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Abstract

Supermassive black hole binaries are likely to accrete interstellar gas through a circumbinary disk. Shortly before
merger, the inner portions of this circumbinary disk are subject to general relativistic effects. To study this regime,
we approximate the spacetime metric of close orbiting black holes by superimposing two boosted Kerr–Schild
terms. After demonstrating the quality of this approximation, we carry out very long-term general relativistic
magnetohydrodynamic simulations of the circumbinary disk. We consider black holes with spin dimensionless
parameters of magnitude 0.9, in one simulation parallel to the orbital angular momentum of the binary, but in
another anti-parallel. These are contrasted with spinless simulations. We find that, for a fixed surface mass density
in the inner circumbinary disk, aligned spins of this magnitude approximately reduce the mass accretion rate by
14% and counter-aligned spins increase it by 45%, leaving many other disk properties unchanged.

Unified Astronomy Thesaurus concepts: Accretion (14); Supermassive black holes (1663); Rotating black holes
(1406); Magnetohydrodynamical simulations (1966)

1. Introduction

The existence of supermassive binary black holes (SMBBH)

is a natural prediction of the current hierarchical models of
galaxy formation (Merritt & Milosavljević 2005). After two
galaxies merge, there are reasons to think the orbit of the newly
formed binary will shrink to a sub-parsec scale by dynamical
friction and interaction with surrounding gas (Begelman et al.
1980; Escala et al. 2004, 2005; Merritt 2004, 2006; Dotti et al.
2007, 2009b; Mayer et al. 2007; Shi et al. 2012; Sesana &
Khan 2015; Mirza et al. 2017; Khan et al. 2019; Tiede et al.
2020). From then on, the emission of gravitational waves
becomes an efficient mechanism for energy and angular
momentum extraction until coalescence (Pretorius 2005;
Baker et al. 2006; Campanelli et al. 2006). This emission of
gravitational waves makes SMBBHs the primary targets in the
mHZ frequency window by the future Laser Interferometer
Space Antenna (LISA, Amaro-Seoane et al. 2017) and by
pulsar timing techniques in the nHz range (Babak et al. 2016;
Reardon et al. 2016; Alam et al. 2021).

Unlike stellar-mass binary black hole systems, the environ-
ment of SMBBHs might be rich in gas (Barnes &
Hernquist 1992, 1996; Mihos & Hernquist 1996; Mayer et al.
2007; Dotti et al. 2012; Mayer 2013; Derdzinski et al. 2019),
allowing the system to emit electromagnetic (EM) radiation.
Many signatures have been proposed as ways to hunt for
SMBBHs in the EM spectrum: periodic light curves in active
galactic nuclei (AGNs; Valtonen et al. 2006; Graham et al.
2015a, 2015b; Liu et al. 2019; Saade et al. 2020, interrupted
jet activity (Schoenmakers et al. 2000; Liu et al. 2003), traces
of jet precession or “spin-flips” in X-shaped radio galaxies
(Merritt & Ekers 2002), dual compact radio cores (Rodriguez
et al. 2006), shifts in the profiles of broad emission lines

(Bogdanović et al. 2009; Dotti et al. 2009a), X-ray emission

from streams striking the accretion disks around the individual

black holes or a “notch” in the optical/IR spectrum (Roedig

et al. 2014; Krolik et al. 2019). However, it is not at all clear

whether any of these can be truly expected. Numerical

simulations are key guides to this search because they may

unveil unique dynamics and radiative properties.
Matter flows toward these systems through a circumbinary

disk because interstellar gas at the center of merged galaxies is

expected to have far too much angular momentum to approach

the binary directly (Springel et al. 2005; Chapon et al. 2013).

Circumbinary disks differ in many respects from accretion

disks around single black holes (BHs), especially for mass-

ratios close to unity. The most striking differences originate in

the strong gravitational torques that the orbiting BHs exert on

the surrounding matter. Early one-dimensional work suggested

that these torques would prevent any gas from falling toward

the binary (Lin & Papaloizou 1979; Pringle 1991), but more

recent multi-dimensional simulations showed that most of the

externally supplied mass is accreted and an approximate inflow

equilibrium can be reached (see, for instance, Artymowicz &

Lubow 1996; MacFadyen & Milosavljević 2008; Noble et al.

2012; Shi et al. 2012; D’Orazio et al. 2013; Farris et al. 2014;

Shi & Krolik 2015; Zilhão et al. 2015; Miranda et al. 2016;

Rafikov 2016; Tang et al. 2017.
These simulations also showed that the circumbinary disk is

truncated at a distance ≈2b from the binary center-of-mass,

where b denotes the binary separation. Outside this truncation

radius, mass piles up, forming a local peak in the surface

density profile; inside this radius, the accretion flow onto the

binary is confined within two narrow streams traversing a low-
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density gap. Each of these streams is associated with one of the
black holes.

These streams are complex systems. A portion of their mass
receives enough angular momentum from the binary torques to
be flung back to the inner edge, transferring significant amounts
of angular momentum to the disk. Their impact can cause a
steady growth in an m= 1 mode of the azimuthal distribution
of matter at the inner edge, giving rise to an orbiting
overdensity at 2b< r< 4b that can be the dominant source
of matter for accretion onto the binary. This is the so-
called “lump.”

When the accretion streams enter the binary, each feeds
a small accretion disk surrounding one of the black holes;
the so-called mini-disks (see, for instance, Hayasaki et al.
2007; Farris et al. 2012, 2014; Gold et al. 2014; Bowen
et al. 2017, 2018, 2019; Moody et al. 2019; Muñoz et al.
2019, 2020). If the binary separation is more than a few tens of
M, where we use geometrical units and M is the mass of the
system, accretion of each mini-disk is slow because it is limited
by internal angular momentum transport. However, at smaller
binary separations, the ratio between the radius of each
minidisk’s outer edge and its ISCO shrinks to be only order
unity; in that situation, the need for angular momentum
transport diminishes, and their mass content becomes far more
time-variable (Bowen et al. 2017, 2018, 2019). Efforts toward
producing realistic spectra from these simulations have begun
(d’Ascoli et al. 2018).

The techniques used to achieve these results are highly
diverse, but a key feature of the system has remained elusive:
the spin of the BHs. In fact, most of these works assume
Newtonian gravity, while black hole spin is inherently
relativistic. Although some works evolved the full set of
Einstein Field Equations (EFE) for the metric of the spacetime
and matter fields (Bode et al. 2011; Farris et al. 2011;
Giacomazzo et al. 2012; Gold et al. 2014), they focused on
binaries close to merger (b� 10M), where the strong tidal
interactions and short inspiral timescale prevent the formation
of mini-disks. An intermediate strategy in modeling the
gravitational field has been to employ an approximate metric
for the background spacetime, still capturing the relativistic
nature of the system while being freed from the computational
load of integrating the EFE. For instance, Noble et al. (2012)
excised the inner region and used a Post-Newtonian (PN)

metric of order 2.5-PN to integrate the equations of general
relativistic magnetohydrodynamics (GRMHD) in the circum-
binary region. Bowen et al. (2017, 2018, 2019) used the global
approximate metric of Mundim et al. (2014) to explore the
relativistic dynamics of the mini-disks in non-spinning binaries.
The approach of Mundim et al. (2014) for building the
approximate spacetime can be generalized to spinning binaries
(Gallouin et al. 2012; Ireland et al. 2016), but the analytical
metric becomes too complex and computationally expensive
for GRMHD simulations.

In this work, we perform the first simulations of this system
including spin. To do so, we construct a new approximate
metric for the spacetime of a pair of spinning black holes by
linearly superimposing two individual BHs in the Kerr–Schild
gauge. This new metric, which we call Superposed Kerr–Schild
(SKS), presents many advantages over our previous approach.
It is well-behaved in every region of spacetime, it is easy to
implement, it is computationally efficient, and it permits easy
inclusion of spin. Using this approximate spacetime, we have

been able to conduct lengthy GRMHD simulations of
circumbinary accretion onto a SMBBH whose black holes spin.
Our work is organized as follows. In Section 2 we introduce

the Kerr–Schild gauge and construct the SKS metric for the
BBH spacetime. In Section 3 we analyze the validity of the
SKS metric as a solution of EFE in vacuum. Then, in Section 4,
we describe the configurations of our GRMHD simulations of
circumbinary disks around spinning binaries. Section 5 is
devoted to our main results on the effects of the spins on the
properties of the evolved circumbinary disks. Finally, in
Section 6, we summarize our main conclusions. Throughout
this paper, Latin indices denote spatial indices, running from 1
to 3; Greek indices denote spacetime indices, running from 0 to
3 (0 is the time coordinate); and the Einstein summation
convention is used. We work on geometrical units where
G= c= 1, and the total mass of the binary M is normalized to
unity.

2. Spacetime Construction

2.1. Kerr–Schild Form for Single Black Holes

The Kerr–Schild form of the metric for the spacetime of a
single, rotating, black hole is (see the republication Kerr &
Schild 2009)

h= +mn mn m ng l l2 , 1( )

where, in Kerr–Schild Cartesian coordinates x
α
= (t, x, y, z),

ημν= diag(− 1, 1, 1, 1), lμ denotes a null vector with respect to

both metrics gμ νlμlν= ημ νlμlν= 0, and  is a scalar function

of coordinates. These read:

=
+
+

-
+
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4
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r = + +x y z , 52 2 2 2 ( )

q =
z
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cos , 6

KS

( )

being M the Arnowitt–Deser–Misner (ADM) mass of the black

hole, and a its specific angular momentum.
Kerr–Schild coordinates are widely used for their computa-

tional advantages. The coordinates xα are horizon-penetrating,
and singular regions are contained within the event horizon.
This allows the excision of singularities from the computational
domain while keeping the physics at the exterior of the black
hole unaffected. Furthermore, the Kerr–Schild form is invariant
under a Lorentz-boost transformation:

= La a
b
bx x , 7¯ ( )

= La a
b
b- x x , 81¯ ( ¯ ) ([ ] ¯ ) ( )

= L Lm
a n

m n
a
b
b-l x l x , 91¯ ( ¯ ) ([ ] ¯ ) ( )

where Lab are the components of the usual Lorentz matrix for

uniform velocity v
i. The resulting metric represents the

spacetime of a moving, rotating, black hole.
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The invariance of the Kerr–Schild form under boosts is
useful for approximating the spacetime of multiple moving
black holes by linearly superposing terms of the form

m n l l2 n n n( ) ( ) ( ) to the same asymptotic background ημν, where
n= 1, 2, K accounts for each black hole, with mass M( n) and
specific angular momentum a( n).

2.2. SKS as Initial Data for Black Hole Binaries

As mentioned in Section 1, our approach for evolving the
spacetime of spinning BBHs is to construct an approximate
metric based on the superposition of two Kerr–Schild black
holes. In this subsection, we briefly review how an equivalent
superposition has been used for setting initial data (ID) in
Numerical Relativity simulations, i.e., simulations that evolve
EFE for the spacetime metric (see Duez & Zlochower 2018, for
a review). Indeed, in the context of Numerical Relativity, one
needs a valid set of ID that solves the constraints of EFE at
some Cauchy surface. The standard case, where one solves the
initial metric for a given distribution of matter, presents the
problem of having to determine 12 degrees of freedom from
just 4 equations Cook (2000). Some techniques have been
proposed for fixing free degrees of freedom in advance, while
simplifying the constraint equations.

For instance, the conformal-transverse-traceless (CTT)

decomposition (York 1971; Bowen & York 1980) asks for a
conformally related spatial metric gij˜ , and the trace and

conformal traceless part of the extrinsic curvature, before
solving the remaining 4 degrees of freedom, contained in the
conformal factor ψ, and potential functions W i. This technique
is particularly convenient for conformally flat spacetimes,
where the resulting equations simplify significantly, but BBH
spacetimes are not conformally flat (Damour et al. 2000) and
this technique possesses some limitations. For instance, it is not
possible to construct ID for BBHs with spins larger than ∼0.93
from a conformally flat approach (Dain et al. 2002; Lousto
et al. 2012).

An alternative prescription for the conformal metric gij˜ was

introduced by Matzner et al. (1998), based on the linear
superposition of two boosted Kerr–Schild black holes:

g d= + + l l l l2 2 . 10ij ij i j i j
1 1 1 2 2 2

˜ ¯ ¯ ¯ ¯ ¯ ¯ ( )
( ) ( ) ( ) ( ) ( ) ( )

Using this approach, Marronetti et al. (2000) and Marronetti &

Matzner (2000) solved the resulting constraint equations for ψ

and W i and found that the solution was in good agreement with

the conformal ansatz (10), even for close separations (∼10M).

Additionally, Bonning et al. (2003) supported this claim, and

demonstrated that this proposal is well suited for capturing the

physics of the BBH inspiral as it contains the right Newtonian

binding energy for wide separations (b> 15M). More recently,

Lovelace et al. (2008, 2012), Scheel et al. (2015), Healy et al.

(2016), Ruchlin et al. (2017), Zlochower et al. (2017) used the

superposition of conformally Kerr–Schild black holes to

develop new ID that can be used to evolve BBH with spins

as high as 0.994. We conclude that, although some junk

gravitational radiation might be present (Pfeiffer et al. 2002),

the ansatz (10) approximates the spacetime of widely separated

BHs at a given time.

2.3. Time-dependent SKS for Binary Black Hole Evolution

Motivated by the success of the superimposed
prescription (10) as ID, we model the four-dimensional space-
time of a BBH system with a superimposition of two boosted
Kerr–Schild black holes, updating the position and velocity of
each black hole for a given trajectory. We call this metric SKS
and reads:

h= + +mn mn m n m n g l l l l2 2 , 11
1 1 1 2 2 2ˆ ˆ ˆ ˆ ˆ ˆ ( )

( ) ( ) ( ) ( ) ( ) ( )

where

= La ax x , 12n n
circˆ ( ) ( )( ) ( )

= La a- x x , 13
n n n n

circ

1ˆ ( ˆ ) [ ( ˆ )] ( )
( ) ( ) ( ) ( )

= L Lm
a n

m n
a-

l x l x . 14
n n n n n

circ

1ˆ ( ˆ ) [ ( ˆ )] ( )
( ) ( ) ( ) ( ) ( )

We apply standard Lorentz transformations Λ(n) to vector fields

l( n), so we keep an inertial frame ημν at infinity, but we apply a

nonlinear transformation L n
circ
( ) to coordinates in order to force

the BHs to move on the desired trajectory. We call this last

transformation circular boost and we introduce it below.
Each black hole is boosted with a different velocity v

( n) i,
updated as a function of time to be the tangential velocity of a
given orbit. In a first approximation, we consider equal-mass
black holes, and Keplerian circular trajectories in the x–y plane,
with separation b:

f f= = =x
b

y
b

z
2
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2
sin , 0, 15K
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1

K
1( ) ( ) ( )( ) ( ) ( )
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b

y
b

z
2
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2
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2
K
1

K
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+M M

b
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The time-dependent velocities are derived by =v dx dtn i n i
K

( ) ( ) .

The nonlinear transformation L n
circ
( ) is constructed as follows:

A standard boost of coordinates Λ(n) results on the BH moving
on a straight line, with uniform velocity v i. This is encoded on
time-dependent terms of the form v it in the transformation.
Here, we replace such terms with the trajectories
x y z, ,n n n
K K K( )( ) ( ) ( ) given by Equations (15) and (16). The

transformation reads:
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where = vv vn i n i n∣ ∣( ) ( ) ( ) are the normalized components of the

boost velocities. The transformation L n
circ
( ) is nonlinear in the

sense that it cannot be written as the linear product of a matrix
and the coordinates mx̂ . However, its expansion for short
intervals of time reduces to a standard boost L -n 1( ) to the rest
frame of the BH, followed by a solid translation to the BH
center.

3. Spacetime Validation

The SKS metric represents an approximate vacuum solution
of EFE. Therefore, it should approximately satisfy Rμν= 0,
where Rμν is the Ricci tensor. To quantify deviations from a
vacuum solution, following Mundim et al. (2014), we calculate
and analyze the Ricci scalar R R≔ μνg

μ ν for the SKS metric.
Even though the metric is analytical, we compute the

required derivatives numerically. We include the SKS
metric (11) in a stand-alone code that builds a uniform, three-
dimensional, Cartesian grid, and computes the required first
and second-order derivatives by fourth-order finite differences.
We evaluate the metric components at the corners of the
Cartesian cells since these positions are shared by different
resolutions and this is useful for later convergence analysis.

In Figure 1, we plot the resulting values of the Ricci scalar R
at t= 0 in the plane of the BHs, for different spatial scales, and
spin values. We study the case of equal-mass BHs
M(1,2)

= 0.5M, separated by b= 20M. The top row shows the
results for a grid centered at the center of mass of the system.
For coordinates (x, y, z) the domain dimensions are (160, 160,
40)M, and there are 320× 320× 80 cells. In the left, middle,
and right columns, the BH spins are− 0.9M(1,2), 0 and
0.9M(1,2), respectively. Within the circumbinary region, the
violations of R= 0 are comparable to those of Mundim et al.
(2014), and this result is independent of spin for the three cases
we explored.

In the middle row of Figure 1, we focus on the orbital region
by reducing the grid dimensions to (40, 40, 10)M while
keeping the same number of cells. In the domain of the binary
(r< b/2), particularly between the BHs, the quality of the
spacetime is not as good as in the circumbinary region, but the
values of R are still comparable to those of Mundim et al.
(2014). The bottom row shows the Ricci scalar R for grid
lengths of (5, 5, 1.25)M, centered on one of the BHs, while
keeping the same number of cells. We notice the metric
captures the singularities of spinning BHs.

Convergence testing proves that the numerical calculation of
the Ricci scalar R converges to the analytical value. To that
end, we recalculate the Ricci scalar for the region of the middle
row of Figure 1 with successively coarser resolutions:
160× 160× 40 and 80× 80× 20. Then we calculate the local
convergence factor,

=
-
-

D D

D D
p

R R

R R

1

log 2
log , 19R

0 1

1 2

( )

where D DR R,
0 1

and DR 2
are, respectively, the values of R for

the coarsest, middle, and finest resolutions, computed at the

corners of the coarsest grid cells because these positions are

shared by the three resolutions. Figure 2 shows these values of

pR in the BH orbital plane; throughout this region pR≈ 4, as

expected from a fourth-order finite differencing scheme. The

apparent non-convergence in the regions close to the BHs is

because the coarsest grid fails to resolve such high curvatures.

In this section we analyzed the Ricci scalar R for the SKS
metric and find it is approximately zero, as expected for a
vacuum solution of EFE. The accuracy of this four-dimensional
scalar allows us to use the SKS metric as a time-dependent
geometry for the background spacetime in GRMHD simula-
tions. Though not included in this article, we also checked for
the Hamiltonian and momentum constraints, and found them to
be satisfied to the same degree of accuracy as the Ricci scalar
R. As a further validation test, in Appendix B we prove the
expansion of this metric agrees with the lowest PN expansion
of the metric of spinning binaries.

4. Circumbinary Disk Models

As a first application of the SKS metric (11), we build and
evolve a torus of gas in the circumbinary region. We evolve the
system integrating the GRMHD equations of motion (EoM)

with the well-tested code HARM3D (Gammie et al. 2003; Noble
et al. 2006, 2009). We neglect the contribution of matter fields
to spacetime curvature and use the SKS metric as the
background geometry. Since we focus on the features of the
circumbinary disk, we excise a spherical region at the center of
the domain that contains the BHs.

4.1. GRMHD Evolution

The evolution of the circumbinary disk follows from the
integration of the GRMHD EoM on the background SKS
metric. These equations are the continuity equation, the local
conservation of energy and momentum, and Maxwell’s
equations (see Noble et al. 2009). In flux-conservative form,
these read:

¶ = -¶ +U P F S P , 20t i
i( ) ( ) ( )

where P is the vector of primitive variables, U the vector of

conserved variables, F the fluxes, and S the sources. They read:

r=P P u B, , , , 21k k T[ ˜ ] ( )

r r= - +U P g u T u T B, , , , 22t t
t

t t
j

k T( ) [ ] ( )

r r= - + -F P g u T u T b u b u, , , , 23i i i
t

i i
j

i k k i T( ) [ ( )] ( )

= - G - G -k
l
l
k

k
l
l
k S P g T T0, , , 0 , 24t t j j

k T( ) [ ] ( )

where g denotes the determinant of the SKS metric, ρ is the rest

mass density, uμ is the fluid four-velocity, and mũ is the fluid

four-velocity as measured by a zero angular momentum

observer (ZAMO). The magnetic field is represented by

p=B F 4k kt* , where
*

Fμ ν is the dual of the Maxwell tensor,

d= +m
n
m m

n
nb u u B( ) is the projection of the magnetic field into

the fluid’s comoving frame. In addition, Glmn is the affine

connection for the SKS metric and m
nT is the sum of the stress-

energy tensor of a perfect fluid and the EM stress-energy

tensor, defined as:

r= + + + -mn m n mn m nT h p u u p p g b b2 , 25m m( ) ( ) ( )

where p denotes the pressure of the fluid, h= 1+ ò+ p/ρ the

specific enthalpy, ò the specific internal energy, and

pm= bμbμ/2 the magnetic pressure. The internal energy is

u= ρò, and we assume an adiabatic Γ-law equation of state:

P= (Γ− 1)u, with Γ= 5/3, corresponding to a non-relativistic

fluid without internal degrees of freedom.

4
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In accretion disks, dissipation converts magnetic and kinetic

turbulence into heat. To regulate the consequent growth in the

temperature, we follow Noble et al. (2009) and include a sink

term m in the conservation Equations (20). This term portrays

the effect of optically thin radiative cooling. For isotropic

emission in the fluid’s frame, the sink term takes the form

=n n  ucool , where cool is the cooling function, defined as

the rate of radiated energy per unit of proper time. We set cool

Figure 1. Ricci scalar at the equator for the SKS metric for anti-aligned spins (left), non-spinning (center), and aligned spins (right), at different scales (top, center,

bottom). Solid-gray circles estimate the BHs horizons at = + -r M M M a21,2 2 1,2 1,2 1,2 2 1,2 2( )( ) ( ) ( ) ( ) ( ) , solid-black circles estimate the BHs singular regions at

=r a1,2 1,2∣ ∣( ) ( ) , where r( n) is the radial distance from the nth BH. These estimations follow from known singularities and horizons for a single BH in Cartesian-KS
coordinates. Dashed circles represent the limit of the excised region of the domain of our GRMHD simulations, at r = 15M. The Ricci scalar is calculated through 4th-
order finite differencing of the SKS metric (11), in Cartesian-KS coordinates, with 320 × 320 × 80 cells, for grid lengths of (160, 160, 40) (top), (40, 40, 10) (center),
and (5, 5, 1.25) (bottom), respectively, for x, y, z.

5
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to follow the local increase in entropy S, cooling the plasma to
the initial entropy S0 (Noble et al. 2012):

r
=

D
+

D


t

S

S

S

S
, 26cool

cool 0 0

1 2

⎜ ⎟
⎛
⎝

⎞
⎠

( )

where ΔS= S− S0, S= p/ρΓ, S0= 0.01, and tcool=

2π(r/M)
3/2. We do not cool unbound material, defined as the

portion of the plasma where r r+ < -h p u2 tm( ) . By control-

ling the temperature, the cooling function stabilizes the aspect

ratio H/r of the disk (see Equation (A3)); at the same time, it

also estimates the luminosity. Noble et al. (2012) did not claim

to include the square root in Equation (26), but this is a typo in

the manuscript and the square root was actually included in the

computational code (personal communication).
We integrate the conservation Equations (20) with high-

resolution shock-capturing schemes implemented in HARM3D

(Gammie et al. 2003; Noble et al. 2006, 2009). After reconstruction
of the primitive variables to the cell interfaces through a piecewise
parabolic method, we apply the Lax-Friedrichs formula to compute
the local fluxes (Gammie et al. 2003). We use fourth-order
finite differences for spatial derivatives, and the method of lines for
time integration with a Runge–Kutta method of second-order. If
the updates of ρ or u go below the corresponding atmosphere
values ρatm= 2× 10−10(r/M)

−3/2, uatm= 2× 10−12(r/M)
−5/2

they are reset to the latter. The primitive variables are recovered
from the conserved variables with the scheme described in Noble
et al. (2006). We use the constrained transport (FluxCT) algorithm
(Toth 2000) to maintain the solenoidal constraint,¶ - =gB 0i

i( ) .
For more details on the numerical implementation, see Noble et al.
(2009).

4.2. Circumbinary Disk Initialization

As initial data for the matter fields, we construct a torus in
nearly hydrostatic equilibrium at the circumbinary region. Fish-
bone & Moncrief (1976) and Chakrabarti (1985) presented this
solution to the relativistic Euler’s equations for the case of
stationary and axisymmetric spacetimes in Boyer–Lindquist (BL)

coordinates, where the only non-zero off-diagonal components
of the metric are fgt

BL and fg t
BL. To use the same technique and

build the torus on the stationary and axisymmetric spacetime, we

transform the SKS metric (11) to BL-like coordinates and take a
f-average of the metric as we explain below.
First, we transform the whole SKS metric (11) from Cartesian-

KS to BL-like coordinates using the standard transformations for a
single, non-spinning black hole with mass M=M(1)

+M(2). The
transformation is given by:

ò= - +
-

t u r dr
r

r M2
, 27BL BL BL

BL

BL

( )

q f=x r sin cos , 28KS BL BL BL ( )

q f=y r sin sin , 29KS BL BL BL ( )

q=z r cos 30KS BL BL ( )

The metric transforms in the usual way:

=mn

a

m

b

n abg
dx

dx

dx

dx
g . 31BL KS

BL

KS

BL

KS ( )

The SKS spacetime has a helical Killing symmetry through the
Killing vector = ¶ + W ¶m m

f
m t bin( ) ( ) , where Ωbin is the binary

orbital frequency, and the time average of the metric coincides
with the corresponding azimuthal average. Then, following the
procedure of Noble et al. (2012), we construct a stationary and
axisymmetric spacetime from the azimuthal average:

ò

ò

f

f
=mn

mn ff

ff

g
g g d

g d
. 32BL

BL BL

BL
˜ ( )

We then follow the steps of Noble et al. (2012) for the
construction of the torus over the metric (32). The free
parameters of this model are the radial distance to the disk inner
edge rin, the radial distance to the maximum of pressure rp, and
the specific angular momentum of the fluid at the inner edge lin.
From such a procedure, we obtain the hydrodynamic properties
of the fluid, including its four-velocity in BL coordinates
muBL. Transforming the four-velocity to Cartesian-KS via

=m a
m

au u
dx

dxKS BL
KS

BL

, we obtain the hydrodynamical ID for the torus

in a coordinate system consistent with the SKS metric (11). We
include random perturbations of the internal energy u= ρò,
with amplitude 10−2, to precipitate turbulence and accretion.
We initialize the magnetic field in the interior of the disk as a

set of dipolar loops that follow the lines of constant density of
the fluid. The corresponding vector potential Aμ in spherical
coordinates (t, r, θ, f) has one non-vanishing component:

r r= -fA A max , 0 , 330 cut[( ) ] ( )

where r r= 0.25cut max so the initial magnetic field is entirely

confined within the torus and the field lines wrap around the

region of maximum density rmax. The constant A0 is chosen

such that the initial ratio of the fluid integrated pressure to the

magnetic integrated pressure satisfies:

ò
ò

-

-
~

p g d x

p g d x
100. 34

3

m
3

( )

In this way, the initial equilibrium between thermal and

magnetic stresses is comparable for different simulations. In the

next subsection, we explain how these spherical coordinates

(t, r, θ, f) relate to the Cartesian-KS. Noble et al. (2012)

claimed that the ratio of the fluid’s total internal energy to the

total magnetic energy was initialized to 100, but this is a typo

Figure 2. Convergence factor pR (Equation (19)) in linear colorscale, measured
in the BH orbital plane, as determined from resolutions: Δ1x= 0.5, Δ2x = 0.25,
Δ3x = 0.125.
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in the manuscript and actually the condition (34) was demand

(personal communication).
We fill the region outside the torus with an atmosphere, or

numerical vacuum, modeled by a tenuous, non-magnetized,
static fluid in approximate hydrostatic equilibrium: ρatm= 2×
10−10

(r/M)
−3/2, uatm= 2× 10−12

(r/M)
−5/2, and =u 0i

atm .
The last step of the initialization involves the transformation

of the SKS metric (11), the initial four-velocity muKS, and the
initial four-vector potential Aμ, to the numerical coordinates
used for the integration of the GRMHD EoM (see the next
subsection).

4.3. Numerical Grid, Boundary Conditions, and Simulation
Parameters

Numerical errors in conservation of momentum are smallest
in the direction of coordinate lines; consequently, given the
approximate axisymmetry of the system, the Cartesian-KS
basis would be a poor choice for the global coordinates of the
simulation. We move to a spherical basis through a standard
spatial transformation:

=t t, 35( )

q f=x r sin cos , 36KS ( )

q f=y r sin sin , 37KS ( )

q=z r cos . 38KS ( )

These are the physical coordinates in our simulation.10

For the actual integration of the EoM we move to a
numerical coordinate system x x x x, , ,0 1 2 3( )( ) ( ) ( ) ( ) that relates to
the physical one by:

=t x , 390 ( )( )

=r x Me , 40x1 1

( ) ( )( ) ( )

q
p

x

x
q
p

= + - - +

+ - -

x x

x

2
1 1 2 1

2
2 1 41

c n

2 2

2⎛
⎝

⎞
⎠

⎤
⎦

( ) [ ( )( )

( ) ( )

( ) ( )

( )

f =x x , 423 3( ) ( )( ) ( )

where n= 9, ξ= 0.87, and θc= 0.2. We construct a uniform grid

of x x x, ,1 2 3( )( ) ( ) ( ) where the center of the i, j, k-cell has

coordinates x x x, ,i j k
1 2 3( )( ) ( ) ( ) , with = + + Dx x i x1 2i

n1
b
1 ( )( ) ( ) ( ),

and equivalently for xj
2( ) and xk

3( ). The grid, then, is determined by

the parameters: =x r Mlnb
1

min( )( ) , D =x r r Nln1
max min

1( )( ) ( ),

=r M15min , =r M300max , N(1)
= 300, =x 0b

2( ) , Δx(2)= 1/N(2),

N(2)
= 160, =x 0b

3( ) , Δx(3)= 2π/N(3), and N(3)
= 400. A uniform

grid of these numerical coordinates implies better resolution at

smaller physical radii and at the equatorial plane of the system.

Noble et al. (2012) showed that, in these conditions, this grid

resolves the magnetorotational instability (MRI) (Velikhov 1959;

Chandrasekhar 1960; Balbus & Hawley 1991) and spiral density

waves generated by the binary torques.11 We evolve this system

from t= 0 to t= 1.5× 105M, using a dynamical step D =t
Dt0.45 min, whereDtmin is the shortest cell crossing time of matter

fields over the domain at each time.
Boundary conditions are imposed through zeroth-order

extrapolation of primitive variables into ghost zones. Specifi-
cally, outflow boundary conditions are applied on x(1) and
x(2)-boundaries, while periodic boundary conditions are used
on x(3)-boundaries. We force u r

=0 if it points into the domain
at the r-boundaries. This diode-type condition was found to be
unstable in some circumstances involving low-density regions
by Noble et al. (2012) but successfully used in Newtonian
simulations by MacFadyen & Milosavljević (2008), Shi et al.
(2012), D’Orazio et al. (2013), among others.
We perform a set of five runs, denoted: b20-spins,

b20_v0, b20_v1, b20_v2, b20+spins. In every run, the
BHs have equal masses: M(1)

=M(2)
= 0.5, so the total mass of

the system is M= 1; the distance between them is fixed to
b= 20M. The disk’s initial inner edge is at rin= 60M, and the
initial pressure maximum is at rp= 100M.
The spins of the BHs in b20-spins are a(1)

= a(2)
=

− 0.9M(1,2), i.e., opposite to the angular momentum of the
binary. The spins in run b20+spins have the same
magnitude but are aligned with the orbital angular momentum.
Runs b20_v0, b20_v1, b20_v2 have no spin. These three
runs differ from one another only in the random initial
perturbations of the internal energy; the goal of these runs is to
calibrate the size of intrinsic fluctuations due to turbulence so
that we can tell whether the spin runs differ significantly. In
Table 1 we gather the relevant properties of the binaries and
initial disks of our runs.
The specific angular momentum of the fluid at the inner edge

of the disk lin is set so the ratio H/r equals 0.1 at rp. This results
in lin= 8.62M, 8.60M, 8.60M, 8.60M and 8.57M for b20-

spins, b20_v0, b20_v1, b20_v2 and b20+spins,
respectively (see Table 1).

5. Circumbinary Disk Dynamics

To globally characterize the dynamics of these simulations, in
Figure 3 we plot the accretion rate M as a function of time (see
Equation (A4)) at the innermost radial boundary of the domain.
We distinguish three dynamical stages in this plot: MRI growth
(t= 0–30× 103M), in which the MRI grows to its saturated
amplitude; subsequent relaxation (t= 30–75× 103M), in which
the accretion rate progressively diminishes over time; and a
steady state (t= 75–150× 103M). The first is a transient period,
and will not be included in our analysis. The second stage is still
affected by the initial transient and will not be used for our main
conclusions. We will focus, instead, on the steady state epoch.
We organize our results in three subsections. First, we focus

on the properties of the plasma that are sensitive to the spins;
these properties are mostly related to the cavity and the
accretion streams. Then, in the second subsection, we interpret
these spin-sensitive results in terms of the gravitational
potential of the linearized SKS metric. Finally, in the third
subsection, we describe the bulk properties of the circumbinary
disk, all of them insensitive to the spin of the BHs.
Because MHD turbulence is a fundamental property of

accretion disks, all our results are subject to intrinsic variance.
This fact complicates the identification of subtle physical
processes such as the effect of the spins on the circumbinary
disk. To quantify this variance, we use the subset of runs
b20_v0, b20_v1, and b20_v2. The parameters of these three

10
These coordinates are not the usual spherical Kerr–Schild coordinates used

in the literature of accretion disks (see, for instance, Gammie et al. 2003), but
they result from a standard spherical transformation of the Cartesian Kerr–
Schild coordinates usually used in the literature of Numerical Relativity (see,
for instance, Matzner et al. 1998).
11

There is a small difference between our grid and the one used by Noble et al.
(2012). The latter set =r M260max , but we extend it to =r M300max . Our grid
still satisfies the physical resolution requirements.
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runs are identical and their only differences arise from
stochastic processes triggered by random initial perturbations
in the internal energy of the fluid. Specifically, given a physical
quantity i with i= 0, 1, 2 for runs b20_v0, b20_v1, and
b20_v2, we will express the result as sá ñ = a 0 , where

åá ñ ==
=

 
1

3
43a

i

i0

0

2

( )

is the mean of i over the non-spinning runs, and

ås =
á ñ -

-=

= 


3 1
44

i

a i

0

2
0

2( )
( )

is a coarse measure of the corresponding standard deviation. To

determine whether a run with different parameters differs

significantly from the three non-spinning runs, we measure the

deviation Z of its prediction ¢ , in units of standard deviations

by

s
=

¢ - á ñ = 


Z . 45

a 0
( )

Following Noble et al. (2012), many of our results will be
expressed in units of Σ0, the initial maximum value of the
surface density Σ(r, f) (see Equation (A1)). These values are
Σ0= 0.1070M−1, 0.1066M−1, 0.1066M−1, 0.1066M−1 and
0.1063M−1 for runs b20-spins, b20_v0, b20_v1,
b20_v2 and b20+spins, respectively (see Table 1).

5.1. Spin-Sensitive Results

The spin of a BH has important effects on matter orbiting
near the horizon, but these effects decline rapidly with radius;
frame-dragging terms in the effective gravitational potential for
spinning black holes are ∝r−3

(see Appendix B). For this
reason, we do not expect the spin of the BHs will have a direct
impact on the bulk properties of the circumbinary disk, whose
inner edge lies at r≈ 50M. The accretion streams, on the
contrary, reach distances close enough to the black hole that
these effects may be relevant.
Since the accretion streams carry nearly all the matter accreted

by the binary, we begin by exploring the effect of the spins on
the accretion rate. For all three non-spinning cases, the time-
averaged accretion rate at the inner boundary during the steady

state period is (see Figure 3)  ´ S- Mb5.0 0.4 10 3
0( ) .

Strikingly, runs b20-spins and b20+spins deviate from
this mean value by +5.7 and −1.8 standard deviations,
respectively. In other words, the circumbinary accretion rate is
enhanced (reduced) by +45% (−14%) if the spin of the BHs are
anti-parallel (parallel) to the angular momentum of the binary.
As found in previous works with similar parameters (Noble

et al. 2012; Shi et al. 2012), a portion of the falling streams
receives enough angular momentum from the binary and is
flung back to the circumbinary disk, impacting the inner edge
and causing strong shocks whose dissipation contributes
significantly to the luminosity. Having found that the accretion
rate is sensitive to spin, we might therefore expect that the
luminosity is likewise. In particular, compared with non-
spinning runs, the stronger streams of b20-spins should

Table 1

Properties of the Binary System for our Runs, and the Initial Values of lin and Σ0

b [M] M
(1,2)

[M] Ωbin a
(1,2)

lin [M] Σ0 [M
−1

]

b20-spins 20 0.5 b−3/2
− 0.9M(1,2) 8.62 0.1070

b20_v0 20 0.5 b−3/2 0.0 8.60 0.1066

b20_v1 20 0.5 b
−3/2 0.0 8.60 0.1066

b20_v2 20 0.5 b−3/2 0.0 8.60 0.1066

b20+spins 20 0.5 b−3/2 0.9M(1,2) 8.57 0.1063

Note. In every case the BHs separation is fixed to b = 20M, they have equal masses M(1,2)
= 0.5M, and move in Keplerian orbits with Ωbin = b−3/2. We explore

different values for the spins of the BHs. Notice runs b20_v0, b20_v1 and b20_v2 have identical settings. They only differ on the random initial perturbations on

the internal energy u.

Figure 3. Accretion rate integrated at the innermost boundary of the grid, as a function of time. From this plot, we distinguish three dynamical stages: MRI growth

(t = 0–30 × 103 M), relaxation (t = 30–75 × 103 M), and steady state (t = 75–150 × 103 M).
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increase the total luminosity of the system, and the opposite
for the weaker streams of b20+spins. In Figure 4 we plot
 as a function of time for our runs. The average of 
during the steady state period of non-spinning runs was
(1.76± 0.07)× 10−3GMΣ0c

−2. The corresponding averages
for b20-spins and b20+spins depart from this mean
by+ 7.49 and −3.17 standard deviations, respectively, a very
significant effect. These differences correspond to a change
of +29% and −12% in the total luminosity of the system,
respectively, with respect to non-spinning runs.

Besides carrying the accretion flow and driving shocks that
contribute to the integrated luminosity, the streams also play an
important role in angular momentum transport. As they plunge
toward the binary, the streams are subjected to strong torques
by the binary. The portion of the stream flung back outward
then transfers this added angular momentum to the inner edge
of the circumbinary disk. As explained by Shi et al. (2012),

because the local angular momentum ò= -J j g dVt with

=m m
fj T should be constant in a time-steady disk, this

supplemental angular momentum is transferred to adjacent
layers by internal stresses.

To study the angular momentum budget of the circumbinary
disk, we unpack ∂r∂tJ into its several components. We refer the
reader to Appendix C of Noble et al. (2012) for the explicit
expansion (see also Farris et al. 2011). Five stresses contribute:
the gravitational stress TG, whose radial gradient produces
the gravitational torque Gmn n

mfT ; the Maxwell stress ¶ fMr
r ,

which is the EM part of fT ;r turbulent Reynold stresses

rd d¶ =f fR u ur
r r , resulting from local perturbations of the fluid

velocity; the advected Reynolds stress fA
r associated with the

mean velocities u r and uf; and the radiative stress f from the
radiative cooling function. Summed, these produce the local
torque

¶ ¶ = ¶ - - ¶
- ¶ - ¶

f f

f f

J T M

R A . 46

r t r r
r

r
r

r
r

G { } { }

{ } { } ( )

In Figure 5 we plot each term on the rhs of Equation (46) as
a function of r, averaged over the period t= 70–150× 103M.
The total angular momentum flux (black) is approximately

constant as a function of radius, as expected for a steady state
flow. In the cavity (i.e., r< 2b), there is a significant difference
between our non-spinning and spinning runs. The maximum of
the gravitational torque (blue) for non-spinning runs is
(2.011± 0.053)× 10−2MbΣ0, while b20-spins and b20

+spins differ by 7.11 and −2.40 standard deviations,
respectively. In other words, the stronger (weaker) streams
from b20-spins (b20+spins) increase (reduce) the
maximum of the gravitational torque density by 18% (−6%).
The Reynold stresses (green) are increased (reduced) accord-
ingly because once additional angular momentum is deposited
by gravitational torques, it must be carried away by fluid
motions.
Contrasts in accretion rate must also, through mass

conservation, affect the radial distribution of mass in the
system. To search for this effect, we contrast the surface
density of gas Σ(r, f) (see Equation (A1)) in the corotating
frame of the binary with the surface density in non-spinning
runs:

h f
f f

f
=
S S - áS S ñ

áS S ñS
=

=
r

r r

r
,

, ,

,
, 47

a

a
cor

cor 0 cor 0 0

cor 0 0

( )
( )[ ] ( )[ ]

( )[ ]
( )

where fcor= f−Ωbint, and the brackets [Σ0] denote that each

surface density is taken in units of their initial maximum Σ0. In

Figure 6 we plot the average of this residual over the steady

state period for b20-spins (left) and b20+spins (right),

and in Figure 7 we plot the averaged surface density in the

corotating frame of the binary for non-spinning runs, which is

the reference function for the latter residuals.
The residual ηΣ(r, fcor) is greatest inside the cavity, where

the spin effects should be largest. The sign of the effect is such
that the residual in the cavity is positive for b20-spins but
negative for b20+spins—and flips in the bulk of the
circumbinary disk (r> 4b). This is consistent with our results
on enhanced (reduced) circumbinary accretion. If, independent
of spin, the system is in approximate inflow equilibrium,
enhancement (or reduction) of the accretion rate implies that,
averaged over time, the cavity must contain more (or less) gas
mass for a fixed mass near the circumbinary disk’s inner edge.
In addition, the outer disk is drained a bit more when there is a
higher accretion rate at its inner edge when all the different
initial disk masses were the same.
Beyond the amount of matter and angular momentum that

the streams carry, the spin of the BHs may affect the streams’
trajectories. In Figure 8 (top) we plot the averaged surface
density during the steady state period, in the corotating frame
of the binary, evaluated at the radial inner boundary of the
domain rin, for spinning runs and the average of non-spinning
runs (b20_av). We notice two distinctive peaks at
fcor≈ 0.06π, 1.06π that we associate with the narrow streams
that fall toward each BH (see also Figure 7). At a first glance,
the curves for spinning and non-spinning runs look equivalent,
but the zoom-in plot, and the percent deviations (bottom), show
some interesting results. First, we notice the peaks for the
different runs are shifted in fcor, in ascending order b20-

spins, b20_av, b20+spins. Regarding the percent devia-
tions of spinning runs, we notice b20-spins finds local
maxima behind the peaks of the surface density, and local
minima ahead, and b20+spins present the opposite behavior.
In the next subsection, we explain these results from the
effective gravitational potential of spinning binaries.

Figure 4. Integrated luminosity  (see Equation (A6)) as a function of time for
three of our runs.
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Figure 6. Residuals of the surface density with respect to non-spinning runs for b20-spins (left) and b20+spins (right), averaged over the steady state period (see
Equation (47)).

Figure 7. Average of the surface density over the steady state period for non-
spinning runs, in the corotating frame of the binary (logarithmic scale). We
notice the piling-up of matter in the inner region 2b < r < 4b, the evacuated
inner cavity in r < 2b, and the falling streams toward each BH. This function is
the reference for the residuals in Figure 6.

Figure 8. Top: surface density, averaged during the steady state period, in the
corotating frame of the binary, and evaluated at the radial inner boundary of the
domain rin, for spinning runs and the average of non-spinning runs (b20_av).
Bottom: percent deviation of curves for spinning runs with respect to the non-
spinning average.

Figure 5. Shell-integrated torques as a function of r, averaged over the period t = 70–150 × 103 M. We distinguish the gravitational torques exerted by the binary
(blue/circle), Maxwell stresses (red/square), Reynolds or turbulent torques (green/down triangle), the density of advected angular momentum (gold/plus), radiative
losses (cyan/triangle up), and the net flux of angular momentum (black/diamond).
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5.2. Interpretation of Spin-sensitive Results

In Section 5.1 we found that the spin of the BHs in a binary
system has significant effects on the circumbinary accretion
and related quantities. In this subsection, we explain the causes
of these effects in simple physical terms.

In Appendix B, we analyze the EoM of particles orbiting
near spinning binaries. We find the spin of the BHs introduces
two effects to the lowest PN expansion of the gravitational
potential. First, the spin couples to the orbital velocity of the
BH, as seen from the second and fourth terms of Equation (B8).
Far from the source and averaging in f, however, this effect is
canceled for the case of identical BHs. The second effect
is frame-dragging, or twist of spacetime geodesics, as seen
in Equation (B15). Interestingly, this effect remains after
expanding for large radius r and averaging in f, and couples to
the orbital angular momentum of the fluid. In the following, we
explore how this term affects the process of stream formation
and accretion.

Shi & Krolik (2015) found that, in the phase-space of
positions and velocities of the orbiting fluid, the volume of
infalling trajectories from the inner edge of the circumbinary
disk is severely constrained. Gas with angular momentum close
to the circular orbit angular momentum at the inner-edge radius
falls in so slowly that the binary torques raise its angular
momentum and the gas is cast back out to the circumbinary
disk. Only gas with angular momentum at least ;15% less than
that of a circular orbit can fall in quickly enough to avoid
acquiring too much angular momentum. Such gas parcels must,
in addition, begin their fall from a specific angle relative to the
binary separation axis. The upper limit for the angular
momentum J of the fluid to be accreted is well approximated
by the condition Φeff(rin)� 0, where Φeff is the gravitational
effective potential of the binary, evaluated at the inner
boundary of the domain. As derived in Equation (B15):

F = - - + + +
M

r

b M

r

J

r

MJ

r
a

L1

16 2 3
2

4
. 48Eff

2

3

2

2 3
⎛
⎝

⎞
⎠

( )

The condition Φeff(rin)� 0 is equivalent to J� (6.54, 6.51,

6.48) for a= (− 0.9, 0, 0.9), respectively. In other words, spins

opposite (parallel) to the angular momentum of the binary

extend (reduce) the volume of infalling trajectories in the

phase-space of position and velocity of the orbiting fluid.

This fact explains the enhanced (reduced) accretion in the run

b20-spins (b20+spins).
In Figure 8 we noticed the accretion streams for b20-

spins (b20+spins) lie behind (ahead) in fcor with respect
to non-spinning runs. In other words, the gas swings in azimuth
by a smaller (larger) angle while traversing the cavity before
passing through the inner boundary. This is also consistent with
frame-dragging effects.

5.3. Spin-insensitive Results and Comparison with Previous
Works

In this subsection, we describe the properties of the
circumbinary disk that are not significantly affected by spins,
but the length of our simulations has revealed new aspects of
them, not seen in previous, shorter simulations.

In binaries with mass-ratio close to unity and low orbital
eccentricity, a remarkable m= 1 mode in the f-distribution of
matter develops in the radial range 2b< r< 4b; the so-called
lump. This lump arises as a result of phase-coherence in the

trajectory of matter that falls a short way but then is propelled
back out after the binary torques add to its angular momentum
(see Noble et al. 2012; Shi et al. 2012; D’Orazio et al. 2013;
Farris et al. 2014; Miranda et al. 2016; Tang et al. 2017). As we
will show, our longer simulations reveal that the dynamics of
the lump are predictable from the time of its formation, and its
orbit stabilizes after Δt∼ 40× 103M.
To characterize the amplitude of the lump, we calculate the

power of the Fourier modes m= 0 and m= 1 in the vertically
integrated density as a function of radius and time (see
Equation (A8), and Cuadra et al. 2009; Noble et al. 2021). We
denote these modes A0(t, r) and A1(t, r), respectively. In
Figure 9, we plot A1(t, r) for b20_v2 and, indeed, we notice
the growth and saturation of the lump at 2b< r< 4b.
To determine the time tlump when the lump forms, we integrate

Am(t, r) over the radial range 2b< r< 3b and define tlump as the
time when the ratio of this integral of A1(t, r) to the total surface
density (this integral of A0(t, r)) is larger than 0.2. To visualize the
different tlump for each run, in Figure 10 we plot the evolution of
the ratio of the m= 1 and m= 0 integrals for our runs. For non-
spinning runs, the lump forms at 36390, 64650, 47550M, resulting
in an average tlump= (5.0± 1.5)× 104M. In Figure 11 (top, right)
we plot the surface density Σ(r, f) (see Equation (A1)) at t= tlump
for b20_v0, where we notice the recently formed lump in the
positive y hemisphere. For runs b20-spins and b20+spins,
the lump forms at 50280M and 39690M, respectively, in
concordance with non-spinning values.
To characterize the orbital dynamics of the lump, we define

rlump(t) as the radial position of the maximum value of A1(t, r)
as a function of time (see Figure 9). We define Ωlump(t) in terms
of the time-derivative of the Fourier phase for the m= 1 mode
(see Equation (A11), and Noble et al. 2021). Lastly, we define
the eccentricity elump(t) in terms of the ratio between the lump’s

Figure 9. Power of m = 1 mode of the vertically integrated density, as function
of radii and time, for b20_v2. We notice the growth and saturation of the lump
at 2b < r < 4b. The dashed line represents the moment of lump formation
tlump.
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radial and azimuthal velocity components (see Equation (A5)

and Shi et al. 2012). In Figure 12 we plot these quantities as a

function of t− tlump, for each of our runs. In each of the three

panels, the curves follow very nearly the same paths. This

means that, although tlump is subject to a considerable

dispersion among our runs, once the lump forms, its dynamics

are robust and predictable.
In Figure 12 we notice the orbit of the lump stabilizes after

Δt∼ 40× 103M. Its radial position rlump grows approximately

linear in time and then gradually equilibrates. For the first

Δt= 20× 103M, non-spinning runs present rlump= (2.48±

0.05) b, but for the last Δt= 4× 10t3M we find

rlump= (3.05± 0.05) b. The angular frequency of the lump
decreases accordingly, following a Keplerian behavior. For the

first Δt= 20× 103M we find Ωlump= (0.25± 0.01)Ωbin but

for the last Δt= 40× 103M it reduces to Ωlump= (0.197±

0.003)Ωbin. This values are in agreement with previous works.

While the early value of Ωlump agrees with Noble et al. (2012)

who evolved the system for the earlier stages of the lump
development, the stabilized value of Ωlump agrees with longer

two-dimensional hydrodynamical simulations (e.g., Miranda

et al. 2016). Regarding the eccentricity, initially we find
= - eln 3.6 0.2lump for non-spinning runs, but later it

stabilizes to = - eln 2.91 0.04lump , in agreement with

results from Shi et al. (2012). Regarding our spinning runs,
every quantity lies within ±1.5 times the standard deviation,

implying the dynamics of the lump are independent of the spin

of the BHs.
In addition to the overdense lump, matter tends to pile up at

the inner edge of the circumbinary disk. This is as a

consequence of the interplay between the internal stresses that

remove angular momentum from matter just outside the inner
edge and the gravitational torques that add angular momentum

to streams in the cavity inside the inner edge. Our longer

simulations reveal that this piling-up saturates during the steady

state. To analyze the dynamics of this overdense region, in

Figure 13 we plot the θ-integrated and f-averaged density Σ(r)

(Equation (A2)) in the period t= 70–150× 103M. Each curve
represents an average over Δt= 2× 103M and, through colors

Figure 10. Evolution of the ratio of the power of the Fourier mode m = 1 and
m = 0 of the vertically integrated surface at the lump formation region. The
intersection of the black dashed and gray dashed defines the time of lump
formation. In ascending order, tlump/M = 36390, 39690, 47550, 50280, 64650.

Figure 11. Surface density Σ(r, f) in units of Σ0 at different times for run
b20_v0. We distinguish the double accretion streams during the first orbits of
the binary (top, left), the formation of the lump (top, right), the growth of the
lump and the transition to a single accretion stream (bottom, left), and the
saturated lump at the end of the simulation (bottom, right).

Figure 12. Evolution of the radial position of the lump (top), its orbital frequency
(middle), and orbital eccentricity (bottom). We plot the evolution of these
quantities from the moment of lump formation tlump until tlump + 8× 104 M.
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violet to red, they span the entire steady state period. The

maximum of the averaged curves (dashed) for non-spinning

runs is (0.76± 0.07)Σ0, and its radial position is

(2.80± 0.06) b. Noble et al. (2012) found that, when the

binary evolution is frozen, the peak surface density increased

steadily up to t≈ 75× 103M; Figure 13 reveals that their

simulation stopped just at the point where the growth in peak

surface density ceases.
The length of our simulations makes them ideal to study the

characteristic frequencies of the system. As expected from the

predominant quadrupole mode of the binary potential, accre-

tion into the inner boundary is initially carried by two narrow

streams that extend from the inner edge of the disks toward

each BH (see Figure 11 (top, left)). In the steady state,

however, accretion is dominated by a single stream that is

produced when a BH passes near the lump (see Figure 11

(bottom, left)). The frequency of this occurrence is

2(Ωbin−Ωlump)∼ 1.6Ωbin. Indeed, in Figure 14 (left) we plot

the Fourier Power Spectrum (FPS) of the accretion rate during

the steady state (see also Figure 3) and find the expected peak

at ω= 1.6Ωbin. Figure 14 (left) also presents a strong peak

at ω= 0.12Ωbin, which corresponds to a lower-frequency

modulation of the accretion rate, as seen in the spikes of
Figure 3 during the steady state.
This modulation is caused by an oscillation of the radial

position of the lump. Indeed, in Figure 14 (right) we plot the
FPS of rlump(t) during the stabilized period of the orbit of the
lump 40× 103M< t− tlump< 80× 103M (see also Figure (12)
(top)), and find its maximum at ω= 0.12Ωbin. The causes of
this radial oscillation will be addressed in subsequent work.
Although the bimodal distribution of the FPS of the

accretion rate at the cavity is in agreement with previous
works (MacFadyen & Milosavljević 2008; Shi et al. 2012;
D’Orazio et al. 2013; Muñoz and Lai 2016, among others), the
precise values of the peak frequencies claimed in this work
differ with such references.
In the following, we analyze if our longer simulations

approach inflow equilibrium. In Figure 15 we plot the average
of the radial profile of the accretion rate (see Equation (A4))
over the period t= 70–150× 103M (dashed, red), and over
four equally spaced sub-periods with Δt= 20× 103M (dark to
light curves). While we notice the average curve has a
systematic growth from r> 3b, implying the disk has not
reached inflow equilibrium, we also notice an improvement
of this inflow condition if compared with previous three-

Figure 13. Vertically integrated and f-averaged density Σ(r) averaged over Δt = 2 × 103 M for the period t = 70–150 × 103 M (violet to red curves). The dotted
curve represents the initial data, and the dashed curve the average of colored curves.

Figure 14. Fourier power spectrum of the accretion rate at the innermost radial boundary of the domain during the steady state period (left), and of the radial position
of the lump in the interval 40 × 103 M < t − tlump < 80 × 103 M (right). To enhance the periodic behavior, we analyze the difference of these quantities with adjusted
polynomials of first order, and we apply a Blackman–Harris window function.
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dimensional MHD simulations that evolved the system for
earlier stages (Noble et al. 2012; Shi et al. 2012). In those
earlier papers, the ratio of the accretion rate at r; 3− 4b to the
accretion rate crossing the inner edge was about a factor of 3;
extending the duration of the simulation from 70× 103M to
150× 103M reduces that contrast to a factor ≈1.5. Thus, for
these conditions, the inflow equilibration time at this radius is
t∼ 105M.

Interestingly, also in Figure 15, we notice periods when the
accretion rate becomes negative at regions close to the inner
edge of the disk.

Finally, we analyze the mechanisms of angular momentum
transport during the steady state of our longer runs. Comparing
our results on shell-integrated torques in Figure 5 with those of
Shi et al. (2012) and Noble et al. (2012) for earlier epochs of
the system, we find that during the steady stage Maxwell
stresses (red) are significantly reduced at the bulk of the disk.
On the contrary, Reynolds stresses are strengthened and show
traces of a propagating wave through the fluid. Shi & Krolik
(2015) also found a significant growth of turbulent torques in
the steady state period of a related system, and associated it
with the propagation of a single-armed wave. We will study
these issues in detail in a subsequent work.

5.4. Summary

We found the spin of the BHs have a direct impact on
processes that take place in the inner cavity. Specifically,
negative (positive) spins enhance (reduce) the circumbinary
accretion by +45% (−14%) with respect to the non-spinning
case. The stronger (weaker) accretion streams enhance
(decrease) the globally integrated luminosity by +29%
(−12%), and the peak of the gravitational torques at the cavity
by +18% (−6%), with respect to non-spinning runs. In the
long-term, these effects can discreetly influence the bulk of the
disk, as we found a reduction (increment) of the surface density
for r> 4b. Finally, we found that the spin of the BH affects the
shape of the accretion streams, as they fall behind (advanced)
in f with respect to the non-spinning case. Other properties of
the circumbinary such as the dynamics of the lump, the piling-
up of matter at the inner edge, or the radial profile of the
accretion rate, remain unaffected by the spin of the BHs.

The length of our runs allowed us to reach an unprecedented
steady state in three-dimensional GRMHD simulations. We
found interesting differences with respect to early epochs, as
described by Shi et al. (2012) and Noble et al. (2012). In

particular, the dynamics of the lump are robust and predictable
since its formation and its orbit stabilizes after
Δt∼ 40× 103M, the growth of the lump and the piling up
of matter at the inner edge of the disk saturates and remains
steady, there are regions within the inner part of the
circumbinary where the accretion rate becomes negative, and
the role of Reynolds stresses grow at the bulk of the disk, but
the role of Maxwell stresses diminishes, revealing a demagne-
tization of the plasma. We intend to explore these results in
detail in an upcoming work.

6. Conclusions

We presented a new approximate metric for the spacetime of
widely separated BBHs in the relativistic regime (b� 20M).
This metric is unique in the sense that it can be used in the
strong field regime, is easy to implement, it has an optimal
performance, and includes the spins of the BHs as free
parameters. We computed and analyzed its Ricci scalar R at
different scales and concluded the metric is an acceptable
approximation for a vacuum solution of EFE. Further, we
proved its expansion agrees with the lowest PN expansion of
the metric of a binary system of spinning BHs.
As a first application, we set and evolved a series of

magnetized circumbinary disks around an equal-mass binary
system, with separation fixed at b= 20M. We explored
different values for the spins of the BHs, aligned and
counter-aligned with the orbital angular momentum of the
binary, and performed three identical non-spinning runs to
study the effect of random perturbations in our predictions (see
Table 1). We followed closely the techniques of Noble et al.
(2012) that explored the same system (non-spinning) but for
earlier stages and with a different approach and gauge for
the spacetime construction. We evolved the system for longer
than previous three-dimensional MHD simulations, until
t= 150× 103M or 266 orbits of the binary system. We
noticed that the circumbinary disk reaches a steady state from
t= 75× 103M onwards, and focused our results on this period.
Our results are consistent with previous works on non-spinning
binaries, and with expectations for the effect of the spins on the
circumbinary disks, proving the physical validity of the SKS
spacetime. We conclude the spin of the BHs, via frame-
dragging effects, can significantly affect the circumbinary
accretion and luminosity. Specifically, spins counter-aligned
(aligned) with the orbital angular momentum of the binary
enhance (reduce) the circumbinary accretion with respect to the

Figure 15. Top: accretion rate as a function of r averaged over Δt = 20 × 103M in the period t = 70–150 × 103 M (dark to light curves), and the average over the full
period (dashed, red).
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non-spinning case. Further, the spin twists the spacetime
geodesics at the cavity, and the streams reach the inner cavity
behind (forward) in f with respect to the non-spinning case.
We will explore the dynamics of mini-disks around spinning
binaries in a subsequent work (Combi et al. 2021).
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Appendix A
Diagnostics

We summarize usual conventions and quantities used in the
analysis of accretion disks:

1. Surface density:
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3. Accretion rate as a function of r:
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4. Eccentricity of the fluid in the lump region:
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5. Integrated luminosity:
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6. Fourier transformation with respect to f of the vertically
integrated density:

r= f r t e, , A7m
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and the corresponding mode power
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7. Since the vertically integrated surface is a real function,
its Fourier modes satisfy:
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The maximum of these modes is found at the phase:
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where the function arctan is defined to return the value of
fm in the range [0, 2π], checking on the sings of
 r tIm ,m[ ( )] and  r tRe ,m[ ( )]. Identifying the phase of

the lump as the maximum of the m= 1 mode integrated
at the lump region 2b< r< 4b, we obtain the angular
frequency of the lump:

fW = =
d

dt
t . A11mlump 1( ) ( )

Appendix B
Post-Newtonian Approximation

The linearity of the SKS metric (11) implies that its
expansion to the lowest order in the boost velocities and large
radius, reproduces the lowest PN metric of a spinning compact
binaries (see Tagoshi et al. 2001):

= - + F + g v1 2 , B100 K
2( ) ( ) ( )

d= - F + g v1 2 , B2ij ij K
2( ) ( ) ( )

x= - + g v4 , B3i i0 K
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where the scalar and vector potentials read:
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aligned with the z-axis, r(n) = (x( n), y( n), z( n)) the positional

vector referred to the nth BH frame, r n i( ) =r( n) i/r( n), and v n i
K
( )

the spatial velocity of the nth BH.
In the PN approximation, the EoM for a test particle with

velocity V are given by the so-called gravitomagnetic analog of
Lorentz equations (see, for instance, Mashhoon 2003):

x= -F - ´  ´V
dV

dt
. B6

i
i i( ( )) ( )

In the following we derive the dominant terms in these

equations for the case of identical BHs orbiting in circular

orbits, and we discuss the effect of the spins.
The scalar potential can be written as:
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f( n) is the angle between r n( ) and-r n
K
( ) , being = r rr n n n

K K K∣ ∣( ) ( ) ( )
the normalized vector of the position of the nth BH (see

Equations (15) and (16)). The second and fourth terms in

Equation (B8) represent spin–orbit coupling effects.
Taking into account the following expressions:
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where b is the separation of the binary, r= (x, y, z) is the

position vector of the particle in Cartesian coordinates with

respect to the center of mass of the binary, and

f = y xarctan( ), we expand Equation (B8) for large radius r

and average in f and t, to obtain:
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where M=M(1)
+M(2). In this equation we recognize the well-

known multipole expansion of equal-mass binaries in the

Newtonian regime (see, for instance, MacFadyen & Milosavl-

jević 2008). We also notice that spin–orbit coupling terms

canceled out in this limit, because of the symmetries of the

system.
Regarding the vector potential ξi, we obtain the Cartesian

components:
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Replacing this expression in the second term of Equation (B6),

transforming to a spherical basis, expanding for large radius r,

and averaging in f, we obtain the radial component:
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where we have defined J= xV y
− yV x as the specific angular

momentum of the particle, = =L bv bvK
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K
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orbital angular momentum of the binary, and a= a(1)
= a(2).

Applying Newton’s second law in spherical coordinates for
the force terms derived from Equations (B11) and (B13), we
obtain:
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The latter equation of motion can be derived from the effective

potential:
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