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The similarity in mechanical properties of dense active matter and
sheared amorphous solids has been noted in recent years without
a rigorous examination of the underlying mechanism. We develop a
mean-field model that predicts that their critical behavior – as mea-
sured by their avalanche statistics – should be equivalent in infinite
dimensions, up to a rescaling factor that depends on the correlation
length of the applied field. We test these predictions in 2d using a
new numerical protocol, termed ‘athermal quasi-static random dis-
placement’, and find that these mean-field predictions are surpris-
ingly accurate in low dimensions. We identify a general class of per-
turbations that smoothly interpolate between the uncorrelated local-
ized forces that occur in the high-persistence limit of dense active
matter, and system-spanning correlated displacements that occur
under applied shear. These results suggest a universal framework
for predicting flow, deformation, and failure in active and sheared
disordered materials.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Sheared granular matter | Dense active matter | Dynamical mean-field
theory | Energy landscapes | Generalized rheology

The statistical physics of active matter – where energy is1

injected at the smallest scale, that of the particles them-2

selves – is highly nontrivial, exhibiting new features such as3

giant number fluctuations and motility-induced phase sepa-4

ration (1, 2). While comprehensive theories have been devel-5

oped for many of these phenomena at low and intermediate6

densities (2, 3), the behavior of highly dense, glassy active7

matter remains more mysterious. Recent work by Henkes8

and collaborators (4, 5) highlights the important role of the9

potential energy landscape in constraining and dictating the10

behavior of dense active matter, which is in some ways similar11

to the situation in glasses excited by thermal fluctuations.12

Nevertheless, work by Berthier and collaborators emphasizes13

important differences between the dynamics of thermal and14

active glasses (6, 7) within the glassy potential energy land-15

scape. Therefore, the large body of work on thermally excited16

glasses can not be transferred immediately to active glasses,17

and so a predictive theory for the dynamics of dense active18

matter remains elusive.19

Meanwhile, the dynamics of athermal sheared disordered20

materials, where energy is injected at the largest scale, globally21

from the boundaries, has been the subject of intense study22

for decades. A recent breakthrough allows an exact analytic23

solution for the behavior of slowly sheared systems in infinite24

dimensions, where interactions are exactly mean-field (8–14).25

These results qualitatively explain many features in sheared 2-26

and 3-dimensional glassy solids. Perhaps more interestingly,27

new work suggests that the dynamical mean-field equations in28

infinite dimensions have the same structure regardless if the29

driving forces are generated by global shear or active forces on30

each particle (6, 15–17), as all such forcing can be represented 31

by memory kernels with the same functional form. 32

There is also evidence of similarities between sheared and 33

active glassy systems in 2- and 3-dimensional simulations; 34

recent studies have noted that in granular systems the two 35

forcing mechanisms yield similar critical behavior (18), large 36

density fluctuations (4, 19), effective temperatures (20), aging 37

behavior (21), and Eshelby deformations (22). 38

What is missing in the low-dimensional scenarios is a uni- 39

fying picture as developed in infinite dimensions; to develop 40

such a picture, it is necessary to first examine how and where 41

discrepancies between shear and random forces appear. For 42

example, Liao and Xu (18) noted that self-propelled particles 43

driven by constant forces with the same magnitude in ran- 44

dom directions will have the same diverging viscosity as their 45

sheared counterparts (23–25) when jamming is approached, 46

albeit with different critical exponents. Moreover, the values 47

of the exponents can be changed by altering features of the 48

forces on the self-propelled particles. Therefore, one wonders 49

whether there may be a family of forcing fields, including shear 50

and different types of self-propulsion, where all the resulting 51

dynamics could be understood and predicted as part of a 52

universal description of failure in jammed solids. 53

One hint about how such a framework might be constructed 54

comes from the density of states that describes the spectrum 55

of vibrational modes about a mechanically stable state in the 56

potential energy landscape. More specifically, in low dimen- 57

sions, it has been shown that the linear response of particles to 58

either random forces in the limit of low rotational noise or long 59

persistence length (4, 5, 26), or to shear (27) is dominated by 60

the lowest eigenmode. Very close to an instability, this lowest 61

eigenmode specifies the direction in the energy landscape with 62

the lowest energy barrier (28), and highlights the direction in 63
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which particles must move to leave one mechanically stable64

state and find another (29, 30).65

Taken together, these previous results suggest that in 2d66

and 3d materials there is a direct connection between how67

a disordered system traverses the energy landscape under68

shear and under random forces in the limit of zero rotational69

noise. Here we develop an exact infinite-dimensional mean-70

field theory prediction for the mechanical response of materials71

under shear and such active forces. We explicitly test this72

prediction by analyzing numerical simulations of soft spheres73

in two dimensions, and comparing dynamics under athermal74

quasi-static shear (AQS) (30) and a new constrained dynamics75

we term athermal quasi-static random displacements (AQRD).76

One goal of this manuscript is to establish AQRD as an77

interesting and important limit of active matter dynamics.78

In AQRD, each particle is displaced continuously along its79

own self-propelled direction. Typical active matter simula-80

tions study overdamped self-propelled particles that move81

under constant force, or equivalently constant velocity when82

the damping is homogeneous (2, 3). The direction of self-83

propulsion changes on a timescale called the persistence time,84

which is parameterized by the rotational noise. Therefore,85

AQRD is similar to self-propelled particles in the limit where86

the rotational noise is zero and the self-propelled velocity is87

slower than any other relaxation process inside the material.88

An important difference between the two is, however, that89

active particles move under constant force, whereas AQRD90

particles move at constant displacement. This is in direct91

analogy to two different kinds of rheology experiments: (1)92

those where a system is subject to a constant shear force at93

the boundary, called "creep" experiments, and (2) those where94

the material is subject to a constant velocity condition at the95

boundary, called "constant strain rate" experiments. AQS is96

the zero-strain rate limit of the latter. In this work, we focus97

on AQRD because simulations and experiments which control98

strain rate (or displacements) are known to be very useful99

for characterizing material properties, and so there is a large100

amount of data in the literature for comparison. We focus101

on the pre-yielding regime, corresponding with the "start-up"102

phase of a simulation or experiment where the response de-103

pends strongly on the initial preparation of the material and104

the infinite-dimensional mean-field equations are solvable (8–105

14, 31). In contrast, stress-controlled creep experiments are106

fundamentally limited because the system can only cross en-107

ergy barriers which are surmountable by the fixed applied108

stress, and under slow driving they exhibit complicated dis-109

continuous stick-slip dynamics (32, 33). Therefore, while our110

primary focus in this manuscript is on AQRD dynamics, we111

also introduce and study Athermal Quasistatic Random Force112

(AQRF) simulations, which are the random equivalent to creep113

experiments, and demonstrate that AQRF and AQRD are114

equivalent in linear response.115

We next proceed to show that under shear (AQS) and116

random displacements (AQRD), scaling relations describing117

the avalanche statistics and the sampling of saddle points are118

identical and consistent with mean-field predictions, although119

the prefactors differ. We hypothesize that differences in those120

prefactors, including the shear modulus, are governed by the121

correlation lengthscale associated with the imposed displace-122

ment field; in shear this length is the size of the box, while for123

completely random fields it is the size of individual particles.124

In addition, the mean-field calculation predicts that these 125

prefactors are precisely determined by the distribution of the 126

imposed displacement field, which in turn causes fluctuations 127

in strain between nearby particles. 128

Therefore, we systematically vary this correlation length 129

in our simulations and find that the coefficients exhibit a 130

systematic power-law scaling that matches mean-field predic- 131

tions. We also study the effect of material preparation on these 132

results, demonstrating that shear and random displacement 133

fields are similar even in ultrastable glasses. 134

Taken together, this demonstrates that shear can be con- 135

sidered as a highly-correlated special case of more general 136

random displacements, and establishes AQRD as useful and 137

interesting limit of active matter with a direct link to sheared 138

systems. 139

Fig. 1. Two methods of traversing the energy landscape: AQS and AQRD.
a) Forces applied to particles in an AQS ensemble. b) Potential energy landscape
splitting out the Nd+ 1 degrees of freedom into Nd (one of which is the reaction
coordinate shown) and strain. c) Stress-strain curve showing that stress drop oc-
curs when a saddle point in the reaction coordinate is reached by traversing along
the strain coordinate. d) Forces applied to particles in a sample AQRD ensemble.
e) Potential energy landscape splitting out the Nd degrees of freedom (for fixed box
shape) into Nd− 1 (one of which is the reaction coordinate shown) and the vector
along which random displacements are applied. f) Random-stress vs. random-strain
curve showing that random-stress drop occurs when a saddle point in the reaction
coordinate is reached by traversing along the |c〉 coordinate. Highlighted points in (c)
and (f) correspond with the curve of matching color in (b) and (e) respectively.

1. Methods 140

Two ways of traversing the energy landscape— When con- 141

structing the energy landscape of allowed configurations, there 142

are two types of variables that play a priori different roles: 143

state variables are explicitly specified by the experimental 144

or simulation protocol, while reaction coordinates are free to 145

vary under constraints imposed by state variables. For in- 146

stance, a standard infinite temperature quench (34) considers 147
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shear-strain to be a state variable during preparation, while148

shear-stabilization methods (35) treat strain as a reaction149

coordinate during preparation, regardless of how the strain150

variable is used afterwards. Therefore, the use of strain or the151

box degrees of freedom as state variables is merely an artifact152

of the way in which experiments or simulations are performed.153

Moreover, during an athermal quasistatic perturbation, we154

adjust a state variable and then re-minimize the system by155

allowing all reaction coordinates to find their nearest local156

energy minima.157

An applied shear strain, illustrated by the red arrows in158

Fig. 1a, perturbs the system in its potential energy landscape.159

One way to represent this perturbation is to view the land-160

scape as a function of the Nd reaction coordinates (particle161

positions), so that adjusting the state variable (the magnitude162

of strain under simple shear) contorts the landscape in that163

Nd-dimensional space (29, 30, 35). As a system is sheared164

towards a saddle point, a nearby energy barrier is lowered165

until the system reaches the saddle point and moves downhill166

towards a new minimum.167

It is equivalent to describe this process instead as mov-168

ing in an Nd+ 1 dimensional landscape where we explicitly169

push the system along the box degree of freedom, i.e. we170

control the state variable corresponding to the magnitude of171

simple shear strain, as shown in Figure 1b. In this frame-172

work, there are two types of saddle points: those parallel to173

the strain state variable, and those perpendicular to it. The174

ones perpendicular to the strain are the same as the saddles175

in the Nd-dimensional representation, whereas the saddles176

parallel to the strain correspond to the shear modulus chang-177

ing sign, which does not correspond to an instability in a178

strain-controlled measurement (36).179

A second type of possible perturbation is a random displace-180

ment field, where we choose a random direction in configuration181

space |c〉 and promote it to a controlled state variable. An182

example field |c〉 is illustrated by the red arrows in Fig. 1d.183

Thus, after perturbing along |c〉, the system is free to relax184

along all directions perpendicular to |c〉, but motion along |c〉185

is restricted via constrained minimization to the other Nd− 1186

dimensions. The saddles encountered in such dynamics are187

thus always perpendicular to |c〉, and we ask whether the188

distribution of saddles and their corresponding stress drops189

follow the same distribution as those encountered under shear190

strain.191

Numerical Model Description— We simulate N Hertzian192

spheres in d = 2 dimensions where N is the number of particles.193

Except where specified when using ultrastable glasses, our sys-194

tems are a 50-50 mixture of bidisperse disks with diameter195

ratio 1:1.4 to avoid crystalization. For the pressure sweep data,196

we prepare our systems at a target pressure by performing a197

standard infinite temperature quench (34), followed by FIRE198

minimization (37) at a packing fraction such that we stay199

above the target pressure, followed by a careful decompres-200

sion (36, 38). For the correlation length sweep, we prepare201

our systems at a pressure of p = 0.0236± 0.0004 via simple202

infinite temperature quench at a packing fraction φ = 0.94203

(34). In each case, we use the Hertzian contact potential204

U = 1
5/2

∑
ij

Θ(εij)ε5/2
ij [1]205

where Θ is the Heaviside function, εij = 1 − rij/(ρi + ρj) is206

the dimensionless overlap, ρi is the radius of particle i, and rij 207

is the distance between particles i and j. All length scales are 208

reported in natural units of the minimum particle diameter. 209

Athermal Quasi-static Shear— Under the now-standard 210

method of Athermal Quasi-static Shear (AQS) (30), our sys- 211

tem of particles is subject to simple shear via Lees-Edwards 212

boundary conditions where the periodic replicas in the y- 213

direction are shifted by an amount γLy in the x-direction, and 214

γ is the magnitude of simple shear which is the only non-zero 215

entry in the strain tensor. After each small step in the applied 216

strain (∆γ = 10−4), a FIRE minimization algorithm (37) is 217

used to minimize the energy subject to the constraint that the 218

box shape is held fixed (ensuring, therefore, that the strain 219

tensor is defined by a single scalar, the shear strain). There- 220

fore, AQS is equivalent to dynamics in the limit of zero strain 221

rate – where the material is sheared more slowly than any 222

process or relaxation rate inside the material. 223

To facilitate comparison with the AQRD protocol described 224

in the next section we emphasize that, in linear response and 225

neglecting the effect of particle-particle interactions, shear- 226

ing the boundary a distance γLy along the x-direction is 227

equivalent to displacing particles in the x-direction with a 228

magnitude determined via the height of the system as given 229

by uαi = γδαx(yi − Ly/2). Here yi is the y-coordinate of par- 230

ticle i, Ly is the length of the box in the y-direction, and 231

δ is the Kronecker delta function of x and dimensional in- 232

dex α (30). An example of such a displacement field is 233

shown in Fig. 1a. The overall magnitude of this displacement 234

vector field generated by an applied strain γ is then given 235

by |u(γ)| = γ
[∑

i
(yi − Ly/2)2 ]1/2. If we assume a uniform 236

distribution of y-coordinate values, as one expects in an amor- 237

phous sample, the average magnitude is |u(γ)| ≈ γLy
√
N/12. 238

Therefore, an applied shear strain of γ is equivalent to mov- 239

ing a distance γLy
√
N/12 along a normalized vector field, 240

independent of dimension. 241

Athermal Quasi-static Random Displacements— Similar 242

to AQS, the system is initialized into a mechanically stable 243

state at the bottom of a potential energy well with energy 244

U and Nd-dimensional position vector
∣∣xmin〉. The system 245

is then displaced along an Nd-dimensional unitless vector |c〉 246

with elements ci and 〈c|c〉 = 1. We explore different methods 247

for choosing |c〉 described below. First, we define the random 248

strain γ̃ of a scalar displacement ũ along the vector |c〉 as 249

γ̃ = ũ

Ly
√

N
12

. [2] 250

This definition ensures that strains (γ) in AQS can be directly 251

compared to random-force strains (γ̃) in AQRD, where both 252

are unitless. 253

Starting from positions
∣∣xmin〉 and displacing by an amount 254

ũ, new positions are then |x〉 =
∣∣xmin〉+ ũ |c〉, but they are 255

not in a local energy minimum with respect to the reaction 256

coordinates. Therefore, we must evolve the system using 257

a constrained minimization that imposes an external force 258∣∣F ext〉 = −λ |c〉, where λ is the Lagrange multiplier, which 259

prevents any motion along |c〉. 260

We calculate how such displacements induce changes to the 261

internal stress of the system, in direct analogy to stress-strain 262
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Fig. 2. Effect of random field correlation length ξ on the mechanical response. a-c Snapshots of Gaussian correlated fields (GCF) with correlation
lengths a) ξ = 1, b) ξ = 2.5, c) ξ = 6.25. d) Example random-stress vs. random-strain curves for random fields with different correlation lengths. e-g Snapshots of wave-like
correlated fields (WCF) with wave lengths e) ξ = 2.5, f) ξ = 6.25, g) ξ = 25. h) Example random-stress vs. random-strain curves for wave-like fields with different correlation
lengths. In all graphs, we use N = 2048, φ = 0.94, and thus Lx = Ly = 50.3.

curves for AQS. The stress induced by the field γ̃ is given by263

σ̃ = 1
A

dU

dγ̃
= 1
A

N∑
i=1

(
∂U

∂xi

dxi
dγ̃

+ ∂U

∂x⊥i

dx⊥i
dγ̃

)
. [3]264

where A = LxLy is the area, and we have split the particle265

motion xi into components which are parallel or perpendicular266

to ci as xi and x⊥i respectively. By definition, ∂U

∂x⊥
i

= −F⊥i and267

since we minimize force with respect to the particle position,268

F⊥i = 0. Thus, the total residual force Fi on each particle i269

is parallel to ci. Furthermore, we note that dxi
dγ̃

= ciLy
√

N
12 ,270

resulting in the definition of the random stress271

σ̃ = − 1
LxLy

N∑
i=1

Fi · ciLy

√
N

12 = −〈F |c〉 1
Lx

√
N

12 . [4]272

This is a generalization of the derivation for shear stress in273

AQS developed Maloney and Lemaitre (30). Throughout this274

manuscript, we use variables with a tilde to denote observables275

that are the AQRD equivalent to AQS counterparts.276

In practice, we evolve the system by taking steps of 10−4
277

in the random strain γ̃, and after each step we use FIRE min-278

imization (37) to find the constrained local minimum. Thus,279

instead of applying forces in the FIRE-calculated gradient280

direction |F 〉, we apply them along |F 〉 − 〈c|F 〉 |c〉. We im-281

pose a stopping condition when every component of the total282

excess force on every particle is less than a cutoff value of283

10−14, set to ensure particle positions to double precision. By284

construction, there is no drift velocity in the system.285

We generate the fields |c〉 for AQRD using two different286

methods: one based on random Gaussian fields and another287

based on plane waves. The Gaussian random fields, which288

are spatially correlated over a characteristic length scale ξ,289

are generated using a standard Fourier transform method 290

that respects the periodic boundary conditions. A detailed 291

description is given in the supplement. Fig. 2a-c illustrates 292

the random vector |c〉 generated from the correlated Gaussian 293

random field for different correlation length ξ = 1, 2.5 and 294

6.25, respectively. To test whether features we observe are 295

dependent only on the correlation length, or whether other 296

features of the field structure are important, we also generate 297

plane-wave-like fields where the x−components of the vectors 298

are a sine function of the y−coordinate of the particle posi- 299

tions, and the y−components of the vectors vanish. For such 300

fields, we define the correlation length scale to be half the 301

chosen wavelength. Fig. 2e-g illustrates the random vector |c〉 302

generated in wave-like pattern for different correlation lengths 303

ξ = 2.5, 6.25 and 25 respectively. The corresponding displace- 304

ment field associated with shear under Lees-Edwards boundary 305

conditions is equivalent to a plane wave with a wavelength 306

2Ly, which is clear from Fig. 1a. 307

While this version of AQRD applies displacements in a 308

direct analogy to a strain-controlled experiment, we also study 309

a stress-controlled version of random forcing, denoted athermal 310

quasistatic random forcing (AQRF), which is an exact limit of 311

standard active matter simulations. Details can be found in 312

the supplement. Fig 3a-c compares the dynamics under AQRD 313

(black) and AQRF (red) for a system with the same initial 314

conditions. In linear response (i.e. until the first stress drop in 315

AQRD), the two curves are exactly equivalent. More broadly, 316

until the macroscopic yielding transition (at about 6 % strain), 317

stress drops in AQRD are often associated with slip events in 318

AQRF, and the curves still largely follow each other, similar 319

to results in sheared particle systems. Fig 3d demonstrates 320

that these similarities persist over a large ensemble. Together, 321

these data indicate that AQRD and AQRF sample similar 322

features of the potential landscape in the pre-yielding regime, 323
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a b c d

Fig. 3. Comparison of AQRD and AQRF sampling mechanisms. Three generic sample systems with N = 2048 and φ = 0.94 are generated and then perturbed by a
Gaussian correlated field (GCF) |c〉 with a) ξ = 1, b) ξ = 3.5, and c) ξ = 6. The driving mechanism is varied between AQRD – in direct analogy to a strain-controlled
measurement – and AQRF – in direct analogy to a stress-controlled measurement. In linear response, the curves are exactly equivalent, but while AQRD systems experience
stress drops, AQRF measurements are punctuated by slip events, wherein the system rearranges until it can support the applied stress. As such, in AQRF, the system does not
sample local minima in the energy landscape. d) Nevertheless, the curves can be averaged (in this case, over 30 realizations) to give the bulk response. In the pre-yielding
regime, we see hat the average response is the same, indicating that both mechanisms sample similar features of the energy landscape.

which is also consistent with a full derivation of the mean-field324

theory (31). This confirms that AQRD is a useful proxy for325

active matter simulations in the limit of zero rotational noise,326

and so we focus on AQRD in what follows.327

2. Results328

Mean-field results—The limit of infinite dimension provides329

an exact benchmark to investigate properties of structural330

glasses (14, 39), and has been successfully used, for instance,331

to study quasistatic shear or compression (8–14). In this frame-332

work, we can show that AQS and AQRD are strictly equivalent333

upon a simple rescaling of the accumulated strain, with a de-334

pendence on the correlation length ξ. The full derivation is335

provided in Ref. (31).336

In order to implement a local strain vector |c〉 ∈ RNd as337

in AQRD, we assign to each particle a random local strain ci338

drawn from a Gaussian distribution with zero mean defined339

by:340

ci = 0 , ci · cj = Ξ fξ(|rij(0)|)/d ,

with fξ(x) = e−x
2/(2ξ2)/

√
2πξ2 ,

[5]341

where the overline denotes the statistical average over the342

quenched random strain field, Ξ is a tunable amplitude which343

has the units of a length (so that the strains remain unitless),344

and rij(t) is the distance between particles i and j at time t345

(and we focus here on the initial configuration). For simplicity346

here we have assumed the fluctuations in the field can be347

described by a normalized Gaussian function with a finite348

correlation length ξ > 0. However, we emphasise that this349

simplifying condition on fξ(x) does not meaningfully affect350

the main results and the general case is treated in Ref. (31).351

Finally we include an explicit scaling with dimension d so that352

the fluctuations in c scale with dimension in the same way as353

fluctuations in the local strain field in AQS.354

In the infinite-dimensional limit, the complex many-body355

dynamics of pairwise interacting particles becomes exactly356

mean-field. It can then be reduced to an effective scalar357

stochastic process for the fluctuating gap between particle358

pairs, hij(t) = d (|rij(t)|/`− 1) where ` is the typical distance359

between particles and hij ∼ O(1) (16, 17, 40, 41). To com-360

pare the mean-field gap directly with the soft spheres in our361

simulations, we can use the relationship hij = −dεij ρi+ρj`
.362

The dynamics are then governed by the distribution of the363

relative strains cij ≡ ‖ci − cj‖, which are uncorrelated in the364

limit d→∞ for distinct pairs of particles (consistent with365

the mean-field assumption). The variance of a given pair c2
ij , 366

however, still encodes the spatial correlation of individual local 367

strains, through the following quantity: 368

F (Ξ, `, ξ) = d`2 c2
ij = 2`2Ξ [fξ(0)− fξ(`)] , [6] 369

which can be straightforwardly computed for a given choice 370

of fξ, or directly measured in numerical simulations. By 371

adapting the derivation of the mean-field description for shear 372

presented in Ref. (16), we find that AQS and AQRD are strictly 373

equivalent in infinite dimension, provided that we rescale the 374

accumulated strain by a factor
√
F/`, so that it is directly 375

controlled by the variance of relative strains c2
ij . 376

For the quasistatic stress-strain curves and the elastic mod- 377

ulus, we specifically predict that the random strain γ̃ can be 378

written in terms of the AQS shear strain γ, and therefore the 379

random-displacement stress σ̃ and the random-displacement 380

modulus µ̃ can also be easily scaled: 381

γMF ≡ γ̃MF

√
F

`
⇒
{

σMF = √̀
F
σ̃MF,

µMF = `2

F
µ̃MF,

[7] 382

where the MF subscripts emphasize that this is a mean-field 383

prediction, whose validity should be tested in lower dimensions. 384

We emphasize that the infinite-dimensional calculation pre- 385

dicts that F/`2 is thus the key quantity to make the AQRD 386

random stress-random strain curves (and other such mean- 387

field observables) collapse onto their AQS counterparts. This 388

quantity is solely prescribed by the statistical features of the 389

input field that we chose to consider. Simply put, F/`2 is the 390

variance in the strain of the input field – i.e. a measure of 391

the distribution of relative strain between particles – and it 392

completely governs the dynamics of the system. 393

Under our assumption that fξ(x) is a normalized Gaussian 394

function as in Eq. (5), we can straightforwardly compute F 395

from Eq. (6). By Taylor-expanding F in the limits `/ξ � 1 396

and `/ξ � 1, and keeping only the leading terms, we predict 397

a crossover of the elastic modulus ξ-dependence depending 398

on the ratio `/ξ, with F ∼ 1/ξ at `/ξ � 1 and F ∼ 1/ξ3 at 399

`/ξ � 1 (31). The specific case of global applied shear strain 400

corresponds to the latter case, as ξ is of the order of the system 401

size for shear. In both cases, this implies that the elastic 402

modulus decreases with increasing ξ, as we will demonstrate 403

numerically below. This matches with physical intuition: it is 404

less efficient to deform a glass with more correlated local strains, 405

i.e. with a larger correlation length. The most extreme case 406

is to consider an infinite ξ: if all particles are driven with the 407
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Fig. 4. System size and pressure dependence of landscape statistics. a) Local
shear modulus µ, b) Strain distance between rearrangements ∆γ̃, and c) stress
drops across rearrangements ∆σ̃ as a function ofN3p to show collapse with system
size and pressure. AQRD with completely uncorrelated random fields is shown with
closed circles, while AQS data is shown with open circles. Error bars represent the
middle 60% of the distribution and are only shown for AQRD for visual clarity, but are
approximately the same for AQS. Colors represent system sizes N = 64 (red), 128,
256, 512, 1024 (blue) in an even gradient. Corresponding pressures are p = 10−2,
10−3, and 10−4.

same vector ci, the whole system is simply translated in space408

and its effective strain is strictly zero, consistently with having409

no variance of relative strains (F = 0). In particular, Eq. (7)410

states that in mean-field, AQS is a special case of AQRD, with411

F/`2 = 1. See the supplement for a scaling argument in finite412

dimension supporting this mean-field picture.413

Numerical results for random stress vs. random strain —414

We next test the mean-field prediction in numerical simula-415

tions in 2D. Our first observation is that AQS and AQRD416

give rise to qualitatively similar stress-strain and random417

stress-random strain curves, as highlighted in Figs. 1c and418

1f. Elastic branches – where the stress rises linearly with the419

strain – are punctuated by points where the system crosses420

a saddle point instability, causing a stress drop and particle421

rearrangements as the system transitions to a new energy422

minimum. The magnitude of the stress drop quantifies the423

size of the rearrangement event.424

In AQS, the stress averaged over many such stress drops425

gradually rises until about 6-7% strain, at which point the426

systems yields. After the yielding point, the average stress427

remains constant as a function of strain. Moreover, the local428

shear modulus µ, defined as the slope of the stress-strain429

curve along elastic branches, is significantly different from the430

macroscopic coarse-grained shear modulus µglobal, defined as 431

the ratio of the average stress at yield to the average strain 432

at yield. This observation is directly related to marginal 433

stability (42), and can be qualitatively predicted from infinite 434

dimensional analytic theory (8–14). 435

To develop a more quantitative comparison between AQS 436

and AQRD, as predicted in Eq. (7), we focus on three metrics 437

that quantify how AQS and AQRD sample phase space in the 438

pre-yielding regime: (i) the distribution of local shear/random- 439

displacement moduli µ and µ̃ along elastic branches, (ii) the 440

distribution of (random) strain intervals ∆γ and ∆γ̃ between 441

stress drops, and (iii) the distribution of (random) stress 442

drop magnitudes ∆σ and ∆σ̃. We use 〈∆γ̃〉 and 〈∆σ̃〉 to 443

denote quantities which are explicitly averaged over all elastic 444

branches in the pre-yielding regime. 445

Scaling of observables with system size and pressure— Pre- 446

vious work has analyzed these statistics in AQS as a function 447

of system size N and pressure p (36, 43, 44), as such data 448

helps constrain continuum so-called ‘elasto-plastic’ models to 449

predict features of avalanches in granular matter. In addition, 450

the size of a rearrangement provides interesting information 451

about the nonlinear features of the potential energy landscape, 452

as it is one way of quantifying how far the system has to 453

travel from a saddle point to find a nearby local minimum. 454

The size of avalanches in AQS, quantified by the magnitude 455

of the stress drops and other metrics, is known to exhibit 456

power-law scaling with a large-scale cutoff, and the power law 457

has different exponents on either side of the yielding transi- 458

tion (43). In the pre-yielding regime the average stress drop is 459

well defined, and changes in a systematic way with system size 460

and pressure. Previous work by some of us (36) demonstrated 461

that in AQS the average stress drop exhibits two regimes: a 462

finite-size regime when N3p � 1 in which the size of stress 463

drops remains constant, and a second regime when N3p� 1 464

where the stress drops scale as 〈∆σ〉 ∼ p
N
, which is illustrated 465

by the open symbols in Fig. 4c. 466

Therefore, we first study the statistics of stress drops for 467

the simplest choice for the AQRD vector field |c〉 – an uncor- 468

related random field (GCF with ξ = 1), which is also most 469

similar to typical self-propelled particle simulations for active 470

matter. The closed symbols in Fig. 4c correspond to stress 471

drop statistics in the pre-yielding regime for an ensemble of 472

50 different initial configurations at each value of N and p, 473

showing that precisely the same scaling is seen in AQRD. This 474

highlights that the zero-pressure limit of the avalanche statis- 475

tics under AQRD is singular, just as in AQS. Although the 476

scaling is identical there is clearly a shift in the prefactors, 477

which we return to in the next section. 478

In addition to the magnitude of the stress drops, the strain 479

between saddle points or rearrangements provides another 480

window into the statistical features of the complex potential 481

energy landscape. Fig. 4b clearly shows that the mean strain 482

interval between rearrangements scales as 〈∆γ̃〉 ∼ p1/3

N
in both 483

AQS (open circles) and AQRD (closed circles). Additionally, 484

we measure the average shear modulus between rearrange- 485

ments, which scales as 〈µ〉 ∼ p2/3 for both AQS and AQRD 486

as shown in Fig. 4a. 487

Effects of spatially correlated forcing— Although the scal- 488

ing exponents of the previous section are precisely the same 489

under both AQS and AQRD dynamics, it is clear that there 490

is a systematic offset in the prefactors, despite the fact that 491
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Fig. 5. Collapse of landscape statistics with correlation length. a) Probability distribution of the local effective moduli µ̃ and µ (inset) and the recentered
zµ̃ and zµ (rescaled by their standard deviations) in GCF systems with ξ = 1 (red) through ξ = 9.5 (blue) compared with µ of AQS (black). b) The average effective modulus
decreases as a function of correlation length in both WCF and GCF ensembles. All curves approach the AQS value (black diamond), and dashed lines are best fits for µ̃WCF

with slope −1.9 (magenta) and µ̃GCF with slope −1.1 (green) respectively, consistent with the mean-field prediction of a slope between −1 and −3. c) A comparison of
F/`2 computed directly via the variance of the field |c〉 (black and gray lines) and the initial modulus ratio κ = µ̃0/µ0 (magenta and green lines). d) Collapse of average
stress-strain curves for GCF random fields onto average AQS stress-strain curve using Eq. Eq. (9). Here σ̃avg and σavg denote an average over configurations but not
all elastic branches. We are additionally able to collapse the distributions of e) the effective strain interval

√
N∆γ̃

√
κ and f) the effective avalanche size

√
N∆σ̃/

√
κ, by

appropriate scaling of the raw data (insets). Data shown is for GCF, with WCF shown in the supplement. Additionally, finite size scaling showing the empirical collapse with the
given factors of

√
N is shown in the supplement. The avalanche distribution agrees with the reported slope of−1 (dashed black line) (43) given as a guide to the eye.

care was taken to ensure the definition of effective strain in492

each case is equivalent.493

To understand the origin of this difference, we vary the494

correlation length ξ of the normalized AQRD vector field495

|c〉 measured in units of the smaller particle diameter and496

use Gaussian correlated fields (GCF) and wave-like corre-497

lated fields (WCF), as described in the methods section498

and illustrated in Fig. 2. For these analyses, system size499

N = 2048 and packing fraction φ = 0.94 are fixed and known500

to be far from the singular limit. These parameters produce501

Lx = Ly =
√

Nπ(1+1.42)
8φ = 50.3, where 1 and 1.4 are the di-502

ameters of the two species of particles.503

Examples of |c〉 for both GCF and WCF are shown in Fig. 2.504

In each case, the random stress vs. random strain curves505

exhibit qualitatively similar features, with elastic branches506

punctuated by stress drops. The overall magnitude of the507

stress scale changes dramatically, where larger stresses are508

associated with smaller correlation lengths.509

In order to test the prediction of Eq. (7), we first investigate510

the statistics of the local shear modulus, µ̃, shown for the GCF511

data in the inset to Fig. 5a. The GCF distributions shifted512

by the mean zµ̃ and scaled by the standard deviation do not513

collapse as shown in the main panel Fig. 5a. However, the514

average is well-defined for both GCF and WCF data sets, and515

decreases with increasing ξ (Fig. 5b). Specifically, both data516

sets are consistent with µ̃ being a power law function of ξ.517

We note that the AQS data point shown by the black518

diamond falls on both of the lines describing GCF and WCF519

data, respectively. This must be the case, as the only input520

field with correlation length equal to the box size that obeys521

the necessary constraints – namely that the field has zero mean 522

and respects the periodic boundary conditions – is the one 523

corresponding to simple shear (See supplement 1B for more 524

details). Nevertheless, this observation confirms that shear is 525

a special case of a more generalized response to displacement 526

fields. 527

Next, we define a new variable, κ, as the initial random- 528

displacement modulus µ̃0 normalized by the initial shear mod- 529

ulus µ0: κ ≡ µ̃0/µ0. We then explicitly test the mean-field 530

prediction for the shear modulus, Eq. (7): κ = µ̃0/µ0 = F/`2. 531

In order to compute these quantities in our simulation data, 532

we follow the prescription of Eq. (6), taking 533

F

`2 = d

Nc

∑
〈i,j〉

‖ci − cj‖2, [8] 534

where Nc is the total number of contacts, 〈i, j〉 denotes contact- 535

ing neighbors, and we approximate ` as the average distance 536

between contacting particles. These quantities, calculated for 537

both the Gaussian correlated fields FGCF and the wavelike 538

correlated fields FWCF, are shown by the grey and black data 539

points in Fig. 5c, respectively. We also plot the modulus ratio 540

κ as a function of correlation length for both GCF(green) and 541

WCF(magenta) simulations. Although this is a 2d system far 542

from the infinite-dimensional mean field case, the mean field 543

predictions are fairly close to the WCF data, and also capture 544

the general trend of the GCF data. 545

However, the mean-field prediction is not in quantitative 546

agreement so that F/`2 6= κ, suggesting that in low dimensions 547

and in particular at smaller ξ the rescaling of the dynam- 548

ics cannot be reduced solely to the variance of relative local 549
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Fig. 6. Average effective stress-strain curves in ultrastable glasses. Stress-
strain curves are shown with ξ = 1 Gaussian (GCF) driving (solid lines) and AQS
driving (dotted lines) on systems which have been prepared via Monte-Carlo Swap at
Tinit = 0.062 (red), Tinit = 0.1 (purple), and Tinit = 0.2 (blue). As in Fig. 5d,
σ̃avg and σavg denote an average over configurations but not all elastic branches.
The curves are collapsed via 9. We see that for lower preparation temperatures,
there is a larger shear modulus and a more pronounced peak, in accordance with
AQS simulations(45). Our predictions for the collapse agree well up to the yielding
point (γ ≈ 0.12).

strains, i.e. from the sole characterization of the input field.550

Nevertheless, a more general prediction of the mean-field the-551

ory is that once the mechanical response at one value ξ is552

known, all others follow. Thus, one may expect that by using553

AQS as a reference state we can still collapse low-dimensional554

simulation data using κ:555

σ ∼ σ̃√
κ
, γ ∼ γ̃

√
κ. [9]556

For individual response curves, the proper value of κ is defined557

at γ̃ = 0 and computed using the response to small AQS and558

AQRD strains. Averages can then be taken of these individual559

curves to obtain bulk behavior. Fig. 5d-f demonstrates that560

the mean-field prediction works remarkably well: individual561

stress-strain curves, distributions of strain intervals between562

stress drops, and the magnitude of stress drops all collapse563

when properly scaled by κ as predicted by mean-field theory.564

In addition, the collapsed avalanche data is clearly consistent565

with the scaling of P (∆σ) ∼ 1/∆σ reported by Shang et.566

al (43). This is another indication that bulk responses of567

AQS and AQRD are controlled by the same physics in that568

the statistical features of the potential energy landscape are569

dominated by the scaling of the elastic moduli, i.e. by the570

curvature of the landscape minima.571

This is consistent with observations in Fig. 4; the relative572

offsets between AQRD curves and AQS curves are κ, 1/
√
κ,573

and
√
κ in panels a,b, and c, respectively. Furthermore, this574

gives additional insight that κ remains roughly constant as a575

function of N3p.576

Effect of material preparation and stability— To this point,577

we have investigated infinite-temperature-quenched jammed578

solids, which have a high degree of disorder. Under AQS,579

such systems exhibit a ductile yielding transition where the580

pre-yielding regime transitions smoothly to the post-yielding581

regime with no discontinuity in the stress. It is well-known582

that changing the material preparation protocol alters the583

disorder in the initial configuration, and changes the yielding584

transition. Recent work using a new Swap Monte Carlo algo-585

rithm generates ultrastable glasses that are – on the contrary – 586

extremely brittle, with large stress overshoots and discontinu- 587

ous stress drops at the yielding transition, and data from such 588

simulations strongly suggests that under AQS the yielding 589

transition is in the Random Field Ising Model universality 590

class (45, 46). Although a full study of the nature of the 591

yielding transition in AQRD is beyond the scope of this work, 592

we analyze the random-stress vs. random-strain curves using 593

GCF under different preparation protocols. 594

The solid lines in Fig. 6a shows such curves for different 595

parent preparation temperatures, ranging from Tinit = 0.2 596

(ductile glass, low stability) to 0.062 (brittle, ultrastable glass, 597

high stability). The dashed curves correspond to the stress- 598

strain response in AQS for the same initial conditions. We 599

observe that in AQRD, the global modulus increases as the 600

stability increases, which is similar to what is observed in 601

AQS. In addition, there is clear stress overshoot (where the 602

average stress increases far above its later steady state value) 603

for the ultrastable glass, which is similar to what is seen for the 604

yielding transition in AQS, although the yielding transition is 605

much sharper in AQS. Taken together, these results highlight 606

that the qualitative trends for how the yielding transition 607

depends on glass stability are similar in AQS and AQRD, and 608

sets the stage for future work to study the statistics and spatial 609

structure of the yielding transition in AQRD. 610

3. Conclusion 611

These results demonstrate that shear and random forces per- 612

turb disordered solids in remarkably similar ways. In particu- 613

lar, the nonlinear properties of the potential energy landscape 614

traversed by AQS or AQRD display identical scaling expo- 615

nents. We discovered that the prefactors for these scaling 616

laws, which generally characterize the stiffness of the material 617

or the magnitude of the curvature in the potential energy 618

landscape, are a power law function of the correlation length 619

of the input field of displacements. The exponent ranges from 620

−1 to −3 depending on the detailed implementation of the 621

field, consistent with the predictions of the mean-field theory. 622

Since AQS corresponds to an input field where the correlation 623

length is the size of the periodic box, it is not special, but 624

instead a terminal point on a family of random fields that can 625

be characterized by their correlation lengths. In general, ma- 626

terials are stiffer in response to fields with smaller correlation 627

lengths. Conversely, it is more efficient to make a material 628

yield by deforming it in a less correlated way. 629

Since in the pre-yielding regime AQRD and AQRF gener- 630

ate nearly identical dynamics – and AQRF is equivalent to 631

self-propelled particle dynamics in the limit where rotational 632

noise is taken to zero first, and then the self-propelled velocity 633

field is taken to zero – these results have important implica- 634

tions for the emerging field of dense active matter. First, it 635

establishes that there is a direct equivalence between sheared 636

and active matter systems in this limit, meaning that decades 637

of work on sheared granular matter can be directly imported 638

to understand active systems. Second, it strongly suggests 639

that the dynamics of dense active matter systems could be 640

predicted using tools already developed for sheared granular 641

systems, such as structural and vibrational mode analyses (47). 642

Aspects of such a framework for active matter have already 643

been advanced for instance by Henkes and collaborators (4, 5). 644

An interesting avenue for future research will be to study how 645

8 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Morse et al.

www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX


small but finite particle velocities introduce fluctuations into646

the system that perturb this equivalence to shear. Does this647

create features analogous to those in finite-strain rate shear648

simulations? Additionally, we could introduce small but finite649

magnitudes of rotational noise so that the input displacement650

fields rotate over time, instead of remaining fixed indefinitely651

as presented here. We speculate that such dynamics could also652

be very similar to sheared systems at finite strain rates and/or653

in the presence of perturbative thermal noise, another active654

area of research in the rheology community. In experiments,655

it should be possible to quantify the random stress we define656

here by studying active photoelastic disks where the internal657

stress in the system can be inferred from light patterns.658

A second obvious avenue for future work is to understand659

the spatial structure and the nature of the yielding transition660

under AQRD. Our work confirms that the basic phenomenol-661

ogy is the same: there is a yielding transition where the662

macroscopic rheology of the material switches from elastic663

(stress proportional to strain) to fluid-like (stress independent664

of strain), the macroscopic modulus of the material before it665

yields is different from the local modulus along elastic branches,666

and the nature of the yielding transition changes as a function667

of material preparation. However, this opens more questions668

than it answers, such as: what are the correlation lengths of669

the output particle displacement fields that occur in response670

to the input displacement fields we study? An emerging body671

of work has begun to show that such correlations tend to long-672

range and depend on the distance to an instability (5, 26, 48),673

making any relationship to the input field non-trivial. Is the674

yielding transition under AQRD still in the Random Field675

Ising Model universality class? Under AQS, brittle glasses fail676

via localized shear band where all the strain is accommodated677

in a small region of the material – is something similar true678

in AQRD? Do we have to re-define "localized" to account for679

the fact that there is no macroscopic symmetry for AQRD680

with random Gaussian input fields? Does localization depend681

on the correlation length of the input field? Such questions682

are more than academic, as they help us to predict how dense683

materials composed of active matter flow and fail. Answering684

them will help us to harness the activity of active matter to685

develop actuated solids that can perform tasks, or even pre-686

dict emergent collective phenomena in crowded active matter687

systems.688

Materials and Methods689

Simulations were performed using pyCudaPack690

(https://github.com/SimonsGlass/pyCudaPacking/) and monte-691

CarloPack (https://github.com/SimonsGlass/monteCarloPCP/)692

which are available upon request.693
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Supporting Information Text

1. Generating random vectors for AQRD

A. Wave-like correlated fields (WCF). We generate the vector |c〉 under the constraint that it must be continuous across the
boundary, and thus periodic. In order to generalize AQS strain, we set the y-component of each ci to zero and let the
x-component depend on the height of the particle

ci = sin
(
πyi
ξ

)
x̂ [S1]

where x̂ is the unit vector in the x-direction and ξ is the correlation length. In order for this to be periodic, we must have
ξ = Ly/n with n ∈ Z. We note that AQS with Lees-Edwards boundary conditions is simply ξ = Ly with a phase shift (or
simply a cosine). Once |c〉 is determined, it is normalized so that 〈c|c〉 = 1.

B. Gaussian correlated fields (GCF). This section describes the process of generating a random Gaussian vector |c〉 with finite
spatial correlation length ξ using Fourier transforms. This method is used for all GCF ensembles, except ξ = 1 (corresponding
to completely uncorrelated field) where each component of |c〉 is drawn from a uniform distribution and then normalized to
length 1.

The two-dimensional system is a box of size Lx × Ly with periodic boundary conditions, allowing us to define wave vectors
knm =

(
aπn
Lx

, bπm
Ly

)
for n,m ∈ Z where a = ±2 and b = ±2, with signs decided randomly, as discussed below. In practice, we

truncate the Fourier sums at n,m = Q taking Q = 20.
To create |c〉, we need a correlated random field Ψ(x) which is Gaussian distributed with zero mean 〈Ψ(x)〉 = 0 and has the

two-point correlator 〈Ψ(x)Ψ(x′)〉 = f(|x− x′|). We enforce f(x) to be a Gaussian function, whose explicit Fourier transform is
f̃(|k|) = exp

[
(− |k|2ξ2

(a2+b2) )
]
.

First, we generate a set of uncorrelated random fields ψ̃(k) with 〈ψ̃(k)〉 = 0 and 〈ψ̃(k)ψ(k′)〉 = 1
4π2 δk,−k′ , where δ is the

Kronecker function, and the factor 4π2 comes from the Fourier transform convention. In practice, for each wave vector of the
truncated sum we generate a random field ψ̃(knm) = A(k) exp{(iB(k))}, with A(k) = A(−k) normally distributed with zero
mean and variance 1

4π2 , and B(k) = −B(−k) uniformly distributed on the interval [0, 2π].
Secondly, we use the Fourier transform of the target correlator f(x) to construct a new field Ψ̃(k) = f̃(|k|) ψ̃(k), whose

Fourier transform of the α component is

Ψα(x) =
Q∑

n,m=1

Aαnme
−|knm|2ξ2/(a2+b2) cos (Bαnm + knm · x). [S2]

The random vectors ci =
(
cxi , c

y
i

)
are then defined as cαi = Ψα(xi) using the initial positions xi. Once |c〉 is determined, it is

normalized so that 〈c|c〉 = 1.
It is important to note that because these fields are built using Fourier transforms, they will have a bulk phase preference at

high values of ξ – greater than about a quarter of the box size – along the tan−1 ( b
a

)
axis. In other words, the mulitiplicity

of fields that obey the necessary conditions – that they have zero mean and they respect the periodic boundary conditions –
becomes very small as ξ approaches the box size, and in fact in the limit that ξ equals the box size, only the simple shear
strain field satisfies those conditions.

Therefore, for GCF fields we restrict ourselves to values of ξ for which this bulk phase preference does not dominate. It is
also for this reason that the signs of a and b are chosen at random for each instantiation of a system. Other even integer values
of a and b may be used to create Gaussian correlated fields, but these fundamentally alter the symmetry of the system for high
values of ξ, and thus are not used in this work.

2. Athermal quasistatic random forcing (AQRF)

In addition to the strain-controlled definition of AQRD in the main text, we can also consider a stress-controlled version
denoted athermal quasistatic random forcing (AQRF). Instead of enforcing a displacement vector |c〉, we apply an external
force

∣∣F ext〉 = f |c〉 on the system and we measure the resulting strain, where again 〈c|c〉 = 1. Thus, instead of a constrained
minimization, we simply perform a minimization subject to a fixed external force. Once minimized, the sum of all forces on
each particle must be zero:

Fi =
∑
j∈∂i

Fij + fci = 0, [S3]

where j ∈ ∂i indicates a sum over interparticle forces acting on particle i. The sum of interparticle forces is parallel to |c〉,
allowing closure with |c〉 to give f = −〈c|F 〉. Following the arguments around Eq. (2) a normalization factor is necessary to
compare the size of stresses in AQS leading to

σ̃ = − f

Lx

√
N

12 . [S4]
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The random strain is then naturally defined as

γ̃ = 1
A

dU

dσ̃
= 1
LxLy

N∑
i=1

∂U

∂xi
· dxi
dσ̃

. [S5]

where Eq. (S3) ensures that ∂U
∂xi

=
∑

j∈∂i Fij = −fci, and dxi
dσ̃

can be interpreted for small stresses as the displacement ∆xi
of particle i, subject to the applied stress σ̃, leading to the natural relation

dxi
dσ̃

= −∆xiLx
f
√

N
12

. [S6]

Together these lead to the definition of random strain in the stress-controlled ensemble:

γ̃ = 〈c|∆x〉
Ly
√

N
12

[S7]

Physically, this scalar product is simply the sum over all particles of their individual displacements along their corresponding
imposed direction ci. This is the natural counterpart of the random stress definition given in Eq. (5).

3. Generality of the stress-strain collapse

In Fig. 5d-f, we show the collapse of the average stress-strain curves, the probability distribution of stress drops, and the
probability distribution of the strain intervals between rearrangements. Here, we show those same curves for both WCF fields
(Fig. S1) and for GCF systems of different size at constant correlation length (Fig. S2). Empirically, Fig. S2b shows that the
distribution of stress drops and the distribution of strain intervals between rearrangements collapse when scaled as

√
N∆σ̃/

√
κ

and
√
Nγ̃
√
κ, in contrast to the geometric mean values 〈σ̃〉 ∼ p/N and 〈γ̃〉 ∼ p1/3/N . This seeming discrepancy is due to the

choice of a fixed strain step size which systematically under-counts any small rearrangements. The full distribution appears to
be a power law distribution with a minimum stress drop known to scale as 1/N (see supplement of Ref. (1)). Thus, instead of
fitting the center of the distribution, we ignore the small cutoff and match the high tail.

b

Fig. S1. The same scaling which in Fig. 5 collapses the AQRD data for Gaussian Correlated Fields is applied to Wave-like Correlated Fields (WCF) of varying correlation length
ξ. Here the a) average stress-strain curves, b) distribution of the stress drops, and c) the distribution of strain intervals between events all collapse when scaled with the ratio of
initial shear moduli µ̃0 vs. the AQS initial shear modulus µ0 as κ = µ̃0/µ0. The dotted line in panel b is of slope−1. All systems have N = 2048 particles.

Fig. S2. The same scaling which in Fig. 5 collapses the AQRD data for Gaussian Correlated Fields with N = 2048 particles is applied to systems of varying size. Here the
a) average stress-strain curves, b) distribution of the stress drops, and c) the distribution of strain intervals between events all collapse when scaled with the ratio of initial shear
moduli µ̃0 vs. the AQS initial shear modulus µ0 as κ = µ̃0/µ0. Dashed lines in b and c represent AQS systems of the same size. The dotted line in panel b is of slope−1.
All systems use GCF fields with ξ = 1. While curves are generated with the same protocol detailed in the text, it is clear that the dynamic range of the strain should be applied
to a maximum value which is proportional to

√
N .
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4. Scaling argument supporting our mean-field prediction in finite dimension

In order to gain more physical intuition on our infinite-dimensional mean-field results, we present thereafter a scaling argument
at a finite dimension d which supports the mean-field prediction that the total effective strain would be given by γeff = γ̃

√
F/`

and that the typical elastic modulus should scale as µ ∼ F/`2. The different assumptions underlying this argument turn out to
be exact in infinite-dimension, where we were able to obtain this prediction from the computations, even before having any
physical intuition of what to expect.

Let’s first consider the most extreme case with an infinite ξ. This means that all particles are driven with a same vector
ci: the relative local strains are all strictly zero, with no variance (F = 0) or equivalently a distribution of relative strains
P̄(cij) = δ(cij). The whole system is thus simply translated in space, and its effective strain always remains strictly zero.

If instead we allow for a large but finite ξ, the system can be pictured as being composed of large ‘patches’ in which particles
share the same vector ci, and pairs have thus zero relative strains cij inside a given patch. Only pairs of particles living at
the boundaries between such patches experience a non-zero cij , and can thus contribute to the total effective strain felt by
the system under AQRD. The smaller ξ, the larger the proportion of pairs at a boundary. We can quantify this within the
simplified patchy picture: let’s assume that we alternate in 2d, as in a chessboard, patches with ci = ±A. Inside a patch
cij = 0; pairs at the boundaries have cij = ±2A, as illustrated in Fig. S3. We can estimate the proportion of interacting pairs
living at a boundary as ρ = L/ξ × `× L× 2/L2 = 2`/ξ. In dimension d this generalizes to ρ = d `/ξ. The variance of relative
strains is then given by

F/`2 =
∑

interacting pairs

c2
ij =

∑
in a patch

(1− ρ)× 02 +
∑

in a patch

ρ× (2A)2 = 4A2d`/ξ .

Consequently, because the relative strain on interacting pairs is distributed, the typical strain applied to a given pair scales as
∼ γ̃
√
F/` = γ̃ 2A

√
d`/ξ.

Fig. S3. Left: If we have a Gaussian distribution of relative strains of zero mean and variance F, we can simplify it in a patchy picture where we retain only the value at the peak
(cij = 0) or its standard deviation (cij = ±2`A). Right: The associated patchy representation of the displacement field itself, where ci = ±`A on alternating patches.

Beyond this simplified patchy picture, Eq. (6) in our manuscript gives the exact variance F for a spatially-correlated input
field. If we assume that relative strains have a Gaussian distribution P̄(cij) of zero mean and variance F, the A in our patchy
picture corresponds to the standard deviation

√
F, as illustrated in Fig. S3. Assuming that the correlator fξ(x) is a Gaussian

function (as in our Eq. (5)): if ξ/`� 1, A is essentially a constant; if ξ/`� 1, we have instead A ∼ `/ξ. The latter case adds
an additional dependence on ξ on the variance F, and thus on the typical strain felts by an interacting pair. That way we
recover the crossover from F ∼ `/ξ to F ∼ (`/ξ)3 that we discuss in our manuscript.

In lower dimensions, these assumptions can be assumed to hold at least in the pre-yielding regime that we consider, on
each elastic branch (albeit if we start to interfere with the spatial correlations of the response field after an AQRD step, as
mentioned in our conclusion). In AQRD, after each minimization step, the random stress is given by our Eq. (4), as the scalar
product of the forces acting on each particles Fi and their respective vector ci. This can be rewritten as a scalar product of
the forces between pairs and their respective relative strain cij :∑

〈ij〉

Fij · cij = 1
2

N∑
i,j=1

Fij · (ci − cj) = 1
2
∑
i

(∑
j

Fij

)
︸ ︷︷ ︸

=Fi

·ci + 1
2
∑
j

(∑
i

Fji

)
︸ ︷︷ ︸

=Fj

·cj =
∑
i

Fi · ci ∝ −σ̃

where in the last equality we skipped the normalization with respect to the system size and the number of particles (see Eq.(4)).
Let’s assume that we start from a minimum after an AQRD step, described by a given set of relative position {rij}. If we
apply an infinitesimal strain increment ∆γ̃ that keeps us in an elastic branch, we can Taylor-expand the forces using

∇v(|rij + ∆γ̃ cij |) = ∇v(|rij |) + ∆γ̃
[
v′′(rij) (r̂ij · cij) r̂ij + v′(rij)

cij
rij

]
+O

(
∆γ̃2) .
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The associated increase in random stress is then given by (we skip the finite-size normalization thereafter):

∆σ̃ ∝ −
∑
〈ij〉

[Fij(∆γ̃)− Fij(∆γ̃ = 0)] · cij

= ∆γ̃
∑
〈ij〉

[
v′′(rij) (r̂ij · cij) r̂ij + v′(rij)

cij
rij

]
· cij = ∆γ̃

∑
〈ij〉

c2
ij

[
v′′(rij) (r̂ij · ĉij)2 + v′(rij)

rij

]
︸ ︷︷ ︸

local elastic modulus

.

This local elastic modulus depends on the distribution of {rij}, which is a highly nontrivial quantity to characterize analytically.
In fact, the infinite-dimensional limit is the only case where we know it exactly, as a function of accumulated strain, which is
one of the reasons why it is such a precious benchmark. Finally, if we assume that the typical local elastic modulus scales as
the average c2

ij , by definition this is equal to the variance F/`2. So we recover that the typical elastic modulus should scale
as µ ∼ F/`2, and thus inherits the ξ-dependence of F along the way. Note that we did not use any property specific to the
Hertzian interaction potential, our argument holds for a generic soft potential.
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