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ABSTRACT

Particle simulations of plasma are important for understanding

plasma dynamics in space weather and fusion devices. However,

production simulations that use billions and even trillions of com-

putational particles require high memory capacity. In this work,

we explore the latest persistent memory (PM) hardware to enable

large-scale plasma simulations at unprecedented scales on a sin-

gle machine. We use WarpX, an advanced plasma simulation code

which is mission-critical and targets future exascale systems. We

analyze the performance of WarpX on PM-based heterogeneous

memory systems and propose to make the best use of memory

hierarchy to avoid the impact of inferior performance of PM. We

introduce a combination of static and dynamic data placement, and

processor-cache prefetch mechanism for performance optimization.

We develop a performance model to enable efficient data migration

between PM and DRAM in the background, without reducing avail-

able bandwidth and parallelism to the application threads. We also

build an analytical model to decide when to prefetch for the best use

of caches. Our design achieves 66.4% performance improvement
over the PM-only baseline and outperforms DRAM-cached, NUMA

first-touch, and a state-of-the-art software solution by 38.8%, 45.1%
and 83.3%, respectively.
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1 INTRODUCTION

Plasma simulations are critical for understanding plasma dynamics

in space weather and fusion devices [3, 34, 36]. The particle-in-cell

(PIC) method is an important model that enables large-scale plasma

simulations on high-performance computing (HPC) systems [4, 10,

33, 36]. The PIC method uses computational particles to simulate

plasma particles, such as electrons and protons. High-fidelity PIC

simulations often use billions and even trillions of particles, which

require high memory capacity.

Persistent memory (PM), exemplified by the Intel Optane DC

PM [13], provides a solution to meet the requirement of high

memory capacity in HPC applications. For instance, the Intel Op-

tane PM can provide up to six terabyte (TB) memory on a single

machine. However, there is a performance gap between PM and

DRAM [13, 25]. Read and write bandwidth of the Optane PM are

only 38% and 16% that of DRAM, respectively. Hence, PM often

comes with a small DRAM (tens of gigabytes) to boost performance.

As a result, PM and DRAM form a heterogeneous memory (HM)

system. How to place and migrate data between PM and DRAM

to enjoy the speed of DRAM and capacity of PM remains active

research [7, 11, 22, 26, 39, 40].

In this paper, we leverage the latest PM hardware to enable large-

scale plasma simulations. We analyze the performance and develop

a performance model for optimizing PIC codes on PM-DRAM sys-

tems. Our performance analysis and optimization use a state-of-

the-art electromagnetic PIC code called WarpX [33]. Nonetheless,

the optimization strategies derived from this work are generally

applicable to other PIC-based simulation codes.

WarpX [33] is a mission-critical application designed for effi-

cient executions on large-scale HPC systems and future Exascale

machines. WarpX enables high-fidelity modeling of many complex

processes, such as laser- and beam-driven plasma accelerators. As

a PIC method, WarpX has high memory footprints for simulating

particles moving in electromagnetic fields. The memory footprint

scales up with the number of particles and field size. For example,

the recent production run on 4,096 nodes on the Cori supercom-

puter simulates 62 billions of particles and consumes up to 8.9 TB
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memory. Therefore, a large memory capacity is a key enabler for

large-scale simulations in WarpX.

Our performance analysis identifies two challenges in optimizing

WarpX on PM-based systems. First, WarpX has frequent read/write

with a streaming-like access pattern, which intensifies memory

accesses. Given the low bandwidth of PM compared to DRAM, this

access pattern is unfavorable. Second, the WarpX code uses tens of

millions of data objects and frequent memory (de)allocation. These

data objects include long-lived data structures for particles, fields,

and metadata, as well as short-lived buffers for communication and

computation. Managing such a large number of data objects with

diverse properties on DRAM and PM is complex.

We introduce a set of techniques to optimize the performance of

WarpX on PM. Data objects are characterized and classified based

on their lifetime and memory access patterns. This information

guides their placement and migration on PM and DRAM at runtime.

Ideally, frequently accessed data objects are placed into DRAM.

However, due to the limited DRAM capacity and the large problem

size in production runs, only some data objects or even partial data

objects can fit into DRAM. To address this challenge, we make the

best use of memory hierarchy and employ a combination of data

migration and processor-cache prefetch mechanisms. In particular,

we partition long-lived large data objects and migrate their parti-

tions between PM and DRAM. We prefetch frequently reused data

from PM to processor caches without using limited DRAM space.

To achieve efficient migration between PM and DRAM, we need

to address two challenges. First, migrating data consumes memory

bandwidth. However, the application also needs to access memory.

Hence, data migration can compete with the application threads

for memory bandwidth. Second, data migration uses helper threads

in the background, other than the application threads, to avoid ex-

posing data migration into the critical path. However, using helper

threads reduces the availability of processor cores for the applica-

tion threads. An optimal number of helper threads should expedite

data migration without causing performance loss in the application

threads. To address the above challenges, we develop a perfor-

mance model to decide the optimal number of helper threads for

data migration. Our model considers the constraints on memory

bandwidth and core availability in realistic simulations. Based on

the performance model, we use a lightweight runtime algorithm

combined with runtime profiling and empirical observations to

select and adapt the data migration between PM and DRAM for

different input problems.

To enable efficient prefetch from PM to processor caches, we

must decide when to prefetch, and the prefetch must be just early

enough such that the data is in the caches right before computation

without eliminating useful data or wasting cache space. We build an

analytical model to decide when to prefetch based on an abstraction

of memory accesses in WarpX.

We summarize the paper contributions as follows.

• We demonstrate and quantify the benefits of leveraging PM to

enable large-scale plasma simulations in a mission-critical appli-

cation called WarpX.

• We characterize the memory management, bandwidth consump-

tion, and data object lifetime and access patterns in WarpX pro-

duction simulations. We analyze the implication of the charac-

terization for performance optimization on PM-based systems.

• We make the best use of memory hierarchy based on static and

dynamic data placement strategies, and processor-cache prefetch

guided by performance modeling.

• We improved the WarpX execution on Optane-only by 66.4%
and outperformed DRAM-cached, the NUMA first-touch policy,

and a state-of-the-art HM solution by 38.8%, 45.1% and 83.3%,
respectively.

2 BACKGROUND

TheWarpXparticle-in-cell code.WarpX leveragesMPI+OpenMP

parallelism. It has two components, i.e., PICSAR [28] for particle-

in-cell (PIC) routines at the innermost level and AMReX [44] for

adaptive mesh refinement (AMR). A WarpX simulation may consist

of multiple levels of resolution. Each level is an AMR level in the

AMReX library and performs a PIC simulation at the resolution of

that level.

PIC codes typically have the following characteristics. Field

and particles are the main data structures, and particles consume

the most memory footprint. The core PIC routines include four

phases – current deposition, field solver, field gather,
and particle pusher. In current deposition, all particles are
iterated to deposit their charge and moments to the fields. In field
solver, a linear system from the discretized Maxwell’s equations is
solved to compute electric and magnetic fields on the grid. During

field gather, forces from the fields are calculated for each particle,
which then in particle pusher, are used to update the location
of particles. Both current deposition and field gather have
mostly regular data access to the particles, exhibiting streaming-

like read access in current deposition and read-write access in
field gather.
Communication happens in field solver and particle pusher.

Most communication in field solver is point-to-point (P2P) be-
tween neighbor processes for halo exchange. Both collective and

P2P communications are used in particle pusher for communi-
cating particles that move from one subdomain to another.

The Intel Optane DC PM. The Intel Optane DC Persistent

Memory Module (PMM) is the first large-scale byte-addressable PM.

The Intel Purley platform used in our study is equipped with Op-

tane PM DIMMs and DRAM DIMMs. Each socket has six memory

channels, and each is shared by a DRAM DIMM and a PMM DIMM.

In total, there are 12 PM DIMMs and DRAM DIMMs, respectively,

on two sockets. An Optane PM DIMM may have 128, 256, or 512

GB capacity, enabling up to 6 TB memory capacity on a single ma-

chine [13]. The latency to PM is measured as 174 ns for sequential

reads and 304 ns for random reads, in contrast to 79 ns and 87 ns to

DRAM [25]. The bandwidth to PM on one socket is 39 GB/s for read

and 13 GB/s for write, while DRAM achieves 104 GB/s and 80 GB/s

bandwidth on the same platform. There are two modes in PMM:

memory mode and app-direct mode. In the memory mode, DRAM

becomes a hardware-managed cache to PMM. Running the applica-

tion on DRAM-cached PMM to use both DRAM and PMM requires

no application modifications. In the app-direct mode, accesses to

2
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Table 1: Compare thememory capacity and simulation scale

on supercomputers

Supercomputer Mem capacity per node
Largest problem

(in terms of particles)

Sierra 320GB DRAM 10.6 trillions

Summit 608GB DRAM 18.9 trillions

Aurora 256GB DRAM (est.) 8.8 trillions

Taihu Light 32GB DRAM 1.1 trillions

Optane-based 1692GB (1.5TB PM + 192GB DRAM) 58.6 trillions

PM and DRAM can be explicitly controlled at the application level,

either through a DAX-based file system [31] or exposing PM as

separate NUMA nodes.

Enabling Large-Scale Simulations with PM. Using the Op-

tane persistent memory, we can significantly increase the memory

capacity per node to enable fine-grained and large-scale scientific

simulations. An Optane-based machine has up to six TB mem-

ory [13], while a node in main-stream supercomputers has at most

hundreds of GB (see Table 1). Given a fixed number of nodes, using

the Optane PM allows us to perform scientific simulation previously

unachievable due to limited memory capacity.

Table 1 presents an example case that performs a numerical sim-

ulation of a laser-driven plasma accelerator (i.e., the laser-wakefield

accelerator) using WarpX [8]. This simulation uses a large num-

ber of particles in the time and space scales to gain knowledge on

plasma structures towards a full-scale numerical study of the next

generation laser-wakefield accelerator systems. Such numerical

studies provide insights for compact high-energy colliders [16].

In this example, we assume the same simulation configuration as

that in a production run on 4,942 nodes on the Cori supercomputer.

Table 1 compares the largest simulation scale that can be supported

on each supercomputer. The simulation scale is defined as the

number of simulated particles – a larger number indicates a larger

simulation scale. Clearly, Memory capacity is one main constraint

on the simulation scale. The memory consumption of WarpX is

calculated based on the estimation of the sizes of particles, fields,

metadata, and temporal data objects.

Table 1 shows that an Optane-based supercomputer can enable

larger-scale simulations than other supercomputers. Compared

with Summit and Sierra (the top two supercomputers in the top500

list by April 2020) that use hundreds of Gigabytes of DRAM per

node, the Optane-based supercomputer increases the simulation

scale by 3.1x and 5.5x, respectively.

3 PERFORMANCE CHARACTERIZATION

We develop a heap profiler and a phase profiler to characterize

the memory usage and bandwidth consumption in the application.

The heap profiler tracks dynamic memory allocations and collects

information on each allocation (data object). The phase profiler

collects hardware events from performance counters and associates

them to specific execution phases in the application.

Heap profiler interposes common memory management rou-

tines in C and C++, e.g., malloc, calloc, the operator new and
its variants, posix_memalign, Linux-specific aligned_alloc and
valloc. It collects the metadata of data objects, including size, time
of allocation/deallocation, and lifetime (defined as the interval be-

tween allocation and deallocation). The timestamps of allocation

0 1 2 3 4 5 6

# of iterations

10.5m
20.9m
31.4m
41.8m
52.3m
62.8m

#
of

ca
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s

alloc-calls free-calls

Figure 1: The number of memory allocation/deallocation

across iterations.

and deallocation are used to map to specific execution phases. The

tool also supports postmortem analysis of the profiling results.

Phase profiler use specific APIs to track execution phases. The

user inserts the APIs into theWarpX code to mark execution phases.

The API implementation includes two functionalities. First, it trig-

gers a set of auxiliary external scripts to invoke the Linux perfor-

mance profiling tool perf to collect information from hardware
performance counters. Also, it invokes the Intel PCM [32] to collect
memory bandwidth data.

3.1 Profiling Results

We use a representative laser-driven simulation configuration for

profiling. The input problem uses 704×704×5664 cells and 8.4 billion

particles (see Problem B in Table 5). The peak memory consumption

exceeds 1.2 TB on DRAM-cached Optane (memory mode).

Memory allocation and deallocation analysis. We use the

heap profiler to track memory allocation/deallocation in each it-

eration of the WarpX execution. Figure 1 presents the results for

the first seven iterations. The profiling results show that millions

of memory allocation and deallocation occur in each iteration.

Across iterations, the number of memory allocation and deallo-

cation varies. Such a massive amount of data objects, which are as

resulted from frequent allocation and deallocation, imposes chal-

lenges in profiling at either data object level [12, 24, 39] or memory

page level [2, 6, 14, 40, 42].

Data object lifetime and size.We classify the distribution of

lifetime and size of data objects. Table 2 reports the classification

in the second iteration of the WarpX simulation. Other iterations

exhibit similar distributions. A data object is alive after its allocation

and before its deallocation. We categorize a data object as short-

lived if its lifetime is within one iteration and long-lived otherwise.

We observe that 92.7% of data objects are short-lived in the WarpX

simulation. Furthermore, these short-lived data objects only account

for less than 10% of the peak memory consumption of WarpX. This

characterization motivates us to use a small DRAM space to host

repeatedly allocated/freed short-lived data objects and avoid data

movement between DRAM and PM. This static placement strategy

is described in Section 4.1.

Execution time breakdown. We measure the time of major

execution phases (Section 2). Each iteration of the main computa-

tion loop performs these major phases. Some “add-ons” execution

(such as load redistribution and moving window) may also occur in

some iterations, counted as others. Table 3 reports the breakdown
of the execution time.

Overall, the particle pusher and current deposition phases
account for about 84% of the total simulation time. Particle pusher

3
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Table 2: The distribution of object size.

Bin

(MiB)

Short-lived data object Long-lived data object

Accumulated

footprint

Peak

footprint

Accumulated

footprint

Peak

footprint

(0,1) 897.7 GiB 10.4 GiB 840.3 GiB 840.3 GiB

[1,2) 34.3 GiB 10.8 GiB 1.9 GiB 1.9 GiB

[2,4) 262.5 GiB 66.0 GiB 285.5 GiB 285.5 GiB

[4,8) 144.0 MiB 16.0 MiB 543.0 MiB 543.0 MiB

[8,16) 96.0 MiB 16.0 MiB 14.0 MiB 14.0 MiB

[16,32) 192.0 MiB 32.0 MiB 28.0 MiB 28.0 MiB

[32,64) 384.0 MiB 64.0 MiB 0 0

[64,+∞) 768.0 MiB 1.6 GiB 0 0

Table 3: The breakdown of execution time.

Particle

pusher

Current

deposition

Field

solver

Field

gather
Others

Ave. time 300.8s 132.0s 47.2s 25.2s 9.9s

Percentage 58% 26% 9% 4.9% 2.1%

Figure 2: Memory bandwidth consumption in major phases.

reads the fields and updates the position of each particle. Current
deposition reads each particle and updates the current densities
on fields. These phases dominate the execution time and the read-

/write accesses to the main memory. Therefore, we employ fine-

grained dynamic data management to optimize their performance.

We describe the dynamic strategy in Section 4.3.

Memory bandwidth analysis. Wemeasure the memory band-

width in major phases and report in Figure 2.We observe that the ex-

ecution of WarpX is not bounded by DRAM/PM bandwidth in most

of the execution time (e.g., field gather and particle pusher).
When the memory bandwidth utilization is low, e.g., about 10%,

prefetching data to DRAMwould not constraint the bandwidth used

by the application. Thus, performance improvement becomes feasi-

ble. However, since data prefetching consumes memory bandwidth,

using it in bandwidth-intensive phases (e.g., current deposit)
may cause performance loss in the application. The bandwidth

analysis motivates us to develop a performance model to optimize

data prefetching at runtime (Section 4.3).

4 PERFORMANCE OPTIMIZATION ON PM

We propose a runtime system, called WarpX-PM (Figure 3), to man-

age data placement on DRAM and PM automatically. WarpX-PM

partitions DRAM into four spaces to store data objects with differ-

ent functionality and access patterns in WarpX. Themetadata space

stores metadata updated infrequently but accessed frequently. The

temporary space stores short-lived data objects frequently allocated

and freed. Those short-lived data objects share and reuse the tem-

porary space without causing data movement between DRAM and

PM. The migration space acts as a software-managed DRAM cache

Figure 3: The overview of data management on Optane-

based HM.

to prefetch particles from PM before they are used in computation.

Finally, the free space stores the maximum possible field data.

We combine static and dynamic strategies, and processor-cache

prefetch mechanism for data placement in the four spaces. Except

for the migration space managed for dynamic data placement, the

other three spaces are used for static data placement. We use per-

formance modeling to guide the data copy between DRAM and

PM without disturbing the WarpX performance. We also build an

analytical model to decide when to prefetch for the best use of

caches. Our designs are described in detail as follows.

4.1 Static Data Placement

WarpX-PM uses static placement to addresses the fundamental lim-

itations in the memory mode. This memory mode uses DRAM as a

direct-mapped hardware cache. Consequently, some performance-

critical data objects are evicted from DRAM due to iterative ac-

cesses to large data objects, such as particles and fields. Examples of

performance-critical data objects include metadata and temporary

data, where metadata is used to compute the simulation domain

iteratively, and temporary data is used to adjust the size of data

objects during the computation. These performance-critical data

objects are frequently referenced but only consume a small portion

(less than 10%) of the total memory consumption. In the memory

mode, these data objects are frequently moved between DRAM

cache and PM, a typical manifestation of cache thrashing.

Static data placement takes effect on all execution phases.WarpX-

PM pins the performance-critical data objects to DRAM to avoid

moving them between DRAM and PM as in the memory mode.

Depending on their lifetime, they can be categorized as long-lived

and short-lived, and placed into the metadata space and temporary

space, respectively. We describe the management of these two kinds

of performance-critical data objects as follows.

Long-lived, performance-critical data objects are mostly meta-

data and are placed in the metadata space in DRAM directly. In

WarpX, the whole simulation domain is decomposed into many

boxes distributed over MPI ranks. Each box contains a fraction of

fields and particles. Metadata is used to record the distribution of

boxes in the simulation domain. For instance, 𝐹𝐴𝑟𝑟𝑎𝑦𝐵𝑜𝑥 is a part of
box metadata for iterating particles in a box. Metadata are allocated

before the main computation loop and only freed after the whole

computation finishes – long-lived. During their life span, metadata

are frequently accessed, and their size remains unchanged.

Short-lived, performance-critical data objects are typically allo-

cated and freed within one iteration of the main computation loop.

These data objects include communication buffers and the memory

space used for resizing the data objects during the computation.

WarpX-PM allocates these data objects on demand in the temporary

4
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1 i n i t i a l boxes , f i e l d s , p a r t i c l e s

2 i n t k = p r e f e t c h _ d i s t a n c e

3 . . .

4 f o r ( i n t s t e p = 0 ; s t e p < numsteps_max ; ++ s t e p ) {

5 amrex : : P a r a l l e l F o r ( bx in boxes )

6 {

7 P a r t i c l e &p = p a r t i c l e s . g e t ( bx )

8 compute ( p )

9 F i e l d s &f = f i e l d s . g e t ( p )

10 warpx_pm_prefetch ( f i e l d s . g e t ( p+k ) )

11 compute ( f )

12 . . .

13 }

14 }

Figure 4: Applying prefetching techniques in WarpX.

space, which is a pre-allocated memory space in DRAM. To ensure

the pre-allocated temporary space is large enough for all temporary

data objects throughout the computation loop, WarpX-PM uses the

following algorithm.

WarpX-PM uses the first iteration of a simulation to measure the

peak memory consumption of WarpX. Then, WarpX-PM deducts

the sizes of particles, fields, metadata, and a fixed buffer per MPI

rank for the migration space from the peak memory consumption.

The resulted size is used to reserve the temporary space. This ap-

proach provides an estimation of the peak memory consumption of

short-lived, performance-critical data objects. Across iterations, the

peak memory consumption of these data objects may vary, mostly

due to communication buffers. The variance is typically small (tens

of MB). If the temporary space is exhausted, WarpX-PM increases

the temporary space on demand to accommodate.

After the metadata, temporary, and migration spaces are allo-

cated, the remaining space in DRAM is used as the free space, which

is used to hold fields as much as possible. Fields are frequently ac-

cessed in all phases. WarpX-PM chooses fields instead of particles

for static data placement because fields are not allocated in contigu-

ous memory space. Hence, maintaining their location information

and copying them between DRAM and PM incur high overhead.

Besides, fields are smaller but more intensively accessed than par-

ticles, showing better data locality in processor caches. If fields

cannot be completely placed in DRAM, we use a cache prefetch

mechanism to fetch fields from PM to the last level cache to avoid

PM’s negative performance impact (see Section 4.2).

The static data placement completes after the first iteration. The

memory allocation overhead is negligible because only three spaces

need to be managed. Furthermore, using the pre-allocated tempo-

rary space reduces the overhead of frequent memory (de)allocation

for short-lived data objects.

4.2 Cache Prefetch

Motivation. Fields are not dynamically migrated between PM and

DRAM as particles, because fields are not contiguously allocated

as particles, but spread across the memory address space, which

leads to either highly inefficient page-level migration or costly

engineering efforts for object-level migration. We do not prefetch

particles because particles can be timely migrated to DRAM using

the dynamic migration mechanism and prefetch data from DRAM

NP 0 1 2 3 4 5 6 7 8 9 10
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gather

others
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Figure 5: Performance of prefetch fields data at various

prefetch distances. Performance is normalized to “NP” (no

prefetch). Blue indicates performance improvement, and

red indicates performance loss.

to the cache leads to negligible performance improvement inWarpX

(see Section 6).

Prefetch method.WarpX-PM triggers prefetch before compu-

tation by leveraging iterative structures in each execution phase.

Figure 4 depicts the prefetch method in WarpX-PM. Each phase is

characterized with a loop. Within each iteration of the loop, some

field data are retrieved (Line 9) and then used for computation (Line

11). In the iteration 𝑖 , WarpX-PM prefetches the field data for the
next (𝑖 + 𝑘)th iteration, where 𝑘 is a tunable parameter (named
prefetch distance).

The prefetch effectiveness highly depends on 𝑘 . If 𝑘 is too small,
prefetch cannot finish before the computation on fields happens;

If 𝑘 is too large, prefetched fields have a risk of being eliminated
from the cache due to cache conflicts. Ideally, 𝑘 should be just large
enough such that when fields are prefetched into the cache, compu-

tation on those fields is about to start. To understand the impact of

𝑘 , we use a range of 𝑘 and measure the performance of each phase.
Figure 5 shows the results normalized by the performance without

prefetch in Problem F (see Table 5 for this problem). Depending on

the computation time of each phase, the optimal 𝑘 is different from
one phase to another.

Performancemodeling to guide prefetch.We propose to use

performancemodeling to decide𝑘 , and the performancemodeling is
based on our abstraction on memory accesses in WarpX. In essence,

when a phase processes particles one by one, for each particle,

memory accesses are characterized with a combination of accessing

particlemetadata, the field of the particle, and the particle itself. This

combination provides a basic unit for particle-based computation.

𝑘 quantifies the number of basic units whose computation time is
just enough to allow the preftech of the field data for one unit to

complete.

Based on the above discussion, we formulate the calculation of 𝑘
in Equation 1, where the numerator is the time to prefetch the field

data for one particle, and the denominator is the execution time to

work on one basic unit (i.e., processing one particle). The numerator

is further expanded in Equation 2, which models the prefetch time,

including instruction issue and execution cost (𝛼), and memory
access latency. Since the fields could spread into DRAM and PM,

DRAM/PM access latency in Equation 2 is weighted by the ratio

of the fields in DRAM (𝑓 𝑖𝑒𝑙𝑑𝑠𝐷𝑅𝐴𝑀 ) to the fields in PM (𝑓 𝑖𝑒𝑙𝑑𝑠𝑃𝑀 ).
This indicates that if the fields are completely placed in PM, then

𝑓 𝑖𝑒𝑙𝑑𝑠𝐷𝑅𝐴𝑀 is 0. The DRAM/PM access latency is assumed to be

constant in Equation 2, but weighted by 𝛽1 and 𝛽2 to model the

5
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potential impact of internal buffers in memory devices (especially

PM devices) [37].

𝑘 =

⌈
𝑝𝑟𝑒 𝑓 𝑒𝑡𝑐ℎ_𝑡𝑖𝑚𝑒

𝑒𝑥𝑒_𝑡𝑖𝑚𝑒_𝑜𝑛_𝑜𝑛𝑒_𝑏𝑎𝑠𝑖𝑐_𝑢𝑛𝑖𝑡

⌉
(1)

𝑝𝑟𝑒 𝑓 𝑒𝑡𝑐ℎ_𝑡𝑖𝑚𝑒 =𝛼 +𝑚𝑒𝑚_𝑎𝑐𝑐𝑒𝑠𝑠_𝑡𝑖𝑚𝑒

=𝛼 + 𝛽1 ×
𝑓 𝑖𝑒𝑙𝑑𝑠𝐷𝑅𝐴𝑀

𝑓 𝑖𝑒𝑙𝑑𝑠𝑃𝑀
× 𝐷𝑅𝐴𝑀_𝑎𝑐𝑐𝑒𝑠𝑠_𝑙𝑎𝑡𝑒𝑛𝑐𝑦+

𝛽2 × (1 −
𝑓 𝑖𝑒𝑙𝑑𝑠𝐷𝑅𝐴𝑀

𝑓 𝑖𝑒𝑙𝑑𝑠𝑃𝑀
) × 𝑃𝑀_𝑎𝑐𝑐𝑒𝑠𝑠_𝑙𝑎𝑡𝑒𝑛𝑐𝑦

(2)

To use the above equations, we use the following method. The

denominator (the execution time) in Equation 1 is measured at run-

time by each MPI process after the data placement is enforced based

on Sections 4.1-4.3. 𝛼 , 𝛽1 and 𝛽2 in Equation 2 are calculated using
a microbenchmark offline. In particular, we develop a microbench-

mark that spreads a collection of field data across DRAM and PM.

We change the ratio of the field data in DRAM and PM (
𝑓 𝑖𝑒𝑙𝑑𝑠𝐷𝑅𝐴𝑀

𝑓 𝑖𝑒𝑙𝑑𝑠𝑃𝑀
),

prefetch them one by one, and measure the latency. Given the la-

tency measured with different ratios (
𝑓 𝑖𝑒𝑙𝑑𝑠𝐷𝑅𝐴𝑀

𝑓 𝑖𝑒𝑙𝑑𝑠𝑃𝑀
), we calculate

𝛼 , 𝛽1 and 𝛽2 using linear regression. 𝐷𝑅𝐴𝑀_𝑎𝑐𝑐𝑒𝑠𝑠_𝑙𝑎𝑡𝑒𝑛𝑐𝑦 and
𝑃𝑀_𝑎𝑐𝑐𝑒𝑠𝑠_𝑙𝑎𝑡𝑒𝑛𝑐𝑦 in Equation 2 aremeasured using LMBench [21].
𝑓 𝑖𝑒𝑙𝑑𝑠𝐷𝑅𝐴𝑀

𝑓 𝑖𝑒𝑙𝑑𝑠𝑃𝑀
is determined after the static data placement at runtime.

4.3 Dynamic Data Placement

The dynamic strategy takes effect at particle pusher, current
deposition, and field solver. The accesses to particles mainly
occur in these phases. The dynamic placement copies particles into

DRAM in batches and only copies them back to PM if particles

are updated in the computation. Particles consume at least 50% of

memory consumption. For a large input problem, particles alone

may unlikely fit in DRAM. However, directly accessing particles in

PM in particle computation causes performance loss due to the low

memory bandwidth. WarpX-PM uses software-managed particle

prefetching to copy batches of particles into the migration space so

that computation always accesses particles in DRAM.

ParticleContainer is the primary data object for particles. It
contains an array of particle structures, each representing a parti-

cle and recording its position, velocities, ID, and the owner CPU.

Thus, ParticleContainer occupies a contiguous space in physical
memory. In each of the particle pusher, current deposition,
and field solver phases, all particles in the ParticleContainer
are iterated in a streaming-like access pattern at the granularity

of FArrayBox. WarpX-PM leverages this characteristic to partition
each phase into intervals based on the time of processing particles

in FArrayBox. At an interval 𝑖 , WarpX-PM copies a batch of parti-
cles needed for the next interval 𝑖 + 1 to DRAM. This data copy is
expected to finish before the interval 𝑖 + 1. If particles are updated
in the interval 𝑖 + 1, they are copied back to PM in the interval 𝑖 + 2.
Given the streaming-like patterns to access particles, there is no

data dependency between intervals.

To implement the particle prefetching strategy, two challenges

must be addressed. First, WarpX-PM needs to decide the number

of threads to copy particle batches. WarpX-PM uses helper threads

Table 4: Notation for performance modeling

Source Symbol Description

Hardware

parameters

BW
𝐷𝑅𝐴𝑀_𝑡𝑜_𝑃𝑀 () BW of copying data from DRAM to PM

BW
𝑃𝑀_𝑡𝑜_𝐷𝑅𝐴𝑀 () BW of copying data from PM to DRAM

BW𝑚𝑎𝑥 Peak memory bandwidth

Thrd𝑚𝑎𝑥 Maximum number of hardware threads

App related

parameters

data𝑖𝑛, data𝑜𝑢𝑡 Sizes of data copied in/out of DRAM

T𝑐𝑝 Data copying time for an interval

T𝑐𝑜𝑚𝑝 WarpX execution time of an interval

Thrd𝑐𝑝 Number of threads to copy data

Thrd𝑐𝑜𝑚𝑝 Number of threads for application

T
′
𝑐𝑜𝑚𝑝 Optimal execution time of an interval

instead of application threads to copy particles to avoid delay-

ing the execution of application threads. Using a large number of

helper threads accelerate data copy but reduces processor cores

and memory bandwidth available for WaprX execution. Using a

small number of helper threads increases the risk of exposing data

copy into the critical path of WaprX execution if data copy can-

not finish in time. Second, the decision of the number of helper

threads must be adaptive and lightweight. Different input problems

or MPI/OpenMP configurations may consume memory bandwidth

differently and need different numbers of helper threads for the

best performance.

Performance Modeling.We introduce a performance model-

based approach to decide the optimal number of helper threads for

each phase. All intervals in the same phase use the same number

of helper threads while different phases may use different numbers

of helper threads. Table 4 summarizes the notations used in the

performance model.

data copy time (𝑇𝑐𝑝 ) in an interval 𝑖 includes the time to copy
data needed by the interval 𝑖 + 1 from PM to DRAM (𝑇 𝑖𝑛

𝑐𝑝 ), and the

time to copy data updated in the interval 𝑖 − 1 from DRAM to PM
(𝑇𝑜𝑢𝑡

𝑐𝑝 ).

𝑇 𝑖𝑛𝑐𝑝 (𝑇ℎ𝑟𝑑𝑐𝑝 ) =
𝑑𝑎𝑡𝑎𝑖𝑛

𝐵𝑊 𝑃𝑀_𝑡𝑜_𝐷𝑅𝐴𝑀 (𝑇ℎ𝑟𝑑𝑐𝑝 )

𝑇𝑜𝑢𝑡𝑐𝑝 (𝑇ℎ𝑟𝑑𝑐𝑝 ) =
𝑑𝑎𝑡𝑎𝑜𝑢𝑡

𝐵𝑊𝐷𝑅𝐴𝑀_𝑡𝑜_𝑃𝑀 (𝑇ℎ𝑟𝑑𝑐𝑝 )
,

(3)

where𝑑𝑎𝑡𝑎𝑖𝑛 and𝑑𝑎𝑡𝑎𝑜𝑢𝑡 are the size of data to be copied in and out
of DRAM for an interval; 𝐵𝑊 𝑃𝑀_𝑡𝑜_𝐷𝑅𝐴𝑀 (𝑇ℎ𝑟𝑑𝑐𝑝 ) and 𝐵𝑊 𝐷𝑅𝐴𝑀_𝑡𝑜_𝑃𝑀 (𝑇ℎ𝑟𝑑𝑐𝑝 )

are the data copy bandwidth in and out of DRAM. These bandwidths

are functions of the number of helper threads (𝑇ℎ𝑟𝑑𝑐𝑝 ). Therefore,

𝑇𝑐𝑝 is also a function of 𝑇ℎ𝑟𝑑𝑐𝑝 .

Equation 3 considers performance difference between copying

data from DRAM to PM and from PM to DRAM. In our implementa-

tion, copying data in two directions happens in parallel. If memory

bandwidth is not a bottleneck, we have

𝑇𝑐𝑝 =𝑚𝑎𝑥 (𝑇 𝑖𝑛𝑐𝑝 ,𝑇
𝑜𝑢𝑡
𝑐𝑝 ). (4)

Overlap constraint. Copying data happens in parallel withWarpX

execution. The data copy time should be no longer than the WarpX

execution time, i.e.,

𝑇𝑐𝑝 (𝑇ℎ𝑟𝑑𝑐𝑝 ) ≤ 𝑇𝑐𝑜𝑚𝑝 (𝑇ℎ𝑟𝑑𝑐𝑜𝑚𝑝 ), (5)
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where 𝑇𝑐𝑜𝑚𝑝 is the execution time of an interval when the particles

accessed by the interval are all in DRAM. 𝑇𝑐𝑜𝑚𝑝 is a function of the

number of application threads (𝑇ℎ𝑟𝑑𝑐𝑜𝑚𝑝 ) in an MPI rank.

Bandwidth constraint. The bandwidth consumption due to copy-

ing data should not reduce the bandwidth available for WarpX

execution. Assume that without copying data, the bandwidth con-

sumption of WarpX execution is 𝐵𝑊𝑐𝑜𝑚𝑝 , including both read from

and write to PM.

𝐵𝑊𝑐𝑜𝑚𝑝 (𝑇ℎ𝑟𝑑𝑐𝑜𝑚𝑝 ) + 𝐵𝑊
𝑃𝑀_𝑡𝑜_𝐷𝑅𝐴𝑀 (𝑇ℎ𝑟𝑑𝑐𝑝 )

+ 𝐵𝑊𝐷𝑅𝐴𝑀_𝑡𝑜_𝑃𝑀 (𝑇ℎ𝑟𝑑𝑐𝑝 ) ≤ 𝐵𝑊𝑚𝑎𝑥/𝑁
(6)

where 𝐵𝑊𝑚𝑎𝑥 is the peak memory bandwidth constrained by the

hardware and 𝑁 is the number of MPI ranks (We assume 𝐵𝑊𝑚𝑎𝑥 is

evenly partitioned between MPI ranks). 𝐵𝑊𝑚𝑎𝑥 needs to satisfy the

following equation to prevent performance loss.

𝐵𝑊𝑚𝑎𝑥 =𝑚𝑎𝑥 (𝐵𝑊𝐷𝑅𝐴𝑀_𝑡𝑜_𝑃𝑀
𝑚𝑎𝑥 , 𝐵𝑊 𝑃𝑀_𝑡𝑜_𝐷𝑅𝐴𝑀

𝑚𝑎𝑥 ) (7)

𝐵𝑊 𝐷𝑅𝐴𝑀_𝑡𝑜_𝑃𝑀
𝑚𝑎𝑥 and 𝐵𝑊 𝑃𝑀_𝑡𝑜_𝐷𝑅𝐴𝑀

𝑚𝑎𝑥 are the peak memory band-

width supported by hardware from DRAM to PM and from PM to

DRAM, respectively.

Thread constraint. The number of application threads and helper

threads should be no larger than the maximum number of threads

assigned to an MPI rank (𝑇ℎ𝑟𝑑𝑚𝑎𝑥 ), i.e.,

𝑇ℎ𝑟𝑑𝑐𝑜𝑚𝑝 +𝑇ℎ𝑟𝑑𝑐𝑝 ≤ 𝑇ℎ𝑟𝑑𝑚𝑎𝑥 . (8)

Optimization goal. Assume that 𝑇 ′
𝑐𝑜𝑚𝑝 is the execution time for

an interval, given 𝑇ℎ𝑟𝑑𝑐𝑜𝑚𝑝 and 𝑇ℎ𝑟𝑑𝑐𝑝 threads for WarpX execution

and copying data, respectively. 𝑇 ′
𝑐𝑜𝑚𝑝 is a function of 𝑇ℎ𝑟𝑑𝑐𝑜𝑚𝑝 and

𝑇ℎ𝑟𝑑𝑐𝑝 . The goal of our performance modeling is to minimize 𝑇 ′
𝑐𝑜𝑚𝑝

(Equation 9), subject to the constraints of overlap (Constraint 5),

bandwidth (Constraint 6) and threads (Constraint 8), i.e.,

𝑚𝑖𝑛(𝑇 ′𝑐𝑜𝑚𝑝 (𝑇ℎ𝑟𝑑𝑐𝑜𝑚𝑝 ,𝑇ℎ𝑟𝑑𝑐𝑝 )). (9)

𝐵𝑊𝑚𝑎𝑥 and𝑇ℎ𝑟𝑑𝑚𝑎𝑥 are known from offline profiling; 𝐵𝑊 𝐷𝑅𝐴𝑀_𝑡𝑜_𝑃𝑀 ()

and 𝐵𝑊 𝑃𝑀_𝑡𝑜_𝐷𝑅𝐴𝑀 () are measured by a microbenchmark at various

numbers of data copy threads; 𝑑𝑎𝑡𝑎𝑜𝑢𝑡 and 𝑑𝑎𝑡𝑎𝑖𝑛 are known from
𝐹𝐴𝑟𝑟𝑎𝑦𝐵𝑜𝑥 , whose value is set at the beginning of each iteration.
Therefore, based on 𝑑𝑎𝑡𝑎𝑜𝑢𝑡 and 𝑑𝑎𝑡𝑎𝑖𝑛 , we can calculate 𝑇𝑐𝑝 using
Equation 4 given 𝑇ℎ𝑟𝑑𝑐𝑝 .

We build𝑇𝑐𝑜𝑚𝑝 () based on online profiling and empirical observa-

tion. In particular, we use an interval in the second iteration of the

main computation loop to measure the execution time online, and

use 𝑇ℎ𝑟𝑑𝑚𝑎𝑥 as 𝑇ℎ𝑟𝑑𝑐𝑜𝑚𝑝 during the execution of the interval. This

measurement is done after static data placement and after loading

the required particles by the interval into DRAM. Furthermore, we

empirically observe that the execution of WarpX using various in-

put problems is not bounded by memory bandwidth on Optane (see

Section 3.1); Using 𝑇ℎ𝑟𝑑𝑚𝑎𝑥 as 𝑇ℎ𝑟𝑑𝑐𝑜𝑚𝑝 gives the best performance.

Using 𝑇ℎ𝑟𝑑𝑚𝑎𝑥 − 1 and 𝑇ℎ𝑟𝑑𝑚𝑎𝑥 − 2 as 𝑇ℎ𝑟𝑑𝑐𝑜𝑚𝑝 give less than 10%

performance loss, while using the number of threads smaller than

𝑇ℎ𝑟𝑑𝑚𝑎𝑥 − 2 for 𝑇ℎ𝑟𝑑𝑐𝑜𝑚𝑝 causes more than 20% loss. Hence, we use

the measured online execution time as the result of𝑇𝑐𝑜𝑚𝑝 (𝑇ℎ𝑟𝑑𝑐𝑜𝑚𝑝 ) ,

when 𝑇ℎ𝑟𝑑𝑐𝑜𝑚𝑝 ∈ [𝑇ℎ𝑟𝑑𝑚𝑎𝑥 − 2,𝑇ℎ𝑟𝑑𝑚𝑎𝑥 ]. We do not consider other

cases of 𝑇ℎ𝑟𝑑𝑐𝑜𝑚𝑝 to avoid performance loss of WarpX execution.

Note that this approach gives us a high requirement on data copy

overhead because of Constraint 5.

We employ a similar approach to build 𝐵𝑊𝑐𝑜𝑚𝑝 (). We measure

memory bandwidth in an interval in the second iteration of sim-

ulation and using 𝑇ℎ𝑟𝑑𝑚𝑎𝑥 as 𝑇ℎ𝑟𝑑𝑐𝑜𝑚𝑝 . This memory bandwidth

is used for 𝑇ℎ𝑟𝑑𝑐𝑜𝑚𝑝 ∈ [𝑇ℎ𝑟𝑑𝑚𝑎𝑥 − 2,𝑇ℎ𝑟𝑑𝑚𝑎𝑥 ]. We do not consider

other cases to avoid performance loss.

We use the following approach to find the optimal 𝑇ℎ𝑟𝑑𝑐𝑜𝑚𝑝 and

𝑇ℎ𝑟𝑑𝑐𝑝 to minimize 𝑇 ′
𝑐𝑜𝑚𝑝 () . We use Constraints 6 and 8 to select the

numbers of helper threads to meet the bandwidth constraint. Then,

among the selected numbers, we use Constraint 5 to find those that

meet the overlap constraint. Finally, we choose the smallest number

as the optimal number of helper thread from those selected numbers.

Given the constraints, the WarpX execution time is minimized,

𝑇 ′
𝑐𝑜𝑚𝑝 = 𝑇𝑐𝑜𝑚𝑝 (𝑇ℎ𝑟𝑑𝑚𝑎𝑥 ).

Our modeling approach is lightweight, because we avoid exhaus-

tive search of all combinations of 𝑇ℎ𝑟𝑑𝑐𝑜𝑚𝑝 and 𝑇ℎ𝑟𝑑𝑐𝑝 by eliminat-

ing those that can obviously cause performance loss. The overhead

to find the optimal is almost zero.

5 IMPLEMENTATION DETAILS

WarpX-PM is implemented as a patch to WarpX and AMRex. Run-

ning WarpX with WarpX-PM on Optane (or other HM) requires no

efforts from the user. We release WarpX-PM in [1]. The statistics of

modifications given by git diff is 15 files changed, 1031 insertions(+),

12 deletions(-).

WarpX-PM uses pthread to implement helper threads for each

MPI rank. For static data placement, data objects that needed to

be placed in DRAM are allocated into DRAM NUMA nodes using

numa_alloc_local(). For dynamic data placement, each MPI process

pre-allocates a 500MB temporary space in DRAM to copy particles

between DRAM and PM. We use 500MB because the dynamic data

placement handles particles batch by batch, and the batch size is de-

termined by FArraybox. The size of all particles in one FArraybox
is bounded by 500MB. All MPI processes evenly partition DRAM

initially. To accommodate the size variance of short-lived data ob-

jects across interations, WarpX-PM increases the temporary space

by reserving extra 100MB DRAM space for each rank.

Avoiding NUMA effects is important for high performance on

an Optane-based machine with multiple sockets, each equipped

with both DRAM and PM [25]. We observe that allocating data in

remote DRAM and PM nodes (i.e., DRAM and PM on the remote

socket) leads to up to 2x performance loss for large input problems

inWarpX. To address this NUMA effect, inWarpX-PM, once an MPI

rank is pinned to a processor, those DRAM spaces for static and

dynamic data placements are allocated from local DRAM NUMA

nodes. Also, all data objects of the MPI process are allocated from

local PM nodes.

WarpX-PM implements the model-guided cache prefetching in

warpx_pm_prefetch() based on _mm_prefetch intrinsic. This op-

eration prefetches cache lines in the field data to the processor’s

last-level cache by pointer chasing the metadata related to field

data. WarpX-PM uses high-performance data copying to implement

data placement based on AVX-512 streaming load/store intrinsics

and multi-threading. Alternatively, we could use a page migration
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Table 5: Input problems used in evaluation

ID Type # of cells # of particles Peak consumption

A Laser-driven (512, 512, 4096) 1.1B 228.5 GiB

B Laser-driven (704, 704, 5664) 8.4B 1.2 TiB

C beam-driven (512, 512, 4096) 2.1B 306 GiB

D beam-driven (864, 864, 7200) 10.7B 960 GiB

E Uniform-plasma (384, 384, 3104) 3.7B 525 GiB

F Uniform-plasma (512, 512, 4096) 8.6B 1.2 TiB

G Laser-driven (256, 256, 2048) 134.2M 19.2 GiB
* The names of particle species of A, E, F and G are set to electrons; the names of B are set to electrons,
ions and beam; the names of C and D are set to driver, plasma_e, plasma_p, beam and driverback. The
blocking factor is 32.

Table 6: Platform Specifications

Processor 2nd Gen Intel Xeon Scalable processor

Cores 2.4 GHz (3.9 GHz Turbo frequency × 24 cores (48 HT) × 2 sockets

L1-icache private, 32 KB, 8-way set associative, write-back

L1-dcache private, 32 KB, 8-way set associative, write-back

L2-cache private, 1MB, 16-way set associative, write-back

L3-Cache shared, 35.75 MB, 11-way set associative, non-inclusive write-back

DRAM six 16-GB DDR4 DIMMs × 2 sockets (192 GB in total)

PM six 128-GB Optane DC NVDIMMs × 2 sockets (1.5 TB in total)

Interconnect Intel UPI at 10.4 GT/s, 10.4GT/s, and 9.6 GT/s

mechanism such asmove_pages() andmmap() to implement data mi-

gration between DRAM and PM instead of data copying. However,

these data migration mechanisms work at the page level, requiring

setting up a mapping between data objects and pages, which is

difficult to implement at the user level. Furthermore, these mecha-

nisms can cause frequent TLB misses because of page remapping,

which leads to performance loss [42]. Note that our data copying

mechanism inWarpX does not impact program correctness because

our implementation has no pointer alias – the pointers pointing to

the old data is updated after data copying.

6 EVALUATION

6.1 Experimental Setup

Table 6 summarizes the hardware features of our testbed. When

the Optane DC PMM is in app-direct mode and exposed as NUMA

nodes, we use numactl [18] to control data placement on PMM and
DRAM. The platform runs Fedora 29 (Linux 5.1.0). We use the Intel

Processor Counter Monitor (PCM) tool [32] to access hardware

counters to collect core activities and off-core events.

Table 5 summarizes input problems for evaluation. They come

from various plasma accelerator simulations with a wide range of

memory consumption (up to 1.2TB). We useWarpX 20.04, OpenMPI

4.0.2 and GCC 7.5.0. For all problems except Problem G (a relatively

small input), we run 10 iterations and report average execution time

per iteration. There is less than 1% difference in average execution

time if we use more than 10 iterations. For Problem G, we run

30 iterations to report average execution time, because average

execution time becomes stable only after 20 iterations.

6.2 Evaluation Results

Overall performance.We compare WarpX-PM with Optane-only

(i.e., no DRAM) and two common strategies (i.e., NUMA first-touch

and memory mode) to use Optane-based systems. We evaluate

Problems A-F in Table 5. All these problems have peak memory

consumption larger than DRAM (192 GB). For Problem G, all data

objects can be placed in DRAM, i.e., little performance difference

between NUMA first-touch, memory mode, and WarpX-PM.

Figure 6 reveals that WarpX-PM performs the best in all cases.

On average, WarpX-PM outperforms memory mode, Optane-only,

and NUMA first-touch by 38.8%, 66.4%, and 45.2%, respectively. We

notice that NUMA first-touch performs worse than memory mode

andWarpX-PM. NUMAfirst-touch decides data placement based on

when data allocation happens, instead of memory access patterns,

which leads to sub-optimal data placement if a performance-critical

data object is allocated at a later stage of execution. For example,

particles are allocated before fields in WarpX, and NUMA first-

touch places particles in DRAM, which forces fields to go to PM

because of limited DRAM capacity. However, fields is more fre-

quently accessed throughout simulation — placing it into PM leads

to substantial performance loss. WarpX-PM avoids this problem be-

cause it prioritizes the placement of fields over particles on DRAM.

WarpX-PM outperforms memory mode because it avoids DRAM-

cache thrashing for small and short-lived data objects. DRAM-cache

thrashing happens due to accesses to the large data object – particles.

Without application knowledge, the DRAM cache may evict small

and short-lived data objects to make space for particles.

We find that WarpX execution has large performance variance

in memory mode (up to 30.5%) for Problem A. This problem has

peak memory consumption slightly larger than DRAM. Such per-

formance variance in memory mode has been confirmed by Intel,

and imposes a big challenge on controlling performance variability

in HPC applications. WarpX-PM avoids this performance variance

because of its static placement of critical data objects.

Performance breakdown. We quantify the performance im-

provement from static data placement, cache prefetch, and dynamic

data placement in Figure 7. For each problem, we report the per-

iteration time in the memory mode as the baseline (M). For compar-

ison, we run WarpX-PM with only static data placement (S), with

static data placement and cache prefetch (P), and with all the three

techniques (D). WarpX-PM with the three proposed techniques

achieves the best performance in all problems. Different input prob-

lems exhibit different sensitivity to these techniques. For instance,

cache prefetch achieved over 12%-16% improvement in Problem B

and C while problem A and E are more sensitive to dynamic data

placement.

For large input problems (e.g., Problems B and D with 1.2TB peak

memory consumption), static data placement outperforms memory

mode by 29% on average. Memory mode cannot work well for the

large input problems because metadata and temporary data are

not efficiently cached in DRAM. On average, static data placement

effectively speedup field gather and others by 10% and 7% in
all input problems, compared to memory mode. Field gather
and others involve large metadata and access to temporary data
objects. Static data placement effectively prevents data migration

in these two phases and thus avoids the migration overhead.

Dynamic data placement improves the performance of particle
pusher, current deposition and field solver by 11%, 17%, and
12%, compared to static data placement. By proactively migrating

particles from PM to DRAM, dynamic data placement outperforms

memory mode and static data placement by 34% and 41%.
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Figure 8: Performance comparison between IAL (a state-of-

the-art page migration solution for HM) and WarpX-PM.

Comparison with state-of-the-art. We compare WarpX-PM

with a state-of-the-art page migration system for HM, named im-

proved active list (IAL) [42]. This system improves an existing page

replacement mechanism in the Linux kernel (i.e., an FIFO-based

active list). Among the 7 input problems listed in Table 5, we can

only run three of them successfully with IAL. Running other prob-

lems with IAL has either 10x lower performance than WarpX-PM

or segmentation faults.

Figure 8 reveals that WarpX-PM outperforms IAL by 83.3% on

average and up to 96.6%. There are three main reasons for the infe-

rior performance of IAL. First, IAL is a reactive approach – it takes

effects only after it collects enough information on memory ac-

cesses. This indicates that it cannot efficiently prefetch data objects

into DRAM to reduce data movement cost. Second, IAL periodically

samples memory page accesses to identify page hotness. Finding

hot pages from a large amount memory pages (tens of millions)

incurs significant overhead. Third, IAL heavily relies on helper

threads to enable parallel page migration for high performance.

However, IAL does not consider the impact of using helper threads

on the WarpX execution. Using an excessive number of helper

threads decreases computation capability available for WarpX and

consumes large memory bandwidth, which negatively impact the

WarpX performance.

Figure 9: Memory bandwidth consumption in one iteration.

Memory bandwidth analysis. Figure 9 depicts read/write band-

width for memory mode and WarpX-PM. We use input Problem F,

because its peak memory consumption is the largest and pressures

the memory bandwidth. Compared with memory mode, WarpX-PM

consumes higher DRAM bandwidth, indicating that fast memory

accesses happen more often in WarpX-PM to make best use of

DRAM. More specifically, for execution phases that only involve

static data migration (i.e., field gather and others), PM band-
width consumption is lower than memory mode, indicating the

effectiveness of static data placement. For execution phases that

involve dynamic data migration ( current deposition, field
solver and particle pusher), WarpX-PM has higher PM band-
width than memory mode. This is because dynamic data placement

prefetches data objects before they are accessed, but data prefetch

overhead is hidden by overlapping with the computation.

NUMA effects. Optane-based systems have multiple sockets,

each with DRAM and PM DIMMs. Efficient data placement is not

only about using DRAM or PM but also about avoiding memory

accesses to a remote socket. We compare memory mode, NUMA
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Table 7: Quantifying the memory traffic between NUMA

nodes.

Problem ID
Remote DRAM traffic (GB)

Memory mode First-touch WarpX-PM

A 0.92 1.01 0.01

B 4.08 3.75 0.02

C 3.69 4.76 0.02

D 18.09 23.90 0.05

E 1.01 0.90 0.01

F 2.22 2.28 0.01

Figure 10: Last-level cache hits (top) and misses (bottom) in

one iteration in problem F.

first-touch with WarpX-PM to quantify NUMA effect by tracking

memory traffic between two sockets. We use six input problems

whose peak memory consumption is larger than DRAM to allow

us to evaluate the NUMA effect fully. Table 7 shows the results.

The results show that WarpX-PM has the lowest inter-socket

traffic (close to zero). Memorymode is not NUMA-aware and cannot

cache accesses to remote PM in a local DRAM [9]. The NUMA first

touch policy is NUMA-aware, but data may be distributed to remote

DRAMwhen the local DRAM is exhausted. WarpX-PM avoids these

problems by explicitly placing data in local buffers (Section 5).

Effectiveness of cache prefetch. Figure 11 compares themodel-

guided selections of prefetch distance with selections based on ex-

haustive search. The exhaustive search-based selection represents

the best possible performance, though infeasible at runtime due to

its high cost. Among 30 cases (i.e., five phases in six input problems),

our model agrees with the exhaustive search in 20 cases. In the

remaining 10 cases, the performance difference between our model

and exhaustive search is less than 5%. In all cases, our model leads

to performance improvement (i.e., 9%-20%).

We evaluate the impact of the model-guided cache prefetch on

traffic to the processor’s last-level cache. Figure 10 reports the

number of last-level cache hits and misses for Problem F. The results

show that WarpX-PM significantly increases the number of last-

level cache hits with spikes orders higher than that without prefetch.

The increased cache hits only occurs in field gather, particle pusher,

and current deposition, where particles are accessed in a streaming-

like pattern, but not in field solver, where particles are not accessed.

Meanwhile, our model-guided prefetch causes no increases in the

number of cache misses.

Effects of performance modeling.We evaluate the effective-

ness of the performance model in determining the number of helper

threads. The performance variance due to different numbers of

helper threads is the same across phases. Hence, we use the same

number of helper threads for all phases for evaluation. We manually

sweep the number of helper threads and compare their performance

with the automatically adapted performance in WarpX-PM. Fig-

ure 12 shows the results. For Problem A, B, C, and E, the optimal

number of helper threads is two. For Problem D and F, the optimal

number of helper thread becomes one. WarpX-PM achieves similar

performance as the optimal one in all problems. We note an over

30% performance loss when more than two helper threads are used.

As the number of helper threads increases, the available processor

cores for the computation in WarpX simulation decreases, which

prolongs the total execution time.

WarpX-PMat scale. Because of hardware limitation, we cannot

evaluate WarpX-PM on multiple Optane-based machines. However,

WarpX-PM focuses on intra-node data movement optimization,

and significantly improves performance without impacting com-

munication patterns and application algorithms. We expect that

WarpX-PM can be applied on larger scales without decreasing ap-

plication scalability.

7 RELATEDWORK

HPC workloads Many works have explored PM-based HM for

HPC [7, 19, 20, 22, 26, 29, 39–41]. Nguyen et. al [22] introduce a

multi-version octree on PM to enable adaptive mesh simulation

on PM. Unimem [39] uses performance modeling to decide data

placement for MPI-based HPC applications. Siena [26] explores rich

organizations and configurations of HM architecture for HPC appli-

cations to determine optimal system designs. Tahoe [40] combines

a machine learning model and an analytical model to predict appli-

cation performance across multiple memory components for task-

parallel programs. NVStream [7] uses non-temporal store and delta

compression to reduce overhead for maintaining crash consistency

and reduce I/O traffic for HPCworkloads. Theseworks use emulated

PM to demonstrate their functionality. Recent works are character-

izing HPC applications on Optane [19, 23, 27, 29, 35, 38, 41]. Patil et.

al [23] measure performance of HPC mini-apps under different con-

figurations of Optane DC PMM and reveal potential performance

benefits of using PM-based heterogeneous memory in HPC. Differ-

ent from above works, our work focuses on performance analysis

and optimization of a production-level code (WarpX) for realistic

simulations on real PM hardware.

Database and graph workloads. Recent works also propose

various performance optimizations of databases and graph work-

loads on the Optane PM [5, 9, 15, 17, 30, 43]. Yang et. al [43] ana-

lyze the Optane architecture to optimize database and file system.

TimeStone [15] solves the problem of poor scalability of durable

transaction memory (DTM) on Optane by adopting multi-version

concurrency control and a DRAM buffer. RECIPE [17] converts con-

current DRAM indexes to crash-consistent indexes on Optane. Gill

et. al [9] evaluate four graph analytics frameworks and optimize

performance by mitigating the NUMA effect of Optane. ATMem [5]

employs a sampling-based profiler to select performance-critical

data regions in graph applications on Optane.
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Figure 11: Performance at 1-10 prefetch distance normalized to that with no-prefetch (NP). X is the selection by the perfor-

mance model and O is the result of exhaustive search. Blue indicates performance improvement and red for degradation.

Figure 12: Compare the performance ofWarpX-PMwith the performance using one to eight helper threads.WarpX-PM always

achieves the optimal performance.

8 CONCLUSIONS

The emerging large-capacity PM enables high-resolution large-scale

scientific simulations. However, leveraging PM for production-level

HPC codes on realistic problems remains to be investigated. In this

paper, we focus on WarpX, a mission-critical plasma simulation

code, as a use case to study PM implications on its performance. We

demonstrate the PM benefits in simulation scales and propose a set

of performance optimization strategies driven by detailed perfor-

mance analysis. We improved theWarpX execution on Optane-only

by 66.4% and outperformed DRAM-cached, the NUMA first-touch
policy, and a state-of-the-art HM solution by 38.8%, 45.1% and 83.3%,
respectively.
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