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Effect of Cognitive Fatigue, Operator Sex, and Robot
Assistance on Task Performance Metrics, Workload, and
Situation Awareness in Human-Robot Collaboration
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Abstract—Advancements in robot technology are allowing for
increasing integration of humans and robots in shared space
manufacturing processes. While individual task performance of
the robotic assistance and human operator can be separately
optimized, the interaction between humans and robots can lead
to emergent effects on collaborative performance. Thus, the
performance benefits of increased automation in robotic
assistance and its impact by human factors need to be
considered. As such, this paper examines the interplay of
operator sex, their cognitive fatigue states, and varying levels of
automation on collaborative task performance, operator
situation awareness and perceived workload, and physiological
responses (heart rate variability; HRV). Sixteen participants,
balanced by sex, performed metal polishing tasks directly with a
URI10 collaborative robot under different fatigued states and
with varying levels of robotic assistance. Perceived fatigue,
situation awareness, and workload were measured periodically,
in addition to continuous physiological monitoring and three
task performance metrics: task efficiency, accuracy, and
precision, were obtained. Higher robotic assistance
demonstrated direct task performance benefits. However,
unlike females, males did not perceive the performance benefits
as better with higher automation. A relationship between
situation awareness and automation was observed in both the
HRYV signals and subjective measures, where increased robot
assistance reduced the attentional supply and task engagement
of participants. The consideration of the interplay between
human factors, such as operator sex and their cognitive states,
and robot factors on collaborative performance can lead to
improved human-robot collaborative system designs.

Index Terms—Autonomous Agents, ECG, Human Factors and
Human-in-the-Loop, Human-Robot Collaboration, Industrial
Robots, Manufacturing, Sex Differences, Surface Finishing

I. INTRODUCTION

Advancements in automation and robotics have made it
increasingly possible to incorporate industrial robots into
shared space manufacturing facilities alongside humans. In
manufacturing processes, robots have the comparative
advantage of performing precise movements with repetition
and uniformity, while humans retain the advantage of
improved cognition, recognition, and creative decision
making. Active teaming between humans and robots allows
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for utilization of the respective benefits of humans and robots
to allow for more robust manufacturing processes. Surface
finishing operations, such as deburring, chamfering, sanding,
grinding, and polishing are important processes for producing
finished products. Currently, many of these operations are
performed manually by the operator due to sensing and
uncertainty handling limitations for automation, complex part
geometries, and difficulties in workpiece registration in the
workspace [1], [2]. Human-robot collaboration (HRC) is
therefore envisioned in such cases to improve task
performance [3]. However, the introduction of humans and
robot into a shared work environment has implications on the
safety of the collaborative system in addition to how the
varying implementations of robotic assistance can affect
respective performances of humans and robots, and
effectively their shared collaborative performance.

One of the essential human factor considerations in HRC is
the situation awareness of a human operator due to the risk of
operation near industrial machinery and the comparative
benefit of higher situation awareness in humans than robots.
Situation awareness (SA) is the ability to perceive and
comprehend what is happening around you and the ability to
predict what will happen in the future [4]. SA is impacted by
the supply of attentional resources, demands on attentional
resources, and the operator’s understanding of the task [5]. SA
affects the operator’s internal mental model of their
surroundings and is known to be a strong driver in the
decision making process [6], [7]. Lapses in SA have been
identified as a root cause in aviation fatalities [8], train
derailments [9], and other large-scale technology systems
mishaps [6], and thus should also be considered in HRC
systems. Along with safety factors, SA directly impacts the
quality of task performance, efficiency of task completion,
and ability of the operator to safely take back control from the
robot [4], [10]. SA often has a tradeoff with higher automation
and autonomy in robots as lower automation levels tend to be
better at keeping the human ‘in-the-loop’, although reliable
and proper implementation of higher levels of automation can
provide direct system performance benefits [11].

Variation in the level of assistance provided by the robot
directly impacts overall task performance, operator SA, and
operator workload [10], [11]. Increasing levels of automation
in robots is often intended to offload the physical burden on
the operator and allow for highly repetitive tasks with heavier
payloads [12]; however, the introduction of industrial robots
in collaborative manufacturing can result in an increase in
cognitive workload due to the use of more complex tasks or
higher burden of cognition and decision making on the
operator [13]. Sustaining higher levels of cognitive load may
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in turn make the operators susceptible to other sources of
fatigue, such as cognitive fatigue and overload with negative
implications on performance [14], [15]. Within the
manufacturing sector, the top three reported root causes of
fatigue include work related stress, lack of sleep, and schedule
shifts, all related to cognitive fatigue with primary recovery
strategies including caffeinated drinks (reported by more than
half of fatigued workers) and talking with coworkers
(reported by ~30%) [13]. While the source of a physical
stressor may be different, physical stressors also have
ergonomic and cognitive implications. Cognitive fatigue can
also impact perceptions of task difficulty resulting in
behavioral changes that can affect system performance [15],
[16], such as reducing the efficiency with which the human
completes the task and inducing more human error [17].
Despite this evidence, there is a lack of understanding of how
cognitive fatigue can impact human-robot interactions in
shared space HRC tasks.

Cognitive functions and operator acceptance are largely
impacted by the dispositional characteristics of the operators
including age and sex [18]-[20]. Operator perceptions of
robots and robot behavior have been shown to be impacted by
the sex of the operator, and in some scenarios, sex has a larger
effect on subjective perceptions than the age of the operator
[18], [19]. Males and females have also been shown to have
proxemic behavioral differences when interacting with robots
[21]. Despite these encouraging results, sex differences in
operator workload, SA, and task efficiency is largely
understudied in HRC. According to the United States Census,
women have consistently encompassed around one-third of the
workforce in the manufacturing industry [22], and thus sex is
an inevitable human factor that needs further investigation.

Investigations into objective methods to quantify varying
human factors has gained popularity in human-robot
interaction due to the need for non-interrupting and continuous
measurements to facilitate adaptive HRC. To quantify
cognitive states, heart rate variability (HRV) has been
employed to classify fatigue [23], [24] and workload [25], [26]
in a direct and continuous manner with minimal task
interference. In addition to objective measures, subjective
experiences must be considered as they can provide key
behavioral information that objective measures may not able
to explicitly capture. Few studies have employed a systematic
and comprehensive approach of examining multiple highly
relevant and interrelated factors, which allow for
understanding of human factor considerations in HRC. As
such, this study employs systematic empirical manipulation of
cognitive fatigue, operator sex, and assistance level, with a
multimodal response employing multiple task performance
metrics, subjective perceptions, and physiological responses to
understand their interrelations and impact on effective HRC.

II. METHODS
A. Participants

This study recruited sixteen participants, balanced by sex,
with an age distribution of 25.12 * 3.31 years from the
engineering population at Texas A&M University. Eleven of
the participants were seeking advanced degrees, and five were
seeking undergraduate degrees, with majors in industrial,
biomedical, safety, chemical, aerospace or mechanical

engineering. All participants were right-hand dominant. IRB
approval (IRB2020-0097DCR) and COVID-19 human
subjects testing safety plan approval were both received prior
to starting the experiment. Upon consent, participants
reported their prior experience with industrial robotics. Three
participants reported prior experience ranging from a little
experience to a lot of experience. Additionally, the average
participant reported slight familiarity with joystick devices
which were utilized by the participant to control the robot.

B. Collaborative Task

The task employed in this study was a metal surface
polishing task where participants interacted with a URI10
robot (Universal Robots, DK) and controlled the robot
through right-handed joystick input controls (Fig. 1).
Participants had access to six degrees of freedom, but were
asked to control the X, Y and Z directions. Furthermore, the
movement speed of the robot was kept uniform and was not
controllable by the participants beyond stepwise binary inputs
(on — lem/s, off — brakes to Ocm/s). In each trial participants
navigated a squared S-shaped trajectory following traced
markings (Fig. 1, top left inset) consisting of five main events:
two U-shaped turns and three horizontal lateral movements.
During the low assistance conditions, participants controlled
all X and Y navigation around these events, and the robot was
programmed to prevent a downward force larger than 15 N.
During the high assistance conditions, the participants were
responsible for lateral maneuvering of the tool (Events 1, 3,
5) and automatic control was responsible for predicting and
maneuvering around corners (Events 2, 4) in addition to
preventing downward force past 15 N. During the high
assistance, a blue dialog box appeared in clear view of the
participant when assistance took over around the turns and
disappeared when control was handed back to the operator.
These assistance levels were designed to keep the human
operator in-the-loop while allowing the automatic control to
take over the more difficult aspects of the task: maintaining
uniform contact force, judging the distance before turning,
and the control of turning itself.

IV

Fig 1: Experimental setup of HRC with the UR10 robot for a metal surface
polishing task with a S-shaped trajectory composed of three lateral
movements (events 1,3,5) and two U-turns (events 2,4; top left inset)

Participants attended two sessions, where each session
focused on one level of the fatigue variable (fatigue, no
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fatigue), and within each session, participants underwent two
robot assistance conditions (low, high; Fig. 2). Fatigue and
assistance conditions were counterbalanced within both the
male and female participant pool and all participants
performed all experimental conditions. Participants
completed ten trials in each condition (fatigue/no fatigue,
low/high assistance), and each trial took approximately 60-70
s to complete. To mitigate learning or order -effect,
participants were allowed to practice the tasks until they felt
comfortable with the controls and their performance across
each assistance level. Requested training practice runs ranged

from one to three trials for each level of assistance.
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Fig. 2: Protocol timeline for each session

C. Cognitive Fatigue Manipulation

At the fatigue session, participants completed a computer
based 1-hour sustained spatial 2-back test prior to interacting
with the collaborative robot. The n-back test manipulates
working memory, a critical cognitive component of
information processing [27], [28], and sustained n-back tests
have been shown to manipulate cognitive fatigue that can
result in task disengagement and performance declines [29].
The spatial version of the n-back was selected to manipulate
spatial working memory [27], which can influence
performance across other tasks requiring spatial processes,
such as navigating part metal polishing trajectories. The
spatial 2-back test was given on a black background with
white circular stimuli that were randomly presented within a
3x3 grid and changed location every two seconds, visible for
one second (Fig. 3). The task required participants to
remember the location of the stimuli and press the space bar
when the current stimulus matched the location of one that
appeared two events back. Perceptions of fatigue are used to
validate fatigue manipulation.
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Fig. 3: Spatial 2-Back Test Diagram

D. Measurements
Task Performance

Trajectories executed by the participants were recorded
from the robot for all trials at a frequency of 1 Hz. Task
performance was quantified with three measures: 1) an
efficiency metric, measured by the overall speed of each trial.
Overall speed is defined as the traveled trajectory length
divided by trial completion time.; 2) an accuracy metric,
measured by deviation from the defined trajectory for each
type of event (i.e. lateral or U-turn); and 3) a precision metric,
measured by the variance in deviation from the defined
trajectory.

Subjective Reponses

Following each trial participants were asked one question
about fatigue: “What is your level of fatigue?” rated on an
integer locked scale from 1 (low) to 7 (high). The ratings from
the fatigue question were averaged for all trials in a condition
prior to conducting statistical analysis. Following each
condition (i.e., after every ten trials) participants completed
the situation awareness rating technique (SART) [5] to
measure SA, and the NASA task load index questionnaire
(NASA TLX) [30] to quantify cognitive workload. Both
questionnaires were further analyzed by their subscales and
composite scores. SART consists of three subscales:
attentional supply, attentional demand, and understanding of
the task. The SART composite score is calculated as
understanding - (demand - supply). NASA TLX has six
subscales: mental demand, physical demand, temporal
demand, performance, effort, and frustration. The overall
workload score is calculated as the sum of subscales.

HRYV Responses

A 2-lead chest affixed device, Actiheart (Actiheart 5,
Camntech, UK), was used to record electrocardiogram (ECG)
signals. Three participates (one male, two female) were
removed from HRV analysis due to missing data. The ECG
signals were corrected for ectopics and missing beats, motion
related artifacts, and interpolated using the recommended
settings in the software packages by Marked [31], Strasser et
al. [32], and Cuiwei Li et al. [33].

Following signal correction, each condition was segmented
into an early block, starting at the beginning of trial 1, and a
late block, starting at the beginning of trial 6, each lasting
exactly 5-minutes from their respective start point. HRV
features were extracted from each block and included
frequency domain HRV metrics, namely, low frequency (LF;
0.04-0.015 Hz), high frequency (HF; 0.15-0.40 Hz) and LF/HF
ratio. HF is an index of activation in the parasympathetic
nervous system, i.e., the ‘rest and digest’ system [34]. The LF
measurement has been shown to index both the sympathetic
nervous system, the ‘fight or flight’ system, in addition to the
parasympathetic system. As such the LF/HF ratio is often used
rather than LF alone in indexing the sympathetic response with
respect to parasympathetic. The frequency domain HRV data
were selected as they have been shown to vary with mental
fatigue through a predominate decrease in parasympathetic
activity or increase in LF/HF ratio [24], [25].
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E.  Statistical Analysis

Statistical significance was determined through separate
repeated measures analysis of variance (RM ANOVA) on all
dependent responses with significance reported at o = 0.05
and marginal significance at 0.05 < o < 0.1. Separate RM
ANOVAs were run on each task performance metric to test
the effects of the three independent variables, fatigue (no
fatigue/fatigue), assistance (low/high), and sex (male/female),
in addition to fatigue order (fatigue first/fatigue second) and
event type (lateral/U-turn). Separate RM ANOVAs were
performed on all subjective responses to test the effects of the
independent variables: fatigue, assistance, and sex. Finally,
separate RM ANOV As were run on all HRV measures to test
the effects of fatigue, assistance, and sex in addition to phase
(early/late blocks). Post hoc comparisons were performed
where needed using Bonferroni corrections.

III. RESULTS

A. Task Performance Metrics
Efficiency Metric - Overall Speed

The overall speed of the task was significantly impacted by
fatigue (p =0.031, n2 = 0.386), where participants had higher
speed in no fatigue (NF) at 1.435 + 0.005 cm/s compared to
fatigue (F) at 1.421 % 0.006 cm/s. Assistance level
significantly impacted the overall speed (p < 0.001, n? =
0.860), where overall speed was faster with high assistance
(1.468 = 0.007 cm/s) compared to low assistance (1.388 *
0.007 cm/s). Fatigue order also had a significant effect on
speed (p = 0.04, n? = 0.358) where participants who started in
the NF condition had higher task speed in both sessions than
those that started in the F condition. No effect of sex or
interactions were observed (all p > 0.132).

Accuracy Metric - Deviation from Defined Trajectory

Assistance had a significant impact (p < 0.001, n% = 0.870)
with more deviation in low assistance, 0.8 + 0.04 cm than high
assistance 0.4 = 0.1 cm. Event type was also significant (p <
0.001, n% = 0.800) where lateral events had lower deviation
(0.4 £ 0.04 cm) than turns (0.7 £ 0.1 cm). An assistance, event
type interaction was observed (p = 0.033, n% = 0.379; Fig. 4)
where high assistance significantly reduced deviation in both
events as compared to low assistance, and U-turns were a

greater source of deviation.
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Fig. 4: Effects of Assistance and Event Type on Deviation. The error bars
represent standard error. * represents significant difference

Deviation from Trajectory

Precision Metric - Variance in Deviation from Trajectory

Event type was significant (p = 0.007, n? = 0.533) where
there was higher variability in turns (0.028 cm?) than in lateral
movements (0.02 cm?), and a significant interaction between
assistance and event type was also observed (p = 0.017, n? =
0.452). A marginal three-way interaction between fatigue,
assistance and sex was observed (p =0.092, n% = 0.258), with
no pairwise corrections significant after Bonferroni, and a
four-way interaction was observed between assistance, event
type, sex, and fatigue order (p = 0.052, n? = 0.326).

B.  Subjective Responses
1-pt Fatigue

Fatigue perceptions were significantly different between
NF and F (p <0.001, 2 = 0.622) with higher fatigue in the F
conditions (4.325 * 0.531) than the NF conditions (2.066 +
0.277). Assistance also impacted fatigue perceptions (p =
0.032, n? = 0.289) with higher fatigue during low assistance
at 3.409 * 0.343 than high assistance at 2.981 + 0.382. There
was a marginal interaction between fatigue and sex (p =
0.072, n? = 0.213) where females reported greater fatigue
than males in the F condition (females = 5.216 + 2.2, males =
335+ 1.8).

NASA Task Load Index (TLX)

Composite Score: Fatigue marginally affected overall
workload score (p = 0.063, n? = 0.225) where NF was rated
with lower overall scores than F. No other effects were
observed (all p > 0.105).

Mental Demand Subscale: Fatigue marginally affected the
mental demand subscale (p = 0.067, n? = 0.225) with lower
mental demand in NF than F, in addition to a marginal fatigue
and sex interaction (p = 0.064, n? = 0.224) where females
perceived higher mental demand when fatigued than males.

Temporal Demand Subscale: There was a marginal effect
of assistance on temporal demand (p = 0.082, 12 = 0.200)
where high assistance resulted in higher temporal demand. A
significant three-way interaction between fatigue, assistance,
and sex (p = 0.036, n? = 0.278; Fig. 5) was also found,
however, post hoc analysis did not reveal any significant
comparisons after Bonferroni corrections, although the
difference is likely driven by the fatigue condition where
males experienced higher temporal demand during high
assistance than females.
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Performance Perception Subscale: Fatigue (p = 0.022, n?
= 0.321) and assistance (p = 0.010, n? = 0.389) had a
significant effect on perceived performance where
participants felt they performed better in NF (15.372 + 1.214)
than F condition (14.0052 *+ 1.365) and performed better with
high assistance (15.372 + 1.214) than low assistance (14.277
+ 1.335). There was also a significant two-way effect between
assistance and sex (p = 0.019, n? = 0.333) where females felt
they performed better with increased assistance (16.094 +
1.713 in high, 14.453 + 1.888 in low), but the same effect was
not observed in men (14.201 * 1.713 in high, 14.102 + 1.888
in low), however all pairwise ttests were insignificant (all p >
0.296).

Effort Subscale: Assistance had a significant effect (p =
0.026,n? = 0.308) with more effort required for low
assistance at 7.178 + 0.966 than high at 5.794 + 0.900. No
other effects were significant for effort (all p > 0.113).

Frustration Subscale: A three-way marginal interaction
was observed between fatigue, assistance, and sex (p = 0.088,
n? = 0.194). Females rated higher frustration with the high
assistance and when fatigued as compared to males, and
females rated higher frustration in the low assistance when not
fatigued than males; however, no pairwise ttests were
significant after Bonferroni corrections.

Situation Awareness Rating Technique (SART)

Composite Score: Both fatigue (p = 0.090, n? = 0.205) and
assistance (p = 0.089, n2 = 0.206) influenced the composite
score for SART, where higher situation awareness was
associated with no fatigue (NF = 20.500 £ 1.460, F = 17.424
+ 1.529), and lower assistance (Low = 19.634 + 1.082, High
=18.290 * 1.469).

Attentional Supply Subscale: Assistance had a significant
effect on available attentional supply, including questions
such as arousal level and task engagement, (p = 0.011, n? =
0.400). Participants felt they had higher supply in the low
assistance conditions at 11.254 * 0.831 than in the high
assistance condition at 10.134 + 0.722.

Attentional Demand Subscale: The effects of fatigue were
significant for perceived attentional demand of the task (p =
0.035, n% = 0.299) where the task had lower demand during
NF at 6.219 + 0.604 than F at 8.278 + 1.001. There was also
a marginal interaction between fatigue and assistance (p =
0.064, n% = 0.211; Fig. 6).
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Fig. 6: Effect of Fatigue and Assistance on Attentional Demand Subscale
of Situation Awareness. The error bars represent standard error.

Understanding Subscale: Fatigue had a marginal effect (p
= 0.099, n? = 0.195) where NF had higher understanding
(16.366 * 0.525) than F (15.558 + 0.713).

C. HRV Responses
Parasympathetic Activity - HF

A marginal three-way interaction was observed between
fatigue, assistance, and phase (p = 0.067, n2 = 0.297; Fig. 7),
likely driven by higher HF in late F trials than NF trials in
high assistance only. There was also a marginal four-way
interaction between fatigue, assistance, phase, and sex (p =
0.068, n2 = 0.296). All other main effects and interactions
were statistically identical (all p > 0.180).
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Fig. 7: Effect of Fatigue, Assistance, and Phase on Parasympathetic
Activity - HF in ms2 The error bars denote standard error.

Sympathetic Activity - LF

All main effects and interactions were statistically identical
(all p> 0.118) excluding sex, which had a significant main
effect (p = 0.032, n2 = 0.381) where females had higher LF
than males at 1972 + 194 ms? verses 1338 + 164 ms?.

LF/HF Ratio

There was an assistance, sex marginal interaction in LF/HF
ratio (p = 0.068,n% = 0.295) likely due to females having
lower ratio than males during low assistance (post hoc p =
0.0145, Bonferroni o = 0.0125). There was also an interaction
between phase and sex (p = 0.097, n? = 0.251) with a main
phase effect (p = 0.012, 0.482) where early trials had lower
ratio than late trials. A significant three-way interaction
between fatigue, phase and sex was also observed (p = 0.036,
n? = 0.371; Fig. 8), likely driven by females having higher
LF/HF in late blocks as compared to males when not fatigued
(p = 0.045, Bonferroni o = 0.006). All other main effects and
interactions were not significant (all p > 0.114).
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Fig. 8: Effect of Fatigue, Phase and Sex on LF/HF Ratio. The error bars
represent standard error.
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IV. DISCUSSION

This study investigated the impacts of operator sex,
cognitive fatigue status, and robot assistance levels on
operator behavior, task performance metrics, and situation
awareness in shared spaced robotics. Four key takeaways of
this study include:

1. High robot assistance successfully improved task
efficiency and accuracy, and this was accompanied by
higher perceived performance and lower efforts, but
greater temporal demands.

2. There is a differential effect of assistance and fatigue on
set task performance measures (i.e., efficiency, accuracy
and precision) and the measures are disparately sensitive
to human behavior in HRC.

3. Robot assistance directly impacted situation awareness
where participants perceived less attentional supply (i.e.,
task engagement and arousal) with higher assistance,
thereby reducing situation awareness. The effects of
assistance on SA were also effectively captured by
physiological measures.

4. Females perceived greater performance benefits from
utilizing high automation, while males did not perceive a
benefit from the assistance, despite demonstrating
comparable objective performance. Sex differences were
also found in the subjective and objective measures of
fatigue.

A. Higher Assistance Improves Operator Task
Performance

Assistance level dictates the extent to which automation
aids the human operator in a collaborative task. In this study,
the effects of assistance level on the HRC task performance
were captured by the efficiency and accuracy metrics, as well
as operator perceptions of performance. Regardless of sex,
participants performed significantly better when using high
robot assistance; the efficiency measure, i.c., overall speed,
was found to have a strong main effect (improved speed of
0.08 cm/s with higher assistance) with a large effect size of
0.86. Speed itself was not a controllable dimension by the
operator as the robot moved based on stepwise binary (on/off)
joystick inputs. Therefore, the change in speed is a direct
measure of the continuity of joystick inputs as influenced by
the human behavior. As such, the higher assistance was able
to consistently reduce the stuttering behavior accumulated
over arelatively short trial (~1-min); over an 8-hour workday
with 90% operator productivity, 0.08 cm/s equates to an
additional 35 metal plates polished. This is in line with
previous research that also found productivity benefits with
higher assistance [11]. The consequence of manual controls
or lower assistance may be more apparent in systems with
continuous scale speed controls, in more difficult tasks, or on
the cumulative effect of reduced efficiency on long term
productivity.

The main impact of assistance level was also found for the
accuracy metric, deviation from trajectory, reducing deviation
by half with a large effect size of 0.87. The effect is also
significant when looking at individual event types, where
deviation was observed more in turn events (difficult aspect

of the task) than lateral events; however, higher assistance
was able to reduce much of this variance. The use of robot
assistance was able to enhance the operator’s performance by
reducing stuttering inputs from the operator, and by
improving task accuracy, more obvious around the difficult
aspect of the task. Even with the minimal difficulty of the task
employed in this study, the benefits of higher assistance were
observed.

B. Cognitive Fatigue and its Interactive Effect with
Increased Assistance

Operator fatigue is a critical human factors challenge that
impacts productivity and safety across numerous industrial
domains [35], [36]. While a prevalent safety risk in the
manufacturing sector, cognitive fatigue is rarely considered in
the design and implementation of highly instrumented
collaborative robotic systems. Cognitive fatigue is associated
with declines in attentional resources and impaired situation
awareness, which are both important human attributes
required for effective HRC [10], [37]. In the present study, the
accuracy and precision metrics of HRC task performance
were not found to be impacted by operator fatigue states.
However, the efficiency metric captured the detrimental
impacts of fatigue on HRC. For example, the HRC task
completion speed was slower when operators were fatigued.
This was further elucidated by the impact of fatigue order on
task completion speeds, i.e., the participants who started with
fatigue session had lasting effects on task performance where
they continued to perform worse in both sessions. These
results highlight the importance of utilizing appropriate task
performance metrics that are sensitive to and can effectively
capture critical operator states and their influences on
effective HRCs.

The fatiguing task employed in this study was a sustained
spatial 2-back test, which was highly cognitively fatiguing,
and every participant reported increasing levels of discomfort
with taking the test. It is likely that the effects of the 60-
minute cognitive task were so fatiguing in comparison to the
collaborative task, that participants began recovery during the
HRC portion of the experiment. Parasympathetic activity has
been shown to decrease with mental fatigue [24], therefore the
increase is HF might suggest recovery when the stressor is
removed. The effect of recovery on HRV was only visible
during the fatigue session, particularly in the high assistance
condition, through an increase in parasympathetic activity in
later trials. Furthermore, participants rated lower fatigue and
lower mental demand in the high assistance condition than
low assistance. High assistance allowed for “human-out-of-
the-loop” during the HRC due to the full autonomy of the
robot around turns and remaining reasonably engaged for the
remainder of the task via lateral navigations [11].

C. Elements of Situation Awareness are Impacted by
Assistance Level and Operator Cognitive Fatigue

While automation-aided “human-out-of-the-loop”
alleviated perceptions of cognitive fatigue in the present
study, there are critical considerations regarding dynamically
changing human in/out of the loop in HRCs, such as that
manipulated here. Human behavior can be affected by both
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human and robot factors and the effect of human-out-of-the-
loop of the task can reduce situation awareness and make it
more difficult for the operator to reengage with the task [4],
[10], [11]. In this study, higher robot assistance, regardless of
operator fatigue states, were found to reduce operator
situation awareness. Decomposing SA subscales revealed that
participants reported lower perceived attentional supply (i.e.
low task engagement, arousal) with high assistance.
Interestingly, cognitive fatigue states resulted in greater
demand subscale of SA, which was further exacerbated in the
low assistance condition as expected [38]. These results
highlight that robot automation level and operator fatigue
impact different attributes of SA, thereby providing
opportunities and guidance for developing closed loop
engineering solutions to support cognitive processes to
maintain or augment operator SA during HRC that are
adaptive to operator fatigued states.

D. Cognitive Fatigue Differentially Impacts the Sexes

In general, female participants reported greater levels of
fatigue and mental demand throughout the fatigue session
than males irrespective of the robot assistance levels. The
physiological responses also captured these sex differences,
whereby females exhibited higher LF/HF ratio in late blocks
when not fatigued as compared to men (Fig 8). Historically,
both physiological and subjective perceptions of fatigue states
have been shown to vary by sex [39], [40], which was
supported by this study. An additional sex difference
observed here was the perceptions of performance. Despite
improved task performances in the high versus low robot
assistance conditions, males did not perceive substantial
improvements in their performance with high assistance,
whereas females did perceive better task performance in the
high robot assistance. Sex did not have an impact on
perceived SA during the HRC even though sex differences
were observed in response to fatigue and task performance
outcomes. These findings highlight that considerations of
operator sex can help identify ways that male and female
operators respond to HRC [41], both behaviorally and
physiologically, such that more effective HRCs can be
designed that address and accommodate for such group
differences. These findings also provide insights on how
different population groups perceive benefits and costs of
automation rated high assistance as improving their
performance.

E.  Study Limitations and Future Work

Limitations of this study need to be acknowledged. The
participants recruited in this study were college students
predominately seeking advanced degrees in engineering.
Future work should focus on industry workers as the majority
of jobs in manufacturing are taken up by high-school
graduates or less [42]. However, the findings presented in this
study are relevant as they set the stage for future hypothesis
driven work. While one HRC use case is provided, i.c., a
metal polishing task, the fundamental implications of operator
factors (cognitive fatigue, sex) and robot factors (assistance
level) are relevant to other HRC use cases given specific
outcomes (i.e., task performance, situation awareness,

workload, physiological responses), although the metrics and
uncertainties in other HRC tasks may require further
investigation. The generalization of the results to physical
shared-space tasks where the robot and the human operator
are within physical reach of each other requires further
investigation due to the implications on trust and resulting
allocations of attentional resources. Additionally, further
investigation into contextually relevant environmental factors
that affect user acceptance, such as propensity to trust, and
their interaction with fatigue and assistance should be
considered.
V. CONCLUSION

This work systematically examined operator fatigue,
operator sex, and robot assistance level, all highly relevant
and interrelated factors for optimizing HRC system designs
with respect to task performance and user experience. The
various task performance metrics (i.e., efficiency, accuracy,
and precision) were able to selectively capture various
attributes of the relationship between operator fatigue and
assistance level. Our findings indicate that assistance through
high automation significantly improves task accuracy and
efficiency but does not change precision, whereas fatigue
impacts task efficiency, but not accuracy or precision.
Operator perceptions varied by robot assistance level but were
different for males and females. Females perceived greater
performance benefits from utilizing high automation, while
males did not perceive a benefit from the assistance.
Furthermore, higher automation aided “human-out-of-the-
loop”, which allowed for operator fatigue recovery, measured
using HRV signals and subjective perceptions; however, this
resulted in lower operator situation awareness with increased
perceived temporal demand. These findings demonstrate that
effective HRC can be achieved by examining collaborative
task performances through addressing factors at the
intersection of the human level (i.e., operator sex and
cognitive states), and the robot level. The systematic approach
was able to capture the interdependence between the
examined factors through changes in task performance
metrics, subjective experiences, and physiological measures.
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