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We explore the benefits of adapted gauges to small mass ratio binary black hole evolutions in

the moving puncture formulation. We find expressions that approximate the late time behavior of

the lapse and shift, ðα0; β0Þ, and use them as initial values for their evolutions. We also use a position and

black hole mass dependent damping term, η½x⃗1ðtÞ; x⃗2ðtÞ; m1; m2�, in the shift evolution, rather than a

constant or conformal-factor dependent choice. We have found that this substantially reduces noise

generation at the start of the numerical integration and keeps the numerical grid stable around both black

holes, allowing for more accuracy with lower resolutions. We test our choices for this gauge in detail in a

case study of a binary with a 7∶1 mass ratio, and then use 15∶1 and 32∶1 binaries for a convergence study.

Finally, we apply our new gauge to a 64∶1 binary and a 128∶1 binary to well cover the comparable and

small mass ratio regimes.
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I. INTRODUCTION

The 2005 breakthrough in numerical relativity tech-

niques [1–3] has allowed for the production of thousands

of binary black hole simulations (see for instance [4–7]).

Improvements in hardware and numerical techniques

contribute by speeding up simulations, however, some

corners of the binary’s parameter space remain relatively

unexplored. Binaries in the high mass ratio regime are

challenging to simulate; they can take months of super-

computer time and require substantial computational

resources to run accurate, long term, numerical evolu-

tions. These types of binaries are of particular interest

for third generation gravitational wave detectors [8] and

for the space-based mission LISA [9] since they have

long, low frequency inspiral periods. Prototype small

mass ratio simulations reaching 100∶1 have been

achieved with the moving puncture approach [10,11]

and numerical convergence has been proven. Recently,

another sequence of nonspinning binaries with mass

ratios q ¼ m1=m2 ¼ 1=32; 1=64; 1=128 has been studied

in [12]. Such simulations should be considered proof

of principle, but in order to become practical for pro-

duction purposes, they need improvements in both

computational efficiency and accuracy of the numerical

techniques. This paper has a particular interest in explor-

ing the choice for the numerical gauge, as well as

the initial values for the lapse and shift equations, as a

means to achieve improvements in accuracy without

requiring more highly resolved (and hence more expen-

sive) simulations.

In 2005, a fundamental breakthrough was the choice of

the gauge equations. The gauge was originally developed to

force successful evolutions without numerical simulations

crashing. The moving puncture approach proved robust and

produced accurate waveforms, even allowing the evolution

of multi-black-hole systems [13]. However, when studied

in detail, subtleties appear with the convergence [14], and

some gauge amplified initial noise has been observed [15].

This is particularly relevant for binaries with small mass

ratios (q ¼ m1=m2), as the amplitude of gravitational

radiation scales like ∼q. The initial noise then reflects at

the boundaries of the mesh refinement levels, which are

necessary to efficiently describe the different scales of the

binary system, causing high frequency oscillations when

those reflections reach the observers.

In this paper we will show that choices of the initial lapse

and a shift-damping parameter η in the gauge can cure those

initial inaccuracies, and lead to a much cleaner evolution of

the binary black holes. We explore different choices of the

initial lapse and shift in Sec. II A to improve the accuracy of

the simulations. In a previous paper [16] we studied the

effect of different, constant shift-damping parameters η on

the extraction of recoil velocities from the horizon of the

final remnant black hole. In this paper, in Sec. II B we

extend the analysis to adapt ηðx⃗1ðtÞ; x⃗2ðtÞÞ to small mass

ratio binaries. The results using these numerical techniques

on the simulation of a prototypical nonspinning binary with

mass ratio q ¼ 1=7 is studied in detail in Sec, III A with

different choices for η and the initial lapse, as well as

control convergence studies of binaries with mass ratio q ¼
1=15 and then q ¼ 1=32, in Secs. III B and III C respec-

tively. In Sec. III D, we provide results for the extremal

q ¼ 1=64 binary using the gauge choice we determined

from the previous sections.
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We conclude in Sec. IV with an optimal selection of

initial lapse and shift damping parameter η that is simple

to implement and numerically efficient, while still improv-

ing the accuracy of the simulations in the small mass ratio

regime.

II. NUMERICAL TECHNIQUES

The 2005 breakthrough work [2] has allowed us to

obtain accurate, convergent waveforms and horizon para-

meters by evolving the BSSNOK [17–19] system in

conjunction with a modified 1þ log lapse and a modified

Gamma-driver shift condition [2,20],

∂0α ¼ ð∂t − βi∂iÞα ¼ −2αK; ð1Þ

∂tβ
a ¼ 3

4
Γ̃
a
− ηðxk; tÞβa: ð2Þ

with the initial shift vanishing and the initial lapse

α0 ¼ 2=ð1þ ψ4
0Þ, where the conformal factor is defined as

ψ0 ¼ 1þ m1

2jr⃗ − r⃗1j
þ m2

2jr⃗ − r⃗2j
: ð3Þ

Here and in the remainder of this paper, Latin indices such

as i and k cover the spatial range 1,2,3. Our units use the

G ¼ c ¼ 1 convention.

The parameter η (with dimension one-over-mass: 1=m)

in the shift equation regulates the damping of the gauge

oscillations. We have found in [21] that coordinate depen-

dent measurements, such as spin and linear momentum

direction, become more accurate as η is reduced and the

grid resolution is extrapolated to infinity (h → 0). However,

if η becomes too small ðη ≪ 1=mÞ, the runs may become

unstable. Similarly, if η is too large ðη ≫ 10=mÞ, then grid

stretching effects can cause the remnant horizon to con-

tinuously grow, eventually leading to an unacceptable loss

in accuracy at late times. Therefore, η is commonly chosen

to be of order unity as a compromise between the accuracy

and stability of binary black hole evolutions; for compa-

rable-mass binaries, our standard choice is η ¼ 2=m.

To compute the initial data for the lapse and shift

equations, we use the TwoPunctures [22] thorn. These black-

hole-binary datasets are then evolved using the LazEv [23]

implementation of the moving puncture formalism [2]. The

carpet [24] mesh refinement driver provides a text “moving

boxes” style mesh refinement and we use AHFinderDirect [25]

to locate apparent horizons. The magnitude of the horizon

mass, spin, and linear momentum are computed

using the isolated horizon algorithm detailed in Ref. [26]

(as implemented in [27]). Once we have the horizon

spin, we can calculate the horizon mass via

the Christodoulou formula mH ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
irr þ S2H=ð4m2

irrÞ
p

,

where mirr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A=ð16πÞ
p

and A is the surface area of the

horizon. The radiated energy, linearmomentum, and angular

momentum are all measured in terms of the Newman-

Penrose-Weyl scalar Ψ4, using the formulas provided in

[28,29], and extrapolation to Iþ is performed with the

formulas given in [16,30,31].

Convergence studies of our simulations have been

performed in Appendix A of [32], in Appendix B of

[33], and for nonspinning binaries are reported in [34]. For

very highly spinning black holes (s=m2 ¼ 0.99) conver-

gence of evolutions was studied in [35], for precessing

s=m2 ¼ 0.97 in [36], and for (s=m2 ¼ 0.95) in [37] for

unequal mass binaries. These studies allow us to assess that

the simulations presented here, with similar grid structures,

are well resolved by the adopted resolutions and are in a

convergence regime.

A. The initial gauge

In this section we derive the form of a new set of

equations for the initial lapse and shift. The goal is to

approximate those of the trumpet slice in quasi-isotropic

coordinates r, both near the puncture r ¼ 0 and far from

source as powers of 1=r. We will do this for a single black

hole, then we will superpose the result for two black holes.

1. Initial lapse

To construct the trumpet-like late time initial lapse

(LTL), we begin by proposing the following form:

αLTL ¼ α0ðψ0Þ ¼
a

1þ bψn
0 þ cψnþ1

0 þ dψn−1
0

ð4Þ

where a, b, c and d are constants to be determined by

matching to trumpet data in isotropic coordinates close to

the punctures, and to the behavior of the lapse far away

α ∼ ð1 −m=rÞ=ð1þm=rÞ. The value n is a function of an

unknown constant γ, which is to be determined later.

The initial lapse is written as a function of the conformal

factor ψ0 defined in Eq. (3) as an extension of our original

standard form for the lapse

α0 ¼ 2=ð1þ ψ4
0Þ: ð5Þ

We have the option of superposing the individual initial

lapses for each puncture, so that α ¼
P

i¼1;2 αLTLðψ iÞ − 1

where

ψ i ¼ 1þ mi

2jr⃗ − r⃗ij
; ð6Þ

which would make our new initial lapse

αLTL ¼ α1 þ α2 − 1; ð7Þ

but this leads to negative values near the punctures.

To obtain the desired behavior in Eq. (4), we begin by

expanding the Schwarzschild lapse in isotropic coordinates

in powers of ð1=rÞ to obtain
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αSch ¼ ð1 −m=2rÞ=ð1þm=2rÞ
¼ 1 − 1=rþ 1=2r2 þOð1=r3Þ: ð8Þ

Near the puncture, the expected trumpetlike behavior is

α ∼ Ar1=γ ð9Þ

where, by Eq. (48) of [38],

γ ¼ ð2 − R0Þ=ð6 − 4R0Þ ¼ 0.9163407461; ð10Þ

R0 ¼ 1.312408290 ð11Þ

and according to numerical computations of [39], A¼ 0.54.

Using this value will allow us to match the numerical

behavior rather than strictly the isotropic coordinates (as

in [38]).

Choosing nþ 1 ¼ 1=γ in Eq. (4) above and taking the

limit as r → 0, we obtain that

2.131254761ðc=aÞ ¼ 0.54; ð12Þ

which is approximated to be a=c ¼ 1=4.
Setting the other constants b, c, d to match the three

orders of the expansion in (8), we find

a ¼ 2γ − 1

6γ − 1
; b ¼ −10

2γ − 1

6γ − 1
; ð13Þ

c ¼ 4
2γ − 1

6γ − 1
; d ¼ 2

4γ − 3

6γ − 1
;

n ¼ −
γ − 1

γ
: ð14Þ

These expressions are finally inserted into Eq. (4) to

construct this new choice for initial lapse.

For a visual representation of the differences between the

typical initial lapse α0 ¼ 2=ð1þ ψ4
0Þ and αLTL, refer to

Fig. 1, which shows the two choices for lapse in red and

blue (respectively) and their effects on a q ¼ 1=3 binary

with initial separation D ¼ 8m. Here, we can see that αLTL
(in red) is tighter around the punctures than its counterpart

in blue α0; therefore mimicking the shape of the settled

lapse more accurately.

2. Initial shift

We would also like to find a formula to model the shift β

late-time behavior analogous to (4). From [38] [Eqs. (7)

and (18)] we have analytic expressions for the shift at

distances close to the black hole,

βr ¼ rβ=R ð15Þ

and at large r, the shift magnitude,

β2 ¼ C expðαÞ=R6; ð16Þ

where r denotes isotropic coordinates and R denotes

Schwarzschild ones and, C ¼ 1.554309591. Equating the

Eqs. (15) and (16),

βr=r ¼
ffiffi

ð
p

CÞ expðα=2Þ=R3 ð17Þ

→

ffiffi

ð
p

CÞ=R3
0 ¼ 0.5515207650; ð18Þ

for R → 0 where from Eqs. (23) and (28) of [38] we have

C ¼ e3−
ffiffiffiffi

10
p

ð3þ
ffiffi

ð
p

10Þ3=128
¼ 1.554309591R4

0 − 2R3
0 þ C ¼ 0; ð19Þ

R0 ¼ 1.312408290: ð20Þ

This agrees well with the estimates derived from the

numerical fittings (6) and (7) in [39]. From these, define

K ≈ 0.30 − 0.92α; where K ¼ βα0ðRÞ=2: ð21Þ

From which we can find that the leading order term of the

shift should be

βr=r ¼ β=R ¼ 2K=Rα0ðRÞ ð22Þ

→ 0.60=R0α
0ðR0Þ ≈ 0.55; ð23Þ

for r → 0. With the use (31) in [38] we have

FIG. 1. In red the initial lapse α0ðψ0Þ is shown and the LTL,

αLTL, is shown in blue. This is for a case study with m2 ¼ 3=4,
m1 ¼ 1=4, located at x1 ¼ −6 and x2 ¼ 2 respectively, and where

we have normalized so that m1 þm2 ¼ 1.
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α0ðR0Þ ¼ ð6 − 4R0Þ=ð2 − R0ÞR0: ð24Þ

On the other hand, to study the shift behavior at large

distances from the black hole we have in the expansion of

Eq. (17),

ffiffiffiffi

C
p

e1=2

r2
− 7=2

ffiffiffiffi

C
p

e1=2

r3
þ 57

8

ffiffiffiffi

C
p

e1=2

r4
þOðr−5Þ ð25Þ

where we have used that in isotropic coordinates,

αiso ¼ ð1 −m=2rÞ=ð1þm=2rÞ ð26Þ

far from the center of coordinates.

In a similar fashion as for the lapse, we propose the

following representation for the initial shift:

βr0ðψ0Þ ¼
aðψ0 − 1Þ2

1þ bψ0 þ cψ2
0 þ dψ3

0

: ð27Þ

Matching expansions (22) and (25) with (27), we get

a ¼ −0.5368350604; b ¼ −3.620281004;

c ¼ 4.501732957; d ¼ −1.946744690: ð28Þ

3. Two black holes

It is our ultimate goal to use these analytic approximants

as initial data for the gauge to evolve a binary system.

We do not assume that the lapse for each black hole adds

linearly, but instead include the information about the

binary in the conformal factor ψ0. For an arbitrary binary,

the ψ0 in Eq. (4) matches that in Eq. (3). The resulting

shape of the initial lapse is shown in Fig. 1 for a binary with

m1 ¼ 1=4, m2 ¼ 3=4, located at x1 ¼ þ6, and x2 ¼ −2,

respectively and normalized by m1 þm2 ¼ 1.

In the case of the trumpet late time initial shift (LTS), we

do in fact assume it adds linearly for the two black holes as

this matches the settled shape of the evolved shift best:

βLTS ¼ βr1ðr⃗ − r⃗1Þ=jr⃗ − r⃗1j þ βr2ðr⃗ − r⃗2Þ=jr⃗ − r⃗2j: ð29Þ

Figure 2 displays the behaviors of the initial shifts (zero

shift in red, and LTS in blue) for the same case study as

above. The LTS initial data pushes the shift away from the

black holes at the punctures and damps to zero far away.

We have chosen to not superpose the lapse and to

superpose the shifts because, while testing different con-

figurations, we found that those choices best matched the

late-time behavior of the lapse and shift. The construction

presented in this section ignores the motion of the black

holes. The inclusion of initial linear momentum and spins

of the holes into the analytic expressions for the initial lapse

and shift can be done in terms of a Lorentz boost and a Kerr

shift. We provide explicit expressions in Appendix, but do

not provide an in-depth study here because we found that

their inclusion into the initial choice for the gauge is not

crucial in the case of a nonspinning binary.

B. Shift damping parameter η

The principal purpose of this study is to investigate

whether the accuracy of small mass ratio binaries can be

improved by modifications to the gauge equations (2). In

this section, we seek to develop a superposed Gaussian

model for the shift damping parameter η. For comparable

mass q > 1=10 binary evolutions, our simulations typically

use a constant η; in general we choose η ¼ 2=m, but recent

studies have shown that η ¼ 1=m may provide a better

measure of recoil velocity at the horizon of the remnant

black hole [31] (as in [16], in which we studied binaries as

small as q ¼ 1=5).
For mass ratios smaller that q ¼ 1=10, a nonconstant η

is required for simulation stability, especially at lower grid

resolutions, since the damping shift parameter carries

inverse mass dimensions [40]. Reference [10] introduced

ηðWÞ [W ¼ ffiffiffi

χ
p ¼ expð−2ϕÞ where ϕ ¼ ϕð 1

ψ0
Þ, with the

conformal factor suggested by [41]), or modified (as

below in equations (3)–(31)]. The modification we use

is based on the superposition of weighted Gaussians with

peaks at the punctures [42–44]. Alternatives using the

conformal factor have been given in [40,45]. Here we will

numerically investigate those choices for the smaller mass

ratio binaries.

Here we bring back some of those ideas, where we

evaluate ηðr⃗1ðtÞ; r⃗2ðtÞÞ parametrized by the black holes

punctures trajectories ðr⃗1ðtÞ; r⃗2ðtÞÞ. The (initial form of the)

conformal factor evaluated at every time step is given by (3)

and we can define, analogously to ηðWÞ,

FIG. 2. In red is the usual zero initial shift, and in blue is the

superposition of the individual shifts showing the push away

from each black hole. This is for a case study with m2 ¼ 3=4,
m1 ¼ 1=4, located at x1 ¼ 2 and x2 ¼ −6, respectively.
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mηψ ¼ Aþ B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

j∇⃗rψ0j2
q

ð1 − ψ0
aÞb : ð30Þ

An example of this ηψ is plotted in Fig. 3. At the ith

puncture miη ¼ 1 and at the center of mass mη ¼ 1, but

Eq. (30) goes through a minimum mη ¼ 0 in between the

holes and at this point, as well as at the punctures, η is C0.

Since the gauge condition Eq. (2) involves an integration

not a derivative, this does not affect numerical evolutions.

A second alternative for smoother behavior is the

superposition of Gaussians,

ηG ¼ A

m
þ B

m1

�

r⃗1ðtÞ2
r⃗1ðtÞ2 þ σ22

�

n

e−jr⃗−r⃗1ðtÞj
2=σ2

1

þ C

m2

�

r⃗2ðtÞ2
r⃗2ðtÞ2 þ σ21

�

n

e−jr⃗−r⃗2ðtÞj
2=σ2

2 ð31Þ

which, for the punctures of the previous example, is

displayed in Fig. 4 (with n ¼ 0), and behaves like m2ηG ¼
1.25 at the first puncture, and asm1ηG ¼ 1.75 at the second

puncture, and it goes to 1 in between and far away from

the binary.

In [42], the authors present a function similar to Eq. (31)

and study its effects, as well as the effects of another

position-dependent form of η, on the shift equations using a

q ¼ 1,D ¼ 10m separated binary, and a q ¼ 1=4,D ¼ 5m
separated binary. They use A ¼ 2=m whereas we use

A ¼ 1=m. Even so, we find good agreement with their

results; they find reduced noise in the dominant gravita-

tional waveform mode, as well as reduced coordinate size

of the horizons when compared to a constant value of η. We

include factors of

�

r⃗iðtÞ2
r⃗iðtÞ2 þ σ2j

�

n

ð32Þ

FIG. 3. ηψ profile for (m ¼ m1 þm2 ¼ 1 here) m2 ¼ 3=4,
m1 ¼ 1=4; x1 ¼ 2.5, x2 ¼ −7.5; a ¼ 1, b ¼ 2; A ¼ 1, B ¼ 1.

Note that this is technically different from the ηðWÞ used in [10]

since we use the specific form (3) for ψ0 instead of the evolved

variable, which is related to the inverse of the conformal factor

W ¼ ffiffiffi

χ
p

[2].

FIG. 4. ηG profile for (m ¼ m1 þm2 ¼ 1 here) m2 ¼ 3=4,
m1 ¼ 1=4; x1 ¼ 2.5, x2 ¼ −7.5; A ¼ 1, B ¼ 1, C ¼ 1;

σ1 ¼ 2m1, σ2 ¼ 2m2. At large separations, n ¼ 0 and n ¼ 2

show good agreement.

FIG. 5. ηG profile for (m ¼ m1 þm2 ¼ 1 here) m2 ¼ 3=4,
m1 ¼ 1=4; x1 ¼ 0.5, x2 ¼ −1.5; A ¼ 1, B ¼ 1, C ¼ 1;

σ1 ¼ 2m1, σ2 ¼ 2m2. At small separations n ¼ 2 reduces the

peaks in (31) that using n ¼ 0 is designed to produce.
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for i ¼ f1; 2g and j ¼ f2; 1g respectively, with n ∈ N. The

authors of [42] expect their results to hold for small mass

ratio binaries and show good agreement with the results

that are presented in this paper.

We have applied Eq. (31) (labeled n ¼ 0) to simulations

of small mass ratio binaries (as ηG or G), and compared the

physical output to both the constant η ¼ 2=m as well as the

ηðWÞ gauges. The results are forthcoming in the following

sections. The introduction of the n ¼ 2 case is to model

smaller effective spikes once the black holes are merged as

shown in Fig. 5. For larger separation n ¼ 0 and n ¼ 2

essentially agree with each other as shown in Fig. 4.

III. SIMULATION RESULTS

Here we present the results of our simulations using

different choices of initial lapse and choices for η. We

proceed in a descendent mass ratio, from the q ¼ 1=7 and

q ¼ 1=15, and then onto the more challenging q ¼ 1=32,
to find the best gauge choices and apply them to the most

challenging case, with mass ratio q ¼ 1=64. For the rest of
this work, the following notation will be used: “LZ”

denotes the Lousto-Zlochower η ¼ ηðWÞ gauge, “2”

denotes the constant η ¼ 2=m, “G” denotes the Gaussian

in (31) with n ¼ 0, and the “+ LTL” denotes the addition of

the LTL choice for initial data. Table I shows a full list of all

the simulations performed for this paper and their initial

parameters. All simulations use 8th order finite differencing

in space.

The resolutions in Table I are listed in the form nXXX

where XXX is the number of gridpoints on the coarsest grid

level (i.e., n100 has 100 points on the coarsest grid level).

The mesh increases by a factor of two in resolution per

refinement level, with the most refined levels surrounding

the individual punctures.

A. Results for a q= 1=7 nonspinning binary

In this section we will begin our analysis by studying the

effects of different gauge modifications on the physical

parameters of a binary system. We will first verify it works

on a comparable mass binary, with mass ratio q ¼
m1=m2 ¼ 1=7 and binary separation D ¼ 11m. This sys-

tem, while not as computationally intensive as the smaller

mass ratio binaries studied later on, is still fairly nontrivial,

and will serve to help generalize our results for the other

mass ratio systems.

For this system we did four runs with four different

choices for the gauge, all at our typical production

resolution n100. The first uses the choice LZ, and

does not modify initial lapse and shift from the standard

α0 ¼ 2=ð1þ ψ4
0Þ and β0 ¼ 0. This is our reference

choice for η for small mass ratio runs. The second

simulation uses G, the third run uses the constant choice

η ¼ 2=m and, finally, the fourth run uses Gþ LTL. All

use eighth order spatial finite differencing stencils and

fourth order Runge-Kutta in time, with a Courant Factor

of 1=3.
The Hamiltonian and momentum constraint equations

are integrated over a masked volume V and their norms are

given by

TABLE I. Initial data parameters for the simulations performed. The smaller black hole is labeled 2 and larger black hole labeled 1.

The punctures are located at ri ¼ ðxi; 0; 0Þ with initial momenta P ¼ �ðPr; Pt; 0Þ and mass ratio, q. All simulations are nonspinning. A

full study with 3 resolutions for all gauge choices was done on the q ¼ 1=15 binary, but results are shown for simulations 5–7, 9, and

11–13, because simulation 8 could only be completed with an increase in time resolution (Courant factor (CFL) 1=3 → 1=4). The
q ¼ 1=32 binary has three resolutions for the LZ and G gauge choices. The smaller q ¼ 1=64 and q ¼ 1=128 as well as the larger

q ¼ 1=7 mass ratios are used for verification. All simulations use eighth order finite differencing in space.

Run q D x1=m x2=m Pr=m Pt=m mη CFL Resolution

1 1=7 11m 1.375 −9.625 -1.42e-4 0.0396 LZ 1=3 n100

2 1=7 11m 1.375 −9.625 -1.42e-4 0.0396 2=m 1=3 n100

3 1=7 11m 1.375 −9.625 -1.42e-4 0.0396 G 1=3 n100

4 1=7 11m 1.375 −9.625 -1.42e-4 0.0396 LTLþ G 1=3 n100

5–7 1=15 8.5m 0.5378 −7.9622 -1.04e-4 0.0256 LZ 1=3 n084,n100,n120

8 1=15 8.5m 0.5378 −7.9622 -1.04e-4 0.0256 2=m 1=4 n084

9,10 1=15 8.5m 0.5378 −7.9622 -1.04e-4 0.0256 2=m 1=3 n100,n120

11–13 1=15 8.5m 0.5378 −7.9622 -1.04e-4 0.0256 G 1=3 n084,n100,n120

14–16 1=32 8.00m 0.2424 −7.7576 -3.32e-5 0.0135 LZ 1=4 n084,n100,n120

17 1=32 8.00m 0.2424 −7.7576 -3.32e-5 0.0135 2=m 1=4 n100

18–20 1=32 8.00m 0.2424 −7.7576 -3.32e-5 0.0135 G 1=4 n084,n100,n120

21,22 1=64 7.00m 0.1077 −6.8923 -1.49e-5 0.0077 LZ 1=4 n084,n100

23 1=64 7.00m 0.1077 −6.8923 -1.49e-5 0.0077 G 1=4 n100

24 1=128 7.00m 0.0543 −6.9457 -3.85e-6 0.0039 LZ 1=4 n100

25 1=128 7.00m 0.0543 −6.9457 -3.85e-6 0.0039 G 1=4 n100
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jjHjj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Z

V

H2d3x

s

; ð33Þ

jjMijj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Z

V

ðMiÞ2d3x
s

; ð34Þ

and should be conserved [15]. Violations to this conserva-

tion are commonly used as way to assess convergence with

respect to numerical resolution. However, these simulations

are all run in different gauges which makes it difficult to

draw definitive conclusions based solely on violations to

the constraints, since different gauges can change the scales

of these violations. The constraint violations can still

give us an idea of performance as well as allow us to

compare different resolutions of the same gauge to ensure

convergence. In Fig. 6 the violations to the Hamiltonian

constraint (top panel), as well as the x component of the

momentum constraint (bottom panel), are shown for the

q ¼ 1=7 simulations with η ¼ 2=m in yellow, G in red,

Gþ LTL in purple, and LZ in blue.

The setup for the simulation in this subsection with η ¼
2=m resembles that which was used to build up the RIT

catalog [6,7,46], with CFL=1/3 to achieve production

speed. However, here we use eighth order finite differenc-

ing stencils instead of sixth order to simulate smaller mass

ratios, as opposed to the RIT catalog simulations, which are

mainly comparable mass.

It is pertinent to reiterate that the comparison of con-

straint violations cannot be used as an accurate measure of

simulation performance between simulations with different

values for η. These simulations exist in different gauges and

therefore may rescale the constraint violations, making

comparisons between them an inaccurate method of rank-

ing gauge performance. Notwithstanding, we would like to

mention that the pair of simulations with initial data G and

Gþ LTL seem to settle to approximately the same gauge,

as only in the early part of the simulation we see a slight

reduction of the violation of the constraints. The constant

choice, η ¼ 2=m (in yellow) performs well throughout the

course of the simulation. The LZ gauge has Hamiltonian

constraint violations that are about one order of magnitude

larger than the simulations with η ¼ 2=m, G, or Gþ LTL;

however, this may be due to a rescaling of the constraints.

In general, all four simulations produce constraint viola-

tions within an acceptable range and, therefore, are con-

sidered viable candidates for production-level runs.

In order to quantitatively compare the different choices

for the gauge damping parameter η, it is pertinent to asses

FIG. 6. Violations to the Hamiltonian constraint (top) and the x
component of the momentum constraint (bottom) for the q ¼ 1=7
binary using resolution n100 with the different gauge choices: G,

Gþ LTL, η ¼ 2=m and LZ in red, purple, yellow, and blue

respectively. Both G and Gþ LTL settle to a similar gauge. All

gauges produce acceptably-valued constraint violations.

FIG. 7. Horizon masses for m1 and m2 versus time for the q ¼
1=7 n100 simulations with different choices formη ¼ G, LZ, and

2/m, and the initial lapse, LTL. The η ¼ 2=m and LZ gauges

produce continuous growth (mass loss) over the course of the

simulation in m2 (m1). The G and Gþ LTL choices maintain

both horizon masses well.
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the different gauges’ effects on physical quantities such as

horizon mass, spin, and gravitational waveforms. Figure 7

shows the mass of each black hole m1 and m2 measured at

the horizon using LZ, G, Gþ LTL and η ¼ 2=m gauges.

The figures are generated using a 200-point running

average to smooth fluctuations in the data and to better

present a general trend without the distraction of numerical

noise. In the masses, we are looking for constancy over the

course of the inspiral from t ¼ ð0 − 1000Þ.
The top panel of Fig. 7 shows the horizon mass of the

large black hole m2 versus simulation time. The G and

Gþ LTL gauges both are able to maintain the horizon

measure of mass well until the simulation approaches

merger, when we see some growth in the masses. The

constant gauge η ¼ 2=m shows continuous growth over the

course of the simulation; although the scale on which this

growth occurs is small, Oð10−5Þ, this may be indicative of

an issue as the mass ratio decreases. The massm2 in the LZ

gauge has relatively large oscillations over the duration of

the inspiral as well as growth that is on the order of that

seen in the η ¼ 2=m simulation.

The second panel of Fig. 7 shows the mass of the smaller

black hole, m1, measured at the horizon. The G and Gþ
LTL gauges both are able to maintain the horizon measure

of mass well over the course of the simulation. In fact, they

seem to behave the same way with Gþ LTL being shifted

by a constant factor, indicating that the G and Gþ LTL

settle to similar gauges since they differ only in initial data.

The η ¼ 2=m and LZ runs show continuous declines in their

respective horizon masses ofm1 over the inspiral period. As

wewill see in the next section, this may be the symptom of a

resolution issue, especially at smaller mass ratios.

Although not as vital as in smaller mass ratio systems,

such as the q¼1=15 or q¼ 1=32 binaries studied in

Secs. III B and III C, here constancy in m1 is strongly

desired.

It is of interest to investigate the gauges’ effects on the

dominant (2,2)-mode of the Newman-Penrose-Weyl scalar

Ψ4 since this scalar is what we use to calculate outgoing

gravitational radiation. The top panel of Fig. 8 shows the

early part of the amplitude of Ψ2;2
4 with respect to time. The

observer sits at 113m from the origin of coordinates. In

the early part, there is a clear initial burst of noise present

in the simulation that uses the LZ gauge which is damped

by the use of G, Gþ LTL or η ¼ 2=m. The second panel

shows the amplitude of Ψ2;2
4 over the timescale t ¼ ð200 −

800Þm with reflections at refinement boundaries visible

between ð400 − 450Þm and ð550 − 600Þm. This result

holds and was verified for modes ðl; mÞ ¼ ð2; 0Þ; ð2; 1Þ;
ð3; 0Þ; ð3; 1Þ; ð3; 2Þ; ð3; 3Þ as well.
As a final test of the efficiency of each of the gauge

choices, one can consider their individual effects on the

quasilocal computation of remnant recoil velocity, which is

measured on the horizon of the remnant (in column 4 of

Table II). This is compared to the total amount of linear

momentum radiated away via gravitational waves (column

5). Using the modified gauge G improves the horizon

measure of recoil velocity over the η ¼ 2=m and LZ gauges

by about 17% and 15% respectively. This is likely due to

the fact that the G gauge damps to 1 far from the remnant,

and we have already shown in [16] that this leads to a more

accurate measure of quasi-local linear momentum.

B. Results for a q= 1=15 nonspinning binary

Since the purpose of the G gauge is to improve

simulations with mass ratios q < 1=10, next we investigate

FIG. 8. The amplitude of the dominant (2,2) mode of Weyl

scalar Ψ4 for the q ¼ 1=7 binary as seen by an observer situated

r ¼ 113m from the origin of coordinates. Higher frequency noise

of the LZ gauge is apparent at t ∼ ð75 − 135Þm (top) as is its

bounce at the next refinement level at t ∼ ð200 − 600Þm
(bottom). The other gauge choices G, Gþ LTL, and η ¼ 2=m
show no high frequency noise early on, as well as substantially

reduce high frequency oscillations during inspiral (shown in the

bottom panel).
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a nonspinning system with mass ratio q ¼ m1=m2 ¼ 1=15
starting at an initial coordinate separation D ¼ 8.5m. The

simulation was run through merger so that we can also

investigate the gauges’ effects on the remnant’s recoil

velocity as well as the ringdown phase of merger.

All these simulations have CFL ¼ 1=3, except the lowest
resolution (n084) simulation with constant η ¼ 2=m which

dies at about 100m with this configuration. This particular

simulation runs successfully with CFL ¼ 1=4, but only

with increased resolution in time. All q ¼ 1=15 simulations

use eighth order finite-differencing stencils in space.

As with the q ¼ 1=7 binary, our results for the smaller

mass ratio systems will be focused on analysis of the

physical quantities of the system such as masses, spins, and

gravitational waveforms. These quantities are invariant

with respect to the gauge, and therefore can be used to

measure differences in results using each gauge. Once the

remnant is settled, we can compare the kicks calculated at

the horizon by the isolated horizon formulas [47] to those

extracted from the radiated linear momentum at infinity.

The top panel of Fig. 9 shows the evolution of the

horizon mass of the large black hole m2 for seven

simulations: G and LZ with resolutions n084, n100, and

n120, and η ¼ 2=m for n100. For the remainder of this

work, the low resolution, n084 will be a dashed line, n100

will be dot-dashed, and n120 will be solid.

In Fig. 9, we can see that all gauges maintain the mass to

at least O(1e-4), but the η ¼ 2=m n100 and G n100 and

n120 simulations show the best constancy in mass. The

figures are generated using a 20-point running average to

smooth fluctuations in the data and better present a general

trend. Table III can be used in conjunction with Fig. 9. It

shows the slopes of a linear fit to the data for each

simulation over the inspiral period t ¼ ð100 − 1000Þm.

The results of this fit are given in columns 3 and 5 of

Table III with the root mean square error (err.)

ϵi ¼ err ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

N
k¼1ðmk

i − m̂k
i Þ2

N

s

; ð35Þ

wheremk
i are the actual mass values for black holes labeled

i ¼ 1, 2, measured at time points t and m̂k
i ¼ Atþ b.

Initially, the black holes grow due to an influx of

radiation from the initial data, but then are expected to

settle to a value that remains almost constant until merger.

The top panel shows the horizon mass of the larger black

hole; in the simulation using the LZ gauge there are low

frequency oscillations later on in the inspiral, in the n084

simulation, which is reflected in the increase in ϵ1 between

the linear fits of G and LZ (ϵ1 ¼ 0.0215 × 10−6

vs ϵ1 ¼ 0.0397 × 10−6).

The bottom panel shows the horizon mass of the smaller

black hole; in the n084 LZ gauge, the mass, after the

TABLE II. For the q ¼ 1=7 binary, the total linear momentum

(km/s) calculated in two ways: (1) measured quasilocally on the

horizon averaged over t ¼ ð2600 − 2800Þm, in column 4, and

(2) measured by the amount radiated away in gravitational waves,

in column 5. All simulations have resolution n100 as well as

CFL ¼ 1=3 and 8th order finite differencing stencils. The gauges
G and G+LTL allow for the most accurate measure of horizon

recoil when compared against the radiated value.

mη CFL Resolution Horizon Radiated

LZ 1=3 n100 111.2450 92.6987

2 1=3 n100 80.8354 94.3036

G 1=3 n100 95.1882 94.1923

Gþ LTL 1=3 n100 95.8015 94.2094

FIG. 9. Horizon masses for m2 (top) and m1 (bottom) versus

time for the q ¼ 1=15 simulation with the different choices for

mη, G, LZ, and η ¼ 2=m. The dashed, dot-dashed, and solid lines

are the low n084, medium n100, and high n120 resolutions

respectively. The horizon masses m1 and m2 deviate from

constant most dramatically when the LZ gauge is used. Both

the η ¼ 2=m and G gauges maintain the masses of the horizons

well over the course of the simulation, except at the lowest

resolution n084.
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settling of the initial data, declines fairly steadily, with A1¼
−0.3482×10−7 and ϵ1¼0.7943×10−6. This occurs in the

G gauge as well, although its slope is A1¼−0.2810×10−7

with error ϵ1 ¼ 0.5177 × 10−6. Although neither gauge at

this resolution maintains m1 very well, m1 in the G gauge

has a much shallower decline than the m1 in the LZ gauge,

as well as smaller error overall.

In the n100 simulations, η ¼ 2=m outperforms G in

terms of linearity by < 5% in m2 and by > 200% in m1,

although in each case η ¼ 2=m has higher error than G. In

LZ n100 and n120, there occurs a substantial dip in the

mass of m2 between t ¼ ð800 − 1200Þm that is reflected in

an increase in the error of the linear fits.

It is informative to study the growth of the apparent

horizon of each black hole in numerical (radial) coordinates

for each different gauge. An extended horizon requires a

large number of gridpoints to evaluate quantities over its

surface, but the numerical evolution “loses” those points in

the interior of the black hole. These are points that could be

used to otherwise resolve the dynamics of the system.

The top panel of Fig. 10 shows the initial growth of the

larger black hole m2, which grows from t ¼ ð0 − 25Þm
using all three gauge choices. This growth is due to an

influx of radiation content from the initial data, and is

expected. The growth in the small black hole (bottom

panel), m1, happens within the first few iterations and then

immediately stabilizes. To minimize the loss of gridpoints

in the simulation, ideally the horizon will grow quickly and

then settle down to maintain its coordinate size, so this

rapid stabilization is critical.

The horizon coordinate sizes for the low, medium, and

high resolutions of G lie directly on top of each other in

both panels of Fig. 10. The same is true for all resolutions

of LZ. Furthermore, the gauges G and LZ, regardless of

resolution, maintain a constant coordinate size of the

apparent horizons ofm1 andm2 well over the course of the

run. However, the η ¼ 2=m simulation, shown in yellow,

exhibits continuous growth of both horizons. This

means that gridpoints are constantly being lost inside

the black hole horizons, and, in the case of m2, it is

possible that the horizon grows so large it crosses a

refinement level boundary, reducing computational accu-

racy and wasting resource. While this growth does not

prohibit completion of the q ¼ 1=15 binary at n100,

further investigations should be done on its effects on

TABLE III. The slopes (A, columns 3 and 5) of linear fits to the

horizon masses m1 and m2 computed over the inspiral t ¼ 100m
to 1000, for the q ¼ 1=15 binary using η ¼ G, LZ, and 2=m.

Error is calculated via root mean square error over the interval,

and is shown in columns 4 and 6. The time frame is chosen so a

linear fit is a reasonable approximation of the mass curves. The G

and LZ simulations have three resolutions: n084, n100, n120, and

the η ¼ 2=m simulation has 1 resolution: n100. The G gauge

produces a reliably constant value for the horizon mass, even at

low resolution, whereas the mid- and low- resolution LZ

simulations show large changes in mass (reflected in the slopes

A) as well as higher error values overall.

m1 m2

Gauge Resolution A × 10−7 err. ×10−6 A × 10−7 err. ×10−4

G n084 −0.2810 0.5177 0.6613 0.0215

LZ n084 −0.3482 0.7943 0.6462 0.0397

2=m n100 −0.0258 0.3551 0.2564 0.0131

G n100 −0.0683 0.2546 0.2655 0.0079

LZ n100 −0.0641 0.5688 −0.6248 0.1543

G n120 −0.0463 0.3206 0.1620 0.0082

LZ n120 −0.0245 0.2238 −0.2601 0.0467

FIG. 10. Radial average size of each of the horizons of the

q ¼ 1=15 binary versus evolution time for the different gauge

choices. The three resolutions using the LZ gauge lie on top of

each other, as do the three resolutions using the G gauge. In both

m1 and m2 these gauges maintain the coordinate size of the

horizons well over the full inspiral. The η ¼ 2=m is only shown in

one resolution (n100), and the associated horizons m1 and m2

grow continuously throughout the simulation.
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more extreme mass ratio pairs. This growth also may be

related to the fact that when using η ¼ 2=m, the low

resolution q ¼ 1=15 (n084) requires a CFL decrease from

1=3→ 1=4 in order for the simulation to be successful,

whereas the other gauges G and LZ can be run at n084

with CFL of 1=3. Therefore, using a well-chosen gauge

allows for an increase in computational efficiency at lower

resolutions, and using a poorly chosen gauge may cause

issues at low resolutions.

An important and physically relevant method of assess-

ing the accuracy and effectiveness of different gauges is to

look at the early behavior of gravitational waveforms as

seen by an observer far from the binary orbit. In our case,

we will consider an observer sitting at r ¼ 113m from the

origin of coordinates. Figure 11 displays the amplitude of

the leading waveform mode l ¼ 2, m ¼ 2 of the Weyl

scalar Ψ4. In the top panel the amplitude of the waveform

from t ¼ ð75 − 135Þm is shown. One can observe high

frequency noise at t ∼ ð90 − 100Þm produced by the LZ

gauge choice, in blue, that was also present in the q ¼ 1=7
waveform (as shown in Fig. 8). The noise has higher

amplitude in the n100 (dot-dash) LZ simulation than the

n084 (dash) LZ simulation, this is not indicative of

improvement with decreasing resolutions, but is instead

due to the n084 resolution under resolving the grid. This

noise is eradicated solely by choosing either G or η ¼ 2=m
for the gauge, which is also consistent with what was found

in Fig. 8.

The second panel of Fig. 11 shows a later time in the

binary’s evolution (from t ∼ ð200 − 600Þm). High fre-

quency noise during this period of the inspiral, present

even in the highest resolution (n120) simulation using the

LZ gauge, is significantly damped when using the G or

2=m choice for η instead of the typical LZ. At

t ∼ ð500m − 550Þm, there is an increase in the amplitude

of these oscillations across all simulations. This corre-

sponds to the bounce of noise over a grid refinement level

back to the observer’s location. This effect is also damped

when G or η ¼ 2=m are chosen, thus confirming the

benefits of the introduction of the new gauges. We verified

that similar features appear in other next to leading order

modes ðl;mÞ¼ ð2;1Þ;ð2;0Þ;ð3;0Þ;ð3;1Þ;ð3;2Þ;ð3;3Þ, etc.
Table IV contains the remnant quantities (energy,

angular momentum, and linear momentum) of the q ¼
1=15 binary including a three-point extrapolation to

infinity (n∞) as well as convergence order in the cases

where we use three resolutions and have convergence.

Columns 3–5 show the mass, and angular and linear

momentum measured on the horizon of the black hole

using the isolated horizon formulas. Columns 6–8 are the

same quantities but calculated from the energy, angular,

and linear momentum carried away by gravitational waves

off to an infinite-location observer. Excellent agreement is

observed between radiation and horizon measurements for

the final mass and spin. In general, the horizon linear

momenta are measured well at the typical production

resolutions of n100 and n120 using the G gauge, coming

within 12% of the radiated measure for n100, and 28% for

n120. Compare this with the LZ gauge, which is off wildly

(by 716% using n100), or the η ¼ 2=m gauge which is off

by 35% using n100.

Since η ¼ 1=m gives a more accurate measure of recoil

velocity than η ¼ 2=m, and G damps to 1 far from the

center of coordinates, we expected improvement between

η ¼ 2=m and G. Additionally, the strong improvement

between G and LZ may prove critical when considering

extremely small mass ratios, such as the q ¼ 1=32 or q ¼
1=64 binaries considered here.

FIG. 11. The amplitude of the dominant mode of Ψ4 for the

q ¼ 1=15 binary extracted at an observer location of r ¼ 113m.

The waveform is shown for G and LZ in three resolutions and

η ¼ 2=m in one. In the top panel, higher frequency noise of the

LZ gauge early on at t ∼ ð75 − 135Þm and its bounce at the next

refinement level in the second panel from t ∼ ð200 − 600Þm is

apparent.
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C. Results for a q= 1=32 nonspinning binary

We also performed an in-depth study on a smaller

nonspinning binary with a mass ratio of q ¼ 1=32 and

an initial binary separation of D ¼ 8m. It uses a Courant

factor of 1=4 as well as 8th order finite differencing stencils
in space, and was run using three resolutions (n084, n100,

n120), with both the G and LZ gauges as well as one

resolution (n100) of η ¼ 2=m.

Figure 12 shows the horizon masses for the seven q ¼
1=32 simulations during inspiral from t ¼ 0m through

t ¼ 1200m, which is just before merger. In these figures

we are again looking for the masses to be held constant

(after settling down initially) for the duration of the inspiral,

as this will indicate a more accurate computation of horizon

masses. The lowest resolution (n084) simulations using the

G and LZ gauges show the most growth inm2 (top panel) or

mass loss in m1 (bottom panel), while the G n120

simulation holds both masses most constant over time.

The n100 LZ gauge shows a relatively large dip inm2 mass

between t ¼ ð800 − 1200Þm, which is consistent with our

findings for the q ¼ 1=15 binary. The η ¼ 2=m n100

simulation holds m2 constant until t ¼ 800m and then

begins to grow at the same rate as the LZ n084 simulation.

In m1, η ¼ 2=m begins with mass loss from t ¼ ð0 −
200Þm then stays relatively constant until t ¼ 1100m
where it begins to lose mass again. While not prohibitive

to the completion of this particular simulation, this mass

loss in the small black hole might pose issues at lower

resolutions or mass ratios.

To assess continuity of the horizon mass parameters

quantitatively, we performed a linear fit to the data for each

simulation over the inspiral period t ¼ ð100 − 1000Þm.

The results of this fit are given in columns 3 and 5 of

Table V with the root mean square error as in (35).

The LZ n084m1 andm2 have slopes of A1 ¼ −0.2529 ×

10−7 and A2 ¼ 0.2332 × 10−7 (respectively), whereas G

has slopes A1 ¼ −0.1354 × 10−7 and A2 ¼ 0.6370 × 10−7.

The slope of m2 is most constant using LZ, as well as has

the lower error. However, the more difficult to resolve black

hole is the smaller horizon, whose mass is better computed

using the G gauge.

As resolution increases, so does the stability of themasses

of each black hole; using G at n100 provides horizon mass

measurements that are closer to constant as well as using

η ¼ 2=m; however, because of the dip using LZ at

t ¼ ð800 − 1200Þm, the slopes for LZ n100 are similar to

those of n084. The G n100 gaugematches the G n120 gauge

well throughout most of the inspiral period. However, η ¼
2=m exhibits growth in the mass that is superlinear and is

reflected in the increase in root mean squared error between

the horizonmasses inG and η ¼ 2=m (n100), respectively at

ϵG1 ¼ 0.1507 × 10−6 and ϵG2 ¼ 0.0402 × 10−4, and at

ϵ
2=m
1 ¼ 0.4051 × 10−4 and ϵ

2=m
2 ¼ 0.0407 × 10−6. A full

list of the mean slopes of the horizon masses and their

corresponding errors can be found in Table V.

In Fig. 13, the amplitude of the gravitational wave scalar

Ψ
2;2
4 is plotted versus time for all seven simulations. The top

panel shows the early part of the waveform, from

t ¼ 75–135m. Between t ¼ 90–100m, there is noise in

the LZ simulations that is damped by the G and η ¼ 2=m
simulations across all resolutions which is consistent with

our findings for the q ¼ 1=15 and q ¼ 1=7 binaries. This

means that smaller mass ratios benefit significantly from

the use of an adaptive gauge like G or a constant choice like

η ¼ 2=m. However, recall that lower resolutions of η ¼
2=m may require at least increases in time resolution (via

CFL) which are not necessarily computationally practical,

especially as mass ratios decrease.

TABLE IV. For the q ¼ 1=15 binary, the total mass, angular, and linear momentum (1) measured by the amount radiated away in

gravitational waves, in columns 3–5, and (2) measured quasi-locally on the horizon, in columns 6–8. Extrapolations to infinite resolution

(n∞) and convergence order (CO) are included where applicable. All simulations have resolution specified in column 3 as well as

CFL ¼ 1=3 and 8th order finite differencing stencils. A dash indicates no convergence was found.

Horizon Radiated

Gauge Resolution E=m J=m2 L (km/s) E=m J=m2 L (km/s)

G n084 0.9949 0.1863 178.7939 0.9950 0.1889 31.5722

n100 0.9949 0.1870 36.3859 0.9950 0.1880 32.9681

n120 0.9949 0.1870 44.79436 0.9949 0.1877 35.0123

n∞ 0.9950 0.1870 44.3255 0.9949 0.1874 35.1600

CO 4.64 15.50 15.52 3.51 5.05 0.8630

LZ n084 0.9949 0.1865 232.3947 0.9950 0.1881 31.0327

n100 0.9948 0.1862 241.2582 0.9949 0.1876 34.3328

n120 0.9949 0.1872 43.4521 0.9949 0.1874 35.0915

n∞ 0.9948 0.1864 � � � 0.9949 0.1874 35.3179

CO 3.11 2.78 � � � 5.88 7.12 8.06

2=m n100 0.9949 0.1870 21.1410 0.9950 0.1884 32.7075
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The bottom panel of Fig. 13 shows the inspiral period of

Ψ
2;2
4 from t ¼ ð200 − 900Þm. Compare the low resolution

G (n084, red dashed) and the n100 (blue, dot dashed)

resolution of the same gauge between 400m and 450m. The

n100 curve shows noise reflected at the mesh refinement

boundary, but the G n084 curve seems to damp this noise.

This is due to n084 under-resolving the grid, which is also

the cause of the increase in initial noise between LZ n084

and n100. The high-frequency oscillations occurring from

the subsequent reflection between t ¼ ð500 − 600Þm also

do not appear in the G n084 simulation, whereas they do in

the G n100 and G n120 simulations, which supports the

hypothesis that n084 has too few gridpoints to properly

resolve the system.

The LZ gauge in n084 (blue, dashed) shows high

frequency oscillations over the course of the inspiral, which

are somewhat damped by increasing the resolution to n100

(blue, dot-dashed). The G n100 simulation (red, dot-

dashed) exhibits less oscillatory behavior when compared

to the waveform in the other gauges, η ¼ 2=m and LZ, at

resolution n100.

For smaller mass ratios, comparing the waveforms in the

near-merger inspiral and ringdown phases is also a good

method of quantifying gauge performance. Figure 14

shows two different sections of the amplitude of the

gravitational wave strain h2;2 for the q ¼ 1=32 binary,

using the G, LZ and η ¼ 2=m gauges at resolution n100,

extrapolated to an observer at ∞. The merger times for all

simulations are matched for easy comparison. The top

panel of Fig. 14 shows the inspiral portion of the waveform,

from t ¼ ð300 − 1300Þm and the bottom panel shows the

ringdown period post-merger from t ¼ ð1500 − 1530Þm.

In Fig. 14, we are interested in comparing the effects of

the different gauges on low frequency oscillations before

and after merger. Using the constant choice η ¼ 2=m
introduces low frequency oscillations in the inspiral portion

(top panel) of the strain h2;2 that are damped by choosing an

alternative, variable gauge such as G or LZ. This suggests

that using a gauge with peaks at the black holes resolves the

FIG. 12. Horizon masses for m2 (top) and m1 (bottom) versus

time for the q ¼ 1=32 simulation with the different choices formη,

G, LZ, and η ¼ 2=m. The dashed, dot-dashed, and solid lines are

the low n084, medium n100, and high n120 resolutions respec-

tively. The horizon massesm1 andm2 deviate from constant most

dramatically when the LZ gauge is used. Both the η ¼ 2=m and G

gaugesmaintain themass of the horizonwell over the course of the

simulation, except at the lowest resolution n084.

TABLE V. The slopes (A, columns 3 and 5) of linear fits to the horizon masses m1 and m2 computed over the inspiral t ¼
ð0 − 1000Þm for the q ¼ 1=32 binary using η ¼ G, LZ, and 2=m. Error is calculated via root mean square error over the interval, and is

shown in columns 4 and 6. The time frame is chosen so a linear fit is a reasonable approximation of the mass curves. The G and LZ

simulations have 3 resolutions: n084, n100, n120, and the η ¼ 2=m simulation has 1 resolution: n100. The G gauge provides an effective

gain in resolution of a factor of 2 in the horizon mass.

m1 m2

Gauge Resolution A × 10−7 err. ×10−6 A × 10−7 err. ×10−4

G n084 −0.1354 0.0977 0.6370 0.0222

LZ n084 −0.2529 0.5638 0.2332 0.0275

2=m n100 −0.0410 0.4051 0.2620 0.0407

G n100 −0.0231 0.1507 0.1739 0.0402

LZ n100 −0.0310 0.2049 −0.5344 0.1673

G n120 −0.0163 0.1054 0.0659 0.0171
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binary’s dynamics well in the strong field region, effec-

tively damping oscillations in the gauge that propagate

from the black holes. The ringdown phase (bottom panel)

shows significant oscillations in gravitational waveforms

that use the LZ gauge. Using η ¼ 2=m or G produces

waveforms without these oscillations, which suggest that

the low frequency oscillations come from the choice of

gauge itself. We are currently investigating a gauge that

uses G for the inspiral and then flattens to a near-constant

η ¼ 1=m post-merger, i.e., Eq. (31) with n ¼ 2.

As a follow up to [16], we would like to investigate the

effects of different gauge choices on the horizon quantities

of small mass ratio binaries as well. Table VI shows the

results of this study. It includes all seven runs with mass

ratio q ¼ 1=32 (3 resolutions for G and LZ, and one for

η ¼ 2=m) as well as a 3-point extrapolation to infinity in

the row labeled n∞ and the order of convergence (CO)

where they exist. The Horizon columns show the results of

the energy and angular momentum calculated using the

isolated horizon formulas, and the Radiated columns show

the results of calculating the same three quantities as carried

away by gravitational waves.

Our new gauge G does a good job of measuring mass and

angular momentum on the horizon when compared to its

FIG. 14. Inspiral (top) and ringdown (bottom) periods of the

gravitational wave strain h2;2 of the mid-resolution simulations of

the q ¼ 1=32 binary using the G, LZ, and η ¼ 2=m gauges. In the

inspiral, the waveform using the η ¼ 2=m gauge exhibits oscil-

latory behavior which is not present in either of the variable

gauges. However, post-merger, the waveform using LZ exhibits

oscillations, whereas the G and η ¼ 2=m waveforms do not. This

suggests that a variable gauge is useful during inspiral, and a

more constant gauge is most effective post-merger.

FIG. 13. The amplitude of the Ψ4 waveform of the q ¼ 1=32
binary extracted at an observer located at r ¼ 113m. Top: early

part of the waveform from t ¼ ð75 − 135Þm. Bottom: inspiral

period from t ¼ ð200 − 900Þm. Higher frequency noise of the LZ

gauge is apparent at t ∼ ð90 − 100Þm, which is damped by the G

and η ¼ 2=m gauges. Refinement boundary reflections of the

high frequency noise are apparent in the second panel, which

shows a longer inspiral.
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radiated counterpart. The horizon energy and radiated

energy converge to the same value (within 10−4), as do

the horizon and radiated angular momentum.

However, at the resolutions we used for these simula-

tions, G, and our typical variable gauge, LZ, do a very poor

job of measuring kick on the horizon when compared to the

linear momentum carried away by gravitational waves.

For this reason, we have chosen to omit these results

from Table VI. It is worth mentioning that G performs

slightly better, at least reaching the correct order by the

highest resolution—20.85 km/s measured on the horizon vs

9.94 km=s measured at infinity, where LZ estimates

219.96 km=s instead of 9.73 km=s. For both G and LZ,

the approximation does improve with resolution; however

for an accurate measurement of horizon linear momentum

we need to increase the resolution again to n144. The

constant gauge η ¼ 2=m, was only simulated for one

resolution, n100, of q ¼ 1=32; because of the increase

in CFL that was required for the lowest resolution

q ¼ 1=15, we have discounted η ¼ 2=m as a viable option.

D. Results for a q = 1=64 and q= 1=128
nonspinning binary

We also performed a study on an extremely small mass

ratio, nonspinning binaries with q ¼ 1=64 and q ¼ 1=128
and an initial binary separation of D ¼ 7m. The simula-

tions use a Courant factor of 1=4 as well as eighth order

finite differencing stencils. The q ¼ 1=64was run with two
resolutions (n084, n100) in the LZ gauge and one reso-

lution (n100) in the G gauge. As a follow up to [12], the

q ¼ 1=128 n100 simulation in the LZ gauge generated for

that work is included here to compare with preliminary

results for the n100 G gauge.

In Fig. 15, the masses measured on the horizon of the

black holes (top: m2, bottom: m1) are shown for q ¼ 1=64.
The LZ gauge is in blue and the G gauge is in red with

different resolutions denoted by different line types. In m2,

both gauges produce masses that are similarly constant at

our typical production resolution of n100. The resolution

n084 is quite a bit under-resolved for this extremal

simulation, and therefore the LZ gauge does not do a good

job of maintaining constancy in either m1 or m2. However,

the smaller black hole m1 is more difficult to resolve, and

using the G gauge at n100, its mass is held more constant

than using the LZ gauge at the same resolution.

For the more extreme mass ratio binary, q ¼ 1=128, we
will consider only the early part of the n100 simulation in

FIG. 15. Horizon masses for m1 and m2 versus time for the

q ¼ 1=64 simulation. The masses in the LZ gauge are shown in

two resolutions n084 and n100, and the masses in the G gauge are

shown in only n100. The masses using G are more constant than

their counterparts that use the LZ gauge, especially in the case of

the small black hole m1.

TABLE VI. For the q ¼ 1=32 binaries using G, LZ, and

η ¼ 2=m, the resolutions are given in column 2. The horizon

quantities (energy and angular momentum) are in columns 3 and

4, and the corresponding radiated quantities are in columns 5–7.

All simulations use CFL=1/4 and eighth order finite differencing

stencils. The G gauge does a good job of measuring the horizon

mass and spin, however, the horizon linear momentum requires

high resolution to approach the radiated linear momentum.

Horizon Radiated

Gauge Resolution E=m J=m2 E=m J=m2 L (km/s)

G n084 0.9979 0.0985 0.9979 0.0982 8.4673

n100 0.9979 0.0972 0.9979 0.0979 9.7856

n120 0.9979 0.0977 0.9979 0.0978 9.9423

n∞ 0.9978 0.0976 0.9979 0.0977 9.9634

CO 2.00 4.42 4.82 6.04 11.68

LZ n084 0.9979 0.0974 0.9979 0.0978 7.3265

n100 0.9979 0.1002 0.9979 0.0978 9.5137

n120 0.9979 0.0967 0.9979 0.0976 9.7311

n∞ 0.9979 0.0973 0.9980 0.0971 9.7551

CO 4.23 15.04 0.90 0.06 12.66

2=m n100 0.9979 0.0976 0.9979 0.0978 9.3891
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the G gauge; the simulation was not run through merger.

This will be compared to a full simulation of the binary in

the LZ gauge since it was completed for [12]. These runs

are very computationally difficult to do, but comparing the

results of the early part of the simulations will give us a

good idea of the benefits of using G instead of LZ here.

Figure 16 shows both horizon masses versus simulation

time in the G and LZ gauges in one resolution (n100). Since

n100 is still under resolved for the q ¼ 1=128 binary,

neither m1 nor m2 is held constant. However, m2 in the LZ

gauge has slightly less mass gain than in the G gauge,

whereas the G gauge has a significant reduction in

noise over the LZ gauge. Neither gauge prevents mass

loss/gain in m1; in order to see benefits of the G gauge it is

likely we would need to increase resolution by at least a

factor of 1.2 (to n120).

Figure 17 shows the amplitude of the gravitational wave

scalarΨ2;2
4 versus simulation time for the three different runs

withmass ratioq ¼ 1=64. The top panel shows the early part
of the inspiral, and the numerical noise present when the LZ

gauge is chosen is visible again between t ¼ ð95 − 100Þm;

however it has decreased substantially in amplitude. Using

the G gauge damps this noise completely, as well as reduces

other oscillations present in the LZ gauge simulation with

n100 resolution (blue, dot-dashed) at t ¼ 150m.

The bottom panel shows the inspiral period of Ψ2;2
4 from

t ¼ ð200 − 800Þm. The simulation with the LZ gauge in

resolution n100 has high frequency oscillations between t ¼
ð200 − 500Þm which are nonphysical. These are damped

FIG. 16. Horizon masses for m1 and m2 versus time for the

q ¼ 1=128 simulation. The masses in both the LZ and G gauges

are shown in only n100. The large black hole m2 using the LZ

gauge is held slightly more constant than its counterpart that uses

the G gauge; however the LZ gauge simulation has significantly

more noise than the G gauge one.

FIG. 17. The amplitude of the Ψ4 waveform of the q ¼ 1=64
extracted at an observer located at r ¼ 113m. Top: early part of

the waveform from t ¼ ð75 − 135Þm. Bottom: inspiral period

from t ¼ ð200 − 900Þm. Higher frequency noise of the LZ gauge

is apparent at t ∼ ð95 − 100Þm, which is damped by the G and

η ¼ 2=m gauges. Refinement boundary reflections of the high

frequency noise are apparent in the second panel, which shows a

longer inspiral.
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away almost completely by making the choice of G for mη.

There are reflections of noise at the grid refinement

boundaries visible between t¼ð300−400Þm and t ¼ ð500−
600Þm.

Similarly, we can consider the effects of the different

gauges on the inspiral period of the q ¼ 1=128 binary. In

contrast to the horizon masses, when the gravitational

waveform is considered, the G gauge shows obvious

improvement over LZ. Figure 18 shows the inspiral from

t ¼ ð75 − 135Þm in the top panel and t ¼ ð200 − 800Þm in

the bottom panel using both G and LZ in resolution n100.

In the top panel, between t ¼ ð95 − 100Þm, we can see an

initial burst of nonphysical noise that is consistent with our

results for all other mass ratios. This is damped by choosing

the G gauge, which is hugely beneficial for such a

demanding simulation.

The bottom panel of Fig. 18 shows the inspiral period of

Ψ
2;2
4 up to just before merger. In the LZ gauge, there is a

substantial amount of high frequency noise present in the

waveform until about t ¼ 600m. Using the G gauge, this

noise is almost completely damped, producing a cleaner

and more accurate gravitational waveform for no increase

in computational expense.

As the mass ratio of the binary decreases, the inspiral and

ringdown oscillations in the dominant mode of the gravi-

tational wave strain increase in amplitude. Consider Fig. 19;

The top panel shows the inspiral, t ¼ ð250 − 950Þm of h2;2
forq ¼ 1=64 using gaugesG andLZ in resolutions n084 and

FIG. 18. The amplitude of the Ψ4 waveform of the q ¼ 1=128
extracted at an observer located at r ¼ 113m. Top: early part of

the waveform from t ¼ ð75 − 135Þm. Bottom: inspiral period

from t ¼ ð200 − 800Þm. Higher frequency noise of the LZ gauge

is apparent at t ∼ ð95 − 100Þm, which is damped by the G and

η ¼ 2=m gauges. Refinement boundary reflections of the high

frequency noise are apparent in the second panel, which shows a

longer inspiral.

FIG. 19. Inspiral (top) and ringdown (bottom) amplitudes for

the q ¼ 1=64 binary using the G and LZ gauges with resolutions

n084 and n100. There is no clear difference between gauges in

the inspiral; however, in the ringdown period, h2;2 using the LZ

gauge exhibits oscillations that are larger in amplitude and

slightly higher in frequency than h2;2 using the G gauge.
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n100. Both G and LZ produce low-frequency oscillations in

the inspiral. As shown in the dot-dashed curves, these

oscillations are comparable, but small, in amplitude at the

production resolution n100. This is consistent with our

findings for the q ¼ 1=32 binary, and is further evidence of
the benefit of using a variable gauge during inspiral.

The bottom panel of Fig. 19 shows the ringdown phase

of the evolution from t ¼ ð1020 − 1070Þm. The oscilla-

tions in the ringdown of the simulation with the lowest

resolution in the LZ gauge are fairly severe; however they

damp away with an increase in resolution to n100. With the

use of the new G gauge, the oscillations in the ringdown of

h2;2 are decreased in both frequency and amplitude when

compared to the corresponding ringdown in h2;2 using the

LZ gauge. We expect further improvements could be made

with a gauge that has a near constant value postmerger, or

an increase in resolution up to n144.

For such computationally demanding simulations as q ¼
1=64 and q ¼ 1=128, the ability to accurately measure

horizon quantities at lower resolution has substantial

benefits in terms of computational expense. Table VII

shows the energy and angular momentum as measured on

the horizon (columns 3 and 4), as well as the same

quantities calculated from the amount of each carried away

by gravitational waves (columns 5 and 6). It also includes

the kicks for these simulations, but only measured by the

amount of linear momentum carried away by gravitational

waves (column 7). This measurement of linear momentum

is significantly more consistent than using the measurement

on the horizon, so those results are not included since they

are not the main focus of this work. An improvement in the

horizon measure of linear momentum would require an

increase in resolution to n120 or even n144 which is not

necessarily practical for such a small mass ratio binary.

This is consistent with our findings in for the q ¼ 1=32
binary, where the use of G and LZ to compute horizon

linear momentum does improve with resolution but

requires higher resolution simulations than those performed

here. This can be combined with our findings in [16], in

which a low-value constant η, such as 1 or 0.5, was able to

very accurately measure recoil velocity on the horizon even

at low resolutions, to construct a variable gauge that damps

to a constant η postmerger.

However, the other horizon quantities (mass and angular

momentum) are also measured very accurately in both the

G and LZ gauge. The exception, of course, is when

resolution is too low (n084) to properly resolve the grid.

There is an obvious improvement with respect to resolu-

tion, and an increase to n120 would likely produce horizon

quantities that are on par with their radiated counterparts.

E. Noise/spurious radiation versus mass ratio

The study of waveform amplitudes and phases can also

provide an invariant measure of accuracy of the full

numerical simulations. It has already been mentioned that

this new gauge G completely damps the initial burst of noise

at the beginning of the gravitationalwaveform, presentwhen

the LZ gauge is used, as well as its subsequent reflections at

TABLE VII. The horizon quantities for the q ¼ 1=64 binary using the G and LZ gauges and the q ¼ 1=128 binary using the LZ gauge.

The remnant quantities for the q ¼ 1=128 binary in the G gauge are not included since that simulation was not run through merger. The

resolutions are given in column 3. The horizon quantities (energy and angular momentum) are in columns 4–5, and the corresponding

radiated quantities are in columns 6-8. All simulations use CFL=1/4 and eighth order finite differencing stencils. The G gauge does a

good job of measuring the horizon mass and spin, however, the horizon linear momentum requires high resolution to get close to the

radiated measure, and is therefore not shown.

Horizon Radiated

q Gauge Resolution E=m J=m2 E=m J=m2 L (km/s)

1=64 G n100 0.9990 0.0529 0.9990 0.0516 2.8065

1=64 LZ n084 0.9990 0.0457 0.9990 0.0516 2.7216

1=64 LZ n100 0.9990 0.0519 0.9990 0.0516 2.4303

1=128 LZ n100 0.9996 0.0239 0.9995 0.0267 0.9703

FIG. 20. The data points show the ratio N peak=Speak of Ψ2;2
4

extracted at r ¼ 113m for each mass ratio q. The black line is a

power law fit to the data FðqÞ ¼ 9.9753q0.8557. Errors are shown
in Table VIII.
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the refinement boundaries. In fact, this noise can be

shown to be inversely proportional to the size of the peak

in the spurious radiation generated at the beginning of the

waveform due to initial data. Figure 20 shows the peak

amplitude of the noise in Ψ
2;2
4 , N peak, over the peak

amplitude of the spurious radiation in Ψ
2;2
4 , Speak, for each

mass ratio q ¼ 1=7; 1=15; 1=32; 1=64, and 1=128, extracted
at r ¼ 113m. This figure uses the n100 simulations since

we have those for every mass ratio. We can generate a

power-law fit that is a function of the mass ratio q, which
takes the form

FðqÞ ¼ Pqm; ð36Þ
wherem ¼ 0.8557� 0.0448 and P ¼ 9.5739� 0.0463 are

dimensionless constants. The fit has errors at each data point

shown in Table VIII. Although the absolute difference

between the fit and data points scale with q, the relative

error increases as q gets smaller. If we had higher resolution

simulations for the smaller mass ratios, likely they would

show thatN peak=Speak does in fact follow a power law. This

means that the noise is in fact reduced significantly in

amplitude in the small q regime.

IV. DISCUSSION AND CONCLUSIONS

The gauge choices were crucial to the moving punctures

breakthrough formalism that allowed numerical relativists

to successfully evolve binary black holes [2,3]. Here we

explored choices of the initial lapse α0, and shift β0 as well

as the damping parameter η in Eq. (2).

In the construction of the waveform catalogs [6,7,46] we

used a Courant factor of 1=3 and sixth order spatial finite

differencing for nonhighly spinning and comparable masses

binaries evolutions. This prioritized speed of the creation and

therefore population of the initial catalogs to evaluate

gravitational waves events observed by LIGO and Virgo

[48]. For highly spinning binaries [35,37,49] and the small

mass ratio systems we study here (q ≤ 1=32) require a

reduction of theCourant factor to 1=4 and the use of 8th order
finite differencing stencils to achieve good accuracy [14].

In our study of the improved choices of the initial lapse

and shift inspired by their late time behavior we found some

benefits in introducing the initial lapse as described in

Sec. III A. In some preliminary studies we did on non-

spinning binaries using an initial shift different from zero,

we found the shift damped quickly to zero and then

oscillated around zero during the binary’s evolution before

settling to the proposed initial form, without any obvious

improvements to the system’s physical parameters.
For comparable mass binaries of q ≥ 1=15, the damping

parameter η is chosen to be a small, but constant value of
order unity. Reduction of the mass ratio of the binary to
q ¼ 1=15 and beyond benefits from the η variable in order
to counteract the so called grid stretching produced by the
growth of the horizon in the numerical coordinates (See
Fig. 10) and thus depleting those gridpoints to resolve the
fields in the exterior of the black holes. Of course, one can
compensate by introducing more points via higher reso-
lutions, but this comes at an increased computational cost.
The form of this damping parameter η ¼ G given in (31)

provides a good general form valid for a wide range of mass
ratios q. In addition to better maintaining of the physical
parameters such as mass and spin, this choice of η also
removes unwanted initial noise in the waveforms, as well as
its corresponding reflection on the mesh refinement levels
when compared the alternative original choice [10,12], [See
also (30) as displayed in Figs. 11 and 13]. We have also
found that the computational cost of introducing a variable
η is negligible compared to the whole evolution system of
equations; the change is within 5% of the speed of the η2=m
and is about 10% faster than choosing LZ.
The constraint violation studies we performed are a

useful measure of convergence with numerical resolution
within a given gauge, but are not so useful when comparing
different gauges. We chose then to turn to analysis of
physical parameters to determine the benefits of using
different gauges. The conservation of the horizon masses
and spins (as shown in Figs. 7 and 9) are a gauge
independent measures of the accuracy of the simulations
(Since absorption is an order of magnitude smaller of an
effect during inspiral and merger). The evaluation of the
horizon recoils also benefits from the property that G→ 1

far from the black holes, as shown in Table IV.
Additionally, we have looked in particular to the ampli-

tude’s behavior pre- and postmerger (see Figs. 14 and 19).
To this end we have also introduced the n ¼ 2 in the ηG
choices in (31) and Fig. 5 that smooths the values of η
around the smaller horizon, once the binary forms a
common horizon (from when we normally drop the inner-
most refinement level).
In conclusion we recommend the use of the choices

ðα0; β0 ¼ 0; ηGÞ parameters for the moving puncture evo-
lutions due to its reasonable computational cost as well as
the simplicity of its implementation. This gauge choice
shows a wide range of improvements when dealing with
essentially all possible mass ratios, q ≤ 1.
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APPENDIX: INITIAL LAPSE AND SHIFT FOR

BOOSTED AND SPINNING BLACK HOLES

In this section we supplement the initial lapse and shift

choices based on Lorentz boosted and Kerr spinning

black holes.

Lorentz-boosted black holes: Since we are considering

binaries with initial orbital momentum, it is of interest to

include corrections in the configurations of the initial lapse

and shift that account for this.

To construct initial lapse data for a black hole system

with boost, the conformal factor ψ0 is modified so that its

order 1
r
term is multiplied by the boost

γ ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − jvj2
p

where jvj is the magnitude of the boost velocity. The

conformal factor becomes

ψ0 ¼ 1þ γm

2r
:

It is then used in Eq. (4) to calculate the initial

boosted lapse.

To construct initial shift data for a black hole system with

boost, we must calculate the shift term from a boosted

Schwarzschild black hole metric in Cartesian coordinates.

Then, βi terms can be added linearly onto the unboosted

terms in Eq. (27).

First, take the unboosted Schwarzschild metric

gμν ¼

2
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then apply a general boost transformation Λ
μ
ν on the

metric gμν

g̃μν ¼ Λ
σ
μΛ

ξ
νgσξ ðA2Þ

where

Λ
ν
μ ¼
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Then, the shift can be read off from the inverse spatial

metric γ̃ij as

FIG. 21. For small r, βy for an initial velocity v ¼ 0.1 versus

ψ0 ¼ 1þm=ð2rÞ. The horizon of this Schwarzschild black hole

is located at ψH ¼ 2 and spatial infinity is at ψ∞ ¼ 1. We see that

the shift decays slowly, like ψ0 − 1.
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βi ¼ við−η2 þ ψ2
0Þ

jvjη2 − ψ4
0

ðA4Þ

for ψ0ðm; rÞ ¼ 1þ m
2r
, ηðm; rÞ ¼ 1−m

2r

ψ0
¼ αsch, and

vi ≈
Pi

m

where Pi are the momentum components of the boost. The

terms βi (see for instance Fig. 21) are added linearly onto

the corresponding terms in Eq. (27) to construct an analytic

representation for a boosted, nonspinning BBH system.

We can try to force a stronger fall-off via asymptotic

matching or an attenuation function. Another alternative is

to directly consider the trumpet Initial Data for Boosted

Black Holes: See details in Ref. [50]. For trumpet Slices in

Kerr Spacetimes, see details in Ref. [51].

Spinning black holes: To construct initial lapse data for a

black hole system with spin, the conformal factor ψ0 is

modified so that its leading order term includes the

magnitude of the spin a ¼ Sz=m
2.

ψ0 ¼ 1þ γ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 þ a2
p

2r
:

It is then used in Eq. (4) to calculate the initial

boosted lapse.

To construct a spinning initial model for the shift, as in

the boosted case, the spin terms are added linearly onto the

boosted initial model for the shift. They are calculated from

the conformal Kerr metric in Cartesian spacetime

gμν ¼

2

6

6

6

6

6

4

ðσ − 1Þr2=ρ2 aσy=ρ2 −aσx=ρ2 0

aσy=ρ2 1þ a2hy2 −a2hxy 0

−aσx=ρ2 −a2hxy 1þ a2hx2 0

0 0 0 1

3

7

7

7

7

7

5

ðA5Þ

with coordinates xμ ¼ ðt; x; y; zÞ and

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2 þ z2
q

; ðA6Þ

r̄ ¼ r

�

1þmþ a

2r

��

1þm − a

2r

�

; ðA7Þ

ρ2 ¼ r̄2 þ
�

az

r

�

2

; ðA8Þ

σ ¼ 2mr̄

ρ2
; ðA9Þ

h ¼ 1þ σ

ρ2
r2; ðA10Þ

where r is the quasi-isotropic radial coordinate, r̄ is the

Boyer-Lindquist radial coordinate, and the spin a¼ Sz=m
2.

The shift can be read off as

βi ¼ g0i ðA11Þ

for i spatial. In practice,

βi ¼ γijβj ðA12Þ

is used. The shift components also must be rotated so that

they are valid for arbitrary spin orientations, not just spins

along the z − axis. To do this, we can do three rotations of

the shift vector and then sum up the results:

z → z; ðA13Þ

y → y; ðA14Þ

x → x: ðA15Þ

ðA16Þ

z → x; ðA17Þ

y → y; ðA18Þ

x → −z: ðA19Þ

ðA20Þ

z → y; ðA21Þ

y → −z; ðA22Þ

x → x: ðA23Þ

ðA24Þ

These rotations produce

βx ¼ axa
2
zxyzρ

2
yσxð1þ σzÞ − ρ2xð−azr2yρ2yσz þ ayzσyðr2ρ2z þ ðazxÞ2ð1þ σzÞÞ

ðρxρyÞ2ððrρyÞ2 þ a2zðx2 þ y2Þð1þ σzÞ
; ðA25Þ
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βy ¼ axzρ
2
yσxðr2ρ2z þ a2zy

2ð1þ σzÞÞ − azxρ
2
xðr2ρ2yσz þ ayazyzσyð1þ σzÞÞ

ðρxρyÞ2ððrρyÞ2 þ a2zðx2 þ y2Þð1þ σzÞ
; ðA26Þ

βz ¼ −axyσx

ρ2x
þ ayxσy

ρ2y
ðA27Þ

as the spin-corrected terms for the Kerr initial shift.
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