Analyzing Patterns in Student SQL Solutions via
Levenshtein Edit Distance

Ziyuan Wei
University of Illinois at
Urbana-Champaign
ziyuanw2 @illinois.edu

Geoffrey L. Herman
University of Illinois at
Urbana-Champaign
glherman @illinois.edu

Sophia Yang
University of Illinois at
Urbana-Champaign
sophiay2 @illinois.edu

Abdussalam Alawini
University of Illinois at
Urbana-Champaign
alawini@illinois.edu

ABSTRACT

Structured Query Language (SQL), the standard language for
relational database management systems, is an essential skill
for software developers, data scientists, and professionals who
need to interact with databases. SQL is highly structured
and presents diverse ways for learners to acquire this skill.
However, despite the significance of SQL to other related
fields, little research has been done to understand how stu-
dents learn SQL as they work on homework assignments. In
this paper, we analyze students’ SQL submissions to home-
work problems of the Database Systems course offered at the
University of Illinois at Urbana-Champaign. For each stu-
dent, we compute the Levenshtein Edit Distances between
every submission and their final submission to understand how
students reached their final solution and how they overcame
any obstacles in their learning process. Our system visualizes
the edit distances between students’ submissions to a SQL
problem, enabling instructors to identify interesting learning
patterns and approaches. These findings will help instructors
target their instruction in difficult SQL areas for the future and
help students learn SQL more effectively.

Author Keywords
SQL; database education; online assessment

CCS Concepts
*Applied computing — Education; *Social and profes-
sional topics — Computer science education;

Introduction
The Structural Query Language (SQL) is the defacto data
management language that is supported by most Database

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

L@S °21, June 22-25, 2021, Virtual Event, Germany.

© 2021 Copyright is held by the author/owner(s).

ACM ISBN 978-1-4503-8215-1/21/06.

http://dx.doi.org/10.1145/3430895.3460979

Management Systems [4]. Acquiring SQL skills is vital since
this declarative, highly structured query language is the dom-
inant database language [6]. Due to its English-like syntax,
learning SQL does not depend on expertise in other program-
ming languages, making it much more accessible for beginners.
However, beginner SQL learners often experience several dif-
ficulties acquiring this skill [6]. However, little research has
documented examining how students learn SQL and the diffi-
culties they face in their learning journey.

To examine how students learn SQL, database instructors often
manually analyze student submissions to a given SQL problem.
For instructors who use auto-graders, there is an excellent
opportunity for tracing all attempts of a student to solve a
problem, giving great insights on how students progressed
toward the correct solution. Gaining such insights would help
instructors determine what SQL concepts students struggle
with and adjust their course plan to mitigate these struggles.
The questions then become 1) how do students learn SQL? and
2) how can we empower instructors to teach SQL effectively
and with adaptability to tailor to different students?

Our research questions originated from a desire to improve
students’ educational quality working on SQL in the Database
Systems course offered at the University of Illinois at Urbana-
Champaign. The Database Systems course has more than 400
students. Students in this class are given multiple SQL in-class
exercises and a homework assignment containing 10-15 SQL
problems. The instructor cannot quickly identify class-wide
struggle areas in SQL or pinpoint students who are challenged.
Due to the class size, the number of submissions is too large
to analyze manually as, on average, a student can submit well
over 20 submissions on a single problem.

Research shows that students take different learning paths,
and with the instructors’ ability to identify the way students
learn, students’ learning experience can be improved signifi-
cantly [5]. To that end, this paper introduces a technique for
analyzing students’ progress as they solve an SQL problem.
This technique uses Levenshtein Edit Distances to compute
the distance between students’ every submission and their
final submission to understand how they reached their final
solution. We examine students’ submissions to homework

assignments offered in the Spring 2020, Summer 2020, Fall
2020, and Spring 2021 semesters. Our system visualizes the
edit distances of all submissions of a student working on an
SQL problem. These visualizations enable instructors to iden-
tify interesting learning patterns and approaches, which will
help them target their instruction in difficult SQL areas for the
future and help students learn SQL more effectively.

Related Works. QueryViz is a novel visualization tool for SQL
queries that reduces the time needed to read and understand
existing queries [3]. However, we allow instructors to examine
changes in students’ solutions between submissions, identi-
fying new approaches students used to solve a problem. The
SQL-Tutor is essentially a support platform for giving students
a path to the correct solution [6]. However, using this feedback
system may limit the student’s creativity and problem-solving
skills. Our research analyzes how the students approached the
SQL problem as they gradually developed the correct answer.
Ahadi et al. conduct work [1] that measured difficulty by ex-
amining whether a student reached the correct solution instead
of looking at how each student conquered their obstacles and
made progress toward the right solution with each submission.
Cagliero et al. worked on errors and difficult SQL areas that
troubled the students in an aggregate form [2]. This seems
helpful for instructors to have a quick overview of challeng-
ing areas for students but fails to deliver upon answering the
question of how students overcame the difficulties they faced.
In our research, the main difference is we compute the Lev-
enshtein Edit Distances between each students’ submission
with their final submission to gain a deeper understanding of
why the students made the specific amount of changes they
did before their next submission.

Data Collection

We collected data from CS 411, a Database Systems course
offered at the University of Illinois at Urbana-Champaign.
Due to the COVID-19 pandemic, instruction for Spring 2020,
Summer 2020, Fall 2020, and Spring 2021 semesters have
been delivered remotely following a flipped-classroom model.
Students review prerecorded lectures and answer a short quiz
about the lecture. Students work on group exercises during
the class meeting time to solidify their understanding of the
prerecorded lectures. They also worked on a week-long period
to complete the relevant homework assignment. Course en-
rollment was as follows: 303 Spring 2020, 223 Summer 2020,
403 Fall 2020, and 417 in Spring 2021.

Description of Homework Assignments. We collected our
data in an online learning management system that auto-grades
code and immediately gave students feedback regarding their
submission. The online learning management system com-
pares the student solution query’s output datasets with the
expected solution’s outputs to validate the students’ solutions
on a binary grading scale. If the student query passes some
test cases, students are notified that their work was partially
correct. However, the students would not yet receive credit
for their work. The student can see both the actual data table
produced by their own submitted query and the desired data ta-
ble output. If the students’ solution was incorrect, the student
might provide a different query until the deadline, until they

answer the question correctly, or until they choose to move on.
The students may re-answer any questions they have gotten
credit for to test if a different solution query that outputs the
same data table result exists. An example of an SQL problem
(Spring 2021) and its instructor solution is shown below.

Write an SQL query that returns the ProductName of
each product made by the brand ’Samsung’ and the num-
ber of customers who purchased that product. Only count
customers who have purchased more than 1 Samsung
product. Order the results in descending order of the
number of customers and in descending order of Product-
Name.

SELECT Prl.ProductName, COUNT(Cl.CustomerId) as
numCustomers
FROM Products Prl NATURAL JOIN Purchases Pul NATURAL JOIN
Customers C1
WHERE Prl.BrandName = 'Samsung'
AND C1.CustomerId IN (
SELECT C2.CustomerId
FROM Customers C2 NATURAL JOIN Purchases Pu2
NATURAL JOIN Products Pr2
WHERE Pr2.BrandName = 'Samsung'
GROUP BY C2.CustomerId
HAVING COUNT(C2.CustomerId) > 1

)
GROUP BY Prl.ProductName
ORDER BY numCustomers DESC, Prl.ProductName DESC;

| Array of edit |
i = | distances !
Pre-processing Module > ~ rrreeeeeeee
Online Learning Compute
Generate i i
Management P'e(;’";cess ol Tree Levenshtein 9> I;/ilsst::l::s
System uery Structure Edit Distance

| Queries represented
| as Tree Structures |

Figure 1. System Overview Diagram

System Overview

Figure 1 shows an overview of our system, which is mainly
composed of two parts. First, the SQL Analyzer, which
preprocesses students’ submissions and computes the
edit distance. Second, the Submissions Visualizer, which
visualizes each student based on their Levenshtein Edit
Distances between their submissions. The SQL Analyzer’s
components are the preprocessing module and the Levenshtein
Edit Distance computation module. We have preprocessed
SQL queries to remove insignificant parts in the preprocessing
module, such as comments and redundant punctuation,
including new-line characters and white spaces. The results
are then stored in a tree-like structure. We calculate the
Levenshtein Edit Distances between the students’ current
submissions and the students’ final submissions by comparing
the tree data structure containing the SQL query submissions.
The Submissions Visualizer constructs each individual’s
plot using Levenshtein Edit Distance, produced by the SQL
Analyzer, providing insights regarding the students’ learning
process.

Computing Levenshtein Edit Distance. We compute the dif-
ference between each student’s current submission and the
final submission by calculating the Levenshtein Edit Distances
between the two SQL queries’ tree structures from the previ-
ous preprocessing module. To accomplish this part, we apply
the edit distance algorithm to compute the slightest change in

the components inside the tree structures, which includes any
additions, deletions, and modifications. The SQL statement
components are separated into two groups for the computa-
tion: 1) SQL keywords (such as "SELECT" or "WHERE")
and 2) other attribute names (such as table names, aliases, and
data schema attributes). The two groups are then iteratively
computed for the Levenshtein Edit Distance. The sums are
added together to achieve the final edit distance between that
submission and the final submission.

Visualization and Findings. We use Python’s matplotlib li-
brary to visualize the edit distances’ between each student
submission for each student. The plot’s x-axis represents the
student submission number for that particular problem (sorted
in chronological order), and the y-axis of the plot represents
the Levenshtein Edit Distance between the student’s current
submission and the final submission. The last submission
usually indicates the correct solution, and the edit distance
between the last submission and itself is always zero, which
explains the dip at the end of the graph. The graph shows that
the major turning points in student submissions are reflected
by the major hikes/dips in the graph. By comparing the edit
distance graphs of each student with their SQL submissions,
we can see that students commonly use a trial-and-error or
divide-and-conquer approach, or a combination of both. For
the former approach, minor changes in the edit distance values
are detected consecutively and are usually a result of syntax
errors. For the latter approach, more significant changes in the
edit distance values are detected and are commonly a result of
semantic errors, which require a change in the approach taken.
These modifications more easily allow for more considerable
edit distances to appear.

Results
In this section, we present our findings and insights from the
visualizations generated by our system. We focus on a subset
of students who worked on the question featured in the Data
Collection Section. In Figure 2, we have the Levenshtein
Edit Distance graph that includes the edit distances between
each submission for homework question 14 and the student’s
final submission. We will analyze this case study to validate
our findings. In the first 14 submissions, the student’s SQL
query had syntax errors and would not run properly. The
queries terminated with an error message each time, targeted
at helping the student identify the issue’s source. An example
of an error that the student had received is shown here:
1052 (23000): Column *BrandName’ in field list is

ambiguous

The error had resulted from the query shown here:

Select prn, id

From (Select ProductName as prn, BrandName as br, Count(
CustomerId) as id

From Purchases natural join Products join Brands on Brands
.BrandName = Products.BrandName

Group By prn) T

Where id > 1 AND br = 'Samsung'

Order by id desc, prn asc;

The source of the error is in the second clause of the query,
where "From" is located. Because both the Products table and
the Brands table have BrandName as an attribute, it is unclear
from which table the student’s query is calling the BrandName

attribute from. One way to eliminate this error involves ex-
plicitly calling the table name, such as Brands.BrandName or
Products.BrandName.
From submission 15, the student was able to run the query
without any syntax issues. However, the resulting dataset that
was queried did not match the correct solution (semantic error).
With the higher edit distance jump from submission 14 to 15,
we detected that the student took a different approach to the
homework problem. The previous query was commented out,
and a shorter, simpler query was submitted for submissions 15
through 17. Here is submission 15:
Select pr.ProductName as prn, pr.BrandName as br, pur.
CustomerId as id
From Purchases pur natural join Products pr join Brands b
on b.BrandName = pr.BrandName
Submissions 16 and 17 have a very small edit distance com-
pared with submission 15, and we can see that 16 and 17 are
queries that build upon the approach that was taken in sub-
mission 15. Submission 16 appends the following clause to
submission 15:

Where br = 'Samsung'
Submission 17 appends this clause instead:
Where b.BrandName = 'Samsung'

The dip in the graph (Figure 2) at submission 18 indicates that

the edit distance fell back to a similar level as with submissions

1-14. With a look into the student’s solution query, we can see

that the previously commented-out approach was readopted

with a slight change that resulted in a SQL syntax error. The

student again abandoned the approach at submission 19 and

commented out the old approach, using the approach seen in

submissions 15-17. Using the automated grading system’s

feedback, the student consistently makes minor changes to the

query through submissions 19-32.

At submission 33, the spike in the Levenshtein Edit Distance

graph is explained by the student adopting a third approach

while commenting out the previous two approaches; the third

approach is highlighted here:

Select pur.CustomerId, pr.ProductId, br.BrandName

From Purchases pur natural join Products pr join Brands br
on br.BrandName = pr.BrandName;

The student attempts to build upon this third approach, trying

out different combinations of clauses previously demonstrated

in the first and second approaches until submission 47.

During submission 47, the student starts again with a fresh,

straightforward approach and cleans up the solution query,

leaving out the commented portions as shown here:

Select CustomerId, ProductName, BrandName

From Purchases natural join Products;

The student drastically adds clauses into the query at submis-

sion 49 and tries to merge clauses from earlier approaches into

this clause through a trial-and-error process. Submission 49

uses submission 47 as a sub-query:

Select CustomerId, ProductName, Count(ProductName) as nump

From (

Submission 47

Where BrandName = 'Samsung') T

Group by CustomerId;

At this point, the student appears to construct and test the sub-

query of its final solution. The query used by the student in

submissions 49-58 appears to be the sub-query in submission

59, hence the significant drop in edit distance in the submission

graph. Submission 58 is exhibited below:

W w D
o a o
o o o

N
(2
o

Levenshtein Edit Distance
o o> a o
o o o o

o

1 6 11 16 21 26

31

36 41 46 51 56 61
Submission Number

Figure 2. User 277’s visualization of SQL submissions for question 14

Select CustomerId

From (

Submission 49

) TL

Where nump >= 2;

The student makes a few minor edits in the query between
submissions 59 and 61. Submission 59 is as follows:

Select CustomerId, ProductName

From Purchases natural join Products

Where CustomerId IN (

Submission 58

) T2;

Finally, we see the last significant drop in edit distance in the
submission graph between submissions 61 and 63. This was
a result of a structural change in the query. The approaches
taken in submissions 59-61 serve as the sub-query for the final
submission, which is displayed here:

Select ProductName, Count(*) as count2

From (
Approach from submissions 59-61
) T2

Group By ProductName
Order by count2 desc,

By validating our visualizations against the student submission
queries, we can see that there are a few trends students take
to solving the homework problem. The first type builds upon
their solution from the earlier approaches through a combi-
nation of divide-and-conquer and trial-and-error. Thus, they
change their approaches throughout their submission history
and become increasingly closer to a form of the correct so-
lution. We also detect another type of trend when there are
the same consecutive edit distance values on the submission
graph. These changes usually either identify students clean-
ing up their query (removing commented-out sections, since
commented content does not count towards edit distance) or
students becoming frustrated at the SQL problem and are at-
tempting to resubmit the same incorrect solution in hopes of
passing the auto-grader tests. With these trends in mind, we
have made it easier for instructors to target tricky areas for
students through the visualizations and the learning path they
may take in working with SQL queries.

ProductName desc;

Conclusion and Future Work

We have presented a novel system for analyzing students” SQL
submissions by visualizing the Levenshtein Edit Distances be-
tween their submission entries and their final submission. Such
visuals are revolutionary to instructors for pinpointing where
students changed their approach through sharp turns in the

submission graph, since it’s unrealistic for instructors to man-
ually sift through all the submissions in a large class. Building
upon this system, we plan to utilize global sequence alignment
algorithms within a two-dimensional dynamic programming
array; this will explicitly highlight the path regarding how the
student constructed their solution and provide deeper insights
of an individual student’s thinking patterns. In addition, we
also plan to extend this system by building a framework using
hierarchical clustering; this will give instructors insights on a
class-wide level, leveraging the submissions in an aggregate
format. By comparing and clustering the final submissions of
students’ SQL queries, we will be able to identify common
patterns or approaches taken by students. This will enable
instructors to familiarize with how their students are learning
or using SQL, and may include features such as an advanced
plagiarism detection aid, all in a more time-efficient format.

References
[1] A. Ahadi, J. Prior, V. Behbood, and R. Lister. 2015. A
Quantitative Study of the Relative Difficulty for Novices
of Writing Seven Different Types of SQL Queries. In
Proceedings of the 2015 ACM Conference on Innovation
and Technology in Computer Science Education (ITiCSE
’15). ACM, New York, NY, USA, 201-206.

L. Cagliero, L. De Russis, L. Farinetti, and T.
Montanaro. 2018. Improving the Effectiveness of SQL
Learning Practice: A Data-Driven Approach. In 2018
IEEE 42nd Annual Computer Software and Applications
Conference (COMPSAC), Vol. 01. 980-989.

J. Danaparamita and W. Gatterbauer. 2011. QueryViz:
Helping Users Understand SQL Queries and Their
Patterns. In Proceedings of the 14th International
Conference on Extending Database Technology
(EDBT/ICDT ’11). ACM, New York, NY, USA.

Ashley DiFranza. 2020. 5 Reasons SQL is the
Need-to-Know Skill for Data Analysts. (2020).

[5] Robert C. Jinkens. 2009. Nontraditional Students: Who
Are They? SIGCSE Bull. 43, 4 (Dec. 2009), 979-987.

[6] A. Mitrovic. 1998. Learning SQL with a Computerized
Tutor. In Proceedings of the Twenty-Ninth SIGCSE

Technical Symposium on Computer Science Education
(SIGCSE ’98). ACM, New York, NY, USA, 307-311.

[2

—

3

[}

[4

—_—

	Introduction
	Data Collection
	System Overview
	Results
	Conclusion and Future Work
	References

