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D. Perrone ,9 S. Servidio ,10 V. Roytershteyn ,11 J. M. TenBarge 12 and W. H. Matthaeus 13

1Gran Sasso Science Institute, Viale F. Crispi 7, I-67100 L’Aquila, Italy
2INFN/Laboratori Nazionali del Gran Sasso, I-67100 Assergi (AQ), Italy
3Istituto per la Scienza e Tecnologia dei Plasmi, Consiglio Nazionale delle Ricerche, Via Amendola 122/D, I-70126 Bari, Italy
4Center for Space Plasma and Aeronomic Research, University of Alabama in Huntsville, Huntsville, AL 35899, USA
5Department of Physics and Astronomy, University of Iowa, Iowa City, IA 54224, USA
6Department of Physics and Astronomy and Center for KINETIC Plasma Physics, West Virginia University, WV 26506, USA
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ABSTRACT

The physical foundations of the dissipation of energy and the associated heating in weakly collisional plasmas are poorly

understood. Here, we compare and contrast several measures that have been used to characterize energy dissipation and kinetic-

scale conversion in plasmas by means of a suite of kinetic numerical simulations describing both magnetic reconnection and

decaying plasma turbulence. We adopt three different numerical codes that can also include interparticle collisions: the fully

kinetic particle-in-cell VPIC, the fully kinetic continuum Gkeyll, and the Eulerian Hybrid Vlasov–Maxwell (HVM) code. We

differentiate between (i) four energy-based parameters, whose definition is related to energy transfer in a fluid description of a

plasma, and (ii) four distribution function-based parameters, requiring knowledge of the particle velocity distribution function.

There is an overall agreement between the dissipation measures obtained in the PIC and continuum reconnection simulations,

with slight differences due to the presence/absence of secondary islands in the two simulations. There are also many qualitative

similarities between the signatures in the reconnection simulations and the self-consistent current sheets that form in turbulence,

although the latter exhibits significant variations compared to the reconnection results. All the parameters confirm that dissipation

occurs close to regions of intense magnetic stresses, thus exhibiting local correlation. The distribution function-based measures

show a broader width compared to energy-based proxies, suggesting that energy transfer is co-localized at coherent structures,

but can affect the particle distribution function in wider regions. The effect of interparticle collisions on these parameters is

finally discussed.

Key words: magnetic reconnection – plasmas – turbulence – solar wind.

1 IN T RO D U C T I O N

Understanding energy dissipation and heating in weakly collisional

plasmas is a key challenge in the study of space and astrophysical

plasmas, such as the solar corona, solar wind, the outer magneto-

spheres of planets, and compact astrophysical objects. At variance

with neutral fluids and collisional plasmas (e.g. magnetofluids),

interparticle collisions are typically weak in these systems and

are often neglected. One example is during magnetic reconnection,

where magnetic fields with a reversing component effectively break

and cross-connect at length-scales at and below the gyroradius of the

particles (kinetic scales), allowing the conversion of magnetic energy

� E-mail: oreste.pezzi@gssi.it

to kinetic, thermal, and non-thermal energy (Yamada, Kulsrud & Ji

2010). Another example is that weakly collisional plasmas are often

observed to be in a strongly turbulent state (Federrath et al. 2010;

Bruno & Carbone 2016; Narita 2018; Beresnyak 2019; Fraternale

et al. 2019). Hence, they are characterized by the cross-scale transfer

of fluctuation energy from large injection scales to smaller, kinetic

scales, where energy dissipation is expected to occur (Schekochihin

et al. 2009; Howes 2015b; Matthaeus et al. 2015; Vaivads et al. 2016;

Verscharen, Klein & Maruca 2019). These features have, at least, two

profound implications.

First, the dynamics of weakly collisional plasmas involve the

whole phase-space, both in configuration and velocity space, as

opposed to collisional systems for which the proximity to local

thermal equilibrium restricts velocity distribution functions to be
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4858 O. Pezzi et al.

near-Maxwellians due to efficient collisional thermalization. In-

deed, VDFs in weakly collisional plasmas frequently display non-

equilibrium features, such as temperature anisotropy and agyrotropy,

rings, beams of accelerated particles, etc. (Marsch 2006; Servidio

et al. 2012, 2015; Lapenta et al. 2017; Perri et al. 2020). In turbulence,

this interesting dynamics has been envisioned as a phase-space

cascade (Tatsuno et al. 2009; Plunk & Tatsuno 2011; Kanekar et al.

2015; Parker et al. 2016; Schekochihin et al. 2016; Servidio et al.

2017), where the plasma exhibits a power-law scaling – typical of

turbulence – in both physical and velocity space. In this perspec-

tive, by expanding particle VDFs in velocity space using Hermite

polynomials, a power-law Hermite spectrum was recently observed,

reflecting the presence of fine velocity-space structures, in both in
situ observations (Servidio et al. 2017) and numerical simulations

(Cerri, Kunz & Califano 2018; Pezzi et al. 2018). This clearly

illustrates the necessity of using kinetic models to describe such

plasmas. Moreover, non-Maxwellian structures in particle VDFs are

observed to be significant in the vicinity of intense current sheets or

other nearby coherent structures such as vortices, where MHD-like

dissipation is thought to occur (Osman et al. 2011; Servidio et al.

2012; Matthaeus et al. 2015; Parashar & Matthaeus 2016).

Secondly, concepts about energy dissipation and conversion in

neutral fluids and magnetofluids do not necessarily carry over to

weakly collisional systems. The rate and parametric dependence of

dissipation and kinetic-scale energy conversion for such plasmas is

extremely challenging and is not thoroughly understood. One chal-

lenge is that various physical mechanisms and processes can cause

dissipation and kinetic scale energy conversion in various physical

circumstances. In weakly collisional plasmas in which kinetic effects

play a crucial role in the dynamics, such as during turbulence and

reconnection, it may be difficult to assess quantitatively the relative

importance of the various dissipative mechanisms, and likewise

the net effect of a given dynamical process may be unclear due

to reversibility. To address these issues different mechanisms and

concepts of dissipation have been proposed and, hence, several

dissipation surrogates have been adopted (see e.g. Vaivads et al.

2016; Matthaeus et al. 2020, for recent reviews). However, a unified

and general picture of when and where different views work better

is still lacking.

Another important question is the following: do the sites identified

potential sites of dissipation correspond to regions where interparticle

collisions, although weak, dissipate energy in an irreversible way?

Addressing this question has encouraged the examination of a differ-

ent concept of dissipation associated with the growth of entropy due

to collisions (TenBarge, Howes & Dorland 2013; Navarro et al. 2016;

Pezzi et al. 2019c; Liang et al. 2019). Although collisions typically

act on large characteristic times (Spitzer Jr. 1956; Vafin, Riazantseva

& Pohl 2019), their effects are enhanced where particle VDFs

exhibit strong distortions, since intense velocity-space gradients are

dissipated very quickly by collisions (Landau 1936; Rosenbluth,

MacDonald & Judd 1957; Balescu 1960; Schekochihin et al. 2009;

Pezzi, Valentini & Veltri 2016; Pezzi 2017). Non-Maxwellian VDFs

make intraspecies collision operators non-zero, thus activating this

dissipation channel.

In the following, we classify eight different dissipation proxies into

two general classes that we call ‘energy-based’ and ‘VDF-based’.

The energy-based definition describes dissipation as a transfer of

energy within a fluid-like description. Often such transfer occurs

from an ordered component (e.g. magnetic or bulk flow fluctuations)

into a random (e.g. internal) component. On the other hand, VDF-

based surrogates directly quantify the presence of non-equilibrium

features in the particle VDF. The two classes of dissipation proxies

are correlated, since the distortion of the particle VDF is often the

consequence of a transfer of energy and vice versa. The dissipation

proxies here adopted do not explicitly distinguish signatures asso-

ciated with particular phenomena, e.g. Landau damping, cyclotron

damping, or stochastic processes (Chandran et al. 2010; Numata &

Loureiro 2015; Li et al. 2016; Chen, Klein & Howes 2019). Future

studies will analyse the connection between these dissipation mea-

sures – useful to detect potential sites of inhomogeneous dissipation

in a turbulent environment – and the underlying plasma processes,

e.g. highlighted through the field-particle correlation (Klein & Howes

2016; Klein, Howes & TenBarge 2017; Chen et al. 2019; Klein et al.

2020).

In this work, we investigate numerically the functionality of

several dissipation proxies belonging to the two classes introduced

above. We focus on two different types of numerical simulations:

magnetic reconnection in a single current sheet and the development

of a turbulent cascade at kinetic scales. We exploit three different

numerical Boltzmann–Maxwell algorithms, of both Lagrangian and

Eulerian type, that can include interparticle collisions. In particular,

we adopt the fully kinetic particle-in-cell VPIC code (Bowers et al.

2008), and two Eulerian Vlasov–Maxwell codes. These latter codes

are the fully kinetic continuum Vlasov–Maxwell solver implemented

in the Gkeyll simulation framework (Juno et al. 2018) and the

Hybrid Vlasov–Maxwell (HVM) code with kinetic protons and fluid

electrons (Valentini et al. 2007). We find that the dissipation measures

well characterize significant features of both magnetic reconnection

and turbulence, such as the reconnection diffusion region and the

intermittent current sheets surrounding turbulent vortices. The dissi-

pation surrogates evaluated from the PIC and Gkeyll reconnection

simulations agree to a wide extent. Slight differences between the two

runs result from the presence of secondary islands in the Gkeyll

simulation that are not present in the PIC simulation. A qualitative

correspondence between the signatures in the reconnection simula-

tions and the self-consistent current sheets generated in turbulence

is also found, despite larger variations observed in the turbulent case

with respect to the magnetic reconnection one. The parameters show

a regional correlation: their local peaks take place in similar spatial

regions, but they are not necessarily point-to-point correlated (Yang

et al. 2019; Matthaeus et al. 2020). When including interparticle

collisions, peaks of the dissipation proxies are in general weaker

than in the associated collisionless system, suggesting that the slow

yet incessant effect of collisions locally reduce the transfer of energy

and the presence of non-Maxwellian features. By considering the

effect of both intraspecies and interspecies collisions, we confirm

that the former mainly dissipate non-Maxwellian features in the

particle VDF, although they may have an indirect effect also on

energy transfer through the pressure tensor isotropization (Del Sarto,

Pegoraro & Califano 2016). On the other hand, the latter also

significantly affect energy-based parameters. Finally, by adopting

a suite of different algorithms and numerical codes, the current work

aims at providing a further contribution to the ‘turbulence dissipation

challenge’ (Parashar et al. 2015), on which several recent efforts have

been dedicated (e.g. Pezzi et al. 2017; Perrone et al. 2018; González

et al. 2019).

The paper is structured as follows. In Section 2, we define and

discuss the dissipation measures investigated in the current work. In

Section 3, numerical models and algorithms adopted for the current

analysis are described. Sections 4 and 5 report numerical results

obtained in the simulations of reconnection and the onset of kinetic

turbulence, respectively. In Section 6, we show one-dimensional

(1D) profiles of the dissipation proxies close to the reconnecting

current sheet and a typical current sheet observed in the turbulence
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Dissipation in weakly collisional plasmas 4859

simulation. Finally, conclusions and discussions are presented in

Section 7.

2 D ISSIPATION MEASURES IN W EAKLY

COLLISIONA L PLASMAS

In this section, we introduce the framework and summarize the

dissipation proxies adopted in this work. We consider a weakly

collisional plasma, composed of protons (p) and electrons (e). The

Boltzmann–Maxwell equations, describing non-relativistic plasmas,

in cgs units are:

∂fα

∂t
+ v ·

∂fα

∂ r
+

qα

mα

(

E +
v

c
× B

)

·
∂fα

∂v
=

∂fα

∂t

∣

∣

∣

∣

coll

(1)

∇ · E = 4πρc (2)

∇ · B = 0 (3)

∇ × E = −
1

c

∂ B

∂t
(4)

∇ × B =
1

c

∂ E

∂t
+

4π

c
j , (5)

where fα(r, v, t) is the α-species VDF (α = p, e); E(r, t) and

B(r, t) are the electric and magnetic fields; and qα , mα , and c
are the α-species charge, mass, and the light speed. The charge

and electric current densities are, respectively, ρc =
∑

αqαnα and

j =
∑

α qαnαuα , where nα =
∫

d3vfα is the α-species number density

and nαuα =
∫

d3vvfα is the α-species number flux density. In the

following subsections, we omit the collisional operator ∂fα /∂t|coll for

simplicity.

2.1 Energy-based dissipation measures

The energy-based dissipation proxies can be introduced from the

energy equations:

∂Ef
α

∂t
+ ∇ ·

(

uαE
f
α + uα · Pα

)

= (Pα · ∇) · uα + nαqαuα · E (6)

∂E th
α

∂t
+ ∇ ·

(

uαE
th
α + hα

)

= − (Pα · ∇) · uα (7)

∂Em

∂t
+

c

4π
∇ · (E × B) = − j · E, (8)

where Ef
α = ραu2

α/2 is the bulk flow energy density of the

α-species, E th
α = mα

∫

d3vfα (v − uα)2 /2 is the thermal (internal)

energy density of the α-species and Em = (E2 + B2)/8π is the

electromagnetic energy density. In the above equations

Pα =
mα

2

∫

d3v(v − uα)(v − uα)fα, (9)

hα =
1

2

∫

d3v(v − uα)2(v − uα)fα, (10)

are the pressure tensor and vector heat flux, respectively.

The left-hand sides of equations (6)–(8) contain terms involving

divergences of fluxes. These terms can be locally important and

correspond physically to energy transport (Pezzi et al. 2019a).

Assuming there is no flux across the domain boundaries (e.g. with

periodic boundary conditions), they have no net effect on the global

energy partition of the system. Energy transfer between bulk flow and

magnetic energy is described by the j · E term, while conversion of

energy between bulk flow and thermal occurs through the pressure–

strain interaction (Pα · ∇) · uα . Including intraspecies collisional

effects (e.g. proton–proton and electron–electron) would not intro-

duce an extra term in equations (6)–(8). However, these collisions

indirectly affect these equations by thermalizing the particle VDF,

thus reducing the non-gyrotropic terms in the pressure tensor and,

in turn, having an impact on the pressure–strain interaction term

(Del Sarto et al. 2016). On the other hand, interspecies collisions

(electron–proton) insert an explicit interspecies energy transfer term

in the energy equations.

The first dissipation surrogate here considered is the Zenitani

measure (Zenitani et al. 2011), widely adopted to describe dissipation

in magnetic reconnection (Zenitani et al. 2011; Phan et al. 2018) and

plasma turbulence (Wan et al. 2015). It evaluates the rate of work

per unit volume done by the electric field on particles, j · E, in the

reference frame co-moving with the considered species, in contrast

with j · E in the simulation frame, which gives the total rate of

energy conversion between the electromagnetic fields and the plasma.

It directly measures the non-ideal energy conversion (Zenitani et al.

2011) and is related to the production of entropy density in the MHD

framework (Birn & Hesse 2005). It reads as

Dα = j ′ · E′ = j ·
(

E +
uα

c
× B

)

− ρc (uα · E) , (11)

where j ′ and E′ are the current density and the electric field in

the reference frame co-moving with the species α, respectively. As

shown in Zenitani et al. (2011), neDe = npDp and, in a singly ionized

quasi-neutral system such as the ones considered in the present work,

De � Dp. Dα contains both reversible and irreversible contributions

since the electric field E has contributions from both reversible

(e.g. wave–particle interactions etc.) and irreversible (e.g. collisional

resistive) processes. We note that the probability distribution function

(PDF) of Dα and other dissipation measures are almost symmetric

between negative and positive values (see fig. 4 of Wan et al. 2015).

Net dissipation, which is ultimately an integral over space and time,

arises from slight asymmetry (skewness) in the tails of the PDF.

More recently, the pressure–strain interaction (Pα · ∇) · uα has

been analysed to understand dissipative mechanisms in weakly

collisional plasmas (Yang et al. 2017a, b, 2019; Chasapis et al. 2018a;

Sitnov et al. 2018; Pezzi et al. 2019a; Matthaeus et al. 2020). This

term is commonly decomposed as

− (Pα · ∇) · uα = −Pαθα − �α : Dα, (12)

where Pα, ij = Pαδij + 	α, ij; Pα = Pα, ii/3; θα = ∇ · uα; Dα,ij =
(

∂juα,i + ∂iuα,j

)

/2 − θαδij/3; and δij and ∂ i denote the Kronecker

delta and a partial derivative with respect to the ith spatial coordinate,

respectively. The first term on the right-hand side of equation (12),

called P–θα , is associated with plasma expansion and compression.

The last term, called Pi–Dα , is associated with the trace-less

(anisotropic and off-diagonal) parts of the pressure tensor and the

symmetric part of the velocity strain and describes the rate of work

per unit volume done by flow shear. The spatial integral of the Pi–Dα

term measures the thermal energy gain (Pezzi et al. 2019a). Here,

we use the convention that Pi–Dα and P–θα include the minus signs

in equation (12), so that positive values tend to locally increase

the thermal energy. The Pi–Dα term has been adopted to provide

insights on the mechanisms that transfer energy towards smaller

scales, where it is dissipated (Yang et al. 2019). The motivation for

this term being associated with dissipation arises from the MHD

framework, in which traceless pressure–tensor terms are related to

viscous dissipation (Braginskii 1965). Hence, it is interesting to

explore whether this connection remains valid in a weakly collisional

system.

MNRAS 505, 4857–4873 (2021)
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4860 O. Pezzi et al.

Another dissipation proxy is associated with the cross-scale

conversion of energy in its non-linear transfer during the turbulent

cascade (Frisch 1995). A proxy of the scale-dependent local energy

transfer rate (LET) in a weakly collisional plasma at proton inertial

scales may be estimated through the combined velocity, magnetic

field and current fluctuations as (Sorriso-Valvo et al. 2018a, b, 2019)

εp,� =
(

|�up|2 + |�b|2
) �up,�

�
− 2(�up · �b)

�b�

�

−
dp

2
|�b|2

�j�

�
+ dp(�b · � j )

�b�

�
, (13)

where dp is the proton skin depth. The magnetic field is in velocity

units b ≡ B/
√

4πρ, where ρ is the proton mass density. �g ≡
g(r + �) − g(r) is the increment of a field g between two spatial

points separated by a distance � and is used to describe structures

or fluctuations of that size. The subscript � indicates longitudinal

increment, i.e. the projection along the increment vector �. In this

work, LET values are associated with the starting point of the

increment vector and, for all simulations, the LET parameter εp, � is

computed with � = dp and by averaging the increments taken in the

positive horizontal and vertical directions. Since the LET parameter

εp, � is introduced within a fluid framework, we do not compute it

with � below proton scales, where electron kinetic effects become

important. The definition of LET is motivated by the isotropic

form of the Politano–Pouquet scaling law for the mixed third-order

fluctuations in turbulent incompressible MHD plasmas (Politano

& Pouquet 1998; Sorriso-Valvo et al. 2002, 2007), in this case

also including the Hall–MHD terms (Galtier 2008; Ferrand et al.

2019; Bandyopadhyay et al. 2020; Vásconez et al. 2021). Under

the assumption of stationarity, homogeneity, and large Reynolds’

number, the associated scaling coefficient 〈εp〉 (〈...〉 indicating the

ensemble average) is the constant mean energy transfer (or, in

the stationary steady state, the dissipation) rate of the turbulent

cascade (Kolmogorov 1941). In 3D fluid, fully developed turbulence,

the sign of the averaged third-order moment has to be negative,

corresponding to an ensemble-averaged global net transfer towards

the small scales (the non-linear turbulent energy cascade). Other

terms locally contributing to the energy transfer vanish and are

disregarded here. These represent the different fluid contributions

to the turbulent transfer of energy: kinetic and magnetic turbulent

energy transported by velocity fluctuations, coupled magnetic and

velocity Alfvénic fluctuations transported by magnetic structures,

and two associated Hall terms. In weakly collisional plasmas, the

LET may be unable to describe the contribution of compressibility,

as well as the role of possible non-thermal features. The latter might

enter in the energy budget via the pressure–tensor contributions.

However, it can provide information on the local transfer of ordered

energy towards small scales, where it is made available for conversion

through various possible mechanisms, including dissipation. In

particular, according to the definition used in this work, negative

LET terms can be thought of as locally contributing to the non-linear

energy transfer towards small scales, and positive LET terms describe

a contribution to energy transfer to large scales. In non-turbulent

systems as well as in systems displaying a large-scale structure

(e.g. a single reconnecting current sheet), the interpretation of the

LET sign is more difficult, since the assumption of homogeneity is

not satisfied. However, for this analysis, peaks of LET indicate the

local concentration of cross-scale energy transfer that can be made

available for dissipation, regardless of the sign.

2.2 VDF-based dissipation measures

The first parameter belonging to the class of VDF-based dissipation

measures is the pressure agyrotropy (Scudder & Daughton 2008).

Agyrotropy is a measure of differences in the plasma temperatures

in the two perpendicular directions to a given axis (Scudder &

Daughton 2008; Aunai, Hesse & Kuznetsova 2013; Swisdak 2016).

Standard axis orientations for computing agyrotropy are along the

local magnetic field or the mean magnetic field. Other coordinate

systems, such as the minimum variance frames of the particle VDF,

have been also adopted (Servidio et al. 2015; Pezzi et al. 2017). We

consider here the agyrotropy parameter
√

Qα proposed by Swisdak

(2016), evaluated relative to the local magnetic field. Writing the

pressure tensor Pα in the coordinate system where the local magnetic

field is parallel to the z-axis as

Pα =

⎛

⎜

⎜

⎝

Pα,⊥ Pα,12 Pα,13

Pα,12 Pα,⊥ Pα,23

Pα,13 Pα,23 Pα,‖

⎞

⎟

⎟

⎠

, (14)

the agyrotropy parameter is defined as

Qα =
P 2

α,12 + P 2
α,13 + P 2

α,23

P 2
α,⊥ + 2Pα,⊥Pα,‖

. (15)

Qα can be computed in an arbitrary coordinate system, as explained

in appendix A of Swisdak (2016).

The variety of non-Maxwellian structures observed during mag-

netic reconnection or in a turbulent plasma is much richer than just

pressure agyrotropies. Another proxy, usually named ε but here

called ξ since ε is already used to indicate the LET proxy, was

proposed by Greco et al. (2012). Here, we propose a slightly different,

non-dimensional definition (the original definition had dimensions

of v−3/2):

ξα(r, t) =
v

3/2
th,α(r, t)

nα(r, t)

√

∫

d3v [fα(r, v, t) − gα(r, v, t)]2. (16)

Here, gα is the equivalent Maxwellian distribution function associ-

ated with fα , i.e. constructed using the local values of the density

nα , bulk speed uα , and total temperature Tα of the α-species; while

vth,α =
√

kBTα/mα is the (local) thermal speed.

Similar measures to identify non-Maxwellian VDFs were con-

structed using kinetic entropy. The kinetic entropy density sα is

sα(r, t) = −kB

∫

d3vfα(r, v, t) log fα(r, v, t). (17)

Note the total entropy Sα =
∫

sαd3r of a collisional system is non-

decreasing from the Boltzmann H-theorem, but the entropy density

may locally increase or decrease (Pezzi et al. 2019c). It is possible

to define a velocity–space entropy density svel
α retaining only the

spatially local contribution to entropy from permutations of particles

in velocity space (Liang et al. 2019) as

svel
α (r, t) = sα(r, t) + kBnα(r, t) log

(

nα(r, t)

�v3

)

, (18)

where �3v is the volume of the cell in velocity space. Using these

definitions, two dimensionless non-Maxwellianity parameters have

been introduced:

M̄KP,α(r, t) =
sM,α(r, t) − sα(r, t)

(3/2)kBnα(r, t)
=

svel
M,α(r, t) − svel

α (r, t)

(3/2)kBnα(r, t)
, (19)
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Dissipation in weakly collisional plasmas 4861

proposed by Kaufmann & Paterson (2009), and

M̄α(r, t) =
M̄KP,α(r, t)

1 + log
(

2πkBTα

mα (�3v)2/3

) , (20)

proposed by Liang et al. (2020). Here, sM,α(r, t) is the entropy density

evaluated using the equivalent Maxwellian distribution function

gα(r, v, t) associated with the VDF fα(r, v, t), given by

sM,α =
3

2
kBnα

[

1 + log
2πkBTα

mαn
2/3
α

]

. (21)

and svel
M,α(r, t) is computed according to equation (18).

In a system with a fixed number of particles and total energy, the

Maxwellian distribution has the maximum entropy. Hence, M̄KP and

M̄ (along with ξ ) are positive definite. These parameters measure all

higher order VDF disturbances from the local Maxwellian beyond

its second-order moment. This retains information about dissipation,

since high-order variations from the Maxwellian coincide with the

presence of fine velocity–space structures that, in turn, are dissipated

by collisional effects (Pezzi et al. 2016).

3 N U M E R I C A L M O D E L S A N D S I M U L AT I O N S

SETUP

The parameters introduced in the previous section are computed

using the results of kinetic numerical simulations performed with

different codes. All simulations in this work are 2.5D in space

(quantities depend on two dimensions, but vectors have three

components) and 3D in velocity space. For all codes, quantities

are presented using a normalization based on an arbitrary magnetic

field strength B0 and density n0. Spatial and temporal scales are

normalized to the proton inertial length dp = c/ωpp and the proton

cyclotron time �−1
cp , respectively, where ωpp =

√

4πn0e2/mp is the

proton plasma frequency based on n0 and �cp = eB0/mpc is the proton

cyclotron frequency based on B0. Thus, velocities are normalized to

the Alfvén velocity cA = dp�cp; electric fields are normalized to

cAB0/c; pressures and temperatures are normalized to B2
0 /4π and

mpc
2
A/kB , respectively; and entropy is normalized to Boltzmann’s

constant kB [see Liang et al. (2019) for a detailed discussion of the

units of the continuous Boltzmann entropy]. Derived units of the

dissipation measures are therefore as follows: Dα , Pi–Dα , and P–

θα are �cpB
2
0 /4π , εp is c2

A�cp, while Qα, ξα, M̄KP,α , and M̄α are

dimensionless.

3.1 Numerical algorithms

For the present analysis, we adopt the particle-in-cell VPIC code

and two different Eulerian Vlasov–Maxwell codes: the fully kinetic

Gkeyll code and the hybrid-kinetic HVM code.

VPIC utilizes a 3D, relativistic, fully kinetic explicit algorithm

(Bowers et al. 2008). VPIC has been widely adopted for both

collisionless and weakly collisional plasma simulations, including

simulations of magnetic reconnection and plasma turbulence (e.g.

Daughton et al. 2009, 2011; Karimabadi et al. 2013; Roytershteyn

et al. 2013; Wan et al. 2015; Roytershteyn, Karimabadi & Roberts

2015). The code includes several models of binary collisions, includ-

ing the particle-pairing Coulomb collision algorithm of Takizuka &

Abe (1977) capable of accurately reproducing the Landau collisional

integral over a wide range of parameters. The latter model is used in

this study.

Gkeyll is a highly extensible code framework that contains

solvers for a number of systems of equations of relevance to

plasma physics, including multimoment multifluid (Wang et al.

2015), continuum gyrokinetics (Shi et al. 2019; Mandell et al. 2020),

and continuum Vlasov–Maxwell (Juno et al. 2018; Hakim & Juno

2020). Gkeyll’s Vlasov–Maxwell solver utilizes the discontinuous

Galerkin finite element method for phase-space discretization and a

strong-stability preserving Runge–Kutta method for the integration

in time. The conservative, discontinuous Galerkin implementation

of the non-linear Dougherty operator (Dougherty 1964) is adopted

to include intraspecies collisions (Hakim et al. 2020) (see Juno 2020

for further details).

HVM integrates the Vlasov–Maxwell system within the hybrid

framework, assuming quasi-neutrality and neglecting the displace-

ment current density (Mangeney et al. 2002; Valentini et al. 2007).

The proton Vlasov equation is discretized on a phase-space grid and

integrated numerically, while electrons are assumed to be a massless

isothermal fluid. A generalized Ohm’s law for evaluating the electric

field in Faraday’s law is coupled to the Vlasov equation. Proton–

proton collisions have been recently included through the non-linear

Dougherty operator (Pezzi, Valentini & Veltri 2015; Pezzi et al.

2019b, c).

3.2 Simulations setup

We discuss the two classes of numerical simulations in this work.

The first class employs both collisionless and weakly collisional VPIC

and Gkeyll simulations of a single current sheet that undergoes

symmetric antiparallel magnetic reconnection. In the collisionless

case, we find that VPIC and a separate PIC code P3D (Zeiler

et al. 2002), adopted in Liang et al. (2020), provide consistent

and qualitatively similar results. Although the VPIC and Gkeyll

simulations are very similar in their choice of parameters, there are

small differences we make note of in the subsequent discussion. We

first describe the VPIC simulations.

The VPIC reconnection simulations use a domain size of Lx × Lz

= 25 × 25, with periodic boundary conditions in x and perfectly

conducting boundaries on z. A single-current-sheet initial condition

is used, with magnetic field given by Bx(z) = tanh [(z − Lz/2)/w0],

where w0 = 0.5 is the initial half-thickness of the current sheet.

The initial VDFs are drifting Maxwellians with temperatures Te

= 1/12 and Tp = 5/12 for electrons and protons, respectively;

both temperatures are initially uniform over the whole domain. The

density is set to balance plasma pressure in the fluid sense, with n(z)

= sech2[(z − Lz/2)/w0] + nb, where nb = 0.2 is the background (lobe)

density. Therefore, the total upstream plasma β for this simulation

is nbkB (Te + Tp)/(B2
0 /8π ) = 0.2. The proton-to-electron mass ratio

is mp/me = 25 and the speed of light c = 15. These choices enforce

that the plasma is non-relativistic (the thermal and Alfvén speeds

are much less than the light speed), which is appropriate for the non-

relativistic treatment of kinetic entropy. We employ a time-step of �t
≈ 5.8 × 10−4. The smallest electron Debye length for this simulation

(based on the maximum density of 1 + nb) is λDe = 0.018. The spatial

grid scale is �x = �z = 0.0125 ≈ 0.6944 λDe (Nx = Nz = 2000).

The reference number of particles per cell per particle species is

104 for a density equal to one. We simulate three different electron–

ion collision frequencies: ν = 0, ν = 0.01 �ce = 0.25 �cp and ν

= 0.05 �ce = 1.25 �cp. All types of collisions (electron–electron,

electron–ion, and ion–ion) are taken into account. For each type of

collision, the variance of the scattering angle in the Takizuka–Abe

algorithm is chosen to yield correct ratio of the respective collision

frequencies (see Takizuka & Abe 1977 for more details).

In addition to the parameters for the PIC simulation, the kinetic

entropy diagnostic requires other parameters, discussed in detail in

MNRAS 505, 4857–4873 (2021)
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4862 O. Pezzi et al.

appendix B of Liang et al. (2019). For the PIC simulation, we use

a velocity space grid scale of �v ≈ 0.6 vth,e for electrons and �v

≈ 0.5vth,i for ions. We use a velocity range for binning the particles

from −c to c in each dimension for electrons and from −0.4c to 0.4c
for ions.

The Gkeyll reconnection simulation also uses a single current

sheet initial condition, in a domain of size, Lx × Lz = 8π × 4π , which

compared to the PIC simulation is a similar size in x but about half

the size in z. The boundary conditions are periodic in x, a reflecting

wall boundary condition in z. The initial magnetic fields and plasma

parameters are the same as the VPIC simulations: w0 = 0.5, mp/me =
25, Tp = 5/12, Te = 1/12, and nb = 0.2. Likewise, there is only one

Maxwellian component in the current sheet, but c = 50. Since the

continuum Vlasov method in Gkeyll avoids aliasing errors asso-

ciated with under-resolving the Debye length in PIC methods while

still conserving energy, we choose a coarser configuration space grid

resolution to save on the computational cost of a continuum method

while still resolving the reconnection dynamics. Our grid resolution is

�x = �z ≈ 0.4 ≈ 40 λDe (Nx = 64, Nz = 32) with piecewise quadratic

Serendipity polynomials within a grid cell (Arnold & Awanou 2011).

The velocity space range is from −6 vth,α to 6 vth,α with a velocity

space grid of �vα = vth,α along with piecewise quadratic Serendipity

polynomials in velocity space. Zero-flux boundary conditions are

employed in velocity space to ensure energy conservation. We

choose a constant collisionality of νee = 0.01 for electron–electron

collisions and νpp = 0.002 for proton–proton collisions for the

Dougherty collision operator. Reconnection is initiated using a

magnetic perturbation with a spectrum of random wave modes in the

first 20 modes of the system with r.m.s. amplitude δB/B0 = 2 × 10−3.

These random perturbations break the symmetry of the continuum

kinetic initial condition and allow for the study of the standard m =
1 tearing mode that arises from noise in PIC simulations.

The HVM turbulence simulations have 512 grid-points in each

direction and a size Lx = Ly = L = 2π × 20. Periodic boundary

conditions are imposed for the spatial domain. Velocity space is

discretized with 71 grid-points in the range vj = [−5vth, p, 5vth,p] (j
= x, y, z), with the boundary condition f(vj > 5vth,p) = 0. The initial

equilibrium is characterized by spatial homogeneity, Maxwellian

proton VDFs, and a background uniform out-of-plane magnetic field

B0 = ez with βp = 2. This equilibrium is perturbed at t = 0 by

imposing magnetic δB and bulk speed δu = ±δb fluctuations (δb

in Alfvén speed units). Energy is injected at large scales, i.e. k
∈ [2, 6]k0 (k0 = 2π /L), with a flat energy spectrum and random

phases. The r.m.s. amplitude of the fluctuations is δB/B0 = 1/2. No

density perturbations or parallel perturbations are introduced at t =
0. Electron inertia effects are neglected in Ohm’s law, while electron

temperature is set equal to the initial ion temperature. A small

resistivity (η � 10−3) is introduced to suppress numerical instabilities

and does not play a significant role in the plasma dynamics. The

adopted numerical resolution captures two decades of perpendicular

wavenumbers: one above and one below the proton skin depth dp. We

consider two simulations, characterized by a different proton–proton

collisional frequency ν, namely collisionless (ν = 0) and weakly

collisional (ν = 10−3) (see Pezzi et al. 2019c for further details).

4 NUMER ICAL RESULTS: DISSIPATION

MEA SURES IN M AG NETIC RECONNECTION

4.1 Proton dissipation proxies for collisionless reconnection

Fig. 1 displays the set of implemented proxies for protons in the VPIC

simulations. The left column collects the results for the collisionless

simulation, i.e. with ν = 0. We initially focus on these results,

and discuss the effects of collisions in Section 4.3. The data are

taken at time t � 22 �−1
cp , after the peak of the reconnection rate.

To compute energy-based parameters involving spatial derivatives,

Gaussian smoothing is used to filter the noise (e.g. Birdsall &

Langdon 2004).

The Zenitani parameter Dp shows signatures consistent with

previous studies (Zenitani et al. 2011; Swisdak 2016), being peaked

with a positive value in the diffusion region. In the exhausts, there

is oscillatory behaviour especially on small scales in the primary

island. This is likely due to time-domain structures (Mozer et al.

2015) such as electron holes, which form Debye-scale bi-directional

electric fields. Such structures are at small scales and produce local

energy conversion between the particles and fields.

The LET parameter εp, � shows a large-scale pattern peaked inside

the magnetic island that is only weakly modulated in the horizontal

direction, as well as a weaker signal approximately coincident with

the electron diffusion region (EDR). As pointed out in Section 2.1,

extracting information about LET is challenging in this reconnection

simulation, where the background field is inhomogeneous and the

fields are not in a steady state of fully developed turbulence. The

signs of LET are opposite on either side of the magnetic reversal

because LET is calculated with an increment with a component in

the positive z direction. The contribution of various terms to the

local εp, � (not shown) reveals that the Hall terms (in particular the

current-helicity term, i.e. the last term in equation 13) dominate

the non-linear energy transfer. This is related to the presence of

Hall-scale electric currents and to the magnetic configuration of the

reconnection region, which thus are the main drivers of the non-linear

interactions. Furthermore, the prevalent positive sign observed for

the MHD cross-helicity term (not shown) suggests that non-linear

interactions are inhibited by the strong presence of coupled velocity-

magnetic field (Alfvénic) fluctuations, which reduce the effective

transfer of energy and possibly the onset of turbulence.

The Pi–Dp plot shows that the pressure–strain term is positive

yet small near the X point on a length-scale in the inflow direction

beyond the EDR. Protons undergo meandering orbits in this region,

producing non-gyrotropic VDFs, while the reconnection inflow and

outflow are associated with bulk velocity shear: this produces a non-

zero Pi–Dp. Inside the islands, a bipolar (positive/negative) signal is

found. The strong negative region suggests energy is locally being

converted from thermal energy to bulk kinetic energy, perhaps in

a region where counterstreaming beams including reflected ions at

the dipolarization front where the denser current sheet population

is being pushed downstream by the reconnected magnetic field are

converted into bulk flow. In contrast, P–θp, which has a peak value

about a factor of 2 larger than Pi–Dp, tends to be quite structured and

positive in most of the island, is negative in the EDR, and is small in

the ion diffusion region (IDR). These results make sense physically:

the plasma in the island is undergoing compression due to the bulk

flows, so that P–θp is positive. In the diffusion region, when upstream

magnetic flux tubes enter the region of weaker magnetic field, they

expand, leading to negative θp = ∇ · up.

Moving to VDF-based parameters, the proton agyrotropy
√

Qp

parameter indicates a proton gyro-scale region of non-gyrotropy

surrounding the diffusion region and the whole island at this stage

of the evolution, owing to the complicated distribution functions

that appear where protons undergo meandering orbits. Local
√

Qp

maxima occur in the inner shell of the magnetic island, where both the

LET and Pi–Dp are locally peaked. Turning to the non-Maxwellianity

parameters, the ξ p parameter similarly shows structure at proton

scales in both the diffusion region and the islands. The structure

of M̄KP,p and M̄p are qualitatively quite similar to ξ p, as expected.

In each case, the protons are most strongly non-Maxwellian in the

MNRAS 505, 4857–4873 (2021)

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/5
0
5
/4

/4
8
5
7
/6

2
8
6
9
1
3
 b

y
 P

rin
c
e
to

n
 U

n
iv

e
rs

ity
 u

s
e
r o

n
 2

0
 J

u
ly

 2
0
2
1



Dissipation in weakly collisional plasmas 4863

Figure 1. Comparison of various dissipation proxies for protons, from the VPIC simulations with ν = 0 (left column), ν = 0.25 (centre), and ν = 1.25 (right).

The proxies are computed at t = 22 for the collisionless run and t = 26 for the weakly collisional runs. From top to bottom: the Zenitani parameter Dp; the LET

parameter εp, � with � � dp; the pressure–strain interaction Pi–Dp; the pressure dilatation P–θp; the agyrotropy
√

Qp; the non-Maxwellian indicators ξp; M̄KP,p;

and M̄p. Solid lines indicate separatrices.
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4864 O. Pezzi et al.

EDR, with non-zero values also in the IDR and in the island. The main

difference between these last measures, namely the quadratic non-

Maxwellian parameter ξ p and the entropy-based non-Maxwellianity

parameters, is that the latter appear more localized than the former,

suggesting that the entropy-based proxies require relatively more

strongly non-Maxwellian structures to attain appreciable values

relative to ξ p, owing to the natural log VDF dependence in their

definition compared to the quadratic dependence of ξ p.

Summarizing the collisionless simulation results for protons, all

eight dissipation measures in question show structure in and around

the current sheet and magnetic island. For the parameters in this

simulation, the quantities that are most strongly peaked in the EDR

are Dp, ξp, M̄KP,p, and M̄p. The strongest measure for the IDR is√
Qp, with Pi–Dp, ξp, M̄KP,p, and M̄p also displaying structure. In

the island, εp, Pi–Dp, and P–θp are significant, with Dp revealing

significant electron-scale variations.

4.2 Electron dissipation proxies for collisionless reconnection

In analogy with protons, electron dissipation proxies are displayed

in Fig. 2. One exception is that the LET parameter is not computed

for electrons, as discussed in Section 2.1. As expected, De � Dp due

to quasi-neutrality. Again, we first focus on the collisionless case in

the left column.

The other energy-based parameters, the electron pressure–strain

interaction terms Pi–De and P–θ e, have highly structured patterns

at much smaller scales than their proton counterparts, as expected.

In the current sheet, Pi–De and P–θ e are both confined to the EDR,

with almost no signal in the IDR. Pi–De is positively peaked in

the magnetic island close to the X-point. There are strong bands of

Pi–De near the upstream edges of the EDR, where velocity shear

due to electron meandering orbits is significant. In the island, both

Pi–De and P–θ e have strong variations in the small-scale structures

discussed in the previous subsection. The intense electric fields are

expanding and compressing the electron fluid as seen in P–θ e, and

these fluctuations in the local velocity shear give a non-zero Pi–De.

There is also coherent structure of Pi–De as the electrons leave the

EDR and develop a velocity shear as they move around the pre-

existing magnetic island.

For the VDF-based proxies, all four proxies
√

Qe, ξe, M̄KP,e and

M̄e are peaked in the EDR where the strong signature of De is

present. For
√

Qe, it is peaked at the upstream edges of the EDR

where the meandering orbits meet the upstream electrons, and is

relatively smaller near the magnetic field reversal where distributions

have a characteristic wedge shape (Ng et al. 2011). Interestingly,

the agyrotropy
√

Qe is only non-zero in the EDR, while the non-

Maxwellianities ξe, M̄KP,e and M̄e are non-zero in both the EDR and

IDR. The reason for this is that the electrons upstream in the IDR

are trapped (Egedal et al. 2005), and it has been shown that they

produce gyrotropic distributions elongated in the parallel direction

(Egedal et al. 2008; Egedal, Le & Daughton 2013). Consequently,

the agyrotropy in the IDR is zero, while the non-Maxwellianity is

non-zero, as is seen in the simulation results.

All four VDF-based proxies also show strong signatures close to

the separatrices, where complicated distributions at the boundaries

between upstream plasma and the magnetic island occur. This is a

key distinction between these proxies and the energy-based proxies,

which are not peaked near the separatrices. This signature suggests

that the energy conversion in the island and exhaust is not taking

place near the edges of the islands, but more towards the core as

the bent field lines straighten. The VDF-based proxies also display

non-zero signals at the small-scale structures in the exhaust.

4.3 Collisional effects on proton and electron dissipation

proxies

We now turn to the effect of interspecies and intraspecies collisions

on the dissipation measures for both protons and electrons. To put the

numerical collisionality in perspective, we compare it to two known

critical collision frequencies for reconnection. Collisionless (Hall)

reconnection transitions to collisional (Sweet–Parker) reconnection

at a critical resistivity ηc (Cassak, Shay & Drake 2005). The initial

current sheet thickness w0 = 0.5 is about four times smaller than

dp, so it is expected that collisionless reconnection will occur for

small enough resistivity. From fig. 3 of Cassak et al. (2005), the

critical resistivity is ηcc2/4πcAdp � 0.2, which in normalized units

for this study is ηc � 1. Then, the critical collision frequency is νc

= ηcnee2/me � 5. Therefore, for ν = 0.25 and 1.25, as is used here

in the VPIC simulations, reconnection is expected to remain Hall-

like. The time-scale for magnetic diffusion in the electron current

sheet is 4πd2
e/ηc2 = 1/ν, so the diffusion time-scales are 4 and 0.8

for ν = 0.25 and 1.25, respectively. In comparison, the electron

Alfvén transit time through the EDR is 2de/(0.1cAe) � 2, where cAe

is the electron Alfvén speed. Consequently, collisions are expected

to have a noticeable effect in the EDR in the VPIC simulations for ν =
0.25, and a significant effect for ν = 1.25. A second critical collision

frequency is that at which collisions affect electron trapping upstream

of the EDR, which is approximately ν = 0.1 (Le et al. 2015). Thus,

the trapping of electrons will be minorly affected for ν = 0.25 and

significantly affected for ν = 1.25. In contrast, the collisionality for

the Gkeyll simulation is very low, below both thresholds, so the

evolution is essentially collisionless.

Fig. 1 displays the proton dissipation proxies for the ν = 0.25

(centre) and ν = 1.25 (right) VPIC simulations. Data are from t �
26 for both ν = 0.25 and 1.25, when the magnetic energy of these

simulations is nearly the same as the collisionless case at t = 22. The

ν = 0.25 case is just after the peak in reconnection rate, as for the ν

= 0 case. The ν = 1.25 case is just before the peak in reconnection

rate, which explains why the island is somewhat smaller for this case.

The energy-based parameters should be affected by the presence

of inter-species collisions due to the exchange of energy between

species. For ν = 0.25, collisions affect the small-scale structures that

were present in the collisionless case, especially in Dp and P–θp.

However, as expected, the large-scale structure of these parameters

is not greatly altered for this collisionality. For ν = 1.25, however,

collisions significantly alter the dissipation proxies. The signals in

the magnetic islands are severely weakened, as are the signals in the

EDR and IDR. Despite being weaker, the large-scale structure of the

measures is largely unchanged.

In a similar way, VDF-based parameters are qualitatively unaf-

fected by collisional effects for ν = 0.25, with only weak quantitative

differences. On the other hand, for ν = 1.25, VDF-based parameters

are strongly quantitatively affected. As collisions drive distributions

toward Maxwellianity, especially those with fine velocity–space

structures, i.e. the non-Maxwellianity measures ξ p, M̄KP,p, and M̄p,

are strongly decreased. The agyrotropy
√

Qp is also reduced by

strong collisions, but not as drastically as the non-Maxwellianity

measures, as it is less sensitive to sharp peaks in velocity space. This

result again confirms that collisional dissipation acts on different

characteristic time-scales depending on the scale of the velocity–

space distortion in the particle VDF: finer velocity space structures

produce shorter dissipation time-scales (Landau 1936; Rosenbluth

et al. 1957; Balescu 1960; Pezzi et al. 2016).

We analyse now the effect of collisions on electron dissipation

proxies for the VPIC simulations, which bears many similarities to
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Dissipation in weakly collisional plasmas 4865

Figure 2. Same as Fig. 1, but for electrons instead of protons.

the effect on proton dissipation proxies. The small-scale structures in

the island largely disappear even for the weaker collisionality of ν =
0.25. However, at variance with the protons, P–θ e shows persistent

small-scale structure even at large collisionality ν = 1.25. The non-

Maxwellianity proxies for electrons are very small for ν = 1.25. This

is consistent with collisions being dynamically important on the time-

scale of the electron transit through the EDR; they Maxwellianize

almost fully. In contrast, the EDR remains clearly visible in the

non-Maxwellianity measures for ν = 0.25. The agyrotropy is non-

zero at the edges of the EDR for all three simulations, suggesting

that the meandering orbits are sufficient to produce this signal even

for the highest collisionality considered here. The trapped electrons

upstream of the EDR are weaker for ν = 0.25 and nearly non-existent

for ν = 1.25, consistent with the predictions from Le et al. (2015).

We finally describe the weakly collisional continuum Gkeyll

simulation. The Gkeyll simulation includes only the effects of

intraspecies collisions.

Fig. 3 shows the proton dissipation proxies, plotted at a slightly

earlier time t � 18, but this time is after the peak of the reconnection

rate which takes place at an earlier time with respect to the VPIC case

owing to the smaller system size. The plots reveal that the X-line is not

located exactly in the centre of the domain and there is a significant
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4866 O. Pezzi et al.

Figure 3. Same dissipation proxies as plotted in Fig. 1, but for the protons

in the Gkeyll reconnection simulation.

left–right asymmetry. This is because the random perturbation to the

initial condition seeding reconnection breaks the symmetry in the x
direction.

Three of the energy-based measures, Dp, Pi–Dp, and P–θp, show

broad agreement with the VPIC results in Fig. 1. The Gkeyll

simulation has a more structured Pi–Dp near the X-line due to a

secondary island near z = z0 and x − x0 � [1, 2], which develops

shortly after the peak of the reconnection rate. The secondary island

has a bipolar structure in Pi–Dp analogous to the bipolar structure

downstream in a dipolarization front in the VPIC simulation, visible

at z = z0 and x − x0 � [−9, −4] in Fig. 1. The strongest difference

between the two data sets is observed in the LET diagnostic εp, which

displays broader features in the Gkeyll simulation. This is likely

due to the coarser configuration-space resolution.

For the VDF-based diagnostics, the Gkeyll simulation gives

qualitatively and quantitatively similar results in the exhaust, es-

pecially the inner shell of the magnetic island. However, small

differences arise in these diagnostics due to the secondary island

in the Gkeyll simulation. Indeed, this structure generates intense

deviations from the thermal equilibrium due to the mixing and rapid

rotation of protons trying to align with the local magnetic field.

Inside the proton scale island, we observe strong deformation of the

proton VDF which manifests as an intense agyrotropy
√

Qp and

non-Maxwellianity ξ p, M̄KP,p and M̄p .

Turning to electron dissipation proxies, displayed in Fig. 4, the

Gkeyll simulation results display a good agreement with the VPIC

data. In fact, the overall structure in energy-based diagnostics such

as De and Pi–De and distribution function-based diagnostics such

as
√

Qe and ξ e, agrees better for electrons than for protons. For

example, De and Pi–De are positive in the electron diffusion region,

and we observe enhancement of all the distribution function-based

diagnostics near the separatrices. This better agreement can be linked

to the secondary island not having as dramatic an impact on the

electron dynamics in the magnetic island.

Figure 4. Same dissipation proxies as plotted in Fig. 2, but for the electrons

in the Gkeyll reconnection simulation.

The comparison of this wide array of diagnostics from these

two different codes in different regimes, from collisionless VPIC to

weakly collisional Gkeyll to collisional VPIC, reveals the diversity

of information content each diagnostic contains. In many cases,

we observe little qualitative difference between the energy-based

diagnostics from different simulations while VDF-based diagnostics

are more sensitive both qualitatively and quantitatively to the strength

of collisions and subtle differences in the underlying kinetic evolution

of the reconnection process, such as the secondary island which forms

in the Gkeyll simulation.

5 NUMERI CAL RESULTS: DI SSI PATI ON

MEASURES IN TURBULENT PLASMAS

We here describe the structure of dissipation proxies in plasma

turbulence at kinetic scales. Since the HVM code using the hybrid

model neglects electrons, we only treat proton parameters. In these

simulations, energy injected at large scales generates a cascade

towards smaller scales. The time corresponding to the most intense

turbulent activity is t = t∗ = 30, in which a turbulent state

characterized by an intermittent pattern of current sheets that border

magnetic islands and vortices (Servidio et al. 2015; Wan et al. 2015)

is reached. We show simulation results at t = t∗ in Fig. 5, with the

output of the collisionless (left) and collisional (right) simulation.

Panels from (a) to (h) display Dp, εp,� with � � dp, Pi–Dp, P–θp,
√

Qp, εp, M̄KP,p, and M̄p, respectively.

We begin by analysing the energy-based parameters. Dp, LET

εp, �, and the Pi–Dp term are all peaked close to the most intense

current sheets. This confirms that current sheets are the sites with

the most intense local energy conversion and dissipation. Dp has a

preferred sign, being positive in most of the regions of highest energy

conversion. This implies there is a net conversion of energy from

the electromagnetic fields to protons. Similarly, the predominantly

negative LET supports the standard picture of a direct global energy

cascade towards small scales. The regions of larger energy transfer
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Dissipation in weakly collisional plasmas 4867

Figure 5. Various dissipation surrogates evaluated at the time of maximum turbulent activity in HVM simulations, t = t∗. The two columns at left refer to the

collisionless case, and the two at the right are for the weakly collisional case. Panels from (a) to (h) display Dp, εp, � with � � dp, Pi–Dp, P–θp,
√

Qp, ξp, M̄KP,p,

and M̄p, respectively.

are generally located near the current sheets, and some complexity

in the fine local details of the transfer can be observed. A detailed

analysis of each term of the right-hand side of equation (13)

reveals that the total energy (kinetic plus magnetic) available to

be transported by the longitudinal component �up, � is the main

contributor to the LET parameter in this HVM simulation. In this

case, it is also confirmed (not shown) that the global (Yaglom–Hall)

law shows a linear scaling in the interval roughly corresponding

to the MHD-turbulence range (2dp � � � 10dp), as also recently

reported in similar simulation setups by Sorriso-Valvo et al. (2018a)

and Vásconez et al. (2021).

As displayed in previous HVM (Pezzi et al. 2019a) and in PIC

simulations (Yang et al. 2019), Pi–Dp is highly structured, having

both positive and negative regions close to intense current sheets.

Conversely, P–θp is larger than its Pi–Dp counterpart and has

significant contributions both at the current sheets and in magnetic

islands since it is related to large-scale plasma compression (red)

and rarefaction (blue). The most intense regions of P−θp are at

current sheets, reflecting the rapid collision or separation of large-

scale magnetic islands.

The four VDF-based proxies bear many similarities. They are

highly structured, with local peaks close to current sheets. As with

the reconnection simulations, there are also differences between

these measures. It is more common to get appreciable values of√
Qp than other VDF-based measures, especially M̄KP,p and M̄p.

This indicates that the agyrotropy provides an overall picture of the

presence of large-scale kinetic effects in the VDFs (namely the 2nd

order VDF moment), while fine-scale structures in the VDF are larger

contributors to non-Maxwellianity measures.

The collisionless and weakly collisional simulations do not

reveal significant differences in the energy-based parameters for

the collision frequency in use. The inclusion of proton–proton

collisional effects does not affect the statistical characteristics of

turbulence at the proton scale. This can be explained since, at
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4868 O. Pezzi et al.

variance with interspecies collisional effects, intraspecies collisions

do not generate a resistivity-like term which directly affects the

electric field and hence fluid quantities. On the other hand, VDF-

based parameters are dissipated by collisions, signature of the

collisional thermalization. Since these parameters are sensitive to

the presence of out-of-equilibrium structure in the proton VDF, they

are affected by intraspecies collisional effects. The effect of collisions

is less visible in
√

Qp since collisions preferentially dissipate

fine velocity–space structures (Pezzi et al. 2016), which contribute

less to
√

Qp. The effect of collisions is visible in ξ p and in the

entropy density-based non-Maxwellianity proxies. The maximum

values of these three parameters are smaller by about 10 per cent in

the weakly collisional simulation than the collisionless simulation.

Similarly, average values are reduced by about 20 per cent for ξ p and

30 per cent for M̄KP,p and M̄p when including collisions. The effect

of collisions becomes more significant at later times (not shown

here, see fig. 4 of Pezzi et al. 2019c). Indeed, at the final time of the

simulation, maxima of ξ p and of the entropy density-based proxies

are, respectively, about 20 and 30 per cent smaller when collisional

effects are considered, while their average values are reduced by 40

and 60 per cent, respectively. The different dissipation (in terms of

both maximum and averaged values) of ξ p and the entropy density-

based proxies suggests that the latter react more to collisional effects

than ξ p since entropy-based proxies are dissipated more efficiently

via collisions.

6 O NE- D IMEN SIONAL PROFILES OF

DISSIPATION PROXIES

We conclude by presenting 1D cuts of the dissipation surrogates

adopted in this work across a typical current structure. We include

both the reconnecting current sheet and a typical current sheet

observed in the turbulent HVM simulation. We focus on the colli-

sionless simulation, since our aim is mainly discussing how these

parameters look when crossing a particular structure. Moreover,

for the magnetic reconnection simulations, we show cuts for only

the VPIC runs, since Gkeyll and VPIC provide similar results.

These plots help reveal comparative proxy structure near to the

current sheets, and may also be useful for future comparison with

in situ spacecraft observations, e.g. for the Pi–D measure (Chasapis

et al. 2018b). For applications of these results to observations or

laboratory experiments, it is important to emphasize that the results

are undoubtedly sensitive to the plasma parameters and to the reduced

2D physical-space dimensionality (Howes 2015a; Li et al. 2016).

Note also that multispacecraft observations are necessary to compute

the spatial derivatives needed to calculate some of these diagnostics

(e.g. Pi–D measure).

Fig. 6 shows the dissipation proxies along a cut in the reconnection

simulation through the X-point in z. The vertical dotted and dashed

lines mark the upstream edges of the EDR and IDR, respectively.

These edges are defined by the location at which the electron and

ion out-of-plane currents are 20 per cent of their maximum (Shay

et al. 2001). The upper panels show the results for the protons, and

the lower panels are for electrons, with energy-based measures in

the left plots and VDF-based measures on the right. For the energy-

based measures, De � Dp shows a clear peak in the EDR. The LET

parameter εp, �, scaled by a factor of 10 to make it easier to see,

displays the negative-positive double-peaked structure in the EDR

seen in Fig. 1, and is negligible elsewhere. The sign of εp,� is the

same sign as Bx for this current sheet. The electron and ion Pi–D
and P–θ show moderately intensified signals within the EDR with

tails extending into the IDR. Compared to the Zenitani measure, both

P–θ and Pi–D display rapidly fluctuating patterns but only Pi–D is

positive definite within the IDR, i.e. the same sign of Dp.

For the VDF-based measures, the agyrotropies
√

Qe and
√

Qp

reveal a double-peak structure the diffusion region of each species

correlated with the size of its diffusion region. As discussed in

Section 4.2, this shape is caused by the meandering motions of the

particles traversing their diffusion regions at their gyroscale and

is therefore a characteristic shape of
√

Q in the diffusion region

of antiparallel reconnection. For both electrons and ions, the non-

Maxwellianity proxies ξ , M̄KP, and M̄ , show intensified signals over

the IDR with relatively strong peaks in the EDR. As discussed

in Section 4, the electron non-Maxwellianities not only show the

peaks in the EDR but also broad intensified signals over the IDR. As

analysed in Liang et al. (2020), the broad intensified signals are due

to the gyrotropic distributions created by trapped electrons (Egedal

et al. 2005). This non-zero signal is coincident with negligible signal

in the electron energy-based proxies De, Pi–De and P–θ e.

Fig. 7 similarly displays the dissipation proxies along a vertical cut

through the reconnection simulation at x − x0 = 5, i.e. through the

reconnection exhaust. The format is the same as Fig. 6. For this cut,

the exhaust is between the separatrices at z − z0 � ±1.5. For both

electrons and ions, all energy-based diagnostics, De = Dp, εp, Pi–
D, and P–θ show intensified, yet noisy, signals. The signals include

positive and negative values due to complex flows in this region,

although for this cut the Pi–Dp measure has a sizeable negative value.

The VDF-based proxies for both electrons and ions are intensified in

the exhaust, as well. The electron VDF-based proxies have peaks near

the separatrices, due to the counter-streaming electron flows (Hesse

et al. 2018; Liang et al. 2020). The VDF-based proxies are slightly

broader than the exhaust, which results from the finite Larmor radius

(FLR) effects near the separatrices as shown by the non-gyrotropy
√

Qp. Although FLR effects are not seen much in the energy-based

diagnostics, they are picked up by the VDF-based diagnostics ξ p,

M̄KP,p, and M̄p.

Finally, we show in Fig. 8 the dissipation proxies for the col-

lisionless HVM turbulence simulation along a 1D cut close to the

current sheet near (x, y) = (69, 36). Similar results are obtained in the

collisional simulation. All the energy-based parameters (top panel of

Fig. 8) are peaked within the same region, i.e. y � 36. The VDF-

based proxies (bottom panel of Fig. 8) also reveal clear maxima near

the current structure. However, the maxima are somewhat broader

in width (∼2–5) than the energy-based parameters (∼1). Moreover,

the agyrotropy parameter
√

Qp shows large-scale fluctuations quite

far from the current structure. The broader distribution observed for

the VDF-based parameters suggests that energy transfer is localized

close to the coherent structures, but can affect the particle distribution

function in a larger region around these structures.

The 1D cuts of the dissipation proxies for both the reconnection

and turbulence simulations support the idea that peaks of dissipation

measures in a reconnecting current sheet or a turbulent environ-

ment characteristically occur in coincident spatial regions, but not

necessarily at the same exact spatial position. This is consistent

with the notion of regional correlations, suggested by Yang et al.

(2019) and Matthaeus et al. (2020). The selected structure has more

of a resemblance to the 1D cut of the reconnection simulation

at the X-point than at the reconnection exhaust. However, there

are qualitative and quantitative differences. The Zenitani measure

and the diagnostics based on the pressure–strain interaction (Pi–D
and P–θ ) have the same dimensions (see Section 3), hence it is

reasonable to compare their magnitude. In this respect, we notice

that the Zenitani measure is most prominent in the reconnection

simulation, while a positive P–θ is the strongest in the turbulence

MNRAS 505, 4857–4873 (2021)
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Dissipation in weakly collisional plasmas 4869

Figure 6. 1D cuts vertically through the x-line showing the various dissipation surrogates in the reconnecting current sheet for the VPIC collisionless reconnection

simulation. The top row refers to proton proxies, displaying energy-based parameters (left, with εp,� scaled by a factor of 10 to make it more visible) and

VDF-based parameters (right). In the right-hand panel, the Zenitani measure Dp is showed as a reference. The bottom row is analogous for the electron proxies.

Figure 7. Same as Fig. 6, but at x − x0 = 5dp.

simulation. This suggests that, when simulating a single reconnecting

current sheet, compressible effects are less significant. On the

other hand, when reconnection occurs in a turbulent environment,

where magnetic islands can merge with each other, compression

is much more significant. The LET parameter, which has different

dimensions than the other three energy-based surrogates, oscillates in

the reconnection simulation, but is strongly negative in the turbulence

one. Qualitative agreement between the structures is found for the

VDF-based surrogates, that are all adimensional, although some

features in the reconnection simulation (e.g. double peaks in the

agyrotropy) are not present in the turbulence simulation perhaps

because of the different numerical resolution. Furthermore, for the

cut through the current sheet in turbulence, the parameters depend on

time due to the turbulent interaction of larger scale magnetic eddies,

MNRAS 505, 4857–4873 (2021)
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4870 O. Pezzi et al.

Figure 8. Same as Fig. 6, but for the HVM collisionless turbulence

simulation. The cut is taken at x = 68.7 dp.

so wide variation in parameters across different current sheets and at

different times is expected.

7 D I S C U S S I O N A N D C O N C L U S I O N S

As a result of the weak collisionality of many space and astrophysical

plasmas, several physical processes can locally contribute to the

dissipation of energy and the heating of the plasma. During magnetic

reconnection, magnetic energy is efficiently converted to directed

plasma flows, thermal energy, and energetic particles (Burch et al.

2016; Torbert et al. 2018). During turbulence in a magnetized

plasma, the cascade provides the global amount of energy needed

for fluctuations to be dissipated at small scales (Marino et al.

2008). However, which dissipative mechanisms are dominant and

under which conditions is still not sufficiently understood (Vaivads

et al. 2016). Therefore, a multiplicity of dissipation surrogates

have been adopted in the literature to identify potential sites of

dissipation. Owing to the strongly non-linear dynamics and the

importance of physics at kinetic scales in such systems, numerical

simulations of the Vlasov–Maxwell system (or, including collisions,

the Boltzmann–Maxwell system) are the decisive tool to address

the long-standing issue of plasma heating and energy dissipation in

magnetized plasmas, e.g. Parashar et al. (2009). For example, the

‘turbulence dissipation challenge’ (Parashar et al. 2015) motivated

numerical work to compare different algorithms on the solution of

similar problems to assess the nature of the dissipation in magnetized

turbulence (e.g. Pezzi et al. 2017; Perrone et al. 2018; González et al.

2019).

In the same spirit, we have conducted a survey of a number of

dissipation surrogates with three different kinetic plasma codes – the

fully kinetic particle-in-cell VPIC, the fully kinetic Eulerian Vlasov–

Maxwell Gkeyll, and the Eulerian Hybrid Vlasov–Maxwell codes

– to perform numerical simulations of two important physical phe-

nomena in plasma physics. The first class investigates reconnection in

an isolated current sheet, and the second concerns plasma turbulence

at kinetic scales. We have calculated and compared eight distinct

dissipation proxies, delineated in Section 2. For the sake of clarity,

we have categorized them in terms of (i) energy-based parameters,

whose definition describes energy transfer and conversion; and (ii)

VDF-based parameters, that are directly related to kinetic signatures

in the particle VDF. Energy-based parameters considered here are

the power density by electromagnetic fields on charged particles

(Zenitani et al. 2011), the pressure–strain interaction (Yang et al.

2017a), and a local proxy of the turbulent energy transfer (Sorriso-

Valvo et al. 2018a). The VDF-based parameters are the local pressure

agyrotropy (Swisdak 2016) and three measures describing how

different a local distribution function is from being Maxwellian

(Kaufmann & Paterson 2009; Greco et al. 2012; Liang et al. 2019).

Our findings are that each of the studied measures is non-

zero in key settings in reconnection and turbulence, including

the reconnection diffusion region and magnetic islands, and the

intermittent magnetic shear regions bordering magnetic eddies in a

turbulent system. The region that each proxy is strongest highlights a

potentially different aspect of the physics taking place, as is described

in detail in Sections 4 and 5. It is intended that the discussion therein

will contribute to the assessment of dissipation and energy conversion

in satellite and plasma laboratory experiment measurements. We

here remark on the importance of the VDF-based diagnostics, which

reveal further details about the underlying dynamics of the plasma

compared to the energy-based diagnostics. Indeed, the energy-

based diagnostics give similar results for similar simulations in the

magnetic reconnection setup (i.e. VPIC and Gkeyll runs), as we

expect since these simulations which show little difference in many

of the measures of the plasma response to magnetic reconnection.

However, the additional level of detail provided by VDF-based

diagnostics allows us to more carefully ascertain the kinetic response

of the plasma from small differences which arise naturally between

two different simulation codes, and the added robustness of these

diagnostics is likely to be especially useful when analysing more

general simulations and observations of real plasma systems such as

the solar wind. In contrast, the energy-based diagnostics are directly

related to the turbulence cascade process that connects the energy

containing scales to the kinetic range of scales where the velocity

space structure becomes increasingly important. Therefore both type

of diagnostics are helpful to form a complete picture of the dynamics

leading to dissipation.

The spatial locations where each proxy has a local maximum

can be different between the different proxies. For example, in

the magnetic reconnection simulations, the Zenitani measure is

peaked at the X-point while the pressure–strain interaction terms

are peaked inside the magnetic islands. This confirms a suggestion

that both energy-based and VDF-based parameters display a regional

correlation: structures identified by these parameters often occur in

similar regions, although not necessarily exhibiting a point-to-point

correlation. This underscores a key conclusion of this work: that no

one single measure is universally the best measure for dissipation.

Rather, employing a number of proxies is likely best for assessing

the dissipation and energy conversion in a plasma system.

We also consider the role of collisions by including their dynamical

effect ab initio in the numerical simulations for both reconnection

and turbulence. When including only weak intraspecies (proton–

proton) collisions in the turbulence simulations, the VDF-based

proxies decreased while the energy-based proxies were largely

unchanged. This behaviour is expected since such collisions drive

particle VDFs towards Maxwellian distributions, but they do not

produce a net energy transfer between different species although they

indirectly modify the energy equations by isotropizing the pressure

MNRAS 505, 4857–4873 (2021)
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tensor (Del Sarto et al. 2016). On the other hand, both energy- and

VDF-based proxies are influenced by interspecies and intraspecies

(electron–proton) collisions in simulations of magnetic reconnection.

In particular, small-scale structures are dissipated by collisions, and

the distributions in the diffusion region are less non-Maxwellian and

thermalize more rapidly than in the collisionless case.

Interestingly, we find the peaks of dissipation proxies in the

systems with collisions are generally weaker than in the collisionless

system. VDF-based dissipation proxies show this behaviour for all

the simulations reported in the manuscript. These surrogates are local

in position space and provide only a local measure of the complexity

of the distribution function. Energy-based measures also become

weaker in the collisional runs of magnetic reconnection, which

include interspecies collisional effects. This behaviour is an effect of

the work of collisions that, since the beginning of the numerical

simulation, have produced dissipation. In particular, intraspecies

collisions dissipate VDF complexity, while interspecies collisions

affect both the VDF and the energy. Therefore, by looking at these

parameters at a fixed time snapshot, their peaks are weaker in the

collisional runs with respect to the collisionless case. Further, it also

clearly illustrates that the energy-based measures contain information

about both collisional and collisionless processes, implying that they

are not yet capable of distinguishing reversible from irreversible

processes.

Although defining the concept of dissipation in a collisionless

plasma is rather complicated, analysing dissipation surrogates in

collisionless simulations and comparing the evolution of these

proxies in collisionless and collisional runs, as done in this study, is

meaningful. Such a comparison indeed addresses the key question:

are collisions preferentially active in regions where the dissipation

surrogates evaluated in absence of collisions are intense, i.e. where

other dynamical characteristics (e.g. pressure–strain interactions,

non-Maxwellian structures) are significant? Our analysis may in-

directly suggest a positive answer to this question. The regional

correlation of energy-based and VDF-based diagnostics indicate that

non-Maxwellian structures in the particle VDF are expected close to

regions where energy-based dissipation surrogates are also strong.

Moreover, as shown in previous studies (Landau 1936; Rosenbluth

et al. 1957; Balescu 1960; Schekochihin et al. 2009; Pezzi et al.

2016, 2019c), collisions rapidly dissipate strong velocity–space

disturbances in the particle VDF. Hence, we suggest that regions

identified by dissipation surrogates in the collisionless simulations

are regions where collisions, if present, preferentially smooth out

non-Maxwellian features in the particle VDF, thus producing irre-

versible dissipation.

The present study is not intended to be the final word on this

topic, as there are many avenues for future work. The diagnostics

considered here do not discriminate the underlying process which

may lead to energy dissipation or conversion, e.g. Landau damping,

cyclotron damping, phase-mixing, and stochastic heating (Chandran

et al. 2010; Li et al. 2016). In this perspective, a different approach,

based on the field-particle correlation, has been recently adopted

to identify the presence of particular signatures in the particle VDF

(Klein & Howes 2016; Klein et al. 2017; Chen et al. 2019; Klein et al.

2020). This method has the advantage of diagnosing energization

directly in velocity space while the others here adopted involve an

integration over the full velocity space. The field-particle correlation

is also local in physical space and does not require spatial gradients,

which would require multiple spacecraft for in situ observations.

Incorporating the field–particle correlation gives a visual way to

identify energy transfer between particles and fields, and would be

interesting to compare with the other proxies. Indeed, the diagnostics

considered in this work are extremely useful to characterize potential

sites of intermittent dissipation, e.g. in structures close to intense

current sheets. On the other hand, methods such as the field–particle

correlation identifies basic plasma processes, e.g. Landau damping.

Connecting these two points of view would also contribute to

addressing the fundamental question whether dissipation in plasmas

is uniform or intermittent (Vaivads et al. 2016) and deserves a

dedicated, future study. Moreover, kinetic plasma turbulence excites

in a very complex way an entire ensemble of genuinely kinetic

degrees of freedom, i.e. those related to velocity–space structures

in the particle VDF (Servidio et al. 2017; Pezzi et al. 2018), thus

driving free energy towards finer and finer scales in velocity space

where it is dissipated through interparticle collisions (Pezzi et al.

2019c). The relation of the dissipation surrogates considered here

with the enstrophy phase-space cascade will be the subject of a

future work.

Finally, there are many necessary extensions to the current study.

The present simulations varied collisionality, but for a particular set

of field and plasma initial conditions, so the parametric dependence

of the conclusions attained herein should be the subject of future

work. Both the reconnection and turbulence simulations were 2D, and

therefore 3D effects are not captured. The reconnection simulations

studied here employed a small system size in which the protons do

not fully couple back to the large-scale systems, so it is important

to revisit the proton dissipation measures in larger system sizes.

The effect of proton–electron collisions on energy-based parameters

in turbulence should be addressed in future work. The turbulence

simulations considered here addressed decaying turbulence, and

comparisons to driven turbulence would be interesting.
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