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Adapted gauge to small mass ratio binary black hole evolutions
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We explore the benefits of adapted gauges to small mass ratio binary black hole evolutions in
the moving puncture formulation. We find expressions that approximate the late time behavior of
the lapse and shift, (g, ffy), and use them as initial values for their evolutions. We also use a position and
black hole mass dependent damping term, #[X, (), X,(¢), m;, m], in the shift evolution, rather than a
constant or conformal-factor dependent choice. We have found that this substantially reduces noise
generation at the start of the numerical integration and keeps the numerical grid stable around both black
holes, allowing for more accuracy with lower resolutions. We test our choices for this gauge in detail in a
case study of a binary with a 7: 1 mass ratio, and then use 15:1 and 32:1 binaries for a convergence study.
Finally, we apply our new gauge to a 64:1 binary and a 128:1 binary to well cover the comparable and

small mass ratio regimes.
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I. INTRODUCTION

The 2005 breakthrough in numerical relativity tech-
niques [1-3] has allowed for the production of thousands
of binary black hole simulations (see for instance [4-7]).
Improvements in hardware and numerical techniques
contribute by speeding up simulations, however, some
corners of the binary’s parameter space remain relatively
unexplored. Binaries in the high mass ratio regime are
challenging to simulate; they can take months of super-
computer time and require substantial computational
resources to run accurate, long term, numerical evolu-
tions. These types of binaries are of particular interest
for third generation gravitational wave detectors [8] and
for the space-based mission LISA [9] since they have
long, low frequency inspiral periods. Prototype small
mass ratio simulations reaching 100:1 have been
achieved with the moving puncture approach [10,11]
and numerical convergence has been proven. Recently,
another sequence of nonspinning binaries with mass
ratios ¢ = m;/m, = 1/32,1/64,1/128 has been studied
in [12]. Such simulations should be considered proof
of principle, but in order to become practical for pro-
duction purposes, they need improvements in both
computational efficiency and accuracy of the numerical
techniques. This paper has a particular interest in explor-
ing the choice for the numerical gauge, as well as
the initial values for the lapse and shift equations, as a
means to achieve improvements in accuracy without
requiring more highly resolved (and hence more expen-
sive) simulations.

In 2005, a fundamental breakthrough was the choice of
the gauge equations. The gauge was originally developed to
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force successful evolutions without numerical simulations
crashing. The moving puncture approach proved robust and
produced accurate waveforms, even allowing the evolution
of multi-black-hole systems [13]. However, when studied
in detail, subtleties appear with the convergence [14], and
some gauge amplified initial noise has been observed [15].
This is particularly relevant for binaries with small mass
ratios (¢ = m;/m,), as the amplitude of gravitational
radiation scales like ~¢g. The initial noise then reflects at
the boundaries of the mesh refinement levels, which are
necessary to efficiently describe the different scales of the
binary system, causing high frequency oscillations when
those reflections reach the observers.

In this paper we will show that choices of the initial lapse
and a shift-damping parameter # in the gauge can cure those
initial inaccuracies, and lead to a much cleaner evolution of
the binary black holes. We explore different choices of the
initial lapse and shift in Sec. I A to improve the accuracy of
the simulations. In a previous paper [16] we studied the
effect of different, constant shift-damping parameters # on
the extraction of recoil velocities from the horizon of the
final remnant black hole. In this paper, in Sec. [I B we
extend the analysis to adapt 7(X, (), X,(¢)) to small mass
ratio binaries. The results using these numerical techniques
on the simulation of a prototypical nonspinning binary with
mass ratio ¢ = 1/7 is studied in detail in Sec, III A with
different choices for # and the initial lapse, as well as
control convergence studies of binaries with mass ratio g =
1/15 and then ¢ = 1/32, in Secs. I B and M C respec-
tively. In Sec. III D, we provide results for the extremal
q = 1/64 binary using the gauge choice we determined
from the previous sections.
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We conclude in Sec. IV with an optimal selection of
initial lapse and shift damping parameter # that is simple
to implement and numerically efficient, while still improv-
ing the accuracy of the simulations in the small mass ratio
regime.

II. NUMERICAL TECHNIQUES

The 2005 breakthrough work [2] has allowed us to
obtain accurate, convergent waveforms and horizon para-
meters by evolving the BSSNOK [17-19] system in
conjunction with a modified 1 + log lapse and a modified
Gamma-driver shift condition [2,20],

dpa = (0, — f0;)a = —2akK, (1)

£ — (xk, 0)pe. 2)

3
op* = 4

with the initial shift vanishing and the initial lapse
ay = 2/(1 + ), where the conformal factor is defined as

ny + my
207 =7 2[F =7l

wo=1+ (3)

Here and in the remainder of this paper, Latin indices such
as i and k cover the spatial range 1,2,3. Our units use the
G = ¢ =1 convention.

The parameter # (with dimension one-over-mass: 1/m)
in the shift equation regulates the damping of the gauge
oscillations. We have found in [21] that coordinate depen-
dent measurements, such as spin and linear momentum
direction, become more accurate as # is reduced and the
grid resolution is extrapolated to infinity (4 — 0). However,
if n becomes too small (n < 1/m), the runs may become
unstable. Similarly, if # is too large (7 > 10/m), then grid
stretching effects can cause the remnant horizon to con-
tinuously grow, eventually leading to an unacceptable loss
in accuracy at late times. Therefore, # is commonly chosen
to be of order unity as a compromise between the accuracy
and stability of binary black hole evolutions; for compa-
rable-mass binaries, our standard choice is n = 2/m.

To compute the initial data for the lapse and shift
equations, we use the TwoPunctures [22] thorn. These black-
hole-binary datasets are then evolved using the LazEv [23]
implementation of the moving puncture formalism [2]. The
carpet [24] mesh refinement driver provides a text “moving
boxes” style mesh refinement and we use AHFinderDirect [25]
to locate apparent horizons. The magnitude of the horizon
mass, spin, and linear momentum are computed
using the isolated horizon algorithm detailed in Ref. [26]
(as implemented in [27]). Once we have the horizon
spin, we can calculate the horizon mass via
the Christodoulou formula my = \/m? + S%/(4m?),
where my, = \/A/(16x) and A is the surface area of the
horizon. The radiated energy, linear momentum, and angular

momentum are all measured in terms of the Newman-
Penrose-Weyl scalar W,, using the formulas provided in
[28,29], and extrapolation to Z© is performed with the
formulas given in [16,30,31].

Convergence studies of our simulations have been
performed in Appendix A of [32], in Appendix B of
[33], and for nonspinning binaries are reported in [34]. For
very highly spinning black holes (s/m? = 0.99) conver-
gence of evolutions was studied in [35], for precessing
s/m? = 0.97 in [36], and for (s/m> = 0.95) in [37] for
unequal mass binaries. These studies allow us to assess that
the simulations presented here, with similar grid structures,
are well resolved by the adopted resolutions and are in a
convergence regime.

A. The initial gauge
In this section we derive the form of a new set of
equations for the initial lapse and shift. The goal is to
approximate those of the trumpet slice in quasi-isotropic
coordinates r, both near the puncture » = 0 and far from
source as powers of 1/r. We will do this for a single black
hole, then we will superpose the result for two black holes.

1. Initial lapse

To construct the trumpet-like late time initial lapse
(LTL), we begin by proposing the following form:

a
1+ byl + ey ™ + dyi™!

aprr = (o) = (4)
where a, b, ¢ and d are constants to be determined by
matching to trumpet data in isotropic coordinates close to
the punctures, and to the behavior of the lapse far away
a~(1=m/r)/(1 4+ m/r). The value n is a function of an
unknown constant y, which is to be determined later.

The initial lapse is written as a function of the conformal
factor y, defined in Eq. (3) as an extension of our original
standard form for the lapse

ao =2/(1+ ). (5)

We have the option of superposing the individual initial
lapses for each puncture, so that @ = >, , apr. (w;) — 1
where

m;
217 =7,

; (6)

wi=1+

which would make our new initial lapse
apr, =ay +ap— 1, (7)

but this leads to negative values near the punctures.

To obtain the desired behavior in Eq. (4), we begin by
expanding the Schwarzschild lapse in isotropic coordinates
in powers of (1/r) to obtain
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Agen = (1 - m/2r>/(1 +m/2r)
=1-1/r+1/2rr +0(1/r). (8)
Near the puncture, the expected trumpetlike behavior is
a~Ar'/r 9)
where, by Eq. (48) of [38],
y=1(2-=Ry)/(6—4R;y) = 0.9163407461; (10)
Ry = 1.312408290 (11)
and according to numerical computations of [39], A =0.54.
Using this value will allow us to match the numerical
behavior rather than strictly the isotropic coordinates (as
in [38]).

Choosing n + 1 = 1/y in Eq. (4) above and taking the
limit as » — 0, we obtain that

2.131254761(c/a) = 0.54, (12)

which is approximated to be a/c = 1/4.
Setting the other constants b, ¢, d to match the three
orders of the expansion in (8), we find

2y —1 2y —1
- . b=-10 , 13
e —1 6y — 1 (13)
2% -1 4y -3
c=4T"" A
6y —1 6y —1
—1
n=-r"". (14)
y

These expressions are finally inserted into Eq. (4) to
construct this new choice for initial lapse.

For a visual representation of the differences between the
typical initial lapse ay =2/(1 +w{) and a;7;, refer to
Fig. 1, which shows the two choices for lapse in red and
blue (respectively) and their effects on a ¢ = 1/3 binary
with initial separation D = 8m. Here, we can see that a; 7,
(in red) is tighter around the punctures than its counterpart
in blue «a; therefore mimicking the shape of the settled
lapse more accurately.

2. Initial shift

We would also like to find a formula to model the shift
late-time behavior analogous to (4). From [38] [Egs. (7)
and (18)] we have analytic expressions for the shift at
distances close to the black hole,

pr=rB/R (15)

and at large r, the shift magnitude,

Lapse Profiles at t/m=0
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FIG. 1. In red the initial lapse ay(y() is shown and the LTL,
aprr, is shown in blue. This is for a case study with m, = 3/4,
m; = 1/4, located at x; = —6 and x, = 2 respectively, and where
we have normalized so that m; +m, = 1.

B = Cexp(a)/R®, (16)

where r denotes isotropic coordinates and R denotes
Schwarzschild ones and, C = 1.554309591. Equating the
Egs. (15) and (16),

p/r=/(C)exp(a/2)/R® (17)
- \/EC)/RS = 0.5515207650, (18)
for R — 0 where from Eqgs. (23) and (28) of [38] we have

C = V103 4+ \/(10)3/128
— 1.554309591R4 — 2R} +C =0,  (19)

R, = 1.312408290. (20)

This agrees well with the estimates derived from the
numerical fittings (6) and (7) in [39]. From these, define
K ~0.30-0.92a; where K = fpa/(R)/2. (21)

From which we can find that the leading order term of the
shift should be

B'/r=PB/R =2K/Rd(R) (22)
- 0.60/Rya(Ry) = 0.55, (23)

for r — 0. With the use (31) in [38] we have
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o' (Ry) = (6 —4Ry)/(2 — Ry)Ry. (24)

On the other hand, to study the shift behavior at large
distances from the black hole we have in the expansion of

Eq. (17),
V/Cel/? 7/2\/&1/2 57+/Ce!/?
_ ‘ X!

o(r 25
r? r 8 r +00™) (25)

where we have used that in isotropic coordinates,
aisoz(l_m/zr)/(l+m/2r) (26)

far from the center of coordinates.
In a similar fashion as for the lapse, we propose the
following representation for the initial shift:

a(l//() B 1)2 (27)
2 3
1+ by + ey + dyg

ﬂ(r)(l//o) =

Matching expansions (22) and (25) with (27), we get

a = —0.5368350604, b = —3.620281004,
¢ =4.501732957, d = —1.946744690. (28)

3. Two black holes

It is our ultimate goal to use these analytic approximants
as initial data for the gauge to evolve a binary system.

We do not assume that the lapse for each black hole adds
linearly, but instead include the information about the
binary in the conformal factor y,. For an arbitrary binary,
the y in Eq. (4) matches that in Eq. (3). The resulting
shape of the initial lapse is shown in Fig. 1 for a binary with
my; = 1/4, m, = 3/4, located at x;, = +6, and x, = =2,
respectively and normalized by m; + m, = 1.

In the case of the trumpet late time initial shift (LTS), we
do in fact assume it adds linearly for the two black holes as
this matches the settled shape of the evolved shift best:

Prrs = PI(F=7)/[F=Fil+ o (F =) /[F =7l (29)

Figure 2 displays the behaviors of the initial shifts (zero
shift in red, and LTS in blue) for the same case study as
above. The LTS initial data pushes the shift away from the
black holes at the punctures and damps to zero far away.

We have chosen to not superpose the lapse and to
superpose the shifts because, while testing different con-
figurations, we found that those choices best matched the
late-time behavior of the lapse and shift. The construction
presented in this section ignores the motion of the black
holes. The inclusion of initial linear momentum and spins
of the holes into the analytic expressions for the initial lapse
and shift can be done in terms of a Lorentz boost and a Kerr
shift. We provide explicit expressions in Appendix, but do

— Shift Profiles at t/m=0
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FIG. 2. In red is the usual zero initial shift, and in blue is the
superposition of the individual shifts showing the push away
from each black hole. This is for a case study with m, = 3/4,
m; = 1/4, located at x; = 2 and x, = —6, respectively.

not provide an in-depth study here because we found that
their inclusion into the initial choice for the gauge is not
crucial in the case of a nonspinning binary.

B. Shift damping parameter 7

The principal purpose of this study is to investigate
whether the accuracy of small mass ratio binaries can be
improved by modifications to the gauge equations (2). In
this section, we seek to develop a superposed Gaussian
model for the shift damping parameter #. For comparable
mass ¢ > 1/10 binary evolutions, our simulations typically
use a constant 77; in general we choose 7 = 2/m, but recent
studies have shown that # = 1/m may provide a better
measure of recoil velocity at the horizon of the remnant
black hole [31] (as in [16], in which we studied binaries as
small as ¢ = 1/5).

For mass ratios smaller that ¢ = 1/10, a nonconstant 7
is required for simulation stability, especially at lower grid
resolutions, since the damping shift parameter carries
inverse mass dimensions [40]. Reference [10] introduced
n(W) [W = /x = exp(=2¢) where ¢ = ¢(,-), with the
conformal factor suggested by [41]), or modified (as
below in equations (3)—(31)]. The modification we use
is based on the superposition of weighted Gaussians with
peaks at the punctures [42-44]. Alternatives using the
conformal factor have been given in [40,45]. Here we will
numerically investigate those choices for the smaller mass
ratio binaries.

Here we bring back some of those ideas, where we
evaluate n(7 (1), 7,(t)) parametrized by the black holes
punctures trajectories (7, (z), 7»(t)). The (initial form of the)
conformal factor evaluated at every time step is given by (3)
and we can define, analogously to n(W),
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-20 -10 0 10 20

X
FIG. 3. n, profile for (m = m; +m, =1 here) m, =3/4,

=1/4;, x, =25 x,=-75a=1,b=2;A=1, B=1.
Note that this is technically different from the (W) used in [10]
since we use the specific form (3) for y instead of the evolved
variable, which is related to the inverse of the conformal factor

W= 2]

2
i, = A+ BM. (30)

(I —wo")
An example of this 7, is plotted in Fig. 3. At the ith
puncture m;n = 1 and at the center of mass mn = 1, but
Eq. (30) goes through a minimum m#n = 0 in between the
holes and at this point, as well as at the punctures, 7 is C°.
Since the gauge condition Eq. (2) involves an integration
not a derivative, this does not affect numerical evolutions.

A second alternative for smoother behavior is the
superposition of Gaussians,

>4 2 n
7’]G A B < rlgt) > e_|7_;l(t)|2/o.%
8l o

m ml (1) +
C 0% N _rrpe
+_( (tzgi_ ) e |r_r2<t)‘ /0'2 (31)

which, for the punctures of the previous example, is
displayed in Fig. 4 (with n = 0), and behaves like m,n; =
1.25 at the first puncture, and as m;n; = 1.75 at the second
puncture, and it goes to 1 in between and far away from
the binary.

In [42], the authors present a function similar to Eq. (31)
and study its effects, as well as the effects of another
position-dependent form of #, on the shift equations using a
g = 1, D = 10m separated binary,anda ¢ = 1/4, D = 5m
separated binary. They use A =2/m whereas we use
A =1/m. Even so, we find good agreement with their

5-
44
3-
3
o n=0
n:
2-
JL_.
1
—iS -'10 -'5 0 ; l'O
X
FIG. 4. png profile for (m = m; +m, = 1 here) m, = 3/4,
my=1/4; x =25, xx=-75 A=1, B=1, C=1;

o1 =2my, 6, =2m,. At large separations, n =0 and n =2
show good agreement.

results; they find reduced noise in the dominant gravita-
tional waveform mode, as well as reduced coordinate size
of the horizons when compared to a constant value of 7. We

include factors of
7i(1)? "
— 32
(s a%) G2)

n=0
n:

FIG. 5. #5g profile for (m = m; +m, =1 here) m, = 3/4,
my=1/4; x,=0.5, x,=-15 A=1, B=1, C=1;
oy = 2m,, 6, = 2m,. At small separations n = 2 reduces the
peaks in (31) that using n = 0 is designed to produce.
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fori = {1,2} and j = {2, 1} respectively, with n € N. The
authors of [42] expect their results to hold for small mass
ratio binaries and show good agreement with the results
that are presented in this paper.

We have applied Eq. (31) (labeled n = 0) to simulations
of small mass ratio binaries (as 7 or G), and compared the
physical output to both the constant 7 = 2/m as well as the
(W) gauges. The results are forthcoming in the following
sections. The introduction of the n = 2 case is to model
smaller effective spikes once the black holes are merged as
shown in Fig. 5. For larger separation n =0 and n = 2
essentially agree with each other as shown in Fig. 4.

III. SIMULATION RESULTS

Here we present the results of our simulations using
different choices of initial lapse and choices for 7. We
proceed in a descendent mass ratio, from the ¢ = 1/7 and
g = 1/15, and then onto the more challenging g = 1/32,
to find the best gauge choices and apply them to the most
challenging case, with mass ratio ¢ = 1/64. For the rest of
this work, the following notation will be used: “LZ”
denotes the Lousto-Zlochower n =n(W) gauge, “2”
denotes the constant 7 = 2/m, “G” denotes the Gaussian
in (31) with n = 0, and the “+ LTL” denotes the addition of
the LTL choice for initial data. Table I shows a full list of all
the simulations performed for this paper and their initial
parameters. All simulations use 8th order finite differencing
in space.

The resolutions in Table I are listed in the form nXXX
where XXX is the number of gridpoints on the coarsest grid

TABLE 1.

level (i.e., n100 has 100 points on the coarsest grid level).
The mesh increases by a factor of two in resolution per
refinement level, with the most refined levels surrounding
the individual punctures.

A. Results for a ¢ =1/7 nonspinning binary

In this section we will begin our analysis by studying the
effects of different gauge modifications on the physical
parameters of a binary system. We will first verify it works
on a comparable mass binary, with mass ratio g =
my/my = 1/7 and binary separation D = 11m. This sys-
tem, while not as computationally intensive as the smaller
mass ratio binaries studied later on, is still fairly nontrivial,
and will serve to help generalize our results for the other
mass ratio systems.

For this system we did four runs with four different
choices for the gauge, all at our typical production
resolution nl100. The first uses the choice LZ, and
does not modify initial lapse and shift from the standard
ay=2/(1 —H//g) and p, =0. This is our reference
choice for # for small mass ratio runs. The second
simulation uses G, the third run uses the constant choice
n = 2/m and, finally, the fourth run uses G + LTL. All
use eighth order spatial finite differencing stencils and
fourth order Runge-Kutta in time, with a Courant Factor
of 1/3.

The Hamiltonian and momentum constraint equations
are integrated over a masked volume V and their norms are
given by

Initial data parameters for the simulations performed. The smaller black hole is labeled 2 and larger black hole labeled 1.

The punctures are located at r; = (x;, 0, 0) with initial momenta P = £=(P,, P,, 0) and mass ratio, ¢. All simulations are nonspinning. A
full study with 3 resolutions for all gauge choices was done on the ¢ = 1/15 binary, but results are shown for simulations 5-7, 9, and
11-13, because simulation 8 could only be completed with an increase in time resolution (Courant factor (CFL) 1/3 — 1/4). The
q = 1/32 binary has three resolutions for the LZ and G gauge choices. The smaller ¢ = 1/64 and ¢ = 1/128 as well as the larger
q = 1/7 mass ratios are used for verification. All simulations use eighth order finite differencing in space.

Run q D x1/m x2/m P./m P./m mn CFL Resolution

1 1/7 11m 1.375 -9.625 -1.42e-4 0.0396 Lz 1/3 n100

2 1/7 I1m 1.375 -9.625 -1.42e-4 0.0396 2/m 1/3 nl100

3 1/7 11m 1.375 -9.625 -1.42e-4 0.0396 G 1/3 n100

4 1/7 I1m 1.375 -9.625 -1.42e-4 0.0396 LTL+ G 1/3 n100

5-7 1/15 8.5m 0.5378 —7.9622 -1.04e-4 0.0256 Lz 1/3 n084,n100,n120
8 1/15 8.5m 0.5378 —7.9622 -1.04e-4 0.0256 2/m 1/4 n084

9,10 1/15 8.5m 0.5378 —7.9622 -1.04e-4 0.0256 2/m 1/3 n100,n120
11-13 1/15 8.5m 0.5378 —7.9622 -1.04e-4 0.0256 G 1/3 n084,n100,n120
14-16 1/32 8.00m 0.2424 =7.7576 -3.32e-5 0.0135 LZ 1/4 n084,n100,n120
17 1/32 8.00m 0.2424 =7.7576 -3.32e-5 0.0135 2/m 1/4 nl100

18-20 1/32 8.00m 0.2424 —=7.7576 -3.32e-5 0.0135 G 1/4 n084,n100,n120
21,22 1/64 7.00m 0.1077 —6.8923 -1.49e-5 0.0077 Lz 1/4 n084,n100

23 1/64 7.00m 0.1077 —6.8923 -1.49e-5 0.0077 G 1/4 nl100

24 1/128 7.00m 0.0543 —6.9457 -3.85e-6 0.0039 LZ 1/4 n100

25 1/128 7.00m 0.0543 —6.9457 -3.85e-6 0.0039 G 1/4 n100
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L2 Norm of Hamiltonian Constraint Violations q=1/7

-5.5

log(IHC)

8 . . . . . |
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L2 Norm of Momentum Constraint x Violations q=1/7

log(JmCx|)

200 400 600 800 1000 1200 1400 1600 1800

time (m)

FIG. 6. Violations to the Hamiltonian constraint (top) and the x
component of the momentum constraint (bottom) for the g = 1/7
binary using resolution n100 with the different gauge choices: G,
G+ LTL, n=2/m and LZ in red, purple, yellow, and blue
respectively. Both G and G + LTL settle to a similar gauge. All
gauges produce acceptably-valued constraint violations.

|| = / Hedx, (33)
y

M) = /V (M2, (34)

and should be conserved [15]. Violations to this conserva-
tion are commonly used as way to assess convergence with
respect to numerical resolution. However, these simulations
are all run in different gauges which makes it difficult to
draw definitive conclusions based solely on violations to
the constraints, since different gauges can change the scales
of these violations. The constraint violations can still
give us an idea of performance as well as allow us to
compare different resolutions of the same gauge to ensure
convergence. In Fig. 6 the violations to the Hamiltonian
constraint (top panel), as well as the x component of the
momentum constraint (bottom panel), are shown for the
q = 1/7 simulations with # =2/m in yellow, G in red,
G + LTL in purple, and LZ in blue.

The setup for the simulation in this subsection with n =
2/m resembles that which was used to build up the RIT
catalog [6,7,46], with CFL=1/3 to achieve production
speed. However, here we use eighth order finite differenc-
ing stencils instead of sixth order to simulate smaller mass
ratios, as opposed to the RIT catalog simulations, which are
mainly comparable mass.

It is pertinent to reiterate that the comparison of con-
straint violations cannot be used as an accurate measure of
simulation performance between simulations with different
values for 77. These simulations exist in different gauges and

Horizon Mass m2 q=1/7

0.87943

0.87942

0.87941

0.8794

Mass

0.87939

0.87938

0.87937

0.87936 - - - : !
0 200 400 600 800 1000
time (m)

Horizon Mass m1 g=1/7
0.12563

0.125628 |,
0.125626
0.125624 -
0.125622

0.12562

Mass

0.125618

0.125616

0.125614 2/m

0.125612 G+LTL

0.12561 : : : : '
0 200 400 600 800 1000

time (m)

FIG. 7. Horizon masses for m; and m, versus time for the g =
1/7 n100 simulations with different choices for mn = G, LZ, and
2/m, and the initial lapse, LTL. The n = 2/m and LZ gauges
produce continuous growth (mass loss) over the course of the
simulation in m, (m;). The G and G + LTL choices maintain
both horizon masses well.

therefore may rescale the constraint violations, making
comparisons between them an inaccurate method of rank-
ing gauge performance. Notwithstanding, we would like to
mention that the pair of simulations with initial data G and
G + LTL seem to settle to approximately the same gauge,
as only in the early part of the simulation we see a slight
reduction of the violation of the constraints. The constant
choice, 7 = 2/m (in yellow) performs well throughout the
course of the simulation. The LZ gauge has Hamiltonian
constraint violations that are about one order of magnitude
larger than the simulations with # = 2/m, G, or G + LTL;
however, this may be due to a rescaling of the constraints.
In general, all four simulations produce constraint viola-
tions within an acceptable range and, therefore, are con-
sidered viable candidates for production-level runs.

In order to quantitatively compare the different choices
for the gauge damping parameter 7, it is pertinent to asses
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the different gauges’ effects on physical quantities such as
horizon mass, spin, and gravitational waveforms. Figure 7
shows the mass of each black hole m; and m, measured at
the horizon using LZ, G, G + LTL and n = 2/m gauges.
The figures are generated using a 200-point running
average to smooth fluctuations in the data and to better
present a general trend without the distraction of numerical
noise. In the masses, we are looking for constancy over the
course of the inspiral from ¢ = (0 — 1000).

The top panel of Fig. 7 shows the horizon mass of the
large black hole m, versus simulation time. The G and
G + LTL gauges both are able to maintain the horizon
measure of mass well until the simulation approaches
merger, when we see some growth in the masses. The
constant gauge 7 = 2/m shows continuous growth over the
course of the simulation; although the scale on which this
growth occurs is small, O(1073), this may be indicative of
an issue as the mass ratio decreases. The mass m, in the LZ
gauge has relatively large oscillations over the duration of
the inspiral as well as growth that is on the order of that
seen in the # = 2/m simulation.

The second panel of Fig. 7 shows the mass of the smaller
black hole, m;, measured at the horizon. The G and G +
LTL gauges both are able to maintain the horizon measure
of mass well over the course of the simulation. In fact, they
seem to behave the same way with G + LTL being shifted
by a constant factor, indicating that the G and G + LTL
settle to similar gauges since they differ only in initial data.
The n = 2/m and LZ runs show continuous declines in their
respective horizon masses of m; over the inspiral period. As
we will see in the next section, this may be the symptom of a
resolution issue, especially at smaller mass ratios.

Although not as vital as in smaller mass ratio systems,
such as the g=1/15 or ¢g=1/32 binaries studied in
Secs. III B and I C, here constancy in m; is strongly
desired.

It is of interest to investigate the gauges’ effects on the
dominant (2,2)-mode of the Newman-Penrose-Weyl scalar
W, since this scalar is what we use to calculate outgoing
gravitational radiation. The top panel of Fig. 8 shows the
early part of the amplitude of ‘Pi’z with respect to time. The
observer sits at 113m from the origin of coordinates. In
the early part, there is a clear initial burst of noise present
in the simulation that uses the LZ gauge which is damped
by the use of G, G + LTL or # = 2/m. The second panel
shows the amplitude of ‘I’i’z over the timescale ¢ = (200 —
800)m with reflections at refinement boundaries visible
between (400 —450)m and (550 — 600)m. This result
holds and was verified for modes (I,m) = (2,0),(2,1),
(3,0),(3,1),(3,2),(3,3) as well.

As a final test of the efficiency of each of the gauge
choices, one can consider their individual effects on the
quasilocal computation of remnant recoil velocity, which is
measured on the horizon of the remnant (in column 4 of
Table II). This is compared to the total amount of linear

5 . 22 _
10 X10 Amplitude \114 q=1/7
1
08
:_;r 0.6
041
021
0 : i i A
80 90 100 110 120 130
time (m)
-6 . 22 _
135210 Amplitude \114 q=1/7

0.95 " . " . " . " )
200 250 300 350 400 450 500 550 600

time (m)

FIG. 8. The amplitude of the dominant (2,2) mode of Weyl
scalar W, for the ¢ = 1/7 binary as seen by an observer situated
r = 113m from the origin of coordinates. Higher frequency noise
of the LZ gauge is apparent at ¢~ (75 — 135)m (top) as is its
bounce at the next refinement level at t~ (200 — 600)m
(bottom). The other gauge choices G, G+ LTL, and n = 2/m
show no high frequency noise early on, as well as substantially
reduce high frequency oscillations during inspiral (shown in the
bottom panel).

momentum radiated away via gravitational waves (column
5). Using the modified gauge G improves the horizon
measure of recoil velocity over the = 2/m and LZ gauges
by about 17% and 15% respectively. This is likely due to
the fact that the G gauge damps to 1 far from the remnant,
and we have already shown in [16] that this leads to a more
accurate measure of quasi-local linear momentum.

B. Results for a ¢ =1/15 nonspinning binary

Since the purpose of the G gauge is to improve
simulations with mass ratios ¢ < 1/10, next we investigate
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TABLE II.  For the ¢ = 1/7 binary, the total linear momentum
(km/s) calculated in two ways: (1) measured quasilocally on the
horizon averaged over 7 = (2600 — 2800)m, in column 4, and
(2) measured by the amount radiated away in gravitational waves,
in column 5. All simulations have resolution 7100 as well as
CFL = 1/3 and 8th order finite differencing stencils. The gauges
G and G+LTL allow for the most accurate measure of horizon

Horizon Mass m2 q=1/15
0.98446

0.98444

0.98442

0.9844

0.98438

recoil when compared against the radiated value. 8
= 098436
CFL Resolution Horizo Radiated
i — zon ! 098434 f |~ ~ Cn084 \\
LZ 1/3 n100 1112450  92.6987 122100 \
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G+ LTL 1/3 n100 95.8015 94.2094 ——1Zn120 Nl
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time (m)
a nonspinning system with mass ratio ¢ = m;/m, = 1/15
starting at an initial coordinate separation D = 8.5m. The 606563 - Horizon Mass m1 q=1/15
simulation was run through merger so that we can also 0065625
investigate the gauges’ effects on the remnant’s recoil ‘ A .
velocity as well as the ringdown phase of merger. 006862« Ty "=y RSt St L i
All these simulations have CFL = 1/3, except the lowest ooes1Sf N4 .
resolution (n084) simulation with constant # = 2/m which — i e 1
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simulation runs successfully with CFL = 1/4, but only < 00656051 N o
. . . . . . . ™ ~
with increased resolution in time. All ¢ = 1/15 simulations 0.0656 s W
use eighth order finite-differencing stencils in space. P el L 1 h . N
As with the ¢ = 1/7 binary, our results for the smaller 006556 | sl i S
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physical quantities of the system such as masses, spins, and ]  —y Tt~
gravitational waveforms. These quantities are invariant 0.06558 . . - 4 ! '
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with respect to the gauge, and therefore can be used to
measure differences in results using each gauge. Once the
remnant is settled, we can compare the kicks calculated at
the horizon by the isolated horizon formulas [47] to those
extracted from the radiated linear momentum at infinity.

The top panel of Fig. 9 shows the evolution of the
horizon mass of the large black hole m, for seven
simulations: G and LZ with resolutions n084, n100, and
n120, and # =2/m for n100. For the remainder of this
work, the low resolution, n084 will be a dashed line, n100
will be dot-dashed, and n120 will be solid.

In Fig. 9, we can see that all gauges maintain the mass to
at least O(le-4), but the # =2/m n100 and G n100 and
nl120 simulations show the best constancy in mass. The
figures are generated using a 20-point running average to
smooth fluctuations in the data and better present a general
trend. Table III can be used in conjunction with Fig. 9. It
shows the slopes of a linear fit to the data for each
simulation over the inspiral period # = (100 — 1000)m.
The results of this fit are given in columns 3 and 5 of
Table III with the root mean square error (err.)

N k _ k)2
€ =err= \/Zk:l(”;\i] ml) , (35)

time (m)

FIG. 9. Horizon masses for m, (top) and m; (bottom) versus
time for the ¢ = 1/15 simulation with the different choices for
mn, G, LZ, and n = 2/m. The dashed, dot-dashed, and solid lines
are the low n084, medium n100, and high n120 resolutions
respectively. The horizon masses m; and m, deviate from
constant most dramatically when the LZ gauge is used. Both
the = 2/m and G gauges maintain the masses of the horizons
well over the course of the simulation, except at the lowest
resolution n084.

where m¥ are the actual mass values for black holes labeled
i =1, 2, measured at time points ¢ and ﬁzf‘ = At +b.

Initially, the black holes grow due to an influx of
radiation from the initial data, but then are expected to
settle to a value that remains almost constant until merger.
The top panel shows the horizon mass of the larger black
hole; in the simulation using the LZ gauge there are low
frequency oscillations later on in the inspiral, in the n084
simulation, which is reflected in the increase in ¢, between
the linear fits of G and LZ (e = 0.0215x 107°
vs €; = 0.0397 x 107°).

The bottom panel shows the horizon mass of the smaller
black hole; in the n084 LZ gauge, the mass, after the
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TABLEIII. The slopes (A, columns 3 and 5) of linear fits to the
horizon masses m; and m, computed over the inspiral t = 100m
to 1000, for the ¢ = 1/15 binary using n = G, LZ, and 2/m.
Error is calculated via root mean square error over the interval,
and is shown in columns 4 and 6. The time frame is chosen so a
linear fit is a reasonable approximation of the mass curves. The G
and LZ simulations have three resolutions: n084, n100, n120, and
the n = 2/m simulation has 1 resolution: n100. The G gauge
produces a reliably constant value for the horizon mass, even at
low resolution, whereas the mid- and low- resolution LZ
simulations show large changes in mass (reflected in the slopes
A) as well as higher error values overall.

my my

Gauge Resolution A x 1077 err. x107® A x 1077 err. x107*

G n084 -0.2810 0.5177 0.6613  0.0215
LZ n084 —0.3482 0.7943 0.6462  0.0397
2/m n100 —0.0258 0.3551 0.2564  0.0131
G nl00 —0.0683 0.2546 0.2655  0.0079
LZ nl00 —0.0641 0.5688 —0.6248  0.1543
G nl20 —0.0463 0.3206 0.1620  0.0082
LZ nl20 -0.0245 0.2238 -0.2601 0.0467

settling of the initial data, declines fairly steadily, with A; =
—0.3482x 1077 and €, =0.7943 x 107°. This occurs in the
G gauge as well, although its slope is A; = —0.2810 x 1077
with error €; = 0.5177 x 107°. Although neither gauge at
this resolution maintains m; very well, m; in the G gauge
has a much shallower decline than the m in the LZ gauge,
as well as smaller error overall.

In the n100 simulations, # = 2/m outperforms G in
terms of linearity by < 5% in m, and by > 200% in m;,
although in each case # = 2/m has higher error than G. In
LZ n100 and nl20, there occurs a substantial dip in the
mass of m, between ¢ = (800 — 1200)m that is reflected in
an increase in the error of the linear fits.

It is informative to study the growth of the apparent
horizon of each black hole in numerical (radial) coordinates
for each different gauge. An extended horizon requires a
large number of gridpoints to evaluate quantities over its
surface, but the numerical evolution “loses” those points in
the interior of the black hole. These are points that could be
used to otherwise resolve the dynamics of the system.

The top panel of Fig. 10 shows the initial growth of the
larger black hole m,, which grows from ¢t = (0 —25)m
using all three gauge choices. This growth is due to an
influx of radiation content from the initial data, and is
expected. The growth in the small black hole (bottom
panel), m, happens within the first few iterations and then
immediately stabilizes. To minimize the loss of gridpoints
in the simulation, ideally the horizon will grow quickly and
then settle down to maintain its coordinate size, so this
rapid stabilization is critical.

The horizon coordinate sizes for the low, medium, and
high resolutions of G lie directly on top of each other in
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FIG. 10. Radial average size of each of the horizons of the
q = 1/15 binary versus evolution time for the different gauge
choices. The three resolutions using the LZ gauge lie on top of
each other, as do the three resolutions using the G gauge. In both
m; and m, these gauges maintain the coordinate size of the
horizons well over the full inspiral. The = 2/m is only shown in
one resolution (n100), and the associated horizons m; and m,
grow continuously throughout the simulation.

both panels of Fig. 10. The same is true for all resolutions
of LZ. Furthermore, the gauges G and LZ, regardless of
resolution, maintain a constant coordinate size of the
apparent horizons of m; and m, well over the course of the
run. However, the 7 = 2/m simulation, shown in yellow,
exhibits continuous growth of both horizons. This
means that gridpoints are constantly being lost inside
the black hole horizons, and, in the case of m,, it is
possible that the horizon grows so large it crosses a
refinement level boundary, reducing computational accu-
racy and wasting resource. While this growth does not
prohibit completion of the ¢ = 1/15 binary at nl00,
further investigations should be done on its effects on
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more extreme mass ratio pairs. This growth also may be
related to the fact that when using n = 2/m, the low
resolution ¢ = 1/15 (n084) requires a CFL decrease from
1/3 — 1/4 in order for the simulation to be successful,
whereas the other gauges G and LZ can be run at n084
with CFL of 1/3. Therefore, using a well-chosen gauge
allows for an increase in computational efficiency at lower
resolutions, and using a poorly chosen gauge may cause
issues at low resolutions.

An important and physically relevant method of assess-
ing the accuracy and effectiveness of different gauges is to
look at the early behavior of gravitational waveforms as
seen by an observer far from the binary orbit. In our case,
we will consider an observer sitting at » = 113m from the
origin of coordinates. Figure 11 displays the amplitude of
the leading waveform mode ¢ = 2, m = 2 of the Weyl
scalar ¥,. In the top panel the amplitude of the waveform
from 7= (75— 135)m is shown. One can observe high
frequency noise at z ~ (90 — 100)m produced by the LZ
gauge choice, in blue, that was also present in the ¢ = 1/7
waveform (as shown in Fig. 8). The noise has higher
amplitude in the n100 (dot-dash) LZ simulation than the
n084 (dash) LZ simulation, this is not indicative of
improvement with decreasing resolutions, but is instead
due to the n084 resolution under resolving the grid. This
noise is eradicated solely by choosing either G orn = 2/m
for the gauge, which is also consistent with what was found
in Fig. 8.

The second panel of Fig. 11 shows a later time in the
binary’s evolution (from 7~ (200 — 600)m). High fre-
quency noise during this period of the inspiral, present
even in the highest resolution (n120) simulation using the
LZ gauge, is significantly damped when using the G or
2/m choice for # instead of the typical LZ. At
t ~ (500m — 550)m, there is an increase in the amplitude
of these oscillations across all simulations. This corre-
sponds to the bounce of noise over a grid refinement level
back to the observer’s location. This effect is also damped
when G or n=2/m are chosen, thus confirming the
benefits of the introduction of the new gauges. We verified
that similar features appear in other next to leading order
modes (Z,m)=(2,1),(2,0),(3,0),(3,1),(3,2),(3,3), etc.

Table IV contains the remnant quantities (energy,
angular momentum, and linear momentum) of the g =
1/15 binary including a three-point extrapolation to
infinity (noco) as well as convergence order in the cases
where we use three resolutions and have convergence.
Columns 3-5 show the mass, and angular and linear
momentum measured on the horizon of the black hole
using the isolated horizon formulas. Columns 6—8 are the
same quantities but calculated from the energy, angular,
and linear momentum carried away by gravitational waves
off to an infinite-location observer. Excellent agreement is
observed between radiation and horizon measurements for
the final mass and spin. In general, the horizon linear
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FIG. 11. The amplitude of the dominant mode of ¥, for the

q = 1/15 binary extracted at an observer location of r = 113m.
The waveform is shown for G and LZ in three resolutions and
n = 2/m in one. In the top panel, higher frequency noise of the
LZ gauge early on at  ~ (75 — 135)m and its bounce at the next
refinement level in the second panel from 7 ~ (200 — 600)m is
apparent.

momenta are measured well at the typical production
resolutions of n100 and n120 using the G gauge, coming
within 12% of the radiated measure for n100, and 28% for
n120. Compare this with the LZ gauge, which is off wildly
(by 716% using n100), or the 7 = 2/m gauge which is off
by 35% using n100.

Since n = 1/m gives a more accurate measure of recoil
velocity than # = 2/m, and G damps to 1 far from the
center of coordinates, we expected improvement between
n=2/m and G. Additionally, the strong improvement
between G and LZ may prove critical when considering
extremely small mass ratios, such as the g = 1/32 or ¢ =
1/64 binaries considered here.
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TABLE IV. For the ¢ = 1/15 binary, the total mass, angular, and linear momentum (1) measured by the amount radiated away in
gravitational waves, in columns 3-5, and (2) measured quasi-locally on the horizon, in columns 6-8. Extrapolations to infinite resolution
(noo) and convergence order (CO) are included where applicable. All simulations have resolution specified in column 3 as well as
CFL = 1/3 and 8th order finite differencing stencils. A dash indicates no convergence was found.

Horizon Radiated
Gauge Resolution E/m J/m? L (km/s) E/m J/m? L (km/s)
G n084 0.9949 0.1863 178.7939 0.9950 0.1889 31.5722
n100 0.9949 0.1870 36.3859 0.9950 0.1880 32.9681
nl120 0.9949 0.1870 44.79436 0.9949 0.1877 35.0123
neo 0.9950 0.1870 44.3255 0.9949 0.1874 35.1600
CcO 4.64 15.50 15.52 3.51 5.05 0.8630
LZ n084 0.9949 0.1865 232.3947 0.9950 0.1881 31.0327
n100 0.9948 0.1862 241.2582 0.9949 0.1876 34.3328
nl20 0.9949 0.1872 43.4521 0.9949 0.1874 35.0915
noo 0.9948 0.1864 e 0.9949 0.1874 35.3179
CO 3.11 2.78 5.88 7.12 8.06
2/m n100 0.9949 0.1870 21.1410 0.9950 0.1884 32.7075

C. Results for a ¢ =1/32 nonspinning binary

We also performed an in-depth study on a smaller
nonspinning binary with a mass ratio of ¢ = 1/32 and
an initial binary separation of D = 8m. It uses a Courant
factor of 1/4 as well as 8th order finite differencing stencils
in space, and was run using three resolutions (n084, n100,
nl120), with both the G and LZ gauges as well as one
resolution (n100) of n = 2/m.

Figure 12 shows the horizon masses for the seven g =
1/32 simulations during inspiral from 7= Om through
t = 1200m, which is just before merger. In these figures
we are again looking for the masses to be held constant
(after settling down initially) for the duration of the inspiral,
as this will indicate a more accurate computation of horizon
masses. The lowest resolution (n084) simulations using the
G and LZ gauges show the most growth in m, (top panel) or
mass loss in m; (bottom panel), while the G nl20
simulation holds both masses most constant over time.
The n100 LZ gauge shows a relatively large dip in m, mass
between ¢ = (800 — 1200)m, which is consistent with our
findings for the ¢ = 1/15 binary. The n =2/m nl100
simulation holds m, constant until # = 800m and then
begins to grow at the same rate as the LZ n084 simulation.
In m;, n=2/m begins with mass loss from = (0—
200)m then stays relatively constant until = 1100m
where it begins to lose mass again. While not prohibitive
to the completion of this particular simulation, this mass
loss in the small black hole might pose issues at lower
resolutions or mass ratios.

To assess continuity of the horizon mass parameters
quantitatively, we performed a linear fit to the data for each
simulation over the inspiral period = (100 — 1000)m.
The results of this fit are given in columns 3 and 5 of
Table V with the root mean square error as in (35).

The LZ n084 m; and m, have slopes of A; = —0.2529 x
1077 and A, = 0.2332 x 1077 (respectively), whereas G
has slopes A; = —0.1354 x 1077 and A, = 0.6370 x 1077,
The slope of m, is most constant using LZ, as well as has
the lower error. However, the more difficult to resolve black
hole is the smaller horizon, whose mass is better computed
using the G gauge.

Asresolution increases, so does the stability of the masses
of each black hole; using G at n100 provides horizon mass
measurements that are closer to constant as well as using
n =2/m; however, because of the dip using LZ at
t = (800 — 1200)m, the slopes for LZ n100 are similar to
those of n084. The G n100 gauge matches the G n120 gauge
well throughout most of the inspiral period. However, n =
2/m exhibits growth in the mass that is superlinear and is
reflected in the increase in root mean squared error between
the horizon masses in G and 7 = 2/m (n100), respectively at
€/ =0.1507 x 107® and €5 = 0.0402 x 10, and at

e™ = 04051 x 107+ and 2™ = 0.0407 x 1076, A full
list of the mean slopes of the horizon masses and their
corresponding errors can be found in Table V.

In Fig. 13, the amplitude of the gravitational wave scalar
‘Pi’z is plotted versus time for all seven simulations. The top
panel shows the early part of the waveform, from
t = 75-135m. Between t = 90-100m, there is noise in
the LZ simulations that is damped by the G and 7 = 2/m
simulations across all resolutions which is consistent with
our findings for the ¢ = 1/15 and ¢ = 1/7 binaries. This
means that smaller mass ratios benefit significantly from
the use of an adaptive gauge like G or a constant choice like
n = 2/m. However, recall that lower resolutions of 7 =
2/m may require at least increases in time resolution (via
CFL) which are not necessarily computationally practical,
especially as mass ratios decrease.
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FIG. 12. Horizon masses for m, (top) and m; (bottom) versus
time for the ¢ = 1/32 simulation with the different choices for mz,
G, LZ, and = 2/m. The dashed, dot-dashed, and solid lines are
the low n084, medium n100, and high n120 resolutions respec-
tively. The horizon masses m; and m, deviate from constant most
dramatically when the LZ gauge is used. Both the 7 = 2/m and G
gauges maintain the mass of the horizon well over the course of the
simulation, except at the lowest resolution n084.

The bottom panel of Fig. 13 shows the inspiral period of
Y22 from ¢ = (200 — 900)m. Compare the low resolution
G (n084, red dashed) and the n100 (blue, dot dashed)
resolution of the same gauge between 400m and 450m. The
nl00 curve shows noise reflected at the mesh refinement
boundary, but the G n084 curve seems to damp this noise.
This is due to n084 under-resolving the grid, which is also
the cause of the increase in initial noise between LZ n084
and n100. The high-frequency oscillations occurring from
the subsequent reflection between ¢ = (500 — 600)m also
do not appear in the G n084 simulation, whereas they do in
the G n100 and G n120 simulations, which supports the
hypothesis that n084 has too few gridpoints to properly
resolve the system.

The LZ gauge in n084 (blue, dashed) shows high
frequency oscillations over the course of the inspiral, which
are somewhat damped by increasing the resolution to n100
(blue, dot-dashed). The G nl00 simulation (red, dot-
dashed) exhibits less oscillatory behavior when compared
to the waveform in the other gauges, n = 2/m and LZ, at
resolution n100.

For smaller mass ratios, comparing the waveforms in the
near-merger inspiral and ringdown phases is also a good
method of quantifying gauge performance. Figure 14
shows two different sections of the amplitude of the
gravitational wave strain h,, for the g = 1/32 binary,
using the G, LZ and # = 2/m gauges at resolution n100,
extrapolated to an observer at co. The merger times for all
simulations are matched for easy comparison. The top
panel of Fig. 14 shows the inspiral portion of the waveform,
from ¢ = (300 — 1300)m and the bottom panel shows the
ringdown period post-merger from z = (1500 — 1530)m.

In Fig. 14, we are interested in comparing the effects of
the different gauges on low frequency oscillations before
and after merger. Using the constant choice n =2/m
introduces low frequency oscillations in the inspiral portion
(top panel) of the strain £, , that are damped by choosing an
alternative, variable gauge such as G or LZ. This suggests
that using a gauge with peaks at the black holes resolves the

TABLE V. The slopes (A, columns 3 and 5) of linear fits to the horizon masses m; and m, computed over the inspiral ¢ =
(0 — 1000)m for the ¢ = 1/32 binary using 7 = G, LZ, and 2/m. Error is calculated via root mean square error over the interval, and is
shown in columns 4 and 6. The time frame is chosen so a linear fit is a reasonable approximation of the mass curves. The G and LZ
simulations have 3 resolutions: n084, n100, n120, and the # = 2/m simulation has 1 resolution: n100. The G gauge provides an effective

gain in resolution of a factor of 2 in the horizon mass.

Kt my
Gauge Resolution A x 1077 err. x1076 A x 1077 err. x10™*
G n084 —-0.1354 0.0977 0.6370 0.0222
Lz n084 —-0.2529 0.5638 0.2332 0.0275
2/m n100 —0.0410 0.4051 0.2620 0.0407
G nl100 —0.0231 0.1507 0.1739 0.0402
LZ nl100 —0.0310 0.2049 —0.5344 0.1673
G nl120 —0.0163 0.1054 0.0659 0.0171

104068-13



ROSATO, HEALY, and LOUSTO

PHYS. REV. D 103, 104068 (2021)

106 Amplitude w27 q=1/32

= = = Gn084
= = =L1Zn084
25F 7=2 n100

22
| 422
[92)

05

120 130

time (m)
Amplitude 22 q=1/32
(% mplitu s
177 .
= = =G n0g4 I
16} |~ = =Lznoes 3
7#=2n100 /

22
Il-L’4

200 300 400 500 600 700 800 900
time (m)

FIG. 13. The amplitude of the ¥, waveform of the ¢ = 1/32
binary extracted at an observer located at » = 113m. Top: early
part of the waveform from ¢ = (75 — 135)m. Bottom: inspiral
period from ¢ = (200 — 900)m. Higher frequency noise of the LZ
gauge is apparent at ¢ ~ (90 — 100)m, which is damped by the G
and n = 2/m gauges. Refinement boundary reflections of the
high frequency noise are apparent in the second panel, which
shows a longer inspiral.

binary’s dynamics well in the strong field region, effec-
tively damping oscillations in the gauge that propagate
from the black holes. The ringdown phase (bottom panel)
shows significant oscillations in gravitational waveforms
that use the LZ gauge. Using n =2/m or G produces
waveforms without these oscillations, which suggest that
the low frequency oscillations come from the choice of
gauge itself. We are currently investigating a gauge that
uses G for the inspiral and then flattens to a near-constant
n = 1/m post-merger, i.e., Eq. (31) with n = 2.

As a follow up to [16], we would like to investigate the
effects of different gauge choices on the horizon quantities
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FIG. 14. Inspiral (top) and ringdown (bottom) periods of the

gravitational wave strain &, , of the mid-resolution simulations of
the ¢ = 1/32 binary using the G, LZ, and = 2/m gauges. In the
inspiral, the waveform using the n = 2/m gauge exhibits oscil-
latory behavior which is not present in either of the variable
gauges. However, post-merger, the waveform using LZ exhibits
oscillations, whereas the G and 7 = 2/m waveforms do not. This
suggests that a variable gauge is useful during inspiral, and a
more constant gauge is most effective post-merger.

of small mass ratio binaries as well. Table VI shows the
results of this study. It includes all seven runs with mass
ratio ¢ = 1/32 (3 resolutions for G and LZ, and one for
n =2/m) as well as a 3-point extrapolation to infinity in
the row labeled noo and the order of convergence (CO)
where they exist. The Horizon columns show the results of
the energy and angular momentum calculated using the
isolated horizon formulas, and the Radiated columns show
the results of calculating the same three quantities as carried
away by gravitational waves.

Our new gauge G does a good job of measuring mass and
angular momentum on the horizon when compared to its
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TABLE VI. For the ¢ = 1/32 binaries using G, LZ, and
n = 2/m, the resolutions are given in column 2. The horizon
quantities (energy and angular momentum) are in columns 3 and
4, and the corresponding radiated quantities are in columns 5-7.
All simulations use CFL=1/4 and eighth order finite differencing
stencils. The G gauge does a good job of measuring the horizon
mass and spin, however, the horizon linear momentum requires
high resolution to approach the radiated linear momentum.

Horizon Radiated
Gauge Resolution E/m  J/m?> E/m J/m*> L (km/s)
G n084 0.9979 0.0985 0.9979 0.0982 8.4673
n100 0.9979 0.0972 0.9979 0.0979 9.7856
nl120 0.9979 0.0977 0.9979 0.0978 9.9423
noo 0.9978 0.0976 0.9979 0.0977 9.9634
CO 2.00 442 482 6.04 11.68
Lz n084 0.9979 0.0974 0.9979 0.0978 7.3265
nl00  0.9979 0.1002 0.9979 0.0978 9.5137
nl20  0.9979 0.0967 0.9979 0.0976 9.7311
noo 0.9979 0.0973 0.9980 0.0971 9.7551
CO 4.23 15.04 090 0.06 12.66
2/m n100 0.9979 0.0976 0.9979 0.0978 9.3891

radiated counterpart. The horizon energy and radiated
energy converge to the same value (within 107*), as do
the horizon and radiated angular momentum.

However, at the resolutions we used for these simula-
tions, G, and our typical variable gauge, LZ, do a very poor
job of measuring kick on the horizon when compared to the
linear momentum carried away by gravitational waves.
For this reason, we have chosen to omit these results
from Table VI. It is worth mentioning that G performs
slightly better, at least reaching the correct order by the
highest resolution—20.85 km/s measured on the horizon vs
9.94 km/s measured at infinity, where LZ estimates
219.96 km/s instead of 9.73 km/s. For both G and LZ,
the approximation does improve with resolution; however
for an accurate measurement of horizon linear momentum
we need to increase the resolution again to nl44. The
constant gauge n = 2/m, was only simulated for one
resolution, n100, of ¢ = 1/32; because of the increase
in CFL that was required for the lowest resolution
g = 1/15, we have discounted 7 = 2/m as a viable option.

D. Results for a ¢=1/64 and ¢=1/128
nonspinning binary

We also performed a study on an extremely small mass
ratio, nonspinning binaries with ¢ = 1/64 and ¢ = 1/128
and an initial binary separation of D = 7m. The simula-
tions use a Courant factor of 1/4 as well as eighth order
finite differencing stencils. The ¢ = 1/64 was run with two
resolutions (n084, n100) in the LZ gauge and one reso-
Iution (n100) in the G gauge. As a follow up to [12], the
g = 1/128 n100 simulation in the LZ gauge generated for
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FIG. 15. Horizon masses for m; and m, versus time for the

g = 1/64 simulation. The masses in the LZ gauge are shown in
two resolutions n084 and n100, and the masses in the G gauge are
shown in only n100. The masses using G are more constant than
their counterparts that use the LZ gauge, especially in the case of
the small black hole m;.

that work is included here to compare with preliminary
results for the n100 G gauge.

In Fig. 15, the masses measured on the horizon of the
black holes (top: m,, bottom: m) are shown for ¢ = 1/64.
The LZ gauge is in blue and the G gauge is in red with
different resolutions denoted by different line types. In m,,
both gauges produce masses that are similarly constant at
our typical production resolution of n100. The resolution
n084 is quite a bit under-resolved for this extremal
simulation, and therefore the LZ gauge does not do a good
job of maintaining constancy in either m; or m,. However,
the smaller black hole m; is more difficult to resolve, and
using the G gauge at n100, its mass is held more constant
than using the LZ gauge at the same resolution.

For the more extreme mass ratio binary, ¢ = 1/128, we
will consider only the early part of the n100 simulation in
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FIG. 16. Horizon masses for m; and m, versus time for the
g = 1/128 simulation. The masses in both the LZ and G gauges
are shown in only n100. The large black hole m, using the LZ
gauge is held slightly more constant than its counterpart that uses
the G gauge; however the LZ gauge simulation has significantly
more noise than the G gauge one.

the G gauge; the simulation was not run through merger.
This will be compared to a full simulation of the binary in
the LZ gauge since it was completed for [12]. These runs
are very computationally difficult to do, but comparing the
results of the early part of the simulations will give us a
good idea of the benefits of using G instead of LZ here.
Figure 16 shows both horizon masses versus simulation
time in the G and LZ gauges in one resolution (n100). Since
nl00 is still under resolved for the ¢ = 1/128 binary,
neither m; nor m, is held constant. However, m, in the LZ
gauge has slightly less mass gain than in the G gauge,
whereas the G gauge has a significant reduction in
noise over the LZ gauge. Neither gauge prevents mass
loss/gain in m; in order to see benefits of the G gauge it is
likely we would need to increase resolution by at least a
factor of 1.2 (to n120).
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FIG. 17. The amplitude of the ¥, waveform of the ¢ = 1/64
extracted at an observer located at r = 113m. Top: early part of
the waveform from ¢ = (75 — 135)m. Bottom: inspiral period
from ¢ = (200 — 900)m. Higher frequency noise of the LZ gauge
is apparent at t ~ (95 — 100)m, which is damped by the G and
n = 2/m gauges. Refinement boundary reflections of the high
frequency noise are apparent in the second panel, which shows a
longer inspiral.

Figure 17 shows the amplitude of the gravitational wave
scalar W3 versus simulation time for the three different runs
with mass ratio ¢ = 1/64. The top panel shows the early part
of the inspiral, and the numerical noise present when the LZ
gauge is chosen is visible again between ¢ = (95 — 100)m;
however it has decreased substantially in amplitude. Using
the G gauge damps this noise completely, as well as reduces
other oscillations present in the LZ gauge simulation with
n100 resolution (blue, dot-dashed) at r = 150m.

The bottom panel shows the inspiral period of ‘Pi’z from
t = (200 — 800)m. The simulation with the LZ gauge in
resolution n100 has high frequency oscillations between ¢ =
(200 — 500)m which are nonphysical. These are damped
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FIG. 18. The amplitude of the ¥, waveform of the g = 1/128
extracted at an observer located at r = 113m. Top: early part of
the waveform from 7= (75 — 135)m. Bottom: inspiral period
from ¢t = (200 — 800)m. Higher frequency noise of the LZ gauge
is apparent at t ~ (95 — 100)m, which is damped by the G and
n =2/m gauges. Refinement boundary reflections of the high
frequency noise are apparent in the second panel, which shows a
longer inspiral.

away almost completely by making the choice of G for mn.
There are reflections of noise at the grid refinement
boundaries visible between t=(300—400)m and t = (500—
600)m.

Similarly, we can consider the effects of the different
gauges on the inspiral period of the ¢ = 1/128 binary. In
contrast to the horizon masses, when the gravitational
waveform is considered, the G gauge shows obvious
improvement over LZ. Figure 18 shows the inspiral from
t = (75 — 135)m in the top panel and 7 = (200 — 800)m in
the bottom panel using both G and LZ in resolution n100.
In the top panel, between ¢ = (95 — 100)m, we can see an
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FIG. 19. Inspiral (top) and ringdown (bottom) amplitudes for

the ¢ = 1/64 binary using the G and LZ gauges with resolutions
n084 and n100. There is no clear difference between gauges in
the inspiral; however, in the ringdown period, /,, using the LZ
gauge exhibits oscillations that are larger in amplitude and
slightly higher in frequency than h,, using the G gauge.

initial burst of nonphysical noise that is consistent with our
results for all other mass ratios. This is damped by choosing
the G gauge, which is hugely beneficial for such a
demanding simulation.

The bottom panel of Fig. 18 shows the inspiral period of
‘{‘3'2 up to just before merger. In the LZ gauge, there is a
substantial amount of high frequency noise present in the
waveform until about t = 600m. Using the G gauge, this
noise is almost completely damped, producing a cleaner
and more accurate gravitational waveform for no increase
in computational expense.

As the mass ratio of the binary decreases, the inspiral and
ringdown oscillations in the dominant mode of the gravi-
tational wave strain increase in amplitude. Consider Fig. 19;
The top panel shows the inspiral, r = (250 — 950)m of h, ,
for ¢ = 1/64 using gauges G and LZ in resolutions n084 and
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TABLE VII.  The horizon quantities for the ¢ = 1/64 binary using the G and LZ gauges and the ¢ = 1/128 binary using the LZ gauge.
The remnant quantities for the ¢ = 1/128 binary in the G gauge are not included since that simulation was not run through merger. The
resolutions are given in column 3. The horizon quantities (energy and angular momentum) are in columns 4-5, and the corresponding
radiated quantities are in columns 6-8. All simulations use CFL=1/4 and eighth order finite differencing stencils. The G gauge does a
good job of measuring the horizon mass and spin, however, the horizon linear momentum requires high resolution to get close to the

radiated measure, and is therefore not shown.

Horizon Radiated
q Gauge Resolution E/m J/m? E/m J/m? L (km/s)
1/64 G n100 0.9990 0.0529 0.9990 0.0516 2.8065
1/64 Lz n084 0.9990 0.0457 0.9990 0.0516 2.7216
1/64 |74 n100 0.9990 0.0519 0.9990 0.0516 2.4303
1/128 LZ n100 0.9996 0.0239 0.9995 0.0267 0.9703

n100. Both G and LZ produce low-frequency oscillations in
the inspiral. As shown in the dot-dashed curves, these
oscillations are comparable, but small, in amplitude at the
production resolution n100. This is consistent with our
findings for the ¢ = 1/32 binary, and is further evidence of
the benefit of using a variable gauge during inspiral.

The bottom panel of Fig. 19 shows the ringdown phase
of the evolution from 7= (1020 — 1070)m. The oscilla-
tions in the ringdown of the simulation with the lowest
resolution in the LZ gauge are fairly severe; however they
damp away with an increase in resolution to n100. With the
use of the new G gauge, the oscillations in the ringdown of
h,, are decreased in both frequency and amplitude when
compared to the corresponding ringdown in £, using the
LZ gauge. We expect further improvements could be made
with a gauge that has a near constant value postmerger, or
an increase in resolution up to nl144.

For such computationally demanding simulations as g =
1/64 and g = 1/128, the ability to accurately measure
horizon quantities at lower resolution has substantial
benefits in terms of computational expense. Table VII
shows the energy and angular momentum as measured on
the horizon (columns 3 and 4), as well as the same
quantities calculated from the amount of each carried away
by gravitational waves (columns 5 and 6). It also includes
the kicks for these simulations, but only measured by the
amount of linear momentum carried away by gravitational
waves (column 7). This measurement of linear momentum
is significantly more consistent than using the measurement
on the horizon, so those results are not included since they
are not the main focus of this work. An improvement in the
horizon measure of linear momentum would require an
increase in resolution to n120 or even nl144 which is not
necessarily practical for such a small mass ratio binary.

This is consistent with our findings in for the ¢ = 1/32
binary, where the use of G and LZ to compute horizon
linear momentum does improve with resolution but
requires higher resolution simulations than those performed
here. This can be combined with our findings in [16], in
which a low-value constant 7, such as 1 or 0.5, was able to
very accurately measure recoil velocity on the horizon even

at low resolutions, to construct a variable gauge that damps
to a constant 7 postmerger.

However, the other horizon quantities (mass and angular
momentum) are also measured very accurately in both the
G and LZ gauge. The exception, of course, is when
resolution is too low (n084) to properly resolve the grid.
There is an obvious improvement with respect to resolu-
tion, and an increase to n120 would likely produce horizon
quantities that are on par with their radiated counterparts.

E. Noise/spurious radiation versus mass ratio

The study of waveform amplitudes and phases can also
provide an invariant measure of accuracy of the full
numerical simulations. It has already been mentioned that
this new gauge G completely damps the initial burst of noise
at the beginning of the gravitational waveform, present when
the LZ gauge is used, as well as its subsequent reflections at

Amplitude of Noise/Amplitude of Spurious Radiation

r=113m
2 -
® qg=17 g
181 @ q=11s ¥
q=1/32 ,'
16| ® g=t/e4 ,
® g=1/128 ’
1.4 [ |= 4 = Power Law Fit 4
5 ’
= L 4
E 1.2 ’
k= ’
(9]
x 1
e ‘,
(2] ’
5 08 e
z 7’
L ’
0.6 7
"
0.4 -
& -
02l g-="" %
o Lo : . . :
1/128 1/64 1/32 115 17
q

FIG. 20. The data points show the ratio N peu/Speax Of ‘Pﬁ‘z
extracted at r = 113m for each mass ratio ¢g. The black line is a
power law fit to the data F(g) = 9.9753¢%%%7. Errors are shown
in Table VIIL
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the refinement boundaries. In fact, this noise can be
shown to be inversely proportional to the size of the peak
in the spurious radiation generated at the beginning of the
waveform due to initial data. Figure 20 shows the peak
amplitude of the noise in p22 N peak» Over the peak
amplitude of the spurious radiation in ‘I‘Z’z, Speak- for each
massratiog = 1/7,1/15,1/32,1/64, and 1/128, extracted
at r = 113m. This figure uses the n100 simulations since
we have those for every mass ratio. We can generate a
power-law fit that is a function of the mass ratio g, which
takes the form

F(q) = Pq", (36)

where m = 0.8557 4+ 0.0448 and P = 9.5739 4 0.0463 are
dimensionless constants. The fit has errors at each data point
shown in Table VIII. Although the absolute difference
between the fit and data points scale with ¢, the relative
error increases as g gets smaller. If we had higher resolution
simulations for the smaller mass ratios, likely they would
show that \/ peak/ Speak does in fact follow a power law. This
means that the noise is in fact reduced significantly in
amplitude in the small ¢ regime.

IV. DISCUSSION AND CONCLUSIONS

The gauge choices were crucial to the moving punctures
breakthrough formalism that allowed numerical relativists
to successfully evolve binary black holes [2,3]. Here we
explored choices of the initial lapse o, and shift f, as well
as the damping parameter # in Eq. (2).

In the construction of the waveform catalogs [6,7,46] we
used a Courant factor of 1/3 and sixth order spatial finite
differencing for nonhighly spinning and comparable masses
binaries evolutions. This prioritized speed of the creation and
therefore population of the initial catalogs to evaluate
gravitational waves events observed by LIGO and Virgo
[48]. For highly spinning binaries [35,37,49] and the small
mass ratio systems we study here (¢ < 1/32) require a
reduction of the Courant factor to 1 /4 and the use of 8th order
finite differencing stencils to achieve good accuracy [14].

In our study of the improved choices of the initial lapse
and shift inspired by their late time behavior we found some
benefits in introducing the initial lapse as described in

TABLE VIII.  The absolute and relative errors between F(g) for
all g and NV jeq/Speax and standard deviation for ‘I‘i’z extracted at
r = 113m using resolution n100.

q |F(q) - |Npeak/8peak| %m
1/7 0.1012 0.0529
1/15 0.0367 0.0405
1/32 0.0260 0.0500
1/64 0.0511 0.2308
1/128 0.0229 0.1321

Sec. IT A. In some preliminary studies we did on non-
spinning binaries using an initial shift different from zero,
we found the shift damped quickly to zero and then
oscillated around zero during the binary’s evolution before
settling to the proposed initial form, without any obvious
improvements to the system’s physical parameters.

For comparable mass binaries of ¢ > 1/15, the damping
parameter # is chosen to be a small, but constant value of
order unity. Reduction of the mass ratio of the binary to
g = 1/15 and beyond benefits from the # variable in order
to counteract the so called grid stretching produced by the
growth of the horizon in the numerical coordinates (See
Fig. 10) and thus depleting those gridpoints to resolve the
fields in the exterior of the black holes. Of course, one can
compensate by introducing more points via higher reso-
lutions, but this comes at an increased computational cost.

The form of this damping parameter # = G given in (31)
provides a good general form valid for a wide range of mass
ratios ¢. In addition to better maintaining of the physical
parameters such as mass and spin, this choice of 7 also
removes unwanted initial noise in the waveforms, as well as
its corresponding reflection on the mesh refinement levels
when compared the alternative original choice [10,12], [See
also (30) as displayed in Figs. 11 and 13]. We have also
found that the computational cost of introducing a variable
n is negligible compared to the whole evolution system of
equations; the change is within 5% of the speed of the #2/m
and is about 10% faster than choosing LZ.

The constraint violation studies we performed are a
useful measure of convergence with numerical resolution
within a given gauge, but are not so useful when comparing
different gauges. We chose then to turn to analysis of
physical parameters to determine the benefits of using
different gauges. The conservation of the horizon masses
and spins (as shown in Figs. 7 and 9) are a gauge
independent measures of the accuracy of the simulations
(Since absorption is an order of magnitude smaller of an
effect during inspiral and merger). The evaluation of the
horizon recoils also benefits from the property that G — 1
far from the black holes, as shown in Table IV.

Additionally, we have looked in particular to the ampli-
tude’s behavior pre- and postmerger (see Figs. 14 and 19).
To this end we have also introduced the n = 2 in the 7,
choices in (31) and Fig. 5 that smooths the values of 7
around the smaller horizon, once the binary forms a
common horizon (from when we normally drop the inner-
most refinement level).

In conclusion we recommend the use of the choices
(ag, o = 0,5) parameters for the moving puncture evo-
lutions due to its reasonable computational cost as well as
the simplicity of its implementation. This gauge choice
shows a wide range of improvements when dealing with
essentially all possible mass ratios, g < 1.
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APPENDIX: INITIAL LAPSE AND SHIFT FOR
BOOSTED AND SPINNING BLACK HOLES

In this section we supplement the initial lapse and shift
choices based on Lorentz boosted and Kerr spinning
black holes.

Lorentz-boosted black holes: Since we are considering
binaries with initial orbital momentum, it is of interest to
include corrections in the configurations of the initial lapse
and shift that account for this.

To construct initial lapse data for a black hole system
with boost, the conformal factor y is modified so that its
order 1 term is multiplied by the boost

1

where |v| is the magnitude of the boost velocity. The
conformal factor becomes

ym

=1 .
Yo +2r

It is then used in Eq. (4) to calculate the initial
boosted lapse.

To construct initial shift data for a black hole system with
boost, we must calculate the shift term from a boosted
Schwarzschild black hole metric in Cartesian coordinates.
Then, A terms can be added linearly onto the unboosted
terms in Eq. (27).

First, take the unboosted Schwarzschild metric

—(@? 0 0 0
0 we 00
0 0 yj O
0 0 0

9w =

then apply a general boost transformation A} on the
metric g,

G = NN Gog (A2)
where
v —v1y —yy —v3y
—1)2? “Dv, v, _ |
—vy 1+ (7‘1}‘37’1 (r ‘11})|;17)_ (r ‘11))‘;)103
Ay = —1)v,v —1)02 —1
H —0yy (r |1;)|£211 1+ (V‘U‘g 2 (r ‘U)‘gzva
—1)vyv —1Dvyv —1)0?
| —vsy (r |1y)|23 1 (r ‘11})|23 2 1+ (}’ll}lzl}
(A3)

Then, the shift can be read off from the inverse spatial
metric 77 as

0 T T T T
1.2 1.4 1.6 1.8 2

-0.02 1

-0.04 1

-0.06 1

-0.08 1

-0.10-

FIG. 21. For small r, #7 for an initial velocity v = 0.1 versus
wo = 1 + m/(2r). The horizon of this Schwarzschild black hole
is located at y; = 2 and spatial infinity is at y, = 1. We see that
the shift decays slowly, like yo — 1.

104068-20



ADAPTED GAUGE TO SMALL MASS RATIO BINARY BLACK ...

PHYS. REV. D 103, 104068 (2021)

f=—" (A4)
vl =g
for wo(m,r) =1+ n(m,r) = % = Uy.p, and
T m

where P’ are the momentum components of the boost. The
terms /3 (see for instance Fig. 21) are added linearly onto
the corresponding terms in Eq. (27) to construct an analytic
representation for a boosted, nonspinning BBH system.

We can try to force a stronger fall-off via asymptotic
matching or an attenuation function. Another alternative is
to directly consider the trumpet Initial Data for Boosted
Black Holes: See details in Ref. [50]. For trumpet Slices in
Kerr Spacetimes, see details in Ref. [51].

Spinning black holes: To construct initial lapse data for a
black hole system with spin, the conformal factor vy is
modified so that its leading order term includes the
magnitude of the spin a = S./m?.

L A9

p (A9)
|

h=-T%p, (A10)
p

where r is the quasi-isotropic radial coordinate, 7 is the
Boyer-Lindquist radial coordinate, and the spin a = S, /m?.
The shift can be read off as

Bi = oi (A11)

for i spatial. In practice,

B =v"B (A12)
is used. The shift components also must be rotated so that
they are valid for arbitrary spin orientations, not just spins
along the z — axis. To do this, we can do three rotations of
the shift vector and then sum up the results:

yVm? +a® 73z, (A13)
wo =1+,
2r
. . i Y=y, (Al4)
It is then used in Eq. (4) to calculate the initial
boosted lapse.
To construct a spinning initial model for the shift, as in r=x (A15)
the boosted case, the spin terms are added linearly onto the
boosted initial model for the shift. They are calculated from (A16)
the conformal Kerr metric in Cartesian spacetime
7= X, (A17)
(c—1)r*/p* acy/p*  —aox/p* 0
_ acy/p? 1 +a*hy*> —a’hxy 0 y=s (A18)
I —acx/p? —a’hxy 14+ad*hx*> 0
X = —Z. (A19)
0 0 0 1
(A5) (A20)
with coordinates x* = (z,x,y,z) and 7=y, (A21)
r=\/x>+y>+ 72, (A6) y—= -z (A22)
_ m-+a m— A23)
= (1 I , AT X—x (
rr<+2r)<+2r) (A7)
o az\2 (A24)
pr=r+—, (A8)
r These rotations produce
|
ﬁx _ axagxyzf)gax(l + Gz) —P;zc<_‘1zrz)7/’§‘7z + ayzay(ﬂp% + (azx>2(l + O-z)) , (A25)

(pxpy)*((rpy)* + az (x> 4+ y*)(1 + o)
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_ azpion(rip: + azy* (1 + 0.)) — axpi(riplo; + aya;yzo,(1 + 07))

i , A26
oy - @02 301 + ) (A26)
—a,yc, a,xo,
5= p_,zy yp o (A27)
X y

as the spin-corrected terms for the Kerr initial shift.
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