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ABSTRACT

Sparse tensor contraction sequence has been widely employed in

many fields, such as chemistry and physics. However, how to effi-

ciently implement the sequence faces multiple challenges, such as

redundant computations and memory operations, massive memory

consumption, and inefficient utilization of hardware. To address the

above challenges, we introduce Athena, a high-performance frame-

work for SpTC sequences. Athena introduces new data structures,

leverages emerging Optane-based heterogeneous memory (HM)

architecture, and adopts stage parallelism. In particular, Athena

introduces shared hash table-represented sparse accumulator to

eliminate unnecessary input processing and data migration; Athena

uses a novel data-semantic guided dynamic migration solution to

make the best use of the Optane-based HM for high performance;

Athena also co-runs execution phases with different characteristics

to enable high hardware utilization. Evaluating with 12 datasets,

we show that Athena brings 327-7362× speedup over the state-of-

the-art SpTC algorithm. With the dynamic data placement guided

by data semantics, Athena brings performance improvement on

Optane-based HM over a state-of-the-art software-based data man-

agement solution, a hardware-based data management solution,

and PMM-only by 1.58×, 1.82×, and 2.34× respectively. Athena

also showcases its effectiveness in quantum chemistry and physics

scenarios.

CCS CONCEPTS

• Mathematics of computing → Mathematical software per-

formance; • Computing methodologies → Shared memory

algorithms.
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1 INTRODUCTION

Tensors, especially those high-dimensional sparse tensors, are at-

tracting increasing attentions, because of their popularity in many

applications. High-order sparse tensors have been studied well in

tensor decomposition on various hardware platforms [7, 26, 37–

40, 43, 51, 52, 55, 69–71] with a focus on the product of a sparse

tensor and a dense matrix or vector. The two sparse tensor contrac-

tion (SpTC) has been studied well [14, 20, 25, 36, 44, 49, 53, 54, 54,

67] where block-wise sparsity is the main focus. As the needs of

element-/pair-wise sparsity emerge in applications from chemistry,

physics and deep learning [4, 17, 31, 41, 62, 63], the recent work [44]

studied element-wise SpTC. In essence, SpTC, a high-order exten-

sion of sparse matrix-matrix multiplication (SpGEMM), multiplies

two sparse tensors along with their common dimensions.

Nevertheless, SpTC commonly is shown as sequences in quan-

tum chemistry, quantum physics and deep learning [4, 17, 31, 41,

62, 63] as a foundation of coupled cluster single double (Triple),

CCSD(T) [10], high-order tensor decomposition methods, etc. An

SpTC sequence (SpTCSeq) performs a sequence of sparse tensor

contractions which could be independent or have different depen-

dency types (will be explained in Table 2).While sequences of tensor

contraction have been studied [34] with a focus on independent

contractions and limited dependency types, such as identical input

and shared outputs , an SpTCSeq is still lack of sufficient research

for element-wise contractions and other dependency types. For

example, Type 1 dependency, the output tensor of an SpTC taken as

an input in another SpTC, occurs in 85% contractions in CCSD(T)

from the NWChem library and has not been studied yet. However,

multiple challenges impede obtaining high performance for a whole

SpTC sequence.

First, redundant computation and memory traffic in an SpTCSeq

lead to performance issues since it shares data objects across differ-

ent SpTCs. As shown in Table 2, an SpTCSeq could include four

dependency types and some data objects are shared across differ-

ent SpTCs (more details in Section 2.2). Computation and memory

traffic on the shared data objects are performed repeatedly. For

example, in the type that two SpTCs share an identical input tensor,
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the processing on this input in the second SpTC can be avoided.

Because of the shared data objects, computation and memory access

on intermediate data objects are also performed repeatedly. For ex-

ample, in the type that the output tensor of the first SpTC becomes

the input tensor in the second SpTC, the intermediate results in

the accumulation of the first SpTC can be directly reused to do the

computation of the second SpTC, skipping multiple stages in the

sequential execution. (Details in Section 3.2) This performance issue

becomes severer when the redundant computation and memory

access dominate the execution. Moreover, the performance suffers

when we perform an SpTCSeq with a larger number of contractions.

Second, large memory consumption from large input and output

tensors and intermediate results causes a memory capacity issue and

creates pressure on the traditional DRAM-based machine. Sparse

tensors from real-world applications easily consume a few to dozens

of GB memory, while the output tensor could be even larger when

generated with more non-zero elements than any of the input.

The intermediate results could be large as well, especially in multi-

threading environment where each thread has its local intermediate

results. Compared to the well-studied sparse tensor times dense

matrices/vectors [26, 37, 39, 70], SpTC results in substantial memory

consumption easily, which can be beyond typical DRAM capacity

(up to a few hundreds of GB) on a single machine. The memory

capacity problem in an SpTCSeq becomes much more serious than

in an individual SpTC. This memory capacity problem is especially

pronounced in those HPC applications with increasing dimension

sizes of tensors [4, 9, 14, 17, 49, 54, 72]. Expanding DRAM capacity is

not cost-effective, while adding cheap but much slower Solid-State

Drive (SSD) causes significant performance drop.

Third, an SpTCSeq suffers from inefficient hardware utilization due

to the diverse computation and memory patterns of different stages

in an SpTC. For example, the accumulation stage in an SpTC with

tensor Disilane (in Section 5.1), the average memory bandwidth

is only 19.3% of the peak memory bandwidth, while the average

CPU utilization is 71.9%; for index search stage (proposed in [44])

in an SpTC with the same tensor Disilane, the average CPU uti-

lization is only 34.2% while the memory bandwidth is 44.1%. Given

a 2-SpTC sequence, if we simply run the SpTCs sequentially, the

hardware (e.g., computing units or memory bandwidth) is not fully

utilized; If we co-run stages in the same intensive pattern, e.g.,

both memory-intensive, the SpTCSeq suffers from resource (e.g.,

memory bandwidth) contention; How to efficiently arrange stages

across SpTCs in a sequence to achieve efficient hardware utilization

without resource contention is challenging.

To address the above challenges, we propose Athena, a high-

performance framework for SpTC sequences. To address the first

challenge, we introduce shared hash table-represented sparse ac-

cumulator. In particular, given two SpTCs, we adopt hash table-

represented sparse accumulator with reusing intermediate results

in the first SpTC and then perform index search in the second SpTC

to eliminate finishing up stages of the first SpTC and the starting

expense of the second SpTC. Moreover, we retain shared data ob-

jects across SpTCs to eliminate unnecessary input processing and

data migration. We also introduce a hash table-represented sparse

tensor summation to significantly increase the performance of sum-

mation stages which are widely used in SpTC sequences. Athena

effectively avoids redundant computation and memory operations

in an SpTCSeq with shared data objects.

To address the second challenge, we explore the persistentmemory-

based heterogeneous memory (HM). In particular, the emerging

Intel Optane DC Persistent Memory Module (PMM) provides up

to 9TB memory capacity per node, which can be leveraged to ad-

dress the memory capacity problem faced by SpTCSeq. PMM has

slightly inferior bandwidth and latency (compared to DRAM) but

with much lower price. As a result, PMM is often paired with a

small DRAM, such that frequently accessed data objects can be

placed into DRAMwhile the rest reside in PMMwith large memory

capacity. PMM and DRAM builds a heterogeneous memory system.

The PMM-based HM raises a question on how to perform an

SpTCSeq given limited DRAM space for high performance. Effec-

tively placing data objects of an SpTCSeq in DRAM and PMM

for high performance is critical to use PMM to address the mem-

ory capacity problem faced by SpTCSeq. To decide data place-

ment on HM, the traditional solutions track page (or data) ac-

cess frequency [2, 12, 22, 24, 58, 61, 78, 79, 82, 87] or manage

DRAM as a hardware cache for PMM [46, 57, 76, 86], and then

reactively place frequently accessed data objects into DRAM sub-

ject to the DRAM capacity constraint. However, those solutions

are application-agnostic, and cause unnecessary and frequent data

movement because of short-term variance in memory access pat-

terns. The static data placement strategy [44] places data objects

in DRAM or PMM without triggering dynamic migration in the

middle of application execution. However, this strategy lacks the

flexibility of handling irregular memory access patterns but with

certain temporal locality.

Athena addresses the above problem by introducing a data-

semantics guided data placement. This solution strikes a good bal-

ance between the static and dynamic data placement. In particular,

it leverages data semantics to guide dynamic data placement. In-

stead of tracking the number of memory accesses at runtime as

in the traditional dynamic data placement, we use the algorithm

knowledge to reason the numbers of memory accesses (or hotness)

at data object level during the construction of critical data structures

in SpTCSeq, and then associate those numbers with data objects.

After using the data semantics to identify those data objects, Athena

is able to use hotness information to guide dynamic data placement.

To address the third challenge, we introduce stage parallelism

for an SpTCSeq. We first characterize computation and memory

behaviors of different stages in an SpTCSeq. Next, we co-run those

stages in an SpTCSeq with respect to their integer operations (IOP)-,

floating point operations (FLOP)-, or memory-intensive patterns, to

avoid resource contentions and meanwhile improve the utilization

of CPU and memory bandwidth. Hyperthreading technique is used

for data prefetching and higher memory bandwidth usage to gain

better overlapping between two stages. For exascale problems de-

ployed in a distributed environment, Athena could help to reduce

the number of nodes needed for computation due to its capability

to solve large sparse tensors on each single node.

Our main contributions are summarized as follows:

• We introduce the first, high-performance SpTCSeq system

for element-wise sparse tensor contraction sequence, named

Athena. (Section 3).
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Table 1: List of symbols and notation.

Symbols Description

X,Y,Z,W Sparse tensors

Z = X ×
{𝑚}

{𝑛}
Y Tensor contraction between two tensors

𝐼 , 𝐼𝑛 Tensor mode sizes

𝑛𝑛𝑧𝑋 #Non-zeros of the input tensor X

𝑁𝐹 #Mode-𝐹𝑋 sub-tensors of X

𝑛𝑛𝑧𝐹 #Non-zeros of sub-tensors of X

𝑝𝑡𝑟𝐹 Pointers for mode-𝐹𝑋 sub-tensor locations of X

𝑀𝑋 A set of all modes in X

𝐶𝑋 A set of contract modes in X, {𝑛} in ×
{𝑚}

{𝑛}
contraction

𝐹𝑋 A set of free modes in X, |𝐹𝑋 | + |𝐶𝑋 | = 𝑁𝑋

𝑚𝑋
𝑛𝑧 All mode indices of a non-zero element in X

𝑐𝑋𝑛𝑧 Contract mode indices of a non-zero element in X

𝑓 𝑋𝑛𝑧 Free mode indices of a non-zero element in X

𝑉𝑋 A set of non-zero values in X

𝑣𝑋 Value of a non-zero element in X

• We explore the emerging PMM-based HM to address mem-

ory capacity limitation suffered in the tensor computations,

and use algorithm knowledge and data semantics to guide

dynamic data placement (Section 4).

• Evaluating with 12 datasets, we show that Athena brings

327-7362 × speedup over the state-of-the-art SpTC algorithm.

With the dynamic data placement guided by data semantics,

Athena brings performance improvement on HM built with

DRAM and PMM over a state-of-the-art software-based data

management solution, a hardware-based data management

solution, and PMM-only by 1.58× (up to 2.09×), 1.82× (up to

2.58×) and 2.34× (up to 2.94×) respectively (Section 5).

2 BACKGROUND

A tensor can be treated as a multidimensional array. Each of its

dimensions is called a mode, and the number of dimensions or

modes is its order. For example, a matrix of order 2 means it has two

modes (rows and columns). We represent tensors with calligraphic

capital letters, e.g.,X ∈ R𝐼1×𝐼2×𝐼3×𝐼4 (a tensor with four modes), and

𝑥𝑖1𝑖2𝑖3𝑖4 is its (𝑖1, 𝑖2, 𝑖3, 𝑖4)-element. Table 1 summarizes notation
and symbols used in this work.

The element-wise sparse data is commonly found in various

applications in data analytics, signal processing, recommendation

systems, and deep learning [3, 4, 9, 23, 30, 31, 41, 56, 62, 63, 66].

Most of elements in sparse data are zeros. In order to save storage

space, compact representations of the sparse tensor are proposed

[39, 43, 52, 71]. We adopt the popular format, the coordinate (COO),

in this work, which is widely used in popular tensor libraries, such

as Tensor Toolbox [6], TensorLab [74], and TACO [29]. A non-zero

element is stored as a tuple for its indices, e.g., (𝑖1, 𝑖2, 𝑖3, 𝑖4) for a
fourth-order tensor, in a two-level pointer array 𝑖𝑛𝑑𝑠 , along with
its non-zero value in a one-dimensional array 𝑣𝑎𝑙 .

2.1 Sparse Tensor Contraction

Tensor contraction. Tensor contraction (i.e., tensor-times-tensor

or mode-({𝑛}, {𝑚}) product [9]) is an extension of matrix multipli-

cation. It is represented as Z = X ×
{𝑚}

{𝑛}
Y, where {𝑛} and {𝑚} are

tensor modes to perform this product.

Table 2: Expression dependency between two SpTCs.

Type Feature Expressions

1 Output as input Z′ = X × Y and Z +=W ×Z′
2 Identical input & Different output Z += X × Y and Z′ +=W × Y

3 Different input & Shared output Z += X × Y and Z +=W ×V

4 Identical input & Shared output Z += X × Y and Z +=W × Y

5 Independent Z += X × Y and Z′ +=W ×V

Example: Z = X ×
{1,2}
{3,4}

Y. This contraction operates on 𝐼3 and 𝐼4
in X and 𝐽1 and 𝐽2 in Y, 𝐼3 = 𝐽1 and 𝐼4 = 𝐽2. All of the four modes
are contract modes (represented as 𝐶𝑋 = {3, 4} and 𝐶𝑌 = {1, 2}),
and the other modes are free modes. The operation in this example

is represented as: 𝑧𝑖1𝑖2 𝑗3 𝑗4 =
∑𝐼3 ( 𝐽1)

𝑖3 ( 𝑗1)=1

∑𝐼4 ( 𝐽2)
𝑖4 ( 𝑗2)=1

𝑥𝑖1𝑖2𝑖3𝑖4𝑥 𝑗1 𝑗2 𝑗3 𝑗4 .

Element-wise SparseTensorContraction. Element-wise sparse

tensor contractions (SpTC) emerges in the applications of chemistry

and physics [4, 17, 31, 41, 62, 63], where both input and output ten-

sors have element-wise sparsity. Sparta [44] is the state-of-the-art

algorithm for an arbitrary-order, element-wise SpTC. Sparta intro-

duces a hash table-based representation for input sparse tensors

and a sparse accumulator for a single element-wise sparse tensor

contraction. The Sparta SpTC algorithm contains five stages: input

processing, index search, accumulation, writeback, output sorting

stages. Refer to [44] for more details.

2.2 Sparse Tensor Contraction Sequences

Sparse tensor contractions sequence (SpTCSeq) is widely used in

many methods. For example, SpTCSeq can be derived from the

well-known Coupled Cluster Single Double (Triple), CCSD(T) [10],

in chemistry [4] and from the notable Hubbard model [15] in

physics [17]. Within an SpTCSeq, multiple SpTCs could have de-

pendence between each other or be independent, and they might

share some identical tensors in different ways.

We summarize common expression types of SpTCSeq in Table 2.

Five types could exist for two arbitrary SpTCs. In Type 1, the output

tensor of the first SpTC, Z′, used as an input tensor of the second

SpTC; In Type 2, both SpTCs have an identical input tensor Y; In

Type 3, the two SpTCs use different input tensors but generate

the same output tensor Z; In Type 4, both SpTCs use an identical

input tensor Y and share the output tensor Z; In Type 5, the two

SpTCs are totally independent from each other. We quantify the

occurrence percentage of the five types of SpTCSeq in CCSD(T) [10]

from chemistry. Types 1-5 account for 85%, 9%, 6%, 8% and 91% of

all SpTCSeq, respectively. Note that the sum of all types is more

than 100%, because an SpTC equation could fall into more than one

type. Besides, sparse tensor summation, the "+" operator in most

expressions of Table 2, is common in sparse tensor contractions

sequences (e.g., accounts for 90% in CCSD(T) [10] in chemistry).

We will introduce our design of sparse tensor summation in Sec-

tion 3.1, Types 1-4 SpTCSeq dependency in Section 3.2, and Type 5

dependency in Section 3.3.

2.3 Intel Optane DC Persistent Memory
Module

The recent release of the Intel Optane DC Persistent Memory Mod-

ule (PMM) is the first byte-addressed non-volatile memory (NVM)
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Algorithm 1: Athena: sparse tensor contraction sequence

for arbitrary-order data in the expressionZ = X×
𝐶𝑌
𝐶𝑋

Y×
𝐶𝑊
𝐹𝑌

W +Z𝑝𝑟𝑒 .

Input: Input tensors X ∈ R
𝐼1×···×𝐼𝑁𝑋 , Y ∈ R

𝐽1×···×𝐽𝑁𝑌 , and

W ∈ R
𝐽1×···×𝐽𝑁𝑊 , contract modes𝐶𝑋 ,𝐶𝑌 ,𝐶𝑊 , and output

tensor Z𝑝𝑟𝑒 produced from previous SpTCs

Output: The output tensor Z

1 Permute and sort X if needed;

2 Obtain 𝑁𝐹 , |𝐹
𝑋 |, sub-tensors of X, and its 𝑝𝑡𝑟𝐹 ;

3 Convert Y to 𝐻𝑡𝑌 andW to 𝐻𝑡𝑊

4 for 𝑓 in 1, . . . , 𝑁𝐹 do

5 Initiate thread-local 𝐻𝑡𝐴 and Shared-𝐻𝑡𝐴

6 for 𝑛𝑧 in 𝑝𝑡𝑟𝐹 [𝑓 ], . . . , 𝑝𝑡𝑟𝐹 [𝑓 + 1] do

7 𝐼𝑛𝑑𝑒𝑥_𝑆𝑒𝑎𝑟𝑐ℎ (𝑐𝑋𝑛𝑧 , 𝐻𝑡𝑌 )

8 𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 (𝑓 𝑌𝑛𝑧 , 𝑣𝑋 , 𝑣𝑌 , 𝑣𝐻𝑡𝐴)

9 for (𝑘𝑒𝑦,𝑣𝐻𝑡𝐴) in 𝐻𝑡𝐴 do

10 if 𝑘𝑒𝑦 is not found in 𝐻𝑡𝑊 then

11 continue

12 for (𝐿𝑁 (𝑓𝑊𝑛𝑧 ), 𝑣𝑊 ) in (𝐿𝑁 (𝐹𝑊 ),𝑉𝑊 ) of 𝐻𝑡𝑊 do

13 if 𝐿𝑁 (𝑓𝑊𝑛𝑧 ) is found in 𝐻𝑡𝑊 then

14 Accumulate 𝑣𝑆𝐻𝑡𝐴 += 𝑣𝐻𝑡𝐴 * 𝑣𝑊

15 else

16 Insert (𝐿𝑁 (𝑓𝑊𝑛𝑧 ), 𝑣𝐻𝑡𝐴 * 𝑣𝑊 ) to Shared-𝐻𝑡𝐴

17 Form (𝑓 𝑋𝑛𝑧 , 𝑓𝑊𝑛𝑧 ) as coordinates and 𝑣𝑆𝐻𝑡𝐴 as non-zero value

and append to Z𝑙𝑜𝑐𝑎𝑙

18 Gather thread-local Z𝑙𝑜𝑐𝑎𝑙 independently to Z

19 Convert Z to 𝐻𝑡𝑍 with 𝑀𝑍 as keys,

20 for 𝑛𝑧 in Z𝑝𝑟𝑒 do

21 if 𝐿𝑁 (𝑚
𝑍𝑝𝑟𝑒
𝑛𝑧 ) is not found in 𝐻𝑡𝑍 then

22 Append (𝐿𝑁 (𝑚
𝑍𝑝𝑟𝑒
𝑛𝑧 ) , 𝑣𝑍𝑝𝑟𝑒 ) to 𝐻𝑡𝑍

23 else

24 Append (𝐿𝑁 (𝑚
𝑍𝑝𝑟𝑒
𝑛𝑧 ) , 𝑣𝑍𝑝𝑟𝑒 + 𝑣𝑍 ) to 𝐻𝑡𝑍

25 Convert 𝐻𝑡𝑍 to Z, and permute/sort Z if needed

26 return Z

in the market. PMM can be configured to work in either Memory

or AppDirect mode. In the Memory mode, DRAM is a hardware-

managed, directly-mapped write-back cache to PMM and is trans-

parent to applications. In the AppDirect mode, the placement of

data objects on PMM and DRAM can be explicitly controlled by the

programmers.

PMM can provide up to 6TB memory capacity on a single ma-

chine, but has 2.2-3.5× higher access latency and 2.7-6.2 × lower

bandwidth than the traditional DRAM. Sparta [44] statically al-

locates data objects to either DRAM or PMM according to their

memory access patterns. However, this simple static data placement

does not work best for all data objects, especially data objects with

random read/write memory access. Our work leverages the Ap-

pDirect mode with dynamic data management and leads to better

performance than the Memory mode.

3 ALGORITHM DESIGN

This section introduces our SpTCSeq algorithm for the five depen-

dency types in Table 2 and efficient sparse tensor summation.

3.1 Hash Table-Represented Sparse Tensor
Summation

A general process of two element-wise sparse tensor summation

is as follows. Given a sparse output tensor Z𝑝𝑟𝑒 produced from

previous SpTCs or other operations (hidden in the "+=" operator

in Table 2) and a sparse output tensor Z in the current SpTC, the

sparse tensor summation performs three steps. First, a non-zero

element along with its indices from Z𝑝𝑟𝑒 is selected. Next, the

summation searches the corresponding non-zero element(s) in Z

with the exact same tuple of indices. Finally, if the particular non-

zero element in Z with the same indices is found, Z is updated

with the sum of the two non-zero values under the tuple of indices.

Otherwise, the non-zero element in Z𝑝𝑟𝑒 is appended to Z as a

new element. Meanwhile, the non-zero elements of Z which are

not updated during the summation remain the same. This process

is expensive in the searching step due to multi-dimensionality of

the tuple of indices as keys and dynamically updating Z especially

with appending new non-zero elements from Z𝑝𝑟𝑒 .

To address the above problems, we propose the hash table-

represented sparse tensor summation for an SpTC. Figure 1 depicts

our proposed approach as Summation, stage 5 (The rest stages

will be explained in Section 3.2). It is extremely time-consuming

to perform key matching on multi-dimensional tuples, especially

when the tensor order is large high [44]. We adopt the hash table

representation from the work [44] by first converting the sparse

output tensor Z in COO format to a hash table-represented 𝐻𝑡Z.
The index tuples of Z are taken as the keys of 𝐻𝑡𝑍 naturally, dif-

ferent from the key construction in Sparta [44]. A large-number

representation, noted as the 𝐿𝑁 function in Figure 1, is also lever-

aged to convert a sparse index tuple to a large and unique index.

The index search is improved by 1) reduced searching space of the

unique index keys of the hash table; 2) pinpointing the targeted

index much faster than the traditional linear search approach with

a constant algorithm complexity. To fast update Z and maintain

good spacial data locality, we adopt dynamic arrays to construct

the values of 𝐻𝑡𝑍 for the non-zeros having the same key. 𝐻𝑡Z is

then converted back to Z as the final output. As shown in line 19

to 24 in Algorithm 1, Athena converts Z to 𝐻𝑡𝑍 and then iterates

all non-zeros in Z𝑝𝑟𝑒 . If the nnz index is not found in 𝐻𝑡𝑍 , Athena
appends the key-value pair to𝐻𝑡𝑍 . Otherwise, Athena appends the
index along with the summed values to 𝐻𝑡𝑍 .

Our hash table-represented sparse tensor summation extends to

support the fused multiplication and summation and plays a critical

role for performance (in Section 5.3) when the size of output tensor

is similar to or even larger than input tensors in an SpTC.

3.2 Shared Hash Table-Represented Sparse
Accumulator

We observe that the traditional approach for Type 1 dependency

(Output as input) in Table 2 leads to repeated and inefficient com-

putations and data movement because the two SpTCs share some

intermediate data objects. To address this problem, we introduce a

shared hash table-represented sparse accumulator (named Shared-

HtA). Figure 1 depicts the workflow of our Shared-HtA design.

The first SpTC, Z′ = X × Y, follows the five-stage computation
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Figure 1: Workflow of Type 1 dependency of two SpTCs in Table 2, using shared hash table-represented sparse accumulator

and hash table-represented sparse tensor summation (indicated by red arrows)

proposed in the work [44]: input processing, index search, accu-

mulation, writeback, output sorting, stages 1-4 and 6. The hash

table-represented summation is the new stage 5.

Once the index search and accumulation stages of the first SpTC

are completed, we treat the free modes 𝐹𝑌 of Y in 𝐻𝑡𝐴 to be the

contract modes of the second SpTC. We then employ 𝐹𝑌 as the

key to search the corresponding contract modes 𝐶𝑊 in 𝐻𝑡𝑊 in

another index search stage for the second SpTC, Z += W × Z′.
For example, in Figure 1, 3 is used as the key in the 2𝑛𝑑 𝐻𝑡𝐴 to

search the corresponding contract modes (3) in 𝐻𝑡𝑊 . Next, we

generate the Shared-𝐻𝑡𝐴 to store the intermediate results during

the accumulation stage of the second SpTC (2 and 24.0). Once the

index search and accumulation of X with the same free modes are

completed (i.e., index search and accumulation stages in both black

and red arrows in Figure 1) , the intermediate results of Shared-𝐻𝑡𝐴
are converted back to COO format ((0, 2) tuple) and appended to Z
along with its accumulated result (24.0) for summation and output

sorting stages. Finally, the intermediate Shared-𝐻𝑡𝐴 is released to

save memory space. This approach also leverages the same large-

number representation approach in the work [44] and converts the

input tensorW of the second SpTC to the hash table representation

𝐻𝑡𝑊 . The full algorithm of Shared-𝐻𝑡𝐴 is illustrated in line 4 -

18 in Algorithm 1. Athena first completes the index search and

accumulation in the first SpTC in line (5-8). Athena then iterates

each key-value pair in 𝐻𝑡𝐴 and leverages Shared-𝐻𝑡𝐴 to calculate

and store the intermediate results (line 9-17). Finally, Athena gather

thread-local Z𝑙𝑜𝑐𝑎𝑙 independently to Z (line 18).

By employing the Shared-𝐻𝑡𝐴, we eliminate multiple time con-
suming stages: appending intermediate results in the accumulation

stage, writeback and output sorting stages of the first SpTC and

input permutation/sorting in the input processing stage of the first

SpTC’s output and large-number conversion in the index search

stage of the second SpTC. Therefore, our proposed Shared-𝐻𝑡𝐴
avoids the repeated computation and eliminate unnecessary data

movement and hence significantly improves the performance and

memory efficiency for an SpTCSeq in Type 1.

Types 2-4 dependency in Table 2 is less frequently occurred com-

pared to Type 1. Type 4 has been studied in previous research [48],

which converted to Z += (X +W) × Y to improve performance

through contraction fusion and replacing one tensor product with

a summation operation. For an SpTCSeq in Types 2 and 3 depen-

dency, we could utilize a simple strategy to avoid redundant data

movement between DRAM and storage (or PMM) if the DRAM

space is adequate. For Type 2, after completing the first SpTC, the

identical input tensor Y remains in DRAM; similarly for the shared

output tensor Z for Type 3.

3.3 Stage Parallelism

We propose stage parallelism to better utilize machine resources,

such as CPU andmemory bandwidth. This is different from the prior

research [34, 48] which uses strategies, like compiler-based tensor

contraction expression generator [48] or hand-tuned optimization

[34], to obtain independent expressions of an SpTCSeq in an optimal

order following dependency types. After resolving different types

of dependent SpTCSeq, we treat an SpTCSeq in Types 1-5 as a single

simple/compound, independent SpTC in this section.

Stage characterization.We first explore the characteristics of

the six stages (i.e., input processing, index search, accumulation,

writeback, summation and output sorting) in the SpTC algorithm

(Algorithm 1) and categorize them into IOP-, FLOP-, and memory-

intensive behaviors.We calculate the compulsory number of integer

operations (IOPs), floating point operations (FLOPs), and memory
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traffic of the stages. The word "compulsory" means the minimum

requirements of operations or memory traffic assuming an infinite

cache size, which gives a fundamental idea of an algorithm behavior

and has been used in performancemodel analysis [77]. Diverse IOPs,

FLOPs, and memory traffic behaviors have been observed in the six

stages.

In particular, we observe that three stages, namely input pro-

cessing, index search and output sorting, dominated by integer

operations (IOPs). Sorting and/or permutation, the primary compo-

nents of input processing and output sorting stages, have frequent

index comparison and exchanging. Index search performs search on

index tuples, thus only IOPs are needed. These stages are referred

to as IOP-intensive stages. Accumulation and summation stages, re-

ferred to as FLOP-intensive stages, consist of the core floating point

operations of a tensor contraction. The writeback stage has pure

memory access, named memory-intensive stages. IOP-, FLOPS-, and

memory-intensive stages utilize different computing units or mem-

ory components to fulfill, which makes it possible to parallelize

them from multiple SpTCs to improve hardware utilization. The

above observations on stage characterization drive our design.

Concurrency control.Based on the stage characterization study

and the fact that an SpTCSeq includes a large amount of indepen-

dent SpTCs (accounting for 91% of all SpTCs in a chemistry appli-

cation as discussed in Section 2.2), we propose stage parallelism to

improve hardware utilization for high performance. In particular,

given an SpTCSeq, Athena co-runs an IOP-, FLOP-, or memory-

intensive stage in an SpTC with alternative intensive stages in

another SpTC.

Athena employs hyper-threading to co-run the stages with dif-

ferent intensive behaviors. This means that a memory-intensive

stage and a compute (IOP/FLOP)-intensive stage or an IOP-intensive

stage and a FLOP-intensive stage share a physical CPU core and use

two hyperthreads to co-run. Because of the complementary char-

acteristics of the two stages, using hyperthreading to co-run them

increase instruction throughput (hence increasing CPU utilization).

Athena co-runs two SpTCs but not more at the same time, because

of the following reasons. (1) We conduct 32 tests using 12 input

problems ranging from small to large datasets (see Table 3), and find

that co-running two compute stages in a core using hyperthreading

leads to at least 94.1% CPU utilization, which is sufficiently high;

The co-run between an IOP-intensive stage and a FLOP-intensive

stage is sufficient because of their compute-intensive feature. More

than two SpTCs may incur instruction pipeline stall due to the lim-

ited integer or floating point function units. (2) Our tests also show

that using one thread to run a memory-intensive stages consumes

at least 60.3% of peak memory bandwidth. Hence, co-running a

memory-intensive stage with another compute-intensive stage is

enough to improve the utilization of memory bandwidth. In general,

the accurate number of SpTCs to co-run is determined by the CPU

utilization of individual stages and heavily relying on input and

output data.

4 DATA MANAGEMENT ON PMM-BASED
HETEROGENEOUS MEMORY SYSTEMS

We leverage the heterogeneous memory system to address the

memory capacity bottleneck in an SpTCSeq.

4.1 Static Data Placement

We consider eight major data objects in the six stages of an individ-

ual SpTC. The eight major data objects are the two input tensors (X

and Y), the hash table-represented second input tensor (𝐻𝑡𝑌 ), the
thread-local hash table-based accumulator (𝐻𝑡𝐴), the thread-local
temporary data (Z𝑙𝑜𝑐𝑎𝑙 ), the output tensor (Z𝑝𝑟𝑒 ) produced from

previous SpTCs, the output tensor (Z) in the current SpTC, and the

hash table-represented output tensor (𝐻𝑡𝑍 ).
Athena uses the static data placement strategy [44] to decide

the placement of X, Y, 𝐻𝑡𝐴, Z𝑙𝑜𝑐𝑎𝑙 and Z on DRAM and PMM for

individual SpTCs. This strategy considers memory access patterns

associated with each data object, and places them in DRAM or

PMM without migration in the middle of an SpTC execution. This

strategy leads to higher performance than dynamic data placement,

because of the avoidance of unnecessary data movement, discussed

in [44]. In particular, for each SpTC, Athena places X, Y and Z𝑝𝑟𝑒

on PMM, because memory accesses to them are sequential and

read-only in computation. Such a memory access pattern does not

lead to big performance difference between placing data objects on

DRAM and PMM, because of effective hardware prefetching and

higher PMM performance in read (refer to [44] for details). Athena

places 𝐻𝑡𝐴, Z𝑙𝑜𝑐𝑎𝑙 and Z in DRAM, following the priority of 𝐻𝑡𝐴
� Z𝑙𝑜𝑐𝑎𝑙 � Z, according to the performance variance when moving

them from PMM to DRAM (a data object causing higher variance

has a higher priority). For large data objects such as 𝐻𝑡𝐴, Z𝑙𝑜𝑐𝑎𝑙
and Z, Athena makes the best efforts to place them on DRAM. This

means that given a data object, if there is remaining DRAM space

after excluding the memory consumed by data objects with higher

priority, that data object is placed into DRAM as much as possible;

If there is no remaining DRAM space, that data object is placed into

PMM.

Athena is different from Sparta [44] in terms of data placement

from the following perspectives. First, Athena manages data objects

from all SpTCs together. This means that when the DRAM space is

not large enough to save all data objects, not only data objects in an

individual SpTC aremanaged following the priority discussed above,

but also all data objects across SpTCs are managed following the

above priority. This cross-SpTCs static data placement is feasible,

because the sizes of data objects can be estimated [44] and the

execution order of the six stages is known. For the data objects with

the same priority in different SpTCs, Athena gives higher DRAM

priority to those SpTCs with smaller memory footprint. This is

because the SpTC with less memory footprint tends to have shorter

execution time and hence can release the DRAM space to other

SpTCs sooner.

Second, Athena dynamically migrates 𝐻𝑡𝑌 and 𝐻𝑡𝑍 between

DRAM and PMM, instead of using the static data placement in

Sparta. This is because the two data objects have a large amount

of random memory accesses. For example, the memory read/write

accesses to 𝐻𝑡𝑌 and 𝐻𝑡𝑍 account for 45% and 27% of all memory

accesses in an SpTCSeq with the tensor Disilane (see Table 3 for Dis-

ilane). Placing them to DRAM can lead to significant performance

improvement. However, the two data objects are the largest ones

among all data objects and using the static data placement places

most of data in PMM, which causes large performance loss. Athena

uses a dynamic data placement strategy based on data semantics
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Figure 2: Workflow of the dynamic data placement based on data semantics.

to place hot data from the two data objects into DRAM as much as

possible, discussed as follows.

4.2 Dynamic Data Placement based on Data
Semantics

Dynamic data placement has been employed to enable high per-

formance on heterogeneous memory [2, 12, 22, 24, 46, 57, 58, 61,

76, 78, 79, 82, 86, 87]. Most of those solutions are application ag-

nostic, which means that they track page (or data) access fre-

quency [2, 12, 22, 24, 78, 79, 82, 87] or manage DRAM as a hardware

cache for PMM [46, 57, 76, 86] without the knowledge of data se-

mantics. However, the data semantics gives critical indications on

memory access patterns, which is useful to direct data placement

and avoid unnecessary data movement. Leveraging data semantics

to direct data placement has recently been used in data analytics

workloads (e.g., traffic analysis) [64]. We study how to use data

semantics to build 𝐻𝑡𝑌 and 𝐻𝑡𝑍 and direct data placement in an

SpTCSeq.

𝐻𝑡𝑌 and 𝐻𝑡𝑍 have random memory access patterns but still

have hot non-zero elements frequently accessed. Those non-zero

elements can be eliminated out of DRAM because of short-term

variance in memory access patterns, if we use application-agnostic

solutions. Using data semantics we can keep hot non-zero elements

in DRAM to address the above problem. Furthermore, using data se-

mantics allows us to know in advance which non-zero elements will

be accessed, enabling effective prefetching from PMM to DRAM.

The existing 𝐻𝑡𝑌 and 𝐻𝑡𝑍 built from Y and Z are based on the

hash table [44], which is difficult to get the number of accesses

for each element in advance to direct data placement, and the ac-

cess order of non-zero elements in the hash table is also random,

making prefetching difficult. Hence, we introduce a new method

that exposes element hotness, during the construction of the hash

table-based 𝐻𝑡𝑌 and 𝐻𝑡𝑍 . As a result, using the semantics of 𝐻𝑡𝑌
and 𝐻𝑡𝑍 , the data hotness is associated with data, allowing Athena
to implement dynamic data placement and prefetching.

Figure 2 depicts the workflow of our design. Our design has four

steps: bucket conversion, bucket sorting, hash table construction,

and semantics-guided dynamic data placement.

Bucket conversion. Figure 2 uses tiny sparse tensors X and Y

as an example. Using the method in [44], Athena first converts

indices tuple of non-zero elements to keys based on the large-

number representation function (LN), in order to make the key

of each element unique. But different from [44], after the above

conversion, Athena uses a common hash function (the Jenkins hash

function) to distribute indices to different buckets. The number of

buckets equals to the number of non-zero elements in Y (or Z).

Bucket sorting. In the bucket conversion step, Athena records

the number of non-zero elements in each bucket, which indicates

the number of accesses to each bucket. The number of accesses

to each bucket can be determined based on the number of non-

zero elements, because SpTCSeq iterates non-zero elements in X

(or Z𝑝𝑟𝑒 ) and then performs index search in 𝐻𝑡𝑌 (or 𝐻𝑡𝑍 ). The
numbers of non-zero elements collected from buckets form a bucket

array. The size of the bucket array is determined by the number

of non-zero elements in Y ( or Z). Athena sorts the bucket array

in an decreasing order. The sorting is necessary to enable quick

identification of bucket hotness.

Hash table construction. Athena constructs the hash table-

represented sparse tensor 𝐻𝑡𝑌 from Y using the existing approach.

But different form it, during the hash table construction, Athena

traverses the sorted bucket array from the most accessed bucket

(i.e., the bucket 0) and puts them into DRAM one by one till DRAM

runs out of space. At that point, the remaining buckets, including

those with the number of accesses as zero, are placed into PMM.

During the bucket placement on HM, Athena leverages a sim-

ple analytical model to estimate the memory requirement of each

bucket: 𝑆𝑖𝑧𝑒𝑖𝑑𝑥 · 𝑁X + 𝑆𝑖𝑧𝑒𝑣𝑎𝑙 + 𝑆𝑖𝑧𝑒𝑒𝑝 , in which 𝑆𝑖𝑧𝑒𝑖𝑑𝑥 , 𝑆𝑖𝑧𝑒𝑣𝑎𝑙
and 𝑆𝑖𝑧𝑒𝑒𝑝 are the size of an index, the size of a value, and the size

of the entry pointer pointing to the bucket, respectively; 𝑁X is the

number of modes of X.

Data-semantics guided data management. During the com-

putation stages, Athena maintains two helper threads to manage
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data between DRAM and PMM. The first helper thread is referred

to as the migration thread. Whenever an element is accessed, the

number of accesses for the corresponding bucket in the bucket

array is reduced by one. Once the number of accesses for a hot

bucket in DRAM becomes zero, meaning that the bucket will not be

accessed any more, Athena put the hot bucket ID to an FIFO queue

for the migration thread to move to PMM. The migration thread

continuously checks the FIFO queue to migrate the bucket to PMM.

The second helper thread is referred to as the prefetching thread.

When there is DRAM space for𝐻𝑡𝑌 (or𝐻𝑡𝑍 ) in DRAM, the prefetch-
ing thread migrates the hottest bucket from PMM to DRAM before

it is needed by computation.

The semantics guided data management in Athena significantly

improves the performance by directing data placement based on

the expected data hotness/coldness using data semantics.

5 EVALUATION

5.1 Evaluation Setup

Platforms.We use an Intel Optane (PMM) Linux server, equipped

with an Intel Xeon Cascade-Lake CPU including 24 physical cores

at 2.3 GHz frequency. The CPU is attached with 6× 16 GB of DRAM

and 6× 128 GB Intel PMM DIMMs. All implementations (Athena

and other approaches) are compiled by gcc-7.5 and OpenMP 4.5

with -O3. All experiments were conducted on a single socket with
one thread per physical core. Similar to recent work [24, 44, 78, 80],

we use one-socket evaluation to highlight data movement between

DRAM and PMM. Each workload is run 10 times and we report the

average execution time.

Datasets We use sparse tensors summarized in Table 3. Those

tensors are derived from real-world applications. Six tensors are

derived from the well-known Coupled Cluster Singles and Dou-

bles with perturbative triples correction, CCSD(T) [10] from chem-

istry [4]; Four tensors are derived from the notable Hubbard model

from quantum physics in ITensor [17]; Two tensors are from large

sparse tensor collection FROSTT [68]. Tensors in chemistry and

physics are constructed by cutting off magnitude values smaller

than 1×10−8 verified by domain scientists. We evaluate a real-world

chemistry and four physics applications with Athena in Section 5.5

and Section 5.4 separately to study the effectiveness of Athena. We

use a 4-SpTC sequence in Types 1 and 5 dependencies for each

experiment to benchmark the performance if not mentioned oth-

erwise. Section 5.5 will show the applications of chemistry using

a real SpTCSeq with ten SpTCs. Eight tensors exceed the DRAM

Table 3: Characteristics of sparse tensors in the evaluation

Domains Tensors Order Dimensions #Non-zeros Density

Chemistry

Benzene 4 336 × 336 × 42 × 42 4M 1.9 × 10−2

Cytosine 4 400 × 400 × 58 × 58 19M 3.4 × 10−2

Disilane 4 270 × 270 × 34 × 34 4M 4.2 × 10−2

Guanine 4 280 × 280 × 78 × 78 32M 6.6 × 10−2

Siosi3 4 64 × 64 × 186 × 186 6M 4.0 × 10−2

Uracil 4 90 × 90 × 174 × 174 10M 4.2 × 10−2

Physics

Hubbard-1D-P 5 4 × 4 × 93 × 36 × 432 0.3M 6.3 × 10−3

Hubbard-1D-T 5 131 × 4 × 413 × 36 × 4 0.4M 5.1 × 10−3

Hubbard-1D-Z 5 4 × 129 × 184 × 24 × 4 0.1M 5.2 × 10−3

Hubbard-2D 5 4 × 4 × 111 × 24 × 528 0.3M 6.6 × 10−3

Others
NIPS 4 2K × 3K × 14K × 17K 3M 1.8 × 10−6

Vast 5 165K × 11K × 2 × 100 × 89 26M 8.0 × 10−7

Figure 3: Overall speedups of Athena over Sparta for SpTC-

Seq on 12 tensors.

Figure 4: Percentage of execution time breakdown of

Athena.

capacity (96 GB) on our platform, which indicates the necessity of

using PMM.

5.2 Overall Performance

In this experiment, to study the performance of Athena, we com-

pare Athena with Sparta [44], the state-of-the-art element-wise

sparse tensor contraction framework for an individual SpTC on

heterogeneous memory. In general, as shown in Figure 3, Athena

achieves 327-7362 × speedups over Sparta for SpTC sequences on

12 real-world tensors. Hash table-based sparse tensor summation

contributes the most, 42-838 ×; while shared sparse accumulator

and stage parallelism methods obtains 2.67-6.82 × and 1.21-1.46×

speedup respectively. Performance analysis for every proposed

optimization will be given in Section 5.3.

Figure 4 depicts the performance breakdown of Athena. Index

search and accumulation stages are the most expensive stages for

most tensors, which are in the computation part of an SpTC. Some

tensors (e.g., Vast and Nell2) spend more time in output sorting

than input processing stage, while some tensors (e.g., Hubbard-1D-

T, Hubbard-1D-Z, Hubbard-2D) are vice versa, though they both

use sorting and permutation algorithms. This is determined by the

output tensor size versus the input tensors. For example, the size of

the output tensor in Vast is 21× larger than the size of input tensor,

while the size of the output tensor in Hubbard-1D-Z is 78% of the

input tensor.
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Figure 5: Peak memory consumption of SpTCSeq on 12 ten-

sors.

Figure 6: Speedups of Athena with hash-table represented

summation over Sparta with traditional linear search-based

summation.

Figure 5 shows the peak memory consumption of SpTC se-

quences in the experiment. Eight tensors consumemore thanDRAM

space (96 GB), which cannot be performed without PMM memory.

This indicates the large data used in applications and the necessity

of using PMM. For even larger problems deployed in a distributed

environment, Athena could help to reduce the number of nodes

needed for computation due to the usage of the large PMM capacity.

5.3 Optimization Analysis

Hash table-based sparse tensor summation. Figure 6 shows the

performance of using hash table-based sparse tensor summation

on the 12 tensors respectively. In Figure 6, we observe that Athena

significantly outperforms Sparta by 42-838 ×. The results show

that our proposed hash table-based sparse tensor summation in

Athena is more efficient than the traditional linear search-based

summation.

Shared sparse accumulator. The shared sparse accumulator

design in Athena reuses intermediate results of an SpTCSeq in

Type 1 expression dependency to avoid redundant computation

and memory operations and retains shared data objects to eliminate

unnecessary input processing and data migration. Figure 7 shows

the performance of using the shared sparse accumulator design

("Shared-𝐻𝑡𝐴" in gray bars) in Athena compared to the sequen-

tial execution of the 4-SpTC sequence. We observe that Athena

with the shared sparse accumulator design greatly outperforms

the sequential execution by 2.67-6.82 ×, where Siosi3 obtains 6.82×

Figure 7: "Stage Parallelism" and "Shared-HtA" optimization

speedup over the "Sparta + Summation" as the baseline.

and Hubbard-1D-Z is 2.67×. Because the performance improve-

ment of shared sparse accumulator derives from eliminating the

redundant computation and memory operations in some stages,

the performance improvement of leveraging shared sparse accu-

mulator depends on the weights of those stages (i.e., for the first

SpTC, the process of intermediate results appending in the accu-

mulation stage, writeback stage and output sorting stage; for the

second SpTC, the process of input permutation/sorting in the input

processing stage and the process of large-number conversion in the

index search stage). For example, those stages account for 85.3% of

the total execution time in the Siosi3 while only account for 62.5%

of the total execution time in the Hubbard-1D-Z.

Stage parallelism. Given a 4-SpTC sequence, the stage paral-

lelism design in Athena co-runs stages in diverse patterns, IOP-,

FLOP- and memory-intensive between two consecutive indepen-

dent SpTCs. Figure 7 shows the performance of using the stage

parallelism in Athena compared to its sequential execution for this

SpTCSeq. We observe that our proposed stage parallelism outper-

forms the sequential execution using Athena with 21%-46% perfor-

mance improvement. Athena with the stage parallelism improves

14-19% CPU utilization and 12-24% memory bandwidth compared

to the sequential execution. The performance improvement in dif-

ferent tensors varies because the execution time of overlapped

stages varies. For example, the stage parallelism gains 17.6% perfor-

mance improvement on Vast while 31.5% on Disilane. Assume the

ideal case without considering the potential resource contention of

co-running a 4-SpTC sequence, the upper bound of performance

improvement in Vast could achieve 21.2% and in Disilane is 37.8%.

Our stage parallelism is quite close to ideal upper bound. The perfor-

mance of the ideal case is measured by separately running stages in

the critical path. For some small sparse input tensors, the thread scal-

ability is poor due to the inadequate parallelism in the index search

and accumulation stages. Stage parallelism can bring extra perfor-

mance improvement in this case. For example, stage parallelism for

the four small tensors in physics, having the least non-zeros in all

12 tensors, brings 11% to 22% extra performance improvement than

the other eight.

Datamanagement onPMM-basedheterogeneousmemory

systems.We study the performance of employing the semantics

guided data management on HM, compared with a state-of-the-art

solution for HM management (i.e., IAL (Improved Active List) [83]),

the hardware-managed cache approach (i,e, PMM Memory Mode),
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Figure 8: Speedups of Athena, IAL, Memory Mode and DRAM-only over PMM-only for SpTCSeq.

PMM-only (i.e., the AppDirect mode assigning all data objects to

PMM) and DRAM-only (i.e., assign all data objects to DRAM). IAL

is configured with its best configurations based on the IAL reposi-

tory [84].

As shown in Figure 8, Athena with the semantics guided data

management design outperforms IAL by 1.58× on average (up to

2.09×). Also, Athena achieves 1.82× (up to 2.58×) and 2.34× (up to

2.94×) performance improvement on average than PMM Memory

Mode and PMM-only respectively. For some tensors (e.g., Hubbard-

1D-Z), because the average memory bandwidth requirement is

relatively smaller compared to others, the performance difference

between Athena and PMM-only is small (47% improvement). For

example, with Hubbard-1D-Z, if we place all data objects to DRAM

(i.e., DRAM-only), the performance improvement is only 58%, com-

pared to PMM-only.

We observe that the average PMM memory bandwidth of IAL is

larger than that of Athena. This is because IAL causes undesirable

data movement that consumes higher PMM memory bandwidth.

The average DRAM memory bandwidth of PMM memory mode is

larger than that of Athena, because PMM Memory Mode manages

DRAM as a hardware cache for PMM and unnecessarily prefetches

data objects to DRAM for high performance without being able to

be aware of semantic hotness of data objects.

5.4 Performance Comparison to ITensor

In this experiment, we compare the performance of Athena and

ITensor, which is a state-of-the-art library for block-sparse, multi-

threading tensor contraction on a single machine. As applications

in ITensor only include independent SpTCs (Type 5) without sum-

mation, we employ stage parallelism and semantic-hotspot-based

Table 4: A 10-SpTC sequence from a CCSD(T) model.

𝐾 [ℎ4, ℎ3, ℎ1, ℎ2]+ = −0.125 ∗ 𝐿 [𝑝1, 𝑝2, ℎ3, ℎ4] ∗ 𝑀 [𝑝1, 𝑝2, ℎ1, ℎ2]
𝑁 [𝑝3, 𝑝4, ℎ1, ℎ2]+ = 1.0 ∗ 𝐾 [ℎ4, ℎ3, ℎ1, ℎ2] ∗ 𝑀 [𝑝3, 𝑝4, ℎ4, ℎ3]
𝑂 [𝑝1, ℎ3, 𝑝4, ℎ2]+ = 0.5 ∗ 𝐿 [𝑝2, 𝑝4, ℎ3, ℎ1] ∗ 𝑀 [𝑝1, 𝑝2, ℎ1, ℎ2]
𝑁 [𝑝3, 𝑝4, ℎ1, ℎ2]+ = 1.0 ∗𝑂 [𝑝4, ℎ4, 𝑝1, ℎ1] ∗ 𝑀 [𝑝3, 𝑝1, ℎ4, ℎ2]
𝑃 [𝑝1, ℎ3, 𝑝4, ℎ2] = −0.5 ∗ 𝐿 [𝑝2, 𝑝4, ℎ3, ℎ1] ∗𝑄 [𝑝2, 𝑝1, ℎ1, ℎ2]
𝑅 [𝑝3, 𝑝4, ℎ1, ℎ2]+ = −1.0 ∗ 𝑃 [𝑝4, ℎ4, 𝑝1, ℎ1] ∗𝑄 [𝑝1, 𝑝3, ℎ4, ℎ2]
𝑆 [𝑝1, ℎ3, 𝑝4, ℎ2]+ = 0.5 ∗𝑇 [𝑝2, 𝑝4, ℎ3, ℎ1] ∗𝑈 [𝑝1, 𝑝2, ℎ1, ℎ2]
𝑉 [𝑝3, 𝑝4, ℎ2, ℎ1]+ = 1.0 ∗ 𝑆 [𝑝4, ℎ4, 𝑝1, ℎ1] ∗𝑄 [𝑝3, 𝑝1, ℎ2, ℎ4]
𝑅 [𝑝3, 𝑝4, ℎ1, ℎ2]+ = 1.0 ∗ 𝑆 [𝑝4, ℎ4, 𝑝1, ℎ1] ∗𝑈 [𝑝3, 𝑝1, ℎ4, ℎ2]
𝑉 [𝑝3, 𝑝4, ℎ2, ℎ1]+ = −1.0 ∗ 𝑃 [𝑝4, ℎ4, 𝑝1, ℎ1] ∗ 𝑀 [𝑝3, 𝑝1, ℎ4, ℎ2]

Figure 9: Speedups ofAthena over ITensor onHubbard-1D-T,

Hubbard-1D-P, Hubbard-1D-Z and Hubbard-2D models us-

ing different SpTCSeq with different sparse input tensors.

data management in Athena and compare the performance of

Athena and with ITensor. SpTCs with different tensors (SpTCs1 to

SpTCs12) are from well-known quantum physics models (Hubbard-

1D-T, Hubbard-1D-P, Hubbard-1D-Z and Hubbard-2D) [15] in ITen-

sor [16] with cutting off values smaller than 1 × 10−8. Figure 9

shows the performance comparison between Athena and ITensor.

We observe that Athena significantly outperforms ITensor with

12.6× performance improvement on average.

5.5 Application in Chemistry

We study the performance of Athena on a real-world SpTC sequence

from NWChem in chemistry. NWChem is a well-known compu-

tational chemistry library for quantum chemical and molecular

dynamics functionality [4]. We select a 10-SpTC sequence derived

from CCSD(T) [10]. The 10-SpTC sequence is concluded in Table 4

and cover 5 different expression types. We compare the perfor-

mance of Athena to Sparta [44] on this sequence. Athena achieves

6232× speedup over Sparta combining all our designs. In particular,

Athena achieves 635× speedup with hash table-based sparse tensor

summation; 1.9× with semantic-hotspot-based data management;

4.3× with shared sparse accumulator; 1.2× with stage parallelism.

6 RELATEDWORK

Sparse tensor contraction. Dense tensor contraction has been

studied for decades on diverse hardware platforms [5, 19, 21, 27, 28,

32, 34, 42, 50, 65, 72, 73], in scientific computing including chem-

istry, physics, and mechanics. The state-of-the-art studies focus on

block-sparse tensor contractions with dense blocks in tensors. The

199



Athena: High-Performance Sparse Tensor Contraction Sequence on Heterogeneous Memory ICS ’21, June 14–17, 2021, Virtual Event, USA

conventional approaches first extract dense block-pairs of the two

input tensors, and then perform multiplication by calling dense

BLAS linear algebra. Finally, those approaches pre-allocate the

output tensor using domain knowledge or a symbolic phase ap-

proach [20, 25, 53, 54, 67], such as TiledArray [54], Cyclops Tensor

Framework [36], and libtensor [14, 49]. The state-of-the-art work

Sparta focuses on element-wise sparse tensor contractions [44],

solving the high dimensionality challenges through hash table-

based approaches and addressing the unknown output tensor and

irregular memory access challenges by dynamic allocation, permu-

tation and sorting. Athena develops element-wise sparse tensor

contraction by optimizing tensor summation as well, frequently

occurred in contraction sequences.

Sparse tensor contraction sequences. Sparse tensor contraction

often occurs as sequences in a spectrum of applications, such as

quantum chemistry, quantum physics and deep learning [17, 31,

41, 62, 63]. Some existing work optimizes tensor computation se-

quences. AutoHOOT [48] decomposes a dense tensor contraction

workload into task sequences and overlaps the computation and

communication task sequences to reduce the communication over-

head in a distributed execution. DLTC [34] takes input tensor com-

putation sequences and generates optimized derivative sequences

by automatic differentiation. TensorFlow [1] leverages a directed

acyclic graph to represent the computation and data flow of tensor-

based operator sequences and co-run the tensor-based operator

sequences in an FIFO method. Athena is different from them in

terms of leveraging the domain-knowledge of SpTC sequences to

achieve high performance.

Data management on heterogeneous memory systems. Het-

erogeneous memory management attracted plenty of research ef-

forts in recent years [2, 22, 24, 59, 60, 81, 82]. These works ex-

plore various page-level data placement polices on HM based on

main memory access profiling result. Thermostat [2] uses sampling-

based profiling to track page table and migrates hot pages into

DRAM. RAMinate [22], Heteros [24], Yan et al. [82] propose the

state-of-the-art memory management solutions for general pur-

pose which guides page placement based on an existing Linux page

replacement mechanism. Application-specific HM management

solutions [8, 11, 13, 18, 33, 35, 45, 47, 75, 78, 79, 85] leverage domain

knowledge to further improve performance. MyNVM [13] proposes

a software-managed multi-level caches policy to treat DRAM and

NVM as caches for hard drives. Sparta [44] leverages application

awareness and static data placement to avoid unnecessary data

movement. Athena is different from these works in terms of expos-

ing data semantics and dynamically managing data objects across

SpTCs.

7 CONCLUSION

Efficiently computing sparse tensor contraction sequences

(SpTCSeq) is critical to many applications. However, it is challeng-

ing, due to its redundant computation and memory operations,

massive memory consumption, and inefficient utilization of hard-

ware. In this paper, we explore solutions to address those challenges

based on algorithm knowledge and characterization of workloads

in SpTCSeq. We introduce Athena, a high performance framework

for SpTC sequences. Athena is based on a set of novelty in data

structures, runtime techniques, and emerging Optane-based mem-

ory architecture. Evaluating with 12 datasets, we show that Athena

brings significant speedup (327-7362 ×) over the state-of-the-art

SpTC algorithm. Athena also showcases its effectiveness in quan-

tum chemistry and physics applications. For exascale problems

deployed in a distributed environment, Athena could help to reduce

the number of nodes needed for computation due to its capability

to solve large sparse tensors on each single node.
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