∩ Z = {1}.

LEMMA 2.2. Let G be a group and suppose that Z2 = Z.

(1) If Γ(G) is connected, then Γ(G/Z) is connected and the diameter of Γ(G/Z) is less

than or equal to the diameter of Γ(G).

(2) If C ∩ Z = {1} and Γ(G/Z) is connected, then Γ(G) is connected and has the same

diameter as Γ(G/Z).

(3) If C ∩ Z = {1} and Γ(G/Z) is disconnected, then there is a one-to-one correspon-

dence between the connected components of Γ(G/Z) and of Γ(G) that preserves

diameter, except in the case when a connected component of Γ(G/Z) consists of

a single coset and Z > 1; in this case, the corresponding component of Γ(G) will

have diameter 1.

PROOF. Suppose that x, y ∈ G \ Z. Since Γ(G) is connected, we can find elements

x= x0, x1, . . . , xn = y ∈ G \ Z so that xi ∼ xi+1 for i = 0, . . . , n − 1. By Lemma 2.1,
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4 N. F. Beike et al. [4]

xiZ ∼ xi+1Z. It follows that xZ and yZ are connected by a path of length n and that

d(xZ, yZ) ≤ d(x, y). We deduce that Γ(G/Z) is connected and its diameter is at most

the diameter of Γ(G).

We now add the assumption that C ∩ Z = {1}. From Lemma 2.1, we see that x ∼ y

in Γ(G) if and only if xZ ∼ yZ in Γ(G/Z). It follows that x and y lie in the same

connected component of Γ(G) if and only if xZ and yZ lie in the same connected

component of Γ(G/Z). In the case where they are in the same connected component,

d(x, y) = d(xZ, yZ), except when xZ = yZ and x , y. In this case, d(x, y) = 1 and

d(xZ, yZ) = 0. Notice that if xZ , yZ, then x , y, so a connected component of Γ(G/Z)

with more than one element will correspond to a connected component of Γ(G) with

more than one element and they will have the same diameter. Finally, if {xZ} is a

connected component of Γ(G/Z), then {xz | z ∈ Z}will be the corresponding connected

component of Γ(G), so the component in Γ(G/Z) has diameter 0 but the corresponding

component in Γ(G) will have diameter 1. �

Following the literature, a group G is a Frobenius group if it contains a proper,

nontrivial subgroup H so that H ∩ Hg
= 1 for all g ∈ G \ H. The subgroup H is called

a Frobenius complement for H. Frobenius proved that N = (G \ ∪g∈GHg) ∪ {1} is a

normal Hall subgroup of G that satisfies G = HN and H ∩ N = 1; the subgroup N

is called the Frobenius kernel of G. We say that G is a 2-Frobenius group if there

exist normal subgroups K ≤ L so that L and G/K are Frobenius groups with Frobenius

kernels K and L/K, respectively.

We now show that when G/Z is either a Frobenius group or a 2-Frobenius group,

then Γ(G) is disconnected.

COROLLARY 2.3. If G is a solvable group so that G/Z is either a Frobenius group or

a 2-Frobenius group, then Γ(G) is disconnected.

PROOF. We know that the centre of a Frobenius group or a 2-Frobenius group is

trivial, so Z2(G) = Z. Parker has shown that Γ(G/Z) is disconnected. We apply the

contrapositive of Lemma 2.2(1) to see that Γ(G) is disconnected. �

Next, we show that the condition that C ∩ Z = {1} implies that Z = Z2. For x ∈ G,

set DG(x) = {d ∈ G | [d, x] ∈ Z}. Thus DG(x)/Z = CG/Z(Zx).

LEMMA 2.4. If G is a group such that C ∩ Z = {1}, then CG(x) = DG(x) for each x ∈ G.

In particular, Z = Z2.

PROOF. Let x ∈ G. Of course, CG(x) ≤ DG(x). If d ∈ DG(x), then [d, x] ∈ C ∩ Z = {1}

and so d ∈ CG(x). Thus DG(x) ≤ CG(x) and we conclude that CG(x) = DG(x). Finally,

observe that Z = ∩x∈GCG(x) = ∩x∈GDG(x) = Z2, as required. �

We now obtain the results of Parker and Morgan and Parker for G when C ∩ Z = {1}.

COROLLARY 2.5. Let G be a group and suppose that C ∩ Z = {1}.

(1) Γ(G) is connected if and only if Γ(G/Z) is connected.

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0004972721000332
Downloaded from https://www.cambridge.org/core. IP address: 174.104.102.205, on 12 May 2021 at 15:10:38, subject to the Cambridge Core terms of use, available

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0004972721000332
https://www.cambridge.org/core


[5] Commuting graphs 5

(2) Every connected component of Γ(G) has diameter at most 10.

(3) If G is solvable and Γ(G) is connected, then Γ(G) has diameter at most 8.

(4) If G is solvable, then Γ(G) is disconnected if and only if G/Z is either a Frobenius

group or a 2-Frobenius group.

PROOF. Conclusion (1) is an immediate consequence of Lemma 2.2(1) and (2)

combined with Lemma 2.4. Since Z(G/Z) = 1, Parker’s results apply to G/Z, and

applying Parker’s results in G/Z with Lemma 2.2(2) and (3) yields (2), (3) and

(4). �

The following result has appeared in the literature. See, for example, Corollary 4.5

in [4] or Theorem 4.1 in [13].

LEMMA 2.6. Let G be an A-group. Then G′ ∩ Z = 1.

Using Lemma 2.6, we see that if G is an A-group, then G satisfies the hypothesis of

Corollary 2.5, and thus G satisfies the conclusions of Corollary 2.5.

We close by presenting some examples using the small groups library [1] that can

be accessed by the computer algebra systems GAP [14] or Magma [2] to illustrate

various points.

The first examples are groups G where C ∩ Z = {1} but G′ ∩ Z > 1. Take

G to be one of SmallGroup(768,1083474), SmallGroup(768,1083475) or Small-

Group(768,1083476).

Next, we present examples of groups G where Γ(G/Z) is connected but Γ(G) is

not connected. Taking G to be one of the Small Groups (72,22), (72,23), (120,11),

(144,125) and (288,565) yields examples of groups G with this property. We actu-

ally have many more examples in this category, but we have just pulled a few

examples at random from the list. We illustrate the graphs Γ(G) and Γ(G/Z) for

G = SmallGroup(72, 22) in Figures 1 and 2.

FIGURE 1. Γ(G) for G = SmallGroup(72,22).
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6 N. F. Beike et al. [6]

FIGURE 2. Γ(G/Z) for G = SmallGroup(72,22).

The groups that we have considered all satisfy the condition that Z(G/Z) = 1. It

makes sense to ask what can be said about groups that satisfy Z(G/Z) = 1 and do not

satisfy C ∩ Z = {1}. Notice that if G is such a group, then there will definitely exist

elements x, y ∈ G \ Z so that xZ ∼ yZ in Γ(G/Z) but x / y in Γ(G); so the results of

Lemma 2.2(2) and (3) are not guaranteed to hold. We will present some examples to

show that, in fact, conclusion (3) does not hold.

First, we claim that it is not hard to see that if G is a Frobenius group with Frobenius

kernel N, then Γ(G) has 1 + |N | connected components, and if G is a 2-Frobenius

group with normal subgroups K ≤ L, as in the definition above, then Γ(G) has 1 + |K|

connected components. (Although neither of these computations are difficult, the

second computation is done explicitly at the end of Section 3 of [5].) Also, Thompson’s

celebrated theorem shows that a Frobenius kernel is always nilpotent and it is known

that a Frobenius complement always has a nontrivial centre. Since one connected

component of Γ(G) contains the nonidentity elements of the Frobenius kernel and

the remaining connected components of Γ(G) correspond to the nonidentity elements

of each of the Frobenius complements when G is a Frobenius group, it follows that

each connected component has diameter at most 2.

When G is a 2-Frobenius group, there are |K| connected components in Γ(G) that

each consist of the nonidentity elements of a Frobenius complement of L. Since these

Frobenius complements are all cyclic, the corresponding connected components in

Γ(G) are complete graphs. The remaining nonidentity elements of G form a single

connected component in Γ(G). We know that every element of prime order in G \ L

centralises some nonidentity element in K (see [5, Lemma 3.8]). It follows that every

element outside of K has distance at most 2 to a nonidentity element of K, and since K

is nilpotent, we deduce that this remaining connected component of Γ(G) has diameter
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at most 6. (We would not be surprised if one could actually get a tighter bound for the

diameter of this component.)

Take P to be an extra special group of order p3 and exponent p for an odd prime

p. Let q be a prime divisor of p − 1. It is well known that P has an automorphism σ

of order q that centralises Z(P). Let C = 〈σ〉 so that C acts on P via automorphisms,

and let G be the resulting semidirect product. Observe that Z(P) = Z and G/Z is a

Frobenius group of order p2q. Since Z = C(P) ⊆ C(G), we do not have C ∩ Z = {1}.

We see that Γ(G/Z) is disconnected and has 1 + p2 connected components. It follows

that Γ(G) is disconnected. It is not difficult to see that the p2 connected components of

Γ(G/Z) that correspond to the Frobenius complements in G/Z will correspond to p2

connected components in Γ(G).

On the other hand, since Z(P) = Z(G), we see that the remaining connected

component of Γ(G/Z) consists of the nontrivial cosets in P/Z(P). In the graph of Γ(G),

the elements in P \ Z will have the same connected components as the graph Γ(P). It is

not difficult to see that every noncentral element of P has a centraliser that is abelian of

order p2. This implies that P is what is sometimes called a CA-group in the literature.

In particular, it is not difficult to see that the elements in P \ Z split into p + 1 different

connected components each having p2 − p elements. In particular, Γ(G) has 1 + p + p2

different connected components. This shows that the correspondence in Lemma 2.2(3)

does not hold when we do not have C ∩ Z = {1}.

We next present GL2(3). In this case, G/Z � S4 is a 2-Frobenius group so that

Γ(G/Z) has four connected components that are complete graphs and one connected

component that has diameter 3. On the other hand, Γ(G) has 13 connected components

that are all complete graphs. We include these graphs as Figures 3 and 4.

FIGURE 3. Γ(G) for G = GL2(3).
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FIGURE 4. Γ(G/Z) for G = GL2(3).

The last examples we present are examples where Γ(G) and Γ(G/Z) are both

connected and the diameters are different. The groups are SmallGroups (400,125),

(400,126) and (400,127). In all three cases, we have that Γ(G) has diameter 5 and

Γ(G/Z) has diameter 3.
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