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A new naphthylsalophen and its 3:2 ligand-to-lanthanide
sandwich-type complexes were isolated. When excited at 380 nm,
the complexes display the characteristic metal-centred emission
for Nd", Er'""' and Yb"'. Upon 980 nm excitation, in mixed lanthanide
and the Er complexes, Er-centred upconversion emission at 543 and

656 nm is observed, with power densities as low as 2.18 W cm™2,

™ jons

The unique luminescence properties of lanthanide (Ln
make their complexes interesting for a variety of applications."™
These properties include colour purity, due to the core nature of
the f orbitals involved in the emission process, and long lumines-
cence lifetimes, due to the electronic-dipole forbidden nature of
the f-f transitions, which enable time-delayed emission spectro-
scopy with increased signal-to-noise ratio.* ® The forbidden nature
of these transitions makes sensitization of the emission more
efficiently achieved through coordinated ligands in a process called
the antenna effect.*®

For low energy sensitization, excitation can be achieved
through non-linear optical processes, such as two-photon
absorption or cumulative effects of multiple first-order absorp-
tion phenomena, namely up-conversion (UC). The latter can
occur through either excited-state absorption (ESA) or energy
transfer up-conversion (ETU) (Fig. 1a).” The presence of spin
allowed transitions in ions like Yb™ and Er'" results in a high
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absorption cross-section, and long-lived intermediate excited
states enable the use of inexpensive and low power continuous-
wave lasers to access them.® In ETU, a sensitizer ion absorbs
low-energy photons, followed by energy transfer (ET) to the
activator ion, which then emits in a characteristic wavelength.
Er'™ and Yb™-doped nanoparticles (NPs) are among the most
efficient UC systems.”"° The resonance between the excited states of
Yb™ (*Fsj5, ~10624 cm™ ") and Er'™ (*14/, ~10346 cm™ ") improves
the ET rates, and thus contributes to high UC emission intensities.
While these NPs find wide application in bioimaging,"*™* as they
can be excited in a region of the spectrum where tissues have low
absorption,'>® controlling their size, low cell penetrability, undesir-
able accumulation in the body, and stabilizing the crystalline phase
that yields the highest UC luminesce intensity, such as the -phase
of NaYF,,"”"® are challenges for their use in vivo.">*°

In contrast, in Ln™ complexes toxicity and low cell penetr-
ability are not inherent and emission properties do not depend
on the crystalline phase. In addition, judiciously designed
ligands allow tuning of solubility, biocompatibility, and photo-
physics of the complexes, among other properties.>'>*
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Fig.1 (a) Energy level diagram illustrating the up-conversion process
through ESA (two black up-arrows on Er') and ETU (dashed arrows, red
up-arrow on Yb'" followed by top black up-arrow on Er'"). (b) Structure of
H,L-CN.
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UC is important in bioimaging and sensing applications,
and there is substantial interest in small-molecule probes,>***
yet examples using Ln™ complexes are less common than those
of Ln-NaYF,-based NPs. The lattice on the latter is a low-
phonon system, which is necessary for good UC efficiency.>®
Piguet and co-workers pioneered the UC luminescence using
Ln™ complexes.>” Charbonniére and co-workers demonstrated
UC luminescence in deuterated water in a dimeric Er'™
complex, in which this ion is both activator and sensitizer.”®
Hyppinnen and co-workers®® and more recently, Piguet and
co-workers demonstrated that mononuclear Er'"* complexes are
capable of showing UC luminescence.** Many of the known
examples have low UC emission intensity despite deuteration of
the ligand, or require a transition metal as sensitizer or use
metalorganic frameworks to reduce vibrational quenching;
others, due to the long distances between the metal ions,
require high excitation laser power densities to increase the ET
efficiency.®® Thus, the isolation of efficient Ln"-based UC
molecules is a current challenge.*®3”

Recently, Gorden and co-workers showed that naphthylsalophen
ligands form Ln™ complexes with a rigid sandwich structure in a
2:3 (Ln™:ligand) stoichiometry.*® Because the Ln™-Ln™ distance
in these compounds is in the range 3.768-4.016 A, well within the
range for optimal Forster ET,”* these structures are good candi-
dates for UC luminescence. Therefore, to increase our knowledge of
ligand and complex architectures that enable UC properties in
Ln™-based molecular systems, we synthesized mixed Er", Yb™
and pure Er'™" complexes containing a new naphthylsalophen ligand
with the cyano-electron-withdrawing group in the backbone. These
compounds indeed display UC luminescence, as described below,
adding new examples to a small group of molecular Ln™ complexes
that exhibit this property.

The protonated cyano-naphthylsalophen H,L-CN (Fig. 1b)
is isolated by condensation of 3,4-diaminobenzonitrile with
2-hydroxynaphthaldehyde in EtOH. The Ln™ complexes
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Fig. 2 Left: Projection of the front view of [Erp(L-CN)3(H,O)]. Right:
Coordination environments of Erl (bottom) and Er2 (top). Carbon atoms
are shown in grey, nitrogen in blue, oxygen in red, and erbium in green.
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(Gd™, Nd"™, Er'™, and Yb™) are prepared by addition of the
Ln™ metal salt, either the chloride or the acetate, in MeOH to
the ligand in THF and of triethylamine (TEA) to deprotonate the
ligand.

X-ray quality crystals of H,L-CN indicate that the com-
pound crystalizes in the space group P21/c (Fig. S18, ESIt)
and does not display interactions with solvent molecules of
crystallization.

The structure of [Er,(L-CN);(H,0)] (Fig. 2 and Fig. S19, ESIY)
shows features similar to previously reported Ln™ triple decker
complexes.”® The Er2 metal centre is 8-coordinate and the
coordination sphere is completed by the ligand, while the Er1
metal centre is seven-coordinate, bound to ligand and one
water molecule (Fig. 2 right). The distance between metal
centres is 3.816 A, within the Forster ET range.””°

Deconvolution of the fluorescence and phosphorescence
spectra of the Gd™ complexes (Fig. S14, ESIf) into the
vibrational components yields energies at ~18400 and
~15900 cm ™ * for the excited singlet and triplet levels, respec-
tively (Fig. S14(b and c), ESIT). The triplet energy level is suitably
located to sensitize the NIR-emitting Ln™ (Nd™, Yb™ and Er'™),
as shown in Fig. S15 (ESIT). The one-photon solution excitation
and emission spectra of Nd™, Yb™ and Er'™ complexes in
dichloromethane are shown in Fig. S16 (ESIt). The excitation
spectra of the complexes are composed of broad bands, con-
sistent with sensitization of Ln™ emission through the ligand,
as indicated by the overlap of excitation and absorption spectra
shown, representatively, for the Yb"™ complex in Fig. S16 (ESI¥).
The emission spectrum of the Nd™ complex shows the
expected Fs;, — 'I; (J = 9/2-13/2) transitions. For the Yb™
complex the *F5;, — >F;, transitions, and for the Er" complex
the “I;5/, — “I;5, transitions are observed. The quantum yields
of sensitized emission (") for the Nd™ and Yb™ complexes
are summarized in Table 1. They are comparable with reported
values for other complexes of these ions.**™**> The emission
lifetimes of the Yb™ complexes, summarized in Table 1, are
comparable as well with values reported for this ion.*"**** The
excited state decay curves were fitted to a bi-exponential,
consistent with the presence of ions in two different coordina-
tion environments (Fig. S17, ESIT). We attribute the shortest
lifetime to the Yb™ site with a coordinated solvent molecule,
and the longest one to the Yb™ bound only to ligand.

We isolated multi-Ln"™" complexes by adapting the procedure
described for the homonuclear complexes. Y™ as diluting ion,
Yb™ and Er'™, or Yb™ and Er'™ were added to a solution of the

Table 1 Singlet 1S and triplet *T state energies of the ligands, excited state lifetime 7, and quantum yield ®}" of sensitized efficiency for the Nd", Yb'" and

Er'"' complexes. Jeyxc = 380 nm and [complex] = 1 x 10™* M

Complexes Solvent 5% [em™"]

3T11 [cm’l]

7 [us] D" [%)]

[Ndz(L'CN)s (Hzo)]
[Yb,(L-CN);(H,0)]

CH,Cl, 18420 + 70
[Er,(L-CN);(H,0)]
47 b

“ Determined at 77 K, using the analogous Gd complexes.
¢ Too weak to be quantified.
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15910 + 50 ¢

0.0054 + 0.0009
1.230 + 0.027 (81.1) 0.154 + 0.013

6.801 + 0.197 (18.9)
c

c

The values in parenthesis indicate the percent contribution of each lifetime.

This journal is © The Royal Society of Chemistry 2021



ChemComm

4. =980 nm

exc

4x10°

x10'd | &

1x10°

2x10°

power
increase

Intensity / counts

1x10° -

500 550 660 650 700
Wavelength / nm

Fig. 3 Two-photon UC emission spectra of [(Yo76Ybo16Ero.08)2

(L-CN)3(H,O)] in the solid state using variable laser power. Inset shows

plot of the log of the emission intensity / at 543 nm (green dots)

or 6555 nm (red dots) as a function of the log of the laser power

P. exc = 980 nm, P = 0.873-2.500 W.

deprotonated ligand in 2:3 (Ln:L) molar ratio. The
[(Yo.76Ybo.16ET0.08)2(L-CN)3(H,0)] complex, with metal stoichio-
metry determined through energy-dispersive X-ray spectroscopy
(EDS), can be excited in the solid state by two low energy
photons through an UC process.” The resulting spectrum
(Fig. 3) shows Er'"-centred transitions in the green (*Hyy, —
4512 and 'S5/, — 'I1555) and red (*Io, — *I;5/,) Upon excitation
at 980 nm. The quadratic dependence of the emission intensity (1)
on the laser power (P) (inset of Fig. 3) confirms the 2-photon nature
of the process (data in Table S1, ESIt). UC emission is observed for
power densities as low as 2.18 W ecm ™2, which compares favourably
with known efficient systems (29 W cm™?).?83031:43

Emission following UC excitation is also observed for
[(Ybg.78Er 22)2(L-CN)3(H,0)] and [Er,(L-CN);(H,0)] (Fig. 4, top
and bottom traces, respectively) in the solid state. Although
there is an increase of the emission intensity for
[(Ybg.78ET.22)2(L-CN)3(H,O)] as compared with the trimetallic

complex, the concentration of Er'" is 4.7-fold higher in the

A, =980 nm

C

Intensity / arb. un.
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Fig. 4 Two-photon UC emission spectra of [(Ybg 7gErg 22)2(L-CN)3(H,O)]

(black upper trace) and [Er,(L-CN)s(H,O)] (red bottom trace) in the solid
state. Adexe = 980 nm, P =25 W.
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former. In [(Ybg 7sET.22)2(L-CN)3(H,O)] and [Er,(L-CN);(H,O)]
UC emission was observed with power densities as low as
2.18 W cm ™2 and 6.25 W ¢cm 2, respectively. The UC emission
intensity of the latter is lower, due to non-radiative cross-
relaxation.’® The complexes did not show upconversion
when dissolved in acetonitrile, chloroform and deuterated
chloroform.

In conclusion, we isolated three Ln™ complexes with a
cyano-naphthylsalophen ligand with a 2:3 stoichiometry and
sandwich structure. These complexes display efficient one-
photon Nd™- and Yb"™-centred emission and weak Er™-
centred emission.

Complexes containing a mixture of Er'" and Yb™, or Er'",
Yb™ and Y™ or just Er'™ also display Er-centred red and green
emission upon excitation with a 980 nm laser at low power
densities, indicative of UC, making these systems rare examples
of upconverting Ln™
knowledge of molecular complexes of Ln
excited at low energy with a low intensity laser and are thus of
potential interest for biological imaging applications.
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