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Abstract—In this work, we investigated the classification of
texture by neuromorphic tactile encoding and an unsupervised
learning method. Additionally, we developed an adaptive clas-
sification algorithm to detect and characterize the presence
of new texture data. The neuromorphic tactile encoding of
textures from a multilayer tactile sensor was based on the
physical structure and afferent spike signaling of human glabrous
skin mechanoreceptors. We explored different neuromorphic
spike pattern metrics and dimensionality reduction techniques
in order to maximize classification accuracy while improving
computational efficiency. Using a dataset composed of 3 textures,
we showed that unsupervised learning of the neuromorphic tactile
encoding data had high classification accuracy (mean=86.46%,
sd=5 .44%). Moreover, the adaptive classification algorithm was
successful at determining that there were 3 underlying textures
in the training dataset. In this work, tactile information is trans-
formed into neuromorphic spiking activity that can be used as a
stimulation pattern to elicit texture sensation for prosthesis users.
Furthermore, we provide the basis for identifying new textures
adaptively which can be used to actively modify stimulation
patterns to improve texture discrimination for the user.

I. INTRODUCTION

Active touch sensing is a critical information-seeking sen-
sory system used to learn about and explore a person’s
environment and to control ongoing behavior [1]. For upper
limb amputees, touch sensation is lost, and it is an important
goal for upper limb prostheses to restore this sensory system.
The sensation of touch in human glabrous skin is mediated by
four main cutaneous mechanoreceptors: Meissner and Pacinian
corpuscles, which are considered rapidly adapting (RA), and
Merkel cells and Ruffini endings, which are considered slowly
adapting (SA) (Fig. 1a). While these receptors produce com-
plex spiking activity in response to stimuli, by and large
these receptors are known to specialize in the sensations of
skin movement, vibration, indentation and stretch, respectively.
These receptors are distributed over multiple layers in the
skin. SA mechanoreceptors respond primarily to the static
amplitude of force whereas RA mechanoreceptors respond
to transient changes in force [2] (Fig. 1b). The information
from populations of these mechanoreceptors is then used to
understand the form and texture of objects that the person
interacts with [3]. This sensory information is used by humans
for object identification and dexterous manipulation.

The first step towards restoration of touch sensation in
amputees is the development of tactile sensors which can be
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Fig. 1. (A) The mechanoreceptors of glabrous human skin, which detect
and encode different features of tactile sensation. (B) An exemplar of spiking
response of SA and RA mechanoreceptors. SA mechanoreceptors respond
to the static amplitude of the force. RA mechanoreceptors respond to rapid
changes in the force. (C) The multilayer tactile sensor composed of two 3x3
grids of taxels. For this paper, the force from the top and bottom layers
are encoded as RA and SA mechanoreceptors respectively. (D) Potential
application of the sensor on a prosthesis fingertip to characterize object texture.

used to detect and characterize the prosthesis’s interaction with
the environment (Fig. 1c). For example, in [4], Song et al
developed a texture sensor that could measure and classify
fabric texture. Tactile information has been used as prosthesis
feedback for slip prevention and compliant grasping [5]. Ad-
ditionally, the measurements from tactile sensors can be trans-
formed into receptor-like spiking activity (which we define as
neuromorphic). Stimulation of the mechanoreceptor afferents
results in characteristic spike patterns which amputees can use
to discriminate between different textures [6] or experience
noxious tactile perceptions [7]. Tactile feedback has been used
to characterize object compliance [8] and categorize textures
[9], [10] (Fig. 1d). Furthermore, an unsupervised learning
method (k-means clustering) was used to discriminate surface
roughness [11]. For prostheses, it is helpful to transform tactile
information into a spiking signal for nerve stimulation and
sensory feedback to the user [6], [7].

In this work, we used the Izhikevich neuron framework [12]
with multilayer tactile information to create a neuromorphic
model of RA and SA mechanoreceptor behavior. Additionally,
we used an unsupervised learning method and developed
a novel adaptive classification algorithm to allow for the
dynamic identification of new textures.
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Fig. 2. (A) The textures designed to test discrimination. Texture 1 is flat.
Texture 2 has horizontal gratings. Texture 3 has a grid of hemispheres. (B)
Example input voltage from one SA and RA taxel for each texture. (C) The
spiking output response of the SA and RA neuron models.

II. MATERIALS & METHODS

A. Experimental Setup

1) Tactile Sensor: A multilayer tactile sensor shown in
Fig. 1c based on [13] was used to characterize tactile sensation.
The sensor has two layers of a 3x3 grid of taxels (tactile pixels)
spaced at 5 mm intervals. The sensor works by utilizing a
piezoresistive fabric to transform force into changes in voltage.
The taxels of the top layer of the sensor were modeled as
RA mechanoreceptors that respond to acute changes in force.
The taxels of the bottom layer of the sensor were modeled
as SA mechanoreceptors that respond to static levels of force
magnitude.

2) Texture Design: Three different applied textures, flat,
grated, and hemispheres, shown in Fig. 2a, were designed to
activate the entire surface area of the multilayer tactile sensor
at one time. The horizontal gratings have a width of 2 mm and
spacing of 2 mm. the hemispherical features have a diameter
of 4 mm and spacing of 2 mm edge to edge.

3) Data Collection: The multilayer tactile sensor was
placed on a flat scale while the different textures were applied.
An automated robot brought the texture load vertically down
onto the scale until the measured force was 5 N. For each
trial, the robot moved the texture horizontally over the sensor.
The voltages from the 18 taxels were sampled throughout the
5 second period at 100 Hz which results in 501 samples.
There were 197, 243 and 224 trials for Textures 1, 2 and 3
respectively. The voltage waveforms were normalized between
0 and 1 based on the maximum and minimum observed
readings.

B. Neuromorphic Encoding

The force readings from each taxel of the tactile sensor are
translated separately into neuromorphic spiking patterns using
the Izhikevich neuron models from [12] defined by (1), (2),
and (3) where v and u are the membrane voltage and recovery
variables, respectively:

dv

dt
= τ(0.04v2 + 5v + 140− u+ kI) (1)

du

dt
= τ(a(bv − u)) (2)

if v ≥ 30 mV, then

(
v ← c

u← u+ d
(3)

Equation (1) calculates the change in voltage as a function
of v, u, τ (a time-scaling coefficient), I (the injected current)
and k (a gain coefficient for the current). Equation (2) calcu-
lates the change in the recovery variable as a function of v, u,
τ , a (time-scale recovery of u) and b (sensitivity of u to v).
Equation (3) resets v and u to new values when v reaches 30
mV and is a function of u, c (reset voltage) and d (recovery
reset increment). In [14], this model was used to implement
various spiking patterns. Of particular interest are the Tonic
Spiking (TS) model and the Phasic Bursting (PB) model. The
TS model primarily responds to the amplitude of the injected
current and was used as the basis for the SA neuron model.
The PB model primarily responds to the positive change in
injected current (a ‘rising-edge detector’) and was used as the
basis for the RA neuron model. The values of the parameters
a, b, c, d and τ for the SA and RA neuron models are shown
in Table I. The unitless scaling factor k was tuned for each
sensor individually in order to produce spikes for the force
profile they were presented with, but it was in the range of
65-200 for the SA models and 0.7-3 for the RA models. Fig.
2b-c show typical spiking patterns in response to readings from
the tactile sensors when different textures are applied.

For τ = 1, the Izhikevich model assumes that the samples
are spaced by 1 ms. Because of this, our data which is sampled
every 10 ms is up-sampled by a factor of 10 before being
transformed into spiking activity. As a result, the output of
the neuromorphic encoding is 5010 samples long.

C. Unsupervised Learning

1) Dimensionality Reduction: For accuracy and computa-
tional efficiency reasons, the neuromorphic spiking activity
waveform needs to be reduced to lower dimensions.

a) Spiking Metrics: The first step is to reduce the 5010-
dimensional waveform v (5 seconds sampled at 1000 Hz) down
to two metrics as shown in Table I. For the SA neuron model
the metrics are Mean Spike Rate (MSR) and Mean Inter-
Spike Interval (MISI) and for the RA neuron model they are
Burst Count (BC) and Mean Inter-Spike Interval. For both
MSR and BC, the spiking waveform is divided into non-
overlapping windows of size bin. For MSR, the spike rate is
calculated for each window and the MSR is the average spike



TABLE I
RECEPTOR MODELING

a b c d τ 1st Metric 2nd Metric
SA 0.02 0.2 -65 8 1 MSR MISI
RA 0.02 0.25 -55 0.05 0.2 BC MISI

rate of the non-zero spiking windows. BC is the number of
windows with non-zero spiking activity. MISI is calculated by
averaging all the ISI’s that are shorter than a window of size
buffer (since the spikes are then considered to be unrelated).
Typical values for bin and buffer are 100 ms (long enough
to capture windows of spiking activity and short enough to
ignore periods of spiking inactivity) and 1 s (approximately
the interval between unrelated spikes) respectively.

b) Principal Component Analysis: At this point, each
trial has been reduced to 36 dimensions (18 taxels with 2
spiking metrics each). Principal Component Analysis (PCA)
can be used to further decrease dimensionality by reducing the
data to the orthogonal components that maximally account
for the variance in the data. Initially, the first 3 Principal
Components were used for the purposes of visualizing the
data. At a later point, we varied the number of Principal
Components but saw empirically that 3 Principal Components
were optimal for classification accuracy with the existing
dataset.

2) Gaussian Mixture Model: From the trials, 50 training
datapoints per class were chosen randomly and the remaining
were designated as test data. The training data was used to
train a Gaussian Mixture Model (GMM) with 3 mixtures.
The GMM is obtained through an Expectation-Maximization
Algorithm. The means, covariances and mixing proportions
of the Gaussians are randomly initialized. In the Expectation
step, these parameters are used to classify the training data
into clusters. In the Maximization step, the classified clusters
are used to recalculate the means, covariances and mixing
proportions of the GMM. These two steps are repeated until
the clusters stabilize. The test data is then classified using this
GMM as shown in Fig. 3.

D. Adaptive Classification

Algorithm Adaptive Classification Pseudocode
1: procedure ADAPTIVE CLASSIFICATION
2: numClusters← initial number of classes
3: numTrain← number of training datapoints
4: outlierProp← proportion to increment numClusters
5: numOutlier←∞
6: outlThresh← probability threshold to be outlier
7: while numOutlier ≥ (numTrain ∗ outlierProp) do
8: gmModel← gmm(trainingData,numClusters)
9: trainProbs← max(pdf(trainData,gmModel))

10: numOutlier← sum(trainProbs ≤ outThresh)
11: numCluster← numCluster + 1

The Adaptive Classification Algorithm describes the adap-
tive process of finding the appropriate number of clusters

PC 1

300
200 200

0
-200

-100
0

100
200

PC 2

PC
 3

Training Data

300
200 200

0
-200

-100
0

100
200

Test Data

300
200 200

0
-200

-100
0

100
200

Test Data Classification

300
200 200

0
-200

-100
0

100
200

Test Data Classification

PC 1 PC 2

PC
 3

PC 1 PC 2

PC
 3

PC 1 PC 2

PC
 3

A

C

B

D

Fig. 3. (A) The training data used to train the GMM with the colors
corresponding to the true texture labels of the trial (the GMM is unaware
of the labels when being trained). (B) The test data that was classified by
the GMM with the colors corresponding to the true texture labels of the trial.
(C) The classification of the test data by the GMM into only 2 clusters with
the colors corresponding to the classified cluster. (D) The classification of the
test data by the GMM into 3 clusters with the colors corresponding to the
classified cluster. Note that for (C) and (D) the original texture labels do not
necessarily correspond directly to the cluster labels but that approximately the
same clusters emerge unsupervised.

(corresponding to textures) that is captured by the training
data. The training data is used to create a GMM with the
current number of expected classes. For each datapoint in the
training set, the probability of that datapoint is calculated for
each Gaussian in the mixture using the multivariate normal
probability density function (pdf). If none of the calculated
probabilities for that datapoint are greater than outThresh, then
that datapoint is considered an outlier. outThresh is the thresh-
old probability to classify outliers. If the number of outliers
is larger than the number of training datapoints multiplied by
outlierProp, then the algorithm predicts that there is another
texture that is not being modeled and the number of clusters
is incremented. outlierProp is a scalar between 0 and 1 that
determines the proportion of the training data that needs to
be an outlier in order to add a new cluster. This process
is repeated until there are fewer outliers than the number
of training points multiplied by outlierProp. The values of
numClusters, numTrain, outlierProp and outThresh used were
2, 150 (50 per texture), 1/6 and 2.5×10−7 respectively.

III. RESULTS AND DISCUSSION

The neuromorphic encoding scheme, unsupervised learning
GMM and the Adaptive Classification Algorithm were applied
to the data 100 times and the results were averaged. The
GMM was initially trained to find 2 clusters, but the algorithm
identified that there was a 3rd texture class and retrained the
GMM with 3 clusters. The confusion matrix is shown in Fig. 4
with an overall classification accuracy of 86.46%.

Overall, this work indicates that neuromorphic encoding of
tactile information can serve as the basis for unsupervised
classification of textures. Using a multilayer tactile sensor and
the Izhikevich neuron spiking model allowed for a neuro-
morphic approach: translation of force into natural SA and
RA mechanoreceptor spiking activity, mimicing behavior in



Fig. 4. The overall confusion matrix after running the encoding and
classification algorithm 100 times and averaging the results. This represents
an overall classification accuracy of 86.46%.

glabrous human skin (Figs. 1 and 2). In contrast to previous
work in which the derivative of the force measurement was
input into the RA mechanoreceptor model [10], in this work,
the RA model was computed directly upon the original taxel
output and responded to the rising edge of the force, more
closely mimicing biology.

Even after reducing the entire spiking waveform from each
taxel into two metrics and then further reducing the data
from the 18 taxels into 3 principal components, there was
enough separability in the training data to create a GMM
that successfully clustered the data with 86.46% (sd=5.44%)
overall accuracy as shown in Figs. 3 and 4. The flat texture
(Texture 1) was nearly perfectly discriminated (99.47%) with
the horizontal grating and hemisphere textures (Textures 2
and 3) averaging to about 80% accuracy. Using more prin-
cipal components can potentially improve the classification
accuracy, but with this dataset the accuracy actually worsened
with more principal components. This is probably because the
dataset is small (664 trials between 3 textures) and with higher
dimensional representation the training data is not sufficient
to capture the shape of the clusters when training the GMM.
Larger datasets potentially can allow for more sophisticated
and accurate classification.

This work demonstrated the potential to learn new textures
as they are encountered dynamically using the Adaptive Clas-
sification Algorithm. This is important as the dynamic texture
identification can be used to actively modify the neuromorphic
encoding (for instance, after classification, use the encoding
corresponding to the median datapoint of the cluster) to
improve the texture discrimination of the user. The algorithm
correctly transitioned from a GMM with 2 clusters to a GMM
with 3 clusters by calculating the number of outliers based on
a probability threshold which was determined manually and
can be used to add successively more clusters. In this case,
the training dataset had a fixed number of trials and therefore
the number of outliers to trigger an increase in the number
of clusters was fixed but the parameter outlierProp allows for
this transition point to scale with the number of training points
as they arrive dynamically.

IV. CONCLUSION

We showed how unsupervised learning and neuromorphic
encoding of tactile sensor measurements can adaptively clas-

sify textures during active touch sensing. To further verify
and expand the utility of these methods, larger datasets with
a wider variety of textures should be collected to demonstrate
the ability to discriminate more classes of tactile sensation
which would potentially be encountered in everyday life. The
feature resolution and sensitivity of the tactile sensor and
neuromorphic encoding scheme should be explored to under-
stand the limits of texture discrimination and to suggest new
improvements for future tactile sensing systems. Potentially,
the classification accuracy can be increased by creating new
metrics to summarize the spiking activity of the taxel which
will further separate the texture classes for clustering. Finally,
methods to automatically calculate the probability threshold
to determine outlier datapoints in the training set should be
developed to more autonomously determine the number of
relevant textures to classify. Altogether, these directions will
enable future tactile sensing systems to adaptively learn new
textures while also providing neuromorphic feedback to users
for active touch sensing.
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