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Abstract—Advancements in robot technology are allowing for 
increasing integration of humans and robots in shared space 
manufacturing processes. While individual task performance of 
the robotic assistance and human operator can be separately 
optimized, the interaction between humans and robots can lead 
to emergent effects on collaborative performance. Thus, the 
performance benefits of increased automation in robotic 
assistance and its impact by human factors need to be 
considered. As such, this paper examines the interplay of 
operator sex, their cognitive fatigue states, and varying levels of 
automation on collaborative task performance, operator 
situation awareness and perceived workload, and physiological 
responses (heart rate variability; HRV). Sixteen participants, 
balanced by sex, performed metal polishing tasks directly with a 
UR10 collaborative robot under different fatigued states and 
with varying levels of robotic assistance. Perceived fatigue, 
situation awareness, and workload were measured periodically, 
in addition to continuous physiological monitoring and three 
task performance metrics: task efficiency, accuracy, and 
precision, were obtained. Higher robotic assistance 
demonstrated direct task performance benefits.  However, 
unlike females, males did not perceive the performance benefits 
as better with higher automation. A relationship between 
situation awareness and automation was observed in both the 
HRV signals and subjective measures, where increased robot 
assistance reduced the attentional supply and task engagement 
of participants. The consideration of the interplay between 
human factors, such as operator sex and their cognitive states, 
and robot factors on collaborative performance can lead to 
improved human-robot collaborative system designs. 

Index Terms—Autonomous Agents,  ECG,  Human Factors and 
Human-in-the-Loop, Human-Robot Collaboration, Industrial 
Robots, Manufacturing, Sex Differences, Surface Finishing 

I. INTRODUCTION 

Advancements in automation and robotics have made it 
increasingly possible to incorporate industrial robots into 
shared space manufacturing facilities alongside humans. In 
manufacturing processes, robots have the comparative 
advantage of performing precise movements with repetition 
and uniformity, while humans retain the advantage of 
improved cognition, recognition, and creative decision 
making. Active teaming between humans and robots allows 

for utilization of the respective benefits of humans and robots 
to allow for more robust manufacturing processes. Surface 
finishing operations, such as deburring, chamfering, sanding, 
grinding, and polishing are important processes for producing 
finished products. Currently, many of these operations are 
performed manually by the operator due to sensing and 
uncertainty handling limitations for automation, complex part 
geometries, and difficulties in workpiece registration in the 
workspace [1], [2]. Human-robot collaboration (HRC) is 
therefore envisioned in such cases to improve task 
performance [3]. However, the introduction of humans and 
robot into a shared work environment has implications on the 
safety of the collaborative system in addition to how the 
varying implementations of robotic assistance can affect 
respective performances of humans and robots, and 
effectively their shared collaborative performance.   
One of the essential human factor considerations in HRC is 

the situation awareness of a human operator due to the risk of 
operation near industrial machinery and the comparative 
benefit of higher situation awareness in humans than robots. 
Situation awareness (SA) is the ability to perceive and 
comprehend what is happening around you and the ability to 
predict what will happen in the future [4]. SA is impacted by 
the supply of attentional resources, demands on attentional 
resources, and the operator’s understanding of the task [5]. SA 
affects the operator’s internal mental model of their 
surroundings and is known to be a strong driver in the 
decision making process [6], [7]. Lapses in SA have been 
identified as a root cause in aviation fatalities [8], train 
derailments [9], and other large-scale technology systems 
mishaps [6], and thus should also be considered in HRC 
systems. Along with safety factors, SA directly impacts the 
quality of task performance, efficiency of task completion, 
and ability of the operator to safely take back control from the 
robot [4], [10]. SA often has a tradeoff with higher automation 
and autonomy in robots as lower automation levels tend to be 
better at keeping the human ‘in-the-loop’, although reliable 
and proper implementation of higher levels of automation can 
provide direct system performance benefits [11].  
Variation in the level of assistance provided by the robot 

directly impacts overall task performance, operator SA, and 
operator workload [10], [11]. Increasing levels of automation 
in robots is often intended to offload the physical burden on 
the operator and allow for highly repetitive tasks with heavier 
payloads [12]; however, the introduction of industrial robots 
in collaborative manufacturing can result in an increase in 
cognitive workload due to the use of more complex tasks or 
higher burden of cognition and decision making on the 
operator [13]. Sustaining higher levels of cognitive load may 
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in turn make the operators susceptible to other sources of 
fatigue, such as cognitive fatigue and overload with negative 
implications on performance [14], [15]. Within the 
manufacturing sector, the top three reported root causes of 
fatigue include work related stress, lack of sleep, and schedule 
shifts, all related to cognitive fatigue with primary recovery 
strategies including caffeinated drinks (reported by more than 
half of fatigued workers) and talking with coworkers 
(reported by ~30%) [13]. While the source of a physical 
stressor may be different, physical stressors also have 
ergonomic and cognitive implications. Cognitive fatigue can 
also impact perceptions of task difficulty resulting in 
behavioral changes that can affect system performance [15], 
[16], such as reducing the efficiency with which the human 
completes the task and inducing more human error [17]. 
Despite this evidence, there is a lack of understanding of how 
cognitive fatigue can impact human-robot interactions in 
shared space HRC tasks.  
Cognitive functions and operator acceptance are largely 

impacted by the dispositional characteristics of the operators 
including age and sex [18]–[20]. Operator perceptions of 
robots and robot behavior have been shown to be impacted by 
the sex of the operator, and in some scenarios, sex has a larger 
effect on subjective perceptions than the age of the operator 
[18], [19]. Males and females have also been shown to have 
proxemic behavioral differences when interacting with robots 
[21]. Despite these encouraging results, sex differences in 
operator workload, SA, and task efficiency is largely 
understudied in HRC. According to the United States Census, 
women have consistently encompassed around one-third of the 
workforce in the manufacturing industry [22], and thus sex is 
an inevitable human factor that needs further investigation. 
Investigations into objective methods to quantify varying 

human factors has gained popularity in human-robot 
interaction due to the need for non-interrupting and continuous 
measurements to facilitate adaptive HRC. To quantify 
cognitive states, heart rate variability (HRV) has been 
employed to classify fatigue [23], [24] and workload [25], [26] 
in a direct and continuous manner with minimal task 
interference. In addition to objective measures, subjective 
experiences must be considered as they can provide key 
behavioral information that objective measures may not able 
to explicitly capture. Few studies have employed a systematic 
and comprehensive approach of examining multiple highly 
relevant and interrelated factors, which allow for 
understanding of human factor considerations in HRC. As 
such, this study employs systematic empirical manipulation of 
cognitive fatigue, operator sex, and assistance level, with a 
multimodal response employing multiple task performance 
metrics, subjective perceptions, and physiological responses to 
understand their interrelations and impact on effective HRC.  

II. METHODS 
A. Participants 
This study recruited sixteen participants, balanced by sex, 

with an age distribution of 25.12 ± 3.31 years from the 
engineering population at Texas A&M University. Eleven of 
the participants were seeking advanced degrees, and five were 
seeking undergraduate degrees, with majors in industrial, 
biomedical, safety, chemical, aerospace or mechanical 

engineering. All participants were right-hand dominant. IRB 
approval (IRB2020-0097DCR) and COVID-19 human 
subjects testing safety plan approval were both received prior 
to starting the experiment. Upon consent, participants 
reported their prior experience with industrial robotics. Three 
participants reported prior experience ranging from a little 
experience to a lot of experience. Additionally, the average 
participant reported slight familiarity with joystick devices 
which were utilized by the participant to control the robot.  
B. Collaborative Task 
The task employed in this study was a metal surface 

polishing task where participants interacted with a UR10 
robot (Universal Robots, DK) and controlled the robot 
through right-handed joystick input controls (Fig. 1). 
Participants had access to six degrees of freedom, but were 
asked to control the X, Y and Z directions. Furthermore, the 
movement speed of the robot was kept uniform and was not 
controllable by the participants beyond stepwise binary inputs 
(on – 1cm/s, off – brakes to 0cm/s). In each trial participants 
navigated a squared S-shaped trajectory following traced 
markings (Fig. 1, top left inset) consisting of five main events: 
two U-shaped turns and three horizontal lateral movements. 
During the low assistance conditions, participants controlled 
all X and Y navigation around these events, and the robot was 
programmed to prevent a downward force larger than 15 N. 
During the high assistance conditions, the participants were 
responsible for lateral maneuvering of the tool (Events 1, 3, 
5) and automatic control was responsible for predicting and 
maneuvering around corners (Events 2, 4) in addition to 
preventing downward force past 15 N. During the high 
assistance, a blue dialog box appeared in clear view of the 
participant when assistance took over around the turns and 
disappeared when control was handed back to the operator. 
These assistance levels were designed to keep the human 
operator in-the-loop while allowing the automatic control to 
take over the more difficult aspects of the task: maintaining 
uniform contact force, judging the distance before turning, 
and the control of turning itself.  

Participants attended two sessions, where each session 
focused on one level of the fatigue variable (fatigue, no 

Fig 1: Experimental setup of HRC with the UR10 robot for a metal surface 
polishing task with a S-shaped trajectory composed of three lateral 
movements (events 1,3,5) and two U-turns (events 2,4; top left inset) 
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fatigue), and within each session, participants underwent two 
robot assistance conditions (low, high; Fig. 2). Fatigue and 
assistance conditions were counterbalanced within both the 
male and female participant pool and all participants 
performed all experimental conditions. Participants 
completed ten trials in each condition (fatigue/no fatigue, 
low/high assistance), and each trial took approximately 60-70 
s to complete. To mitigate learning or order effect, 
participants were allowed to practice the tasks until they felt 
comfortable with the controls and their performance across 
each assistance level. Requested training practice runs ranged 
from one to three trials for each level of assistance. 

 
Fig.	2:	Protocol	timeline	for	each	session 

C. Cognitive Fatigue Manipulation 
At the fatigue session, participants completed a computer 

based 1-hour sustained spatial 2-back test prior to interacting 
with the collaborative robot. The n-back test manipulates 
working memory, a critical cognitive component of 
information processing [27], [28], and sustained n-back tests 
have been shown to manipulate cognitive fatigue that can 
result in task disengagement and performance declines [29]. 
The spatial version of the n-back was selected to manipulate 
spatial working memory [27], which can influence 
performance across other tasks requiring spatial processes, 
such as navigating part metal polishing trajectories. The 
spatial 2-back test was given on a black background with 
white circular stimuli that were randomly presented within a 
3x3 grid and changed location every two seconds, visible for 
one second (Fig. 3). The task required participants to 
remember the location of the stimuli and press the space bar 
when the current stimulus matched the location of one that 
appeared two events back. Perceptions of fatigue are used to 
validate fatigue manipulation. 

 
Fig.	3:	Spatial	2-Back	Test	Diagram	

D. Measurements 
Task Performance 
Trajectories executed by the participants were recorded 

from the robot for all trials at a frequency of 1 Hz. Task 
performance was quantified with three measures: 1) an 
efficiency metric, measured by the overall speed of each trial. 
Overall speed is defined as the traveled trajectory length 
divided by trial completion time.; 2) an accuracy metric, 
measured by deviation from the defined trajectory for each 
type of event (i.e. lateral or U-turn); and 3) a precision metric, 
measured by the variance in deviation from the defined 
trajectory. 
Subjective Reponses 
Following each trial participants were asked one question 

about fatigue: “What is your level of fatigue?” rated on an 
integer locked scale from 1 (low) to 7 (high). The ratings from 
the fatigue question were averaged for all trials in a condition 
prior to conducting statistical analysis. Following each 
condition (i.e., after every ten trials) participants completed 
the situation awareness rating technique (SART) [5] to 
measure SA, and the NASA task load index questionnaire 
(NASA TLX) [30] to quantify cognitive workload. Both 
questionnaires were further analyzed by their subscales and 
composite scores. SART consists of three subscales: 
attentional supply, attentional demand, and understanding of 
the task. The SART composite score is calculated as  
understanding - (demand - supply). NASA TLX has six 
subscales: mental demand, physical demand, temporal 
demand, performance, effort, and frustration. The overall 
workload score is calculated as the sum of subscales.  
HRV Responses 
A 2-lead chest affixed device, Actiheart (Actiheart 5, 

Camntech, UK), was used to record electrocardiogram (ECG) 
signals. Three participates (one male, two female) were 
removed from HRV analysis due to missing data. The ECG 
signals were corrected for ectopics and missing beats, motion 
related artifacts, and interpolated using the recommended 
settings in the software packages by Marked [31], Strasser et 
al. [32], and Cuiwei Li et al. [33].  

Following signal correction, each condition was segmented 
into an early block, starting at the beginning of trial 1, and a 
late block, starting at the beginning of trial 6, each lasting 
exactly 5-minutes from their respective start point. HRV 
features were extracted from each block and included 
frequency domain HRV metrics, namely, low frequency (LF; 
0.04-0.015 Hz), high frequency (HF; 0.15-0.40 Hz) and LF/HF 
ratio. HF is an index of activation in the parasympathetic 
nervous system, i.e., the ‘rest and digest’ system [34]. The LF 
measurement has been shown to index both the sympathetic 
nervous system, the ‘fight or flight’ system, in addition to the 
parasympathetic system. As such the LF/HF ratio is often used 
rather than LF alone in indexing the sympathetic response with 
respect to parasympathetic. The frequency domain HRV data 
were selected as they have been shown to vary with mental 
fatigue through a predominate decrease in parasympathetic 
activity or increase in LF/HF ratio [24], [25].  



IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED FEBUARY, 2021.              4 
 

E. Statistical Analysis 
Statistical significance was determined through separate 

repeated measures analysis of variance (RM ANOVA) on all 
dependent responses with significance reported at α = 0.05 
and marginal significance at 0.05 < α < 0.1. Separate RM 
ANOVAs were run on each task performance metric to test 
the effects of the three independent variables, fatigue (no 
fatigue/fatigue), assistance (low/high), and sex (male/female), 
in addition to fatigue order (fatigue first/fatigue second) and 
event type (lateral/U-turn). Separate RM ANOVAs were 
performed on all subjective responses to test the effects of the 
independent variables: fatigue, assistance, and sex. Finally, 
separate RM ANOVAs were run on all HRV measures to test 
the effects of fatigue, assistance, and sex in addition to phase 
(early/late blocks). Post hoc comparisons were performed 
where needed using Bonferroni corrections. 

III. RESULTS 

A. Task Performance Metrics 
Efficiency Metric - Overall Speed 
The overall speed of the task was significantly impacted by 

fatigue (p = 0.031, 𝜂! =  0.386), where participants had higher 
speed in no fatigue (NF) at 1.435 ± 0.005 cm/s compared to 
fatigue (F) at 1.421 ± 0.006 cm/s. Assistance level 
significantly impacted the overall speed (p < 0.001, 𝜂! =  
0.860), where overall speed was faster with high assistance 
(1.468 ± 0.007 cm/s) compared to low assistance (1.388 ± 
0.007 cm/s). Fatigue order also had a significant effect on 
speed (p = 0.04,	𝜂! = 0.358) where participants who started in 
the NF condition had higher task speed in both sessions than 
those that started in the F condition. No effect of sex or 
interactions were observed (all p > 0.132). 
Accuracy Metric - Deviation from Defined Trajectory 
Assistance had a significant impact (p < 0.001, 𝜂! =  0.870) 

with more deviation in low assistance, 0.8 ± 0.04 cm than high 
assistance 0.4 ± 0.1 cm. Event type was also significant (p < 
0.001, 𝜂! =  0.800) where lateral events had lower deviation 
(0.4 ± 0.04 cm) than turns (0.7 ± 0.1 cm). An assistance, event 
type interaction was observed (p = 0.033, 𝜂! =  0.379; Fig. 4) 
where high assistance significantly reduced deviation in both 
events as compared to low assistance, and U-turns were a 
greater source of deviation.  

 
Fig.	4:	Effects	of	Assistance	and	Event	Type	on	Deviation.	The	error	bars	

represent	standard	error.	*	represents	significant	difference	

Precision Metric - Variance in Deviation from Trajectory 

Event type was significant (p = 0.007, 𝜂! =  0.533) where 
there was higher variability in turns (0.028 cm2) than in lateral 
movements (0.02 cm2), and a significant interaction between 
assistance and event type was also observed (p = 0.017, 𝜂! =  
0.452). A marginal three-way interaction between fatigue, 
assistance and sex was observed (p = 0.092, 𝜂! =  0.258), with 
no pairwise corrections significant after Bonferroni, and a 
four-way interaction was observed between assistance, event 
type, sex, and fatigue order (p = 0.052, 𝜂! =  0.326).  
B. Subjective Responses 
1-pt Fatigue  
Fatigue perceptions were significantly different between 

NF and F (p < 0.001, 𝜂! =  0.622) with higher fatigue in the F 
conditions (4.325 ± 0.531) than the NF conditions (2.066 ± 
0.277). Assistance also impacted fatigue perceptions (p = 
0.032, 𝜂! = 0.289) with higher fatigue during low assistance 
at 3.409 ± 0.343 than high assistance at 2.981 ± 0.382. There 
was a marginal interaction between fatigue and sex (p = 
0.072, 𝜂! = 0.213) where females reported greater fatigue 
than males in the F condition (females = 5.216 ± 2.2, males = 
3.35 ± 1.8). 
NASA Task Load Index (TLX) 
Composite Score: Fatigue marginally affected overall 

workload score (p = 0.063, 𝜂! = 0.225) where NF was rated 
with lower overall scores than F. No other effects were 
observed (all p > 0.105). 
Mental Demand Subscale: Fatigue marginally affected the 

mental demand subscale (p = 0.067, 𝜂! = 0.225) with lower 
mental demand in NF than F, in addition to a marginal fatigue 
and sex interaction (p = 0.064, 𝜂! =  0.224) where females 
perceived higher mental demand when fatigued than males.  
Temporal Demand Subscale: There was a marginal effect 

of assistance on temporal demand (p = 0.082,  𝜂! =  0.200) 
where high assistance resulted in higher temporal demand. A 
significant three-way interaction between fatigue, assistance, 
and sex (p = 0.036, 𝜂! =  0.278; Fig.  5) was also found, 
however, post hoc analysis did not reveal any significant 
comparisons after Bonferroni corrections, although the 
difference is likely driven by the fatigue condition where 
males experienced higher temporal demand during high 
assistance than females.  

 
Fig.	5:	Effects	of	Fatigue,	Assistance,	and	Sex	on	Subjective	Temporal	

Demand.	The	error	bars	represent	standard	error.	 
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Performance Perception Subscale: Fatigue (p = 0.022, 𝜂! 
=  0.321) and assistance (p = 0.010, 𝜂! =  0.389) had a 
significant effect on perceived performance where 
participants felt they performed better in NF (15.372 ± 1.214) 
than F condition (14.0052 ± 1.365) and performed better with 
high assistance (15.372 ± 1.214) than low assistance (14.277 
± 1.335). There was also a significant two-way effect between 
assistance and sex (p = 0.019, 𝜂! =  0.333) where females felt 
they performed better with increased assistance (16.094 ± 
1.713 in high, 14.453 ± 1.888 in low), but the same effect was 
not observed in men (14.201 ± 1.713 in high, 14.102 ± 1.888 
in low), however all pairwise ttests were insignificant (all p > 
0.296). 
Effort Subscale: Assistance had a significant effect (p = 

0.026,	𝜂! =  0.308) with more effort required for low 
assistance at 7.178 ± 0.966 than high at 5.794 ± 0.900. No 
other effects were significant for effort (all p > 0.113). 
Frustration Subscale: A three-way marginal interaction 

was observed between fatigue, assistance, and sex (p = 0.088, 
𝜂! =  0.194). Females rated higher frustration with the high 
assistance and when fatigued as compared to males, and 
females rated higher frustration in the low assistance when not 
fatigued than males; however, no pairwise ttests were 
significant after Bonferroni corrections.  
Situation Awareness Rating Technique (SART) 

Composite Score: Both fatigue (p = 0.090,	𝜂! =  0.205) and 
assistance (p = 0.089, 𝜂! =  0.206) influenced the composite 
score for SART, where higher situation awareness was 
associated with no fatigue (NF = 20.500 ± 1.460, F = 17.424 
± 1.529), and lower assistance (Low = 19.634 ± 1.082, High 
= 18.290 ± 1.469).  
Attentional Supply Subscale: Assistance had a significant 

effect on available attentional supply, including questions 
such as arousal level and task engagement, (p = 0.011, 𝜂! =  
0.400). Participants felt they had higher supply in the low 
assistance conditions at 11.254 ± 0.831 than in the high 
assistance condition at 10.134 ±  0.722.  
Attentional Demand Subscale: The effects of fatigue were 

significant for perceived attentional demand of the task (p = 
0.035, 𝜂! =  0.299) where the task had lower demand during 
NF at 6.219 ± 0.604 than F at 8.278 ± 1.001. There was also 
a marginal interaction between fatigue and assistance (p = 
0.064, 𝜂! =  0.211; Fig.  6).  

 
Fig.	6:	Effect	of	Fatigue	and	Assistance	on	Attentional	Demand	Subscale	

of	Situation	Awareness.	The	error	bars	represent	standard	error.		

Understanding Subscale: Fatigue had a marginal effect (p 
= 0.099, 𝜂! = 0.195) where NF had higher understanding 
(16.366 ± 0.525) than F (15.558 ± 0.713). 
C. HRV Responses 
Parasympathetic Activity - HF 
A marginal three-way interaction was observed between 

fatigue, assistance, and phase (p = 0.067, 𝜂! =  0.297; Fig. 7), 
likely driven by higher HF in late F trials than NF trials in 
high assistance only. There was also a marginal four-way 
interaction between fatigue, assistance, phase, and sex (p = 
0.068, 𝜂! =  0.296). All other main effects and interactions 
were statistically identical (all p > 0.180).  

	
Fig.	7:	Effect	of	Fatigue,	Assistance,	and	Phase	on	Parasympathetic	

Activity	–	HF	in	ms2.	The	error	bars	denote	standard	error.	

Sympathetic Activity - LF 
All main effects and interactions were statistically identical 

(all p > 0.118) excluding sex, which had a significant main 
effect (p = 0.032, 𝜂! =  0.381) where females had higher LF 
than males at 1972 ± 194 ms2 verses 1338 ± 164  ms2.  
LF/HF Ratio 
There was an assistance, sex marginal interaction in LF/HF 

ratio (p = 0.068,	𝜂! =  0.295) likely due to females having 
lower ratio than males during low assistance (post hoc p = 
0.0145, Bonferroni α = 0.0125). There was also an interaction 
between phase and sex (p = 0.097, 𝜂! =  0.251) with a main 
phase effect (p = 0.012, 0.482) where early trials had lower 
ratio than late trials. A significant three-way interaction 
between fatigue, phase and sex was also observed (p = 0.036, 
𝜂! =  0.371; Fig.  8), likely driven by females having higher 
LF/HF in late blocks as compared to males when not fatigued 
(p = 0.045, Bonferroni α = 0.006). All other main effects and 
interactions were not significant (all p > 0.114). 

 
Fig.	8:	Effect	of	Fatigue,	Phase	and	Sex	on	LF/HF	Ratio.	The	error	bars	

represent	standard	error.		
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IV. DISCUSSION 
This study investigated the impacts of operator sex, 

cognitive fatigue status, and robot assistance levels on 
operator behavior, task performance metrics, and situation 
awareness in shared spaced robotics. Four key takeaways of 
this study include:  
1. High robot assistance successfully improved task 

efficiency and accuracy, and this was accompanied by 
higher perceived performance and lower efforts, but 
greater temporal demands. 

2. There is a differential effect of assistance and fatigue on 
set task performance measures (i.e., efficiency, accuracy 
and precision) and the measures are disparately sensitive 
to human behavior in HRC. 

3. Robot assistance directly impacted situation awareness 
where participants perceived less attentional supply (i.e., 
task engagement and arousal) with higher assistance, 
thereby reducing situation awareness. The effects of 
assistance on SA were also effectively captured by 
physiological measures.  

4. Females perceived greater performance benefits from 
utilizing high automation, while males did not perceive a 
benefit from the assistance, despite demonstrating 
comparable objective performance. Sex differences were 
also found in the subjective and objective measures of 
fatigue. 

A. Higher Assistance Improves Operator Task 
Performance 

Assistance level dictates the extent to which automation 
aids the human operator in a collaborative task. In this study, 
the effects of assistance level on the HRC task performance 
were captured by the efficiency and accuracy metrics, as well 
as operator perceptions of performance. Regardless of sex, 
participants performed significantly better when using high 
robot assistance; the efficiency measure, i.e., overall speed, 
was found to have a strong main effect (improved speed of 
0.08 cm/s with higher assistance) with a large effect size of 
0.86. Speed itself was not a controllable dimension by the 
operator as the robot moved based on stepwise binary (on/off) 
joystick inputs. Therefore, the change in speed is a direct 
measure of the continuity of joystick inputs as influenced by 
the human behavior. As such, the higher assistance was able 
to consistently reduce the stuttering behavior accumulated 
over a relatively short trial (~1-min); over an 8-hour workday 
with 90% operator productivity, 0.08 cm/s equates to an 
additional 35 metal plates polished. This is in line with 
previous research that also found productivity benefits with 
higher assistance [11]. The consequence of manual controls 
or lower assistance may be more apparent in systems with 
continuous scale speed controls, in more difficult tasks, or on 
the cumulative effect of reduced efficiency on long term 
productivity.  
 The main impact of assistance level was also found for the 
accuracy metric, deviation from trajectory, reducing deviation 
by half with a large effect size of 0.87. The effect is also 
significant when looking at individual event types, where 
deviation was observed more in turn events (difficult aspect 

of the task) than lateral events; however, higher assistance 
was able to reduce much of this variance. The use of robot 
assistance was able to enhance the operator’s performance by 
reducing stuttering inputs from the operator, and by 
improving task accuracy, more obvious around the difficult 
aspect of the task. Even with the minimal difficulty of the task 
employed in this study, the benefits of higher assistance were 
observed.  
B. Cognitive Fatigue and its Interactive Effect with 

Increased Assistance 
Operator fatigue is a critical human factors challenge that 

impacts productivity and safety across numerous industrial 
domains [35], [36]. While a prevalent safety risk in the 
manufacturing sector, cognitive fatigue is rarely considered in 
the design and implementation of highly instrumented 
collaborative robotic systems. Cognitive fatigue is associated 
with declines in attentional resources and impaired situation 
awareness, which are both important human attributes 
required for effective HRC [10], [37]. In the present study, the 
accuracy and precision metrics of HRC task performance 
were not found to be impacted by operator fatigue states. 
However, the efficiency metric captured the detrimental 
impacts of fatigue on HRC. For example, the HRC task 
completion speed was slower when operators were fatigued. 
This was further elucidated by the impact of fatigue order on 
task completion speeds, i.e., the participants who started with 
fatigue session had lasting effects on task performance where 
they continued to perform worse in both sessions. These 
results highlight the importance of utilizing appropriate task 
performance metrics that are sensitive to and can effectively 
capture critical operator states and their influences on 
effective HRCs.  
The fatiguing task employed in this study was a sustained 

spatial 2-back test, which was highly cognitively fatiguing, 
and every participant reported increasing levels of discomfort 
with taking the test. It is likely that the effects of the 60-
minute cognitive task were so fatiguing in comparison to the 
collaborative task, that participants began recovery during the 
HRC portion of the experiment. Parasympathetic activity has 
been shown to decrease with mental fatigue [24], therefore the 
increase is HF might suggest recovery when the stressor is 
removed. The effect of recovery on HRV was only visible 
during the fatigue session, particularly in the high assistance 
condition, through an increase in parasympathetic activity in 
later trials. Furthermore, participants rated lower fatigue and 
lower mental demand in the high assistance condition than 
low assistance. High assistance allowed for “human-out-of-
the-loop” during the HRC due to the full autonomy of the 
robot around turns and remaining reasonably engaged for the 
remainder of the task via lateral navigations [11].  
C. Elements of Situation Awareness are Impacted by 

Assistance Level and Operator Cognitive Fatigue 
While automation-aided “human-out-of-the-loop” 

alleviated perceptions of cognitive fatigue in the present 
study, there are critical considerations regarding dynamically 
changing human in/out of the loop in HRCs, such as that 
manipulated here. Human behavior can be affected by both 
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human and robot factors and the effect of human-out-of-the-
loop of the task can reduce situation awareness and make it 
more difficult for the operator to reengage with the task [4], 
[10], [11]. In this study, higher robot assistance, regardless of 
operator fatigue states, were found to reduce operator 
situation awareness. Decomposing SA subscales revealed that 
participants reported lower perceived attentional supply (i.e. 
low task engagement, arousal) with high assistance.  
Interestingly, cognitive fatigue states resulted in greater 
demand subscale of SA, which was further exacerbated in the 
low assistance condition as expected [38]. These results 
highlight that robot automation level and operator fatigue 
impact different attributes of SA, thereby providing 
opportunities and guidance for developing closed loop 
engineering solutions to support cognitive processes to 
maintain or augment operator SA during HRC that are 
adaptive to operator fatigued states.  
D. Cognitive Fatigue Differentially Impacts the Sexes  
In general, female participants reported greater levels of 

fatigue and mental demand throughout the fatigue session 
than males irrespective of the robot assistance levels. The 
physiological responses also captured these sex differences, 
whereby females exhibited higher LF/HF ratio in late blocks 
when not fatigued as compared to men (Fig 8). Historically, 
both physiological and subjective perceptions of fatigue states 
have been shown to vary by sex [39], [40], which was 
supported by this study. An additional sex difference 
observed here was the perceptions of performance. Despite 
improved task performances in the high versus low robot 
assistance conditions, males did not perceive substantial 
improvements in their performance with high assistance, 
whereas females did perceive better task performance in the 
high robot assistance. Sex did not have an impact on 
perceived SA during the HRC even though sex differences 
were observed in response to fatigue and task performance 
outcomes. These findings highlight that considerations of 
operator sex can help identify ways that male and female 
operators respond to HRC [41], both behaviorally and 
physiologically, such that more effective HRCs can be 
designed that address and accommodate for such group 
differences. These findings also provide insights on how 
different population groups perceive benefits and costs of 
automation rated high assistance as improving their 
performance.  
E. Study Limitations and Future Work 
Limitations of this study need to be acknowledged. The 

participants recruited in this study were college students 
predominately seeking advanced degrees in engineering. 
Future work should focus on industry workers as the majority 
of jobs in manufacturing are taken up by high-school 
graduates or less [42]. However, the findings presented in this 
study are relevant as they set the stage for future hypothesis 
driven work. While one HRC use case is provided, i.e., a 
metal polishing task, the fundamental implications of operator 
factors (cognitive fatigue, sex) and robot factors (assistance 
level) are relevant to other HRC use cases given specific 
outcomes (i.e., task performance, situation awareness, 

workload, physiological responses), although the metrics and 
uncertainties in other HRC tasks may require further 
investigation. The generalization of the results to physical 
shared-space tasks where the robot and the human operator 
are within physical reach of each other requires further 
investigation due to the implications on trust and resulting 
allocations of attentional resources. Additionally, further 
investigation into contextually relevant environmental factors 
that affect user acceptance, such as propensity to trust, and 
their interaction with fatigue and assistance should be 
considered.     

V. CONCLUSION 
This work  systematically examined operator fatigue, 

operator sex, and robot assistance level, all highly relevant 
and interrelated factors for optimizing HRC system designs 
with respect to task performance and user experience. The 
various task performance metrics (i.e., efficiency, accuracy, 
and precision) were able to selectively capture various 
attributes of the relationship between operator fatigue and 
assistance level. Our findings indicate that assistance through 
high automation significantly improves task accuracy and 
efficiency but does not change precision, whereas fatigue 
impacts task efficiency, but not accuracy or precision. 
Operator perceptions varied by robot assistance level but were 
different for males and females. Females perceived greater 
performance benefits from utilizing high automation, while 
males did not perceive a benefit from the assistance. 
Furthermore, higher automation aided “human-out-of-the-
loop”, which allowed for operator fatigue recovery, measured 
using HRV signals and subjective perceptions; however, this 
resulted in lower operator situation awareness with increased 
perceived temporal demand. These findings demonstrate that 
effective HRC can be achieved by examining collaborative 
task performances through addressing factors at the 
intersection of the human level (i.e., operator sex and 
cognitive states), and the robot level. The systematic approach 
was able to capture the interdependence between the 
examined factors through changes in task performance 
metrics, subjective experiences, and physiological measures. 
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