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Abstract

Let mg denote the number of perfect matchings of the graph G. We introduce a
number of combinatorial tools for determining the parity of mg and giving a lower
bound on the power of 2 dividing mg. In particular, we introduce certain vertex
sets called channels, which correspond to elements in the kernel of the adjacency
matrix of G modulo 2. A result of Lovasz states that the existence of a nontrivial
channel is equivalent to mg being even. We give a new combinatorial proof of this
result and strengthen it by showing that the number of channels gives a lower bound
on the power of 2 dividing mg when G is planar. We describe a number of local
graph operations which preserve the number of channels. We also establish a sur-
prising connection between 2-divisibility of mg and dynamical systems by showing

an equivalency between channels and billiard paths. We exploit this relationship to
show that 2M divides the number of domino tilings of the m x n rectan-
gle. We also use billiard paths to give a fast algorithm for counting channels (and
hence determining the parity of the number of domino tilings) in simply connected

regions of the square grid.
Mathematics Subject Classifications: 05C70, 05C30, 05C50

1 Introduction

Given a graph G, a perfect matching of G is a set of edges p such that each vertex of
(G is contained in a unique edge in p. We let mg denote the number of distinct perfect
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matchings of G. The problem of determining m; arises in various mathematical contexts,
particularly in tiling problems, but also in statistical mechanics [6], spectral graph theory
8], network analysis [4], total positivity [11], and representation theory [5]. Exact formulas
for mg over an infinite family of graphs are quite rare. One notable exact formula is for
G = R.uxn, the rectangular subgraph of the square lattice with m rows of n vertices. In
this case, a famous result of Kasteleyn [6] gives

L g7 k
mé:HH(4cosQn+1+4COSQm+1>.

From this product we may extract certain number-theoretic information: for example,
mg is always divisible by R [13]. Studying similar 2-divisibility patterns is
a common theme in the literature on domino tilings, which are equivalent to perfect
matchings of subgraphs of the square lattice (see, e.g., [1,3,13,15,17,18]). It is often the
case that the 2-component of the prime factorization of mq follows a predictable pattern,
even when an exact formula for mg is elusive or unwieldy. In Propp’s perfect matching
problem anthology [15], he gives a number of conjectured and known power of 2 patterns
for various graphs. For example, the following is a refinement by Pachter [13] of one of

these conjectures.

Conjecture 1.1 (Deleting from step-diagonals). Let Ra.x2- be the 2r x 2r grid graph
shown in Figure 1. If GG is a subgraph with the same vertex set, constructed by deleting
any k of the edges highlighted in the figure, then

mg = 2r=kp

for some odd integer b.

Figure 1: The step-diagonal for r = 4.

The following special case of a theorem of Ciucu is perhaps the most widely used
2-divisibility result in the literature.
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Proposition 1.2 (Ciucu’s Factorization Theorem [1]). If a bipartite planar graph has
a line of symmetry containing 2r vertices, and no edges lie on the line or connect two
vertices on opposite sides of the line, then the number of perfect matchings of the graph
15 divisible by 2.

However, the symmetry requirement in Ciucu’s theorem means that it does not apply
to graphs such as those described in Conjecture 1.1 or to R,x, for m # n (though it is
quite important for studying the square R,,xm,). The results we introduce here provide
a uniform (partial) explanation of power of 2 patterns in terms of the geometry of the
graph. Our foundational construction is based on the following result known to Lovasz.

Proposition 1.3 ([12], Problem 5.18). Let G be a graph. Then mg is even if and only if
there is a nonempty vertex set C' C V' such that every vertex in G is adjacent to an even
number of vertices in C.

We will call a vertex set C' satisfying the hypothesis of Proposition 1.3 a channel. We
also count the empty set as a trivial channel. Figure 2 shows examples of channels in
different graphs. (The name “channel” is intended to evoke the image of a river winding
its way around G, which may be redirected by “digging” edges and vertices out of G.)
The symmetric difference of two channels is again a channel, so they form a vector space
over Z/27. This implies that the number of distinct channels in a graph is always a power
of 2. The space of channels can be identified with the kernel of the adjacency matrix of
G modulo 2 (see Lemma 3.2).

Lovasz’s result already shows the importance of channels for determining the parity
of mg. The main theorem of this paper shows that channels have even more to say for
planar graphs.

Theorem 1.4 (Channeling 2s). Let G be a planar graph. Then the number of distinct
channels in G divides mZ,.

FE T R T

Ll 1l el s -

Figure 2: Three graphs, each with a channel C' depicted by colored rings around the
vertices contained in C.

Since the number of channels will always be a power of 2, Theorem 1.4 gives a lower
bound on the power of 2 dividing mg for any planar graph. We will prove this theo-
rem in greater generality (for any graph admitting a Kasteleyn signing) in Theorem 3.5.
We demonstrate the strength of this theorem in a number of examples throughout the
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article. In particular, we show 2-divisibility results related to graphs described above:
that 25" divides mg, ., and that 2"~% divides mg for the graph described in
Conjecture 1.1. These are Corollary 4.11 and Proposition 3.8, respectively.

Because of their utility, the majority of this paper is dedicated to studying the structure
of channels and methods for finding them. Many of our results are tailored for subgraphs
of the square lattice, where perfect matchings are equivalent to domino tilings of a region.
(When possible, however, we will state results in greater generality.) Our most fascinating
result is a characterization of channels in terms of dynamical systems. We state the result
here for subgraphs of the square lattice and show the general case in Section 4.

Consider any simple cycle in the square lattice (considered as a grid graph). This
cycle divides the square lattice into an interior and an (unbounded) exterior. Let G' be
the subgraph of the square lattice consisting of all vertices and edges in the cycle or its
interior. In the dual language of domino tilings, graphs constructed in this way correspond
roughly to simply connected subsets of a square grid. Since G is bipartite, we 2-color the
vertices of GG black and white. An example of such a graph is shown in Figure 3.

o ® L 4 O
® 4 L J
C L 4 L 4 D)

® ( L 4 ) L]

O L O L J

Figure 3: A graph G which is an induced subgraph of the square lattice bounded by a
simple cycle.

Now we define a billiard nest on GG to be any collection of paths traced out by billiard
balls placed on black vertices of G and launched at 45 degree angles. When a billiard ball
reaches a wall, it reflects at a 90 degree angle and proceeds in its new direction, continuing
until it is caught by a corner or returns to its start position. (If the billiard brushes past
a corner or hits one head-on, the situation is more complicated—the path splits into two
paths continuing in different directions. See Section 4 for more examples and a precise
definition.)

Remarkably, channels and billiard nests are intrinsically connected. Let G’ be the inner
subgraph of GG, the subgraph formed by removing all vertices of G which are incident to
the unbounded face and all edges incident to those vertices.

Theorem 1.5. Let G satisfy the assumptions described above, and let G' be the inner
subgraph of G. Then the number of billiard nests in G is twice the number of channels in
G’ that contain only black vertices from G'.

As a result, the number of billiard nests in G divides 2m¢:. Moreover, if G has an
equal number of black and white vertices, then G has exactly one nonempty billiard nest
if and only if mer is odd.
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Figure 4: The three nonempty billiard nests in G.

For example, for the graph G in Figure 3, the inner subgraph G’ is shown in Figure
5. Since G has 4 billiard nests and satisfies the hypothesis of Theorem 1.5, it follows that
me is divisible by 2. In this case we may simply count the perfect matchings of G’; we
find that mg = 4, which is divisible by 2 as anticipated by the theorem. In Theorem 4.7
and its corollary, we prove this billiard—channel correspondence in much greater generality
(for inner semi-Eulerian graphs).

Figure 5: The inner subgraph G’ of the graph G defined in Figure 3.

The connection between 2-divisibility, channels, and dynamical systems explains both
the sensitivity and the regularity of perfect matching 2-divisibility. Small changes to G can
result in entirely different billiard dynamics, with the effects visible in m/. For instance,
if we take GG to be the graph in Figure 6, then there is only one nonempty billiard nest.

Since (counting the empty nest) G' has 2 billiard nests, by Theorem 1.5 the inner
subgraph G’ has no nonempty channels on black vertices. Since G’ has the same number
of black and white vertices, this will imply (by Lemma 3.3) that G’ has no nonempty
channels at all. Thus by Proposition 1.3, G’ has an odd number of perfect matchings—in
this case 3.

The dynamics involved can also induce a regularity in the 2-divisibility of m¢g. The
well-known theory of arithmetic billiards describes billiard nests for rectangles in terms
of divisibility properties of the rectangle side lengths. In Section 4.2, we exploit these

results to explain the factor of R dividing m¢ for the m x n grid graph.

ot
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Figure 6: A graph G which has only one nonempty billiard nest, along with its inner
subgraph G'.

Billiard nests give a global explanation of channel structure for many graphs. Some-
times we are instead interested in local behavior. For instance, we may have a family
of graphs that are globally similar but that differ locally. To relate these graphs, we in-
troduce a set of channel-preserving graph operations and show that they may be applied
repeatedly to reduce many graphs to a graph with no edges, whose channels are apparent.

The paper is organized as follows. The proof of Theorem 1.4 is algebraic and given
in Sections 2 and 3. Sections 4, 5, and 6 are independent and may be read in any
order. Section 4 describes billiard nests for a large class of graphs called inner semi-
FEulerian graphs. The results described in the introduction are applied to the rectangle
grid graph, connecting its 2-divisibility to the theory of arithmetic billiards. Section
4 concludes with a fast algorithm that constructs the billiard nests and therefore the
channels for certain graphs. In Section 5, we give a combinatorial proof of Proposition 1.3
for bipartite graphs. In the course of this proof we introduce a graph move called channel
routing, which involves removing adjacent vertex pairs from a graph while tracking the
effect on channels. Channel routing is not always well-behaved, but certain other graph
moves always preserve the number of channels in a graph. These are called channel-
preserving moves and are the focus of Section 6. Section 6 also introduces a useful graph
move called diagonal contraction. We give results on diagonal contraction and channels
which generalize a number of known domino tiling parity results. We wrap up in Section 7
with remarks and directions for future work.

2 Preliminaries

All graphs in this paper are undirected, finite, and (unless otherwise indicated) contain
no self-loops. Until Section 6, we further assume that there is at most one edge between
any pair of vertices. This convention is used only to simplify notation; using suitable
definitions, all results hold without it. If a graph is bipartite, we will consider its vertices
to be colored black and white. Additionally, all matchings discussed will be perfect
matchings, and thus the word “perfect” will be omitted in the future for brevity. For a
graph G = (V| E), V denotes the vertex set, E denotes the edge set, and A denotes the
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adjacency matrix. We write 7w to denote an (undirected) edge between v and w; this is
to contrast with the notation {v,w} indicating a set of two vertices. Given a vertex v,
the neighborhood of v is

N(v) = {v"| v/ € E}.

For an edge e, we use the notation G — e to denote the subgraph (V, E —e). For a subset
S C V, we use the notation G — S to denote the subgraph of G induced on V' —.S. Recall
that m¢ is the number of matchings of G. As an exercise in this notation, we have the
following proposition.

Proposition 2.1. Let G be any graph, and let e = v1v5. Then
ma = mag—e + MG —{vy,va}-

Also, fix any vertex v. Then

mg = Z mag—{vw'}-

v'eN(v)

Proof. For the first relation, notice that matchings of G — e are just those matchings of
G that do not use the edge e. The other matchings of G do use e, and therefore for these
matchings the vertices v; and vy are never in an edge with any vertex other than each
other. Thus such matchings are equivalent to matchings of G — {vy, v}, plus the edge e,
and the first equation is shown.

For the second relation, partition the set of matchings of G based on the vertex that
pairs with v in the matching. By the same reasoning as in the last paragraph, the number
of matchings in which v pairs with v’ is mg_{y,}. Summing over the possible pairings
shows the claim. O]

Sometimes we will be interested in connected planar graphs GG. Such graphs admit a
dual graph, with vertices given by the faces of G and edges between faces separated by an
edge in G. If the same face is on both sides of an edge of GG, then that edge corresponds
to a self-loop in the dual graph. The external face of G is the face which is unbounded,
and all other faces are internal faces of G. The reduced dual graph of G is the dual graph
of G with the vertex corresponding to the external face of G' removed. We say a vertex
of G is external if it is incident to the external face, and we say it is internal otherwise.

We begin by recalling Lovasz’s original proof of Proposition 1.3. Later, in Section 5,
we will reprove this combinatorially for bipartite graphs.

Proposition 2.2 ([12], Problem 5.18). Let G be a finite graph with no self-loops. Then
mg 1s even if and only if there is a nonempty vertex set C C V such that every vertex in
G s adjacent to an even number of vertices in C.

Proof. Let Ay = (ai;)7;—; be the adjacency matrix of G modulo 2. Note that vertex sets
as described in the proposition exist if and only if the kernel of A, is nonzero (since an
element of the kernel is a sequence of 1s and 0Os indexed by vertices, which may be treated
as an indicator function for a vertex set that will necessarily have the desired property).
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The determinant of A, is

det Ay = Z Sgn(U)amu) ©Qpg(n) = Z QA1o(1) " ** Ano(n)s

O'ESn O'ESn

where the sum is over all permutations of {1,...,n}. (We may ignore the sign since we
work over Z/27.) Because the adjacency matrix is symmetric,

A1o(1) * " Ano(n) = Ao=1(1)1 """ Qo—1(n)n = Alo—1(1) * " " Ano—1(n)-
Thus we may remove from the sum all pairs o # o~ !

to 0. We are left with the sum over involutions

Z A15(1) " * " Ano(n)-

0'20'71

as such pairs yield terms that sum

Now, because G has no self loops, if o satisfies o (i) = i for some 4, then the corresponding
term in the sum contains a; = 0. Thus we are left with a sum over involutions of the
vertices with no fixed points. For such an involution o, a14(1) "+ * Gpe(n) is 1 if there exists
a matching of G that pairs vertex ¢ with vertex (i) for all i, and 0 otherwise. Hence we
get the equality (in Z/27Z)

mag = det AQ.

Thus mg = 0 in Z/2Z if and only if ker Ay # 0, and we are done. O
Now we discuss some important algebraic constructions. Our main tools for the re-

mainder of the section are the Kasteleyn matrix of a graph and the Smith decomposition
of a matrix.

Proposition 2.3 (Kasteleyn [7]). Let G be a planar graph with adjacency matric A =
(a;j). Then there exists a matriz K such that K = (£a;;), and

det K = mZ,.

The matrix K is called a Kasteleyn matriz, and if a (not necessarily planar) graph G
admits such a K, then G is said to have a Kasteleyn signing.
For bipartite graphs we can be more specific.

Definition 2.4. Let G be a bipartite graph with adjacency matrix A. The bipartite
adjacency matriz of G is the submatrix of A formed by selecting rows from A associated
to white vertices and columns from A associated to black vertices.

When G is bipartite, the adjacency matrix A can be written in block matrix form as

0 B
A_<BT 0)7

where B is the bipartite adjacency matrix. If in addition G is planar and has the same
number of black and white vertices, then there is an analogue to the Kasteleyn matrix
called the bipartite Kasteleyn matriz.
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Proposition 2.5 (Percus [14]). Let G be a bipartite planar graph with bipartite adjacency
matric B = (b;;). If B is square, then there exists a matriz H, the bipartite Kasteleyn
matrix, such that H = (£b;;), and

det H = mea.

We will want to diagonalize these matrices over the integers. The canonical tool for
doing so is called Smith normal form.

Proposition 2.6. Let A be a matriz over a principal ideal domain (PID) R. Then there
exist matrices S, D, T over R with the following properties:

(i) A= SDT.
(i) S and T are invertible over R. For R = Z, this means det S,det T' = £1.
(iii) D is diagonal, with diagonal entries o, ..., o, satisfying

oy divides oo divides ... divides a,.

The matrices S, D, T are called a Smith decomposition for A.

For our purposes, R will be the integers or a finite field. Smith decompositions have
many useful properties. See, e.g., [10] or [16] for more background and combinatorial
applications of Smith decompositions. The next result follows directly from Proposition
2.6(1)(ii).

Proposition 2.7. Let A = SDT be a Smith decomposition for a square matrix A over a
PID R. Then

ker A = ker D as abelian groups and det A = udet D for some unit u € R.

We are now prepared to study 2-divisibility of mg for graphs G with a Kasteleyn
matrix K. As described above, planarity is a sufficient condition for G to have a Kasteleyn
signing. Using the Smith normal form of K, we will find 2-divisibility results for such
graphs that we develop further in the next section.

Definition 2.8. For an integral matrix A, define the reduction of A modulo 2 to be the
matrix Ay over Z/27Z given by reducing the entries of A modulo 2 and considering them
as elements of Z/27Z.

Define kery A, the 2-kernel of A, to be the kernel of A, as a vector space over Z/27Z.

Notice that for an adjacency matrix A and corresponding Kasteleyn matrix K, we
have A; = K5. This follows from the definition of K as a signed version of A. This is
a key observation that will allow us to translate our algebraic results in this section into
geometric results in Section 3. Before that, let us see what we can learn from reducing the
Kasteleyn matrix mod 2. Let the 2-nullity of a matrix be the dimension of its 2-kernel:

nully A := dim kery A.
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Lemma 2.9. Let A be a square matrix with integer entries. Then

onullz A4 | et A,

Proof. Let A = SDT be a Smith decomposition of A. Reducing modulo 2 gives Ay =
SoD5T,. One may check that this is a Smith normal form of A,. Then by Proposition
2.7, the kernel of A, is isomorphic to the kernel of Dy. Set k := null; A = null, D. Since
D is diagonal, its kernel has a basis consisting of standard basis vectors that indicate
columns where the diagonal entry is 0. Therefore there are exactly k such entries. Since
0 entries in Dy correspond to even integral entries in D, there are exactly k£ even entries
on the diagonal of D. Thus the determinant of D contains at least k factors of 2, and the
result follows by Proposition 2.7. O]

Applying this lemma to the Kasteleyn matrix or the bipartite Kasteleyn matrix will
let us use the 2-kernel to find powers of two in the number of matchings of a graph.

Theorem 2.10. Let G be a graph with a Kasteleyn signing (e.g. a planar graph). If A is
the adjacency matriz of G, then

2mle A divides mZ,.
Proof. As remarked above, Ay = K>, so in particular nully A = null, K. Additionally, by
Proposition 2.3, the determinant of K is m%. Thus by Lemma 2.9,

gnullz A — omull K- divides det K = m2,. D

Theorem 2.11. Let G be a bipartite graph with a Kasteleyn signing. If B is the bipartite
adjacency matriz of G, then
onullz B givides me.

Proof. 1f B is not square, then mg = 0 and the claim holds trivially. Otherwise, the proof
is the same as the previous theorem using the bipartite Kasteleyn matrix. O]

We therefore may deduce powers of 2 dividing m¢ by finding elements of the 2-kernel
of A. The remainder of the paper details how this can be done.

3 Channels

Let G be a graph with adjacency matrix A. Then a vector z in kery A has entries in Z /27
and can be lifted to a vector Z with entries 0,1 € Z. The condition Asx = 0 then becomes
AZ = 2y for some integral vector y. Because each row of x corresponds to a vertex in
(G, we may interpret = as the indicator function for a vertex set C', where a row with a
1 indicates the vertex is in C' and a row with a 0 indicates the vertex is not in C'. This
leads to the following interpretation of 2-kernel elements.
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Definition 3.1. Let G = (V, E) be any graph. A channel is a set C of vertices such that
every vertex in G is adjacent to an even number of vertices in C'. In other words, letting
N (v) denote the neighborhood of v, a channel satisfies

|N(v) N C| is even, for all v € V.

Let the set of channels in G be denoted C(G). If G is bipartite, then let Cg(G) (resp.
Cw(G)) be the subset of C(G) consisting of channels that use only black (resp. white)
vertices from G.

The 2-kernel also has an additive structure as a Z/2Z vector space. This transfers to

C(G) by defining the sum of C},Cy € C(G) to be
C1 @ Cy = (CLUCy) — (C1 N Cy), the symmetric difference of Cy and Cs.

Note that in the bipartite case, both Cg(G) and Cy (G) are subspaces of C(G).

e e

Figure 7: A graph G with its three nonempty channels indicated by shading. Any two of
these form a basis for the space C(G).

The discussion above then implies the following, which was hinted at in the proof of
Proposition 2.2.

Lemma 3.2. The spaces C(G) and kery A are isomorphic vector spaces over Z/2Z.

If G is additionally bipartite with bipartite adjacency matrix B, then we can refine
Lemma 3.2 by accounting for vertex colors.

Lemma 3.3. If G is bipartite, then there are Z/2Z-vector space isomorphisms
Cp(G) 2 kerys B and Cyw(G) = kery BT.

Furthermore,

C(G) = Cs(G) & Cw (G).

Proof. The identification of channels using only black vertices with elements of kery, B
follows the same lines as the discussion at the beginning of the section. The claim for
white vertices is the same, noting that taking the transpose of B is equivalent to swapping
the two vertex colors.

For the final claim, the set of black vertices in any channel C' is also a channel: in a
bipartite graph, the set of black vertices adjacent to a given vertex is either the empty set
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(which has even cardinality) if the vertex is black, or its entire neighborhood if the vertex
is white. Similarly the white vertices in C' also form a channel. As a result, any channel
may be split into its black part and its white part. Since Cg(G) and Cy (G) have trivial
intersection, this proves the direct sum decomposition. O

Lemma 3.4. Let |Vg| and |Viy| be the number of black vertices and white vertices in a
bipartite graph G, respectively. Then

dimCp(G) — dim Cw (G) = |V5| — |Viv|.
In particular, if G has the same number of black and white vertices, then
dimCp(G) = dim Cw (G) = %dimC(G).
Proof. Let B be the bipartite adjacency matrix of G. We have
dimCp(G) = nully B (1)

and
dim Cyy(G) = null, B = dim cokery B = |Vjy| — dim im, B, (2)

where cokery and imy refer to cokernel and image of B as a matrix over Z/2Z. The
rank-nullity theorem for B may be stated as

nully B + dimimy B = |Vp]|.

The claim then follows by subtracting equation (1) from equation (2) and applying rank-
nullity. O

Combining the observations above with the 2-divisibility results from the last section,
we can now prove our main theorem.

Theorem 3.5 (Channeling 2s). IfC1, ..., C, are linearly independent channels in a graph
G with a Kasteleyn signing, then

2" divides mZ,.
If additionally G is bipartite, and C4,...,C, € Cg(G), then
2" divides mg.

Proof. Let A be the adjacency matrix of G. By Lemma 3.2, C,...,C, may be viewed
as n linearly independent elements of kery A. It follows that nully A > n. Then the first
claim results from applying Theorem 2.10.

The second claim follows similarly, using Lemma 3.3 and Theorem 2.11. O
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Remark 3.6. Despite the fact that Proposition 2.2 holds for an arbitrary graph, Theorem
3.5 does not. For example, the complete bipartite graph K33 has [Cp(K33)| = 2%, but
mg,, = 6 is not divisible by 22. Thus the assumption of a Kasteleyn signing for G cannot
be weakened much further.

[ ] L 4 L 4 L 4 [ ]
C [ ] C ® L 4 D [ ] D)
® [ ) L 4 [ )  J

® o O L 4 O [ ] L J
[ ] ([ ] ( ] [ ]

[ ] [ ] C L 4 b, [ [

O [ C ® O L > [ ] O

Figure 8: A basis for Cp(R4x9)-

Example 3.7. Let R,,x, denote the m x n rectangular grid graph. The shading in
Figure 8 shows a basis for Cg(R4xg). By channeling 2s, we have that 22 divides mg,,-

And indeed, mg,,, = 6336 is divisible by 4. Note, however, that 6336 is also divisible by
26—Theorem 3.5 gives only a lower bound on the power of 2 dividing mg. O

In Section 4, we shall employ billiard paths to count channels in a rectangle grid graph
of arbitrary size. We already have the results we need, however, to give a lower bound
supporting Pachter’s conjecture.

Proposition 3.8. Let Ro.xo. be the 2r x 2r grid graph shown in Figure 1. If G is
constructed from Rapxor by deleting any k of the highlighted edges in the figure, then

2 divides me.

Proof. For a 2r x 2r square grid graph, we will find that the space Cp(Ra,«2-) has r
independent channels which each intersect exactly one of vertex pairs removed from the
step diagonal. Thus removing k of the step diagonal vertex pairs interrupts just k of the
channels, so the other » — k channels will still be present. The result then follows from
channeling 2s once we construct these channels.
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Figure 9: A basis for Cp(Rsxs). The diagonal segments which intersect the step diagonal
are shown in purple, while the diagonal segments which are parallel to the step diagonal
are in green. Note that the channels in the top left and bottom right are also channels of
the graph with the two red edges removed.
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Consider Figure 9. To construct each channel, pick a black vertex b on the step
diagonal. In the figure, these are the vertices along the diagonal from the bottom left
to the top right. Our channel will consist of four (possibly empty) diagonal segments
of vertices. Two segments will intersect the step diagonal transversely, one at b in the
bottom left and one at b’s mirror image in the top right. The other two segments will be
parallel to the step diagonal and placed so that the channel vertices along the sides of the
grid graph each have one intervening vertex between them. Each such intervening vertex
is adjacent to one endpoint from two diagonal segments. All other vertices are adjacent
to either 0 or 2 vertices from each diagonal segment. Hence each vertex of the graph is
adjacent to an even number of vertices from our diagonal segments, so these vertices form
a channel.

By following this construction for each b lying along the lower r black vertices of the
step diagonal, we create r channels that each contain a different vertex from the step
diagonal, and therefore they must be independent. O

4 Billiards and Channels

For an arbitrary graph, it is not at all clear how to construct or count its channels without
solving the requisite linear system. In this section we give a geometric approach to channel
construction based on a phenomenon that can be observed in the channels of a rectangle
grid graph.

4.1 Billiard nests

In the rectangle, we note that channels tend to form along diagonal lines as in the following
figure. This pattern was studied by Tomei and Vieira in [19], where they described it in
terms of polygonal tilings of the rectangle. We propose an alternative description.

[ ] O ® ( ] [ ] O

C \. Q/ L 4 “\Q
C /Q Q\ L 4 J/‘

By extending these diagonals, we find that these lines form a path which reflects off
the edges of a larger rectangle, as shown below. The channel vertices are vertices in the
interior of this larger rectangle which intersect exactly one line from this path.
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Such paths either form loops or start and end on distinct corners. Notice that we may
recover the path by remembering only the faces that it passes through and the fact that
it passes through black vertices. The face information is shown in the next figure.

[ ] O L 4 ( ] [ ] O
C [ ) (] L 4 D o
® C ® L 4 @ b}

It turns out to be natural to consider arbitrary collections of billiard paths—what
we will call a billiard nest. Viewing the nest as a set of faces will allow us to isolate
the abstract properties of billiards which are of combinatorial importance. From this
viewpoint, billiard nests can be defined on a large class of graphs, called inner semi-
Eulerian graphs.

Definition 4.1. We say that a bipartite planar graph G is inner semi-Fulerian if every
internal black vertex of G has even degree. Let G be inner semi-Eulerian and let F' denote
the set of internal faces of G. We say that a subset of faces B C F' of G is a billiard nest
if the following hold:

e if b is an internal black vertex, then either all faces incident to b are in B, no faces
incident to b are in B, or every second face incident to b is in B.
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e if b is an external black vertex, then either all internal faces incident to b are in B
or no internal faces incident to b are in B.

Denote the set of billiard nests in G by B(G).

When G is an induced subgraph of the square lattice with all internal faces being
unit squares, this roughly agrees with the intuitive notion of billiard nests as (the faces
containing) paths traced out by a collection of billiard balls since at an internal black
vertex, the ball will pass from one face to the opposite one at that vertex. (At an external
black vertex the billiard ball can be thought of as splitting into all possible directions.)
Note that @ and F' are trivially billiard nests for every graph. As with channels, we
may define the sum of two billiard nests to be their symmetric difference, making B(G) a
vector space over Z/2Z.

There is a canonical basis for B(G) such that the basis billiard nests are mutually
disjoint. Indeed, define a graph G with vertex set F' and edges between f and f’ if they
satisfy one of the following:

e f and f’ are incident to the same internal black vertex b and are separated by an
even number of edges incident to b.

e f and [’ are incident to the same external black vertex b.

Then the connected components of G are independent billiard nests that span B(G).
This is called the path basis for B(G), and its elements are called billiard paths. Later we
will demonstrate an efficient algorithm to find the path basis for certain graphs. This is
particularly useful since, as we shall soon see, billiard nests in GG are equivalent to channels
in a certain subgraph of G.

Definition 4.2. Let G be inner semi-Eulerian. The inner subgraph of G, denoted G’, is
the induced subgraph on the internal vertices of G. Similarly, the outer subgraph of G is
the induced subgraph on the external vertices of G.

Given any inner semi-Eulerian graph H, an outer completion of H is an inner semi-
Eulerian graph G such that G’ = H and such that the outer subgraph of G is a simple
cycle.

We can always construct an outer completion for an inner semi-Eulerian graph H
by taking a copy of the boundary of H, expanding the copy so that H lies within it,
and adding edges between the two copies of the boundary as needed to make the graph
inner semi-Fulerian. This is described in detail in the next proposition and the following
example.

Proposition 4.3. Any inner semi-Eulerian graph H has an outer completion.

Proof. Without loss of generality, let H be connected. Set n to be the degree of the
external face f of H in the dual graph HY of H. The cyclic ordering on the faces
adjacent to f in H" induces a cyclic ordering on the external vertices of H (possibly with
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repetition). Construct a simple cycle Y with n vertices and edges, and embed Y in the
plane such that H is in the interior of Y. Then the cyclic order of the external vertices
of H surjectively assigns to each vertex of Y an external vertex of H. For each external
vertex v of H, if v has odd degree, then place an edge between v and one of the vertices
of Y to which v is assigned.

Call the resulting graph G. Then G is bipartite since we may color each vertex in
Y with the color opposite of the vertex assigned to it. Also G is planar: the edges we
introduced between Y and H may be embedded so that they do not cross since they
connect to the boundary of H in the same order as they do to Y. Finally, G is inner semi-
Eulerian since the construction of G makes all external vertices of H have even degree,
and all other internal black vertices of G are internal vertices of H. [

Example 4.4. Let H be the following graph.

The degree of the outer face f is 14, and the sequence of external vertices visited as

we traverse the boundary is indicated by the numbering below. Construct a simple cycle
Y of length 14 and embed it so H lies in the interior face of Y.

D

2 34]67 8
—

13 12 11

1 14 10 9

For each external vertex of H with odd degree, pick one of the vertices associated to
it in Y and add an edge between them. The resulting graph G is inner semi-Eulerian.
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Figure 10: An inner semi-Eulerian graph G with inner subgraph H.

Remark 4.5. Often there is a more natural choice of outer completion for H than the
construction described above. In particular, many of our examples that are subgraphs of
the square lattice use an outer completion that is also a subgraph of the square lattice.

Given a billiard nest in GG, we may construct an associated channel in G’ as follows.

Let B € B(G) be a billiard nest. Define
ch: B(G) — Cp(G")

by setting the vertices in ch(B) to be the internal black vertices b of G for which exactly
half of the faces incident to b are in B.

Lemma 4.6. The map ch is a group homomorphism from B(G) to Cg(G").

Proof. Let B € B(G). We first check that ch(B) is in fact a channel. Let w be a white
vertex of GG/, i.e., an internal white vertex of G. Consider the edges incident to w. We
wish to show that the number of these edges that contain a channel vertex is even. Let
f1,-.., fn be the incident faces to w in cyclic order. If f; and f;,; are both in B or both
not in B, then the edge between them does not contain a vertex in ch(B); otherwise,
the edge contains a vertex in ch(B). Thus the number of incident edges to w containing
vertices from ch(B) is the number of times f; changes from being in B to not being in
B or vice versa as we traverse the incident faces. Since after traversing all of the faces
incident to w we must arrive back at the starting face, we must change state an even
number of times. Thus ch(B) is a channel.

Now we check that ch preserves symmetric differences. Let By, By € B(G). Consider
the incident faces of b for an arbitrary black vertex b € G'. If b € ch(By), then every other
of these faces is in By. If b & ch(By), then all or none of these faces are in By. The same
holds for By. Then the claim follows since the symmetric difference of the incident faces
to b in By with the incident faces to b in By is every second face if and only if exactly one
of By and B, contains every second face incident to b, which occurs if and only if b is in
exactly one of ch(B;) and ch(By). O
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We can now state our main result on billiard nests. Recall that the reduced dual graph
of GG is the dual graph with the vertex corresponding to the external face of G' removed.

Theorem 4.7. Let G be inner semi-Eulerian and let G' be the inner subgraph of G.
Assume that the outer subgraph of G is a simple cycle. Then

B(G)| = 2|Cs(G)].

Proof. First we show that
|kerch| = 2.

Let B € B(G) be such that ch(B) = 0. Then B is locally constant, i.e., at each black
vertex b, either all faces incident to b are in B or all faces incident to b are not in B. In
a connected component of the reduced dual graph of GG, there is a path between any two
faces. Any edge between two faces on that path contains a black vertex, which enforces
the locally constant condition. Thus B is constant along the entire path and therefore
across any connected component of the reduced dual of G. So the claim follows if we can
show that the reduced dual of G is connected. Indeed, since G is surrounded by a simple
cycle, we may embed it such that it fills a convex region in the plane. Then a generic line
connecting two internal faces will induce a path between them in the dual graph, which
will avoid the external face by convexity. This proves that B € B(G) if and only if B is
constant, i.e., equal to either F' or &. Hence |kerch| = 2.

To complete the proof, we show that ch is surjective. Let C' € Cp(G’) be a channel.
We will construct a billiard nest B such that ch(B) = C. Fix a spanning tree T" of the
reduced dual of G and some internal face fy of G. We decide whether an internal face f
is in B as follows. If f = fy, then f € B. Otherwise, there is a unique path in 7" from
fo to f. If the path crosses an even number of edges in G' containing vertices in C', then
f € B. Otherwise, f ¢ B.

Claim. If f;, f; are two adjacent internal faces of G, then f; and f, are both in B or
both not in B if and only if the edge e; separating f; and fo does not contain a channel
vertex.

If the dual edge e} is a part of T, then this follows by definition of B. Otherwise,
adding e} to T creates a simple planar cycle

Y ={e,....,e } ST U{e/}.

We wish to show that the number of channel vertices in e; has the same parity as the
total number of channel vertices in e,,...,e,. We will be done if we can show that the

number of edges in
YV ={e,...,en}

that contain a channel vertex is even.
Let H be the induced subgraph of G on the vertices in the interior of Y. Each e;
connects a vertex v; € H to a vertex v, € G\H. Set

OH ={vy,...,u,}.
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Figure 11: The graph G near a dual graph cycle Y, shown as a gray hexagon. The vertices
in the interior of Y form the subgraph H. The channel C' is shown in orange.

Since H is bipartite and C uses only black vertices,

degy b= chdeg; w, (4.1)
2 2

beCNH weH

where the sum on the left is over black vertices, the sum on the right is over white vertices,
and chdeg;; w is the size of the neighborhood of w in C'N H.
Note that for b € H\OH we have

degy b =deg,b =20

since G is inner semi-Eulerian and all vertices of H are internal to G. (Here we write
n =, m to mean that n — m is even.) Thus

Z degy b= Z degy b =2 #{e; | v; is in C'}.

beCNH beCNOH

The last equivalence follows since
degy b=degg b — #{e; [ b€ e} =2 #{ei [ b € e}
Working now with the other side of (4.1), for w € H\OH we have that
chdeg;; w = chdeg, w = chdegy =2 0

by definition of a channel. Thus

Z chdeg, w = Z chdeg,; w =5 #{e; | v} is in C}.

weH weOH
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The last equivalence here follows since

chdeg,; w = chdeg, w — #{e; | w € ¢; and v} € C} =5 #{e; | w € ¢; and v} € C}.

Substituting our results into (4.1), we find

#{e; | v; isin C} = #{e; | v} is in C}.

Thus

#{e; | e; contains a vertex from C} = #{e; | v; isin C} + #{e; | v} isin C} =5 0
as desired, proving the claim.

We may now verify that B is indeed a billiard nest such that ch(B) = C. Let b € G be
a black vertex. If b € C, then every edge incident to b contains a channel vertex. Thus,
by the preceding claim, the faces incident to b must alternate between being in B and
not being in B. If b € C, then every edge incident to b does not contain a channel vertex.
Thus, by the claim, the internal faces incident to b are either all in B or all not in B.
In particular, external black vertices are not in C' (since they are not in G’), so B meets

the conditions for being a billiard nest. Furthermore, it is clear from this description that
ch(B) = C. Thus ch is a surjective homomorphism

B(G) — Cp(G").
Combining this with the size of the kernel computed earlier, we find that
1B(G)| = 2|Cx(G")]. O

Corollary 4.8. Let G be inner semi-Eulerian and let G' be the inner subgraph of G.
Assume that the outer subgraph of G is a simple cycle and that G has the same number
of black and white vertices. Then

1
§|B(G)| divides the number of matchings of G'.

Moreover, mer is odd if and only if G has exactly one nonempty billiard nest.
Proof. By Theorem 4.7, we have

SIB(@)| = 1e5(@)]

By channeling 2s (Theorem 3.5), we know that |Cg(G")| divides the number of matchings
of G'. By Proposition 2.2, m¢ is odd if and only if dimC(G’) = 2dimCp(G’) = 0, that
is, if and only if |C5(G")| = 1. The claim follows. O

Thus our study of channels in appropriate graphs H (in particular, by Proposition
4.3, all inner semi-Eulerian graphs) reduces to the study of billiard nests in an outer
completion G. Billiard nests are considerably easier to work with since every face of G
is contained in a unique billiard path in the path basis of GG. In general there is no such
basis for the channels of H; vertices of H may be contained in no channel and there may
be no channel basis for H with pairwise disjoint elements. However, any billiard path
can be found by starting with a face of G and adding additional faces as required by the
definition of billiard nests.
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4.2 Arithmetic billiards

As an application, let us find the billiard paths for the rectangle grid graph R,,11xn+1, an
outer completion of R,,_1x,_1. For this graph, we may use our interpretation of billiard
paths as the paths through black vertices traced out by billiard balls travelling at 45 degree
angles. (Explicitly, a face in the billiard path is interpreted as a billiard ball traveling
between the black vertices in that face.) We begin by straightening out the billiard paths;
to do so, we tile the plane with copies of our rectangle.

(&} O

p

e

<~
e

A
O

© @

Figure 12: A rectangle used to tile the plane. The coloring is provided as a visual indicator
of the rectangle’s orientation. Any billiard path on the left corresponds to a line of slope
1 on the right and vice versa.

We can then lift the billiard path to a straight line of slope 1 in the tessellation.
A billiard path between two corners of R, 11xns1 Will be the diagonal of a square in the
tessellation. Any such square must have a side length divisible by m and n (the side lengths
of Ritixns1). The minimal square in the tessellation with corners from R, 1xn+1 then
has side length given by the least common multiple of m and n. To determine the number
of internal faces of R, 11xn+1 through which the path travels, we may count the number
of unit squares through which the path travels in the tessellation. Since the straightened
billiard path travels along the diagonal of a square with side length lem(m, n), this path
travels through lem(m,n) unit squares.

For now assume that at least one of m+1 and n+1 is even. Then exactly two corners
of Ryi1xni1 are black. Any two distinct billiard paths pass through distinct internal
faces of Riur1xni1- We shall count path basis elements by counting the internal faces
through which they pass. There is one billiard path through the black corners. From
the last paragraph, we know this path uses lem(m,n) internal faces. Now, every other
path on black vertices uses twice as many internal faces. Indeed, since the other paths do
not pass through a corner, they must end on their starting point. To reach their starting
point in the tessellation, the paths must lift to the diagonal of a square of side length
2lem(m, n) since one of m and n is odd. Since every internal face is part of a unique path
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basis element, we may now count the billiard paths for R,,11xn+1-

Theorem 4.9. The rectangle grid graph R, 11xns1 with (m + 1)(n+ 1) even has a path
basis of size
ged(m,n) + 1
5 :

Proof. There are mn total internal faces in R,,11xn+1. From the above, mn — lem(m,n)
of these are part of a billiard path not passing through a corner. Each such basis element
uses 2lem(m,n) internal faces. Thus there are

mn —lem(m,n)  ged(m,n) — 1

2lcm(m,n) 2
non-corner billiard paths. Adding back the last billiard path gives the claim. O]

Corollary 4.10. The rectangle grid graph R, _1xn—1 with (m — 1)(n — 1) even has

ged(m,n)—1

|CB(Rm—1><n—1)| =2 2

Proof. The inner subgraph of R, i1xnt1 1S Rim—1xn_1, and the reduced dual graph of
R.nxn is connected. Thus the result follows by Theorem 4.7. O

Corollary 4.11. The number of matchings of Ry—1xn—1 ts divisible by

ged(m,n)—1
2

Furthermore, the number of matchings is odd if and only if m and n are coprime.

Proof. If m — 1 and n — 1 are both odd, then mg = 0 and the claim follows. Otherwise,
the hypothesis of the previous corollary holds and we may channel 2s (apply Theorem
3.5) to get the divisibility statement. The last claim follows from Proposition 2.2. O

In the next section, we apply the geometric interpretation of billiard paths for sub-
graphs of the square lattice to construct an algorithm for finding a path basis for such
graphs.

4.3 Finding billiard paths in the square lattice

Let G be a subgraph of the square lattice Z x Z formed by taking a simple cycle and
adding all edges and vertices in its interior. Assume we are given the boundary cycle
(for instance, as an ordered list of edges). Let P be the set of exterior black vertices in
G. From the input data we may determine in O(|P|) time the set of internal faces in
G which are incident to the boundary. Our algorithm for constructing a path basis will
have complexity O(|P|log|P|). We shall construct an auxiliary graph A with vertex set
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P which will have connected components corresponding to billiard paths in G. To begin,
given the coordinates (x,y) of a vertex b € P we compute two indices:

bt =y -z,
b" =y+u,

the positive and negative index, respectively. The positive index indicates which line of
slope 1 the vertex lies on, and the negative index indicates which line of slope —1 the
vertex lies on. Now sort the pairs

{(b*,07) | be P}

lexicographically. Let b; and by be two consecutive vertices in this list. If the vertex b; is
incident to an internal face to its upper right, then put an edge between b; and by in A.
Iterate through the list and do this for each consecutive pair.
Next, sort the pairs
{(7,0%) | be P}

lexicographically. Again, consider consecutive vertices b; and by in this list. If by is
incident to an internal face to its upper left, then put an edge between b; and by in A.
Do this for all such consecutive pairs.

After this is complete, the connected components of A will be in correspondence with
billiard paths of B(G). Specifically, a connected component of A corresponds to the
minimal nest containing any face of G incident to a vertex in that component. If the
number of connected components in A is d, then there are 27 billiard nests in G, and if
the reduced dual of G is connected, then there are 2¢~! channels on the black vertices of
the inner subgraph of G.

Note that computing the indexes, adding edges to A, and finding the connected compo-
nents of A takes O(|P|) time, while the sorts take O(|P|log | P|) time. Thus the algorithm
runs in almost linear time.

(4,6) (2,8)
0O o—e

(4,4)

(2,2)

(0,0)

(—2,2) (—4,4)

Figure 13: The graph G with external black vertices labeled by their indexes in the form
(b™,b7). One of the billiard paths is shown in red.
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Example 4.12. Let G be the graph shown in Figure 13. Set A to be the graph on the
external black vertices of G, with no edges.
We list out the index pairs in lexicographical order:

(bT,07) (—4,4)[(—4,6)|(—2,2)|(—2,8)|(0,0)|(0,6)[(2,2)[(2,8)|(4,4)|(4,6)
upper right face? y n y n y n y n y n

We connect each vertex with a y to the next vertex on the list. The following figure
shows A after this step is completed.

/

E

The colors here mean nothing at the moment, but once we finish adding edges they
will indicate the connected components of A. For the second phase, we reorder the index
pairs, this time lexicographically based on (b~,b").

(b—,b") (0,0)](2,-2)1(2,2)|(4,—4)|(4,4)|(6,—4)|(6,0)](6,4)|(8,—2)[(8,2)
upper left face?|| n y n y n y y n n n

Again we connect each vertex with a y to the following vertex to complete the construc-
tion of A. The result is shown below, with connected components displayed in different
colors.
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There are two connected components of A, corresponding to the two billiard paths in
B(G). Thus there are 2271 = 2 channels on the black vertices of the inner subgraph G’ of
G. ¢

Figure 14: The inner subgraph G’ formed by deleting the external vertices of G, with
its nonzero channel highlighted. Either of the billiard paths shown in the previous figure
constructs this channel.

Remark 4.13. Let G be a subgraph of the square lattice formed by taking a simple cycle
and adding all edges and vertices in its interior. A variant of the algorithm above may be
used to compute the path basis for an outer completion of GG (rather than for G itself, as
done above). The path basis for an outer completion controls the channels (and therefore
parity information) in G, rather than in the inner subgraph G’. This alteration then lets
us understand the channels of graphs that do not have an outer completion fitting in the
square lattice.

To compute the path basis for an outer completion H of GG, with boundary cycle 0H,
make the following changes:

e The auxiliary graph A now has vertex set given by the internal faces of H that are
incident to vertices in P (the exterior black vertices of G).

e Start off by connecting faces in A that are incident to the same black vertex in 0H,
as well as every second face surrounding a vertex in P.

e Instead of connecting the vertices of P, we connect the appropriate faces in A.

— In the (b™,07) table, if a vertex v € P has a y label, then connect the upper
right face incident to v to the lower left face incident to the next vertex in the
table.

— In the (b7, b") table, if a vertex v € P has a y label, then connect the upper
left face incident to v to the lower right face incident to the next vertex in the
table.
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The connected components of A then are equinumerous with the path basis for H. Since
an outer completion for G' can be constructed in O(|P|) time and can be chosen to add
at most |P| internal faces, the altered algorithm remains O(|P|log |P|).

5 Combinatorial arguments

In this section we give a combinatorial proof that existence of a nonempty channel in
G is necessary and sufficient for mg to be even (Proposition 2.2). In the course of this
proof, we develop conditions under which deleting two adjacent vertices (a “vertex pair”)
results in a graph with the same number of channels. This is called channel routing and
is described in Lemma 5.6; we apply it to deduce a result about rectangle grid graphs in
addition to the main theorem of the section.

In Section 2 we described Lovasz’s proof of Proposition 2.2. That argument was
of a surprisingly different nature from the proof of Theorem 3.5, which relied upon a
Kasteleyn signing and matrix normal forms and which could fail for graphs without a
Kasteleyn signing (cf. Remark 3.6). Like Lovdsz’s argument, the combinatorial results
in the remainder of this section also do not need a Kasteleyn signing. We do, however,
require that our graph be bipartite. We prove the forward and backward directions of
Proposition 2.2 separately in the two subsections.

5.1 Existence of a channel implies mg even

Our approach for this direction will be to construct a fixed-point free involution on the set
of matchings M(G), which will imply that |M(G)| = m¢ is even. To construct such an
involution, we employ a technique called cycle flipping. This is a commonly used method
to build involutions on perfect matchings and show 2-divisibility results. See for example
[1] or [13] to see this applied to graphs with reflective symmetry, or [9] for disjoint unions
of two graphs.

Given a perfect matching u € M(G), the idea is to find a cycle Y of edges in the
graph such that every second edge in the cycle is in y. We may then construct a new
edge set 1/ by replacing the edges of ©NY with the edges of Y — u. Since each vertex in
Y is contained in exactly one edge in either case, p’ is also a perfect matching.

/

W

Y @
Oo—=0
Oo—0
Figure 15: Flipping the cycle Y from u to pu'.

For the map this produces to be an involution, the same cycle has to be identified for
both p and p/. We will produce this cycle using the following tool.
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Definition 5.1. A pairing function across a vertex set C' C V is a collection of involutions
fv associated to each v € V which act on the edge set

{v € E|v € C}
such that f, o f, =id and f, has no fixed points.

The existence of a pairing function across C is a combinatorial realization of the
statement that, for each vertex v, the neighborhood N(v) contains an even number of
elements from C'. Applying this to the definition of a channel gives the following lemma.

Lemma 5.2. Let G be a graph and let C CV be any vertex set. Then C is a channel if
and only if there exists a pairing function across C.

We will use a pairing function to trace out a walk such that every second edge lies in
our matching. Finiteness of the graph will force this path to eventually enter a cycle with
the properties we require.

Theorem 5.3. Let G be a bipartite graph with a nonempty channel C' € C(G). Then to
each matching u of G, one can assign a nonempty set of edges S(u) C E satisfying the
following properties.

(i) S(p) is a simple cycle of even length.
(i) Every second edge of S(u) lies in p.
(11i) S(u) depends only on the edges of v containing a vertex from C.
() If i is a matching satisfying S(pu) = p @ @' then S(p') = S(u).
Proof. Fix a vertex vy € C' and a pairing function f, across C'. We define a walk
€y = VoU1, €1 = U1V2, €3 = Vals,

as follows. If n is even, take e, to be the unique edge in p incident to v,. If n is odd, take
en = fu,(en_1). Since f, is a pairing function across C, v,_1 € C implies v,1; € C. (An
example of this walk is shown in Figure 16.)

Because G is finite, there exist ng and p > 0 such that v,,1, = v,,. Take p to be
minimal and ng to be minimal for that choice of p. Note that p must be even since G
is bipartite. Also ny must be even: if ny were odd, then both e,,_; and e,,4,—1 would
be edges in p containing vy, = vn,. But this would imply e,,—1 = €,4+p—1 and hence
Ung—1 = Ung4p—1, Which would contradict minimality of ng.

We claim that

S(u) ={en | no <n <ng+p}

satisfies the desired properties. Property (i) follows by construction as well as minimality
and evenness of p; (ii) is clear from construction. For (iii), the only dependence of the
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€1

€2

vy 0wy Us vy € Uy 4wy

Figure 16: An illustration of the construction used in the proof of Theorem 5.3. The
matching g is shown in purple, and edges which are swapped by a relevant pairing
functions are indicated by green lines. In this case, Theorem 5.3 produces the cycle

S([L) = {62, e ,613}.

walk on p involves edges incident to v, for n even. Since v, € C for n even, the cycles
produced will be the same for matchings that only differ away from C.
For (iv), let S(u) = p @ 1/, so that

p=(p\CYU(C\p) = (u\ C)U{eng+1;nos3, - - - Engp—1}-
Denote the walk constructed for p’ by
€)= voUl, € =iy, €5 = vhuy,
Since p and p’ agree outside of S(u), e, = €/, for n < ny.
By definition, e, is the unique edge of y’ containing v, = Un, = Vpg4p, 50 €, =
€nyg+p—1 and hence v;, | = vpo1p—1. Then

e;zo—}—l = fv;10+1 (e;zo) = fvn0+l7—1(en0+p_1) = en0+P—2

and hence v}, .5 = Uno1p—2. Repeating this argument, we find that e}, ,, = en,qp—1-4 for
0 < k < p. In other words, the walk obtained for y' is the same as that for p except
that the cycle S(u) is traversed in the reverse direction. It follows that S(u) = S(i'), as
desired. ]

Corollary 5.4. Let G be a bipartite graph. If C(G) contains a nonempty channel, then
mq 1S even.

Proof. 1f C' € C(G) is nonempty, then we claim the map on matchings of G given by
po— p' = p @ S(p)

is an involution with no fixed points. By our discussion at the start of the section, we
just need to show that S(u') = S(u). This follows directly from Theorem 5.3(iv). O
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Remark 5.5. It is interesting (and rather inconvenient) to note that the action of channels
on matchings defined above cannot in general be extended to a group action of C(G) or
Cg(G) since, for instance, the action of two distinct channels need not commute. Such a
group action would be a very useful combinatorial tool. We give some thoughts on this
at the end of the paper.

5.2 Even m¢ implies existence of a channel

Proving the converse statement will take some different machinery, which will turn out to
have more general applications. The following lemma describes how channels are affected
by removal of an edge. We restrict to bipartite G for clarity—one can generalize the
argument to all graphs if care is taken about how vertices can appear in channels, but for
brevity we will not do so.

Suppose that G has an edge e = bw such that the edge-deleted graph G — e has a
channel containing b. The following lemma states that G and the vertex-deleted graph
G — {b,w} have the same number of channels on their black vertices. (Recall that Cp(G)
denotes the set of channels containing only black vertices in a bipartite graph G.)

Lemma 5.6 (Channel Routing Lemma). Let G = (V, E) be a bipartite graph, and fiz an
edge e = bw (with vertices the corresponding colors). Define the subgraphs

G°=G—e
and
G' =G —{b,w}.
Then the following statements hold:

(i) The channels of Cg(G) not containing b are exactly those of Cg(G®) not containing
b.

(i1) If there is a channel B € Cp(G®) such that b € B, then there is a bijection
CB<G) — CB(G/)
preserving channels which do not contain b.

Proof. (i) Removing/adding the edge e can only change N(v) N C for a white vertex v
if v =w and b € C. Thus it cannot affect any channel on black vertices that does
not contain b.

(ii) We construct a bijection

CB(G) <—— CB(G,)

by sending channels in Cg(G) according to

o [ rae
' BaC ifbecC.
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This map is well-defined: for any white vertex v # w, N(v) is the same in both
G and G°. Hence |N(v) N C|, |N(v) N B|, and |N(v) N (B & C)| are all even
by the evenness constraint of channels and properties of symmetric difference, so
|IN(v) N f(C)] is even. Since f(C') never contains b, removing vertices b and w does
not affect |[N(v) N f(C)], so f(C) is a channel in Cp(G").

We define the inverse map similarly. For a channel C' in Cg(G’), define

o C if |IN(w)NC| is even,
g BaC if [N(w)NC|is odd,

where N(w) refers to the neighborhood of w in G. This map is again well-defined.
To see this, note that at any white vertex v # w, |N(v)Ng(C)| is even as before. At
w, if g(C) = C, then |N(w) N g(C)| = |[N(w) N C| is even. Otherwise, |N(w) N C|
is odd, but |N(w) N BJ is also odd since N(w) differs from the neighborhood of w
in G° only in b, which lies in B. Thus again |[N(w) N ¢g(C)| = |[N(w) N (B & C)| is

even.

Finally, we verify that these maps are inverses. Any channel on black vertices that
does not contain b satisfies the first condition in both definitions, so f and ¢ act on
them as the identity. For channels C' in Cg(G) that do contain b, the set B @ C
has odd intersection with N(w) since B does, and therefore g o f is the identity.
Channels in Cp(G") do not contain b, so those that have odd intersection with N (w)
map to a channel B @ C which contains b. Thus f o g is the identity as well, and
the claim follows. O

Channel routing is a versatile tool. To begin with, let us use it to prove constructively
the claim titling this section.

Theorem 5.7. If a bipartite graph G has an even number of matchings, then it has a
nonempty channel.

Proof. Assume without loss of generality that GG has at least as many black vertices as
white vertices. We will show that Cp(G) # 0. First note that G is nonempty since the
empty graph has one matching, which is odd. We proceed by induction on |V| + |E]|.
If every white vertex of G has even degree, then we can take the black vertices of V' to
be our channel. Otherwise, some white vertex w has odd degree. Then for some edge
e = bw, the subgraph G — {b,w} has an even number of matchings, since otherwise, by

Proposition 2.1,
mg = Z mMaG—{bw}
b: bweE

would be the sum of an odd number of odd numbers, which would be odd, a contradiction.
Define G¢ := G — e and G' := G — {b,w}. Now, because m¢ is even, so is

mag — Mg = Mgqge.
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Note G’ cannot be the empty graph since that would imply G is a single edge, which
would have an odd number of matchings, and likewise GG¢ is also nonempty. Thus by the
inductive hypothesis both Cg(G’) and Cg(G°) have nonempty channels.

Let B € Cp(G*) be anonempty channel. If b ¢ B, then channel routing (Lemma 5.6(i))
implies B is a channel of G. Otherwise, b € B. Let C' € Cg(G’) be a nonempty channel.
Then applying the map

- C if IN(w) N C| is even
7 B®C if [N(w)NC|is odd

described in channel routing (Lemma 5.6(ii)) gives us a nonempty channel in Cg(G). In
either case, Cp(G) # 0. O

Channel routing allows us to remove one vertex pair at a time from our graph while
keeping track of the available channels. This is particularly useful when we have a channel
in G° containing b so that condition (ii) of channel routing holds. Let us see how this can
be used for subgraphs of the square lattice.

Example 5.8. Refer to Figure 17. Let G be a subgraph of the square lattice such that
each internal face is a unit square. Pick a diagonal of GG that starts at a corner vertex v
and ends at an opposing side vertex b, as in Figure 17a.

Let e = bw be the unique edge containing b that forms an obtuse angle with the
diagonal. (If there is more than one such edge, then we are not in a situation where the
method of this example applies.) Then the graph G¢ = G — e has a channel B given by
the vertices on the diagonal between v and b.

In particular, b € B. Thus, with G’ := G — {b, w}, channel routing implies that

Cs(G)| = [Ca(G)].

This implies, for instance, that mg and meg have the same parity (by Theorem 3.5). ¢

O
C ®
*—0
o—e

p e w

(a) The graph G with a diagonal selected.
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(b) The graph G€. The vertices on the diagonal form a channel for this graph.
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(
(c) The graph G’. Channel routing implies this graph has the same number of channels as G.

Figure 17: Given a diagonal in a subgraph of the square lattice, we may apply channel
routing to the edge e containing the last vertex b and meeting the diagonal at an obtuse
angle.

In some cases, repeated application of channel routing can reduce our graph to one
with known properties. Rather than deleting each vertex pair individually and examining
the channels of each intermediate graph, the following theorem allows us to check an
analog of the channel routing condition on a single graph to remove all of the vertex pairs
at once.

Theorem 5.9. Let G be a bipartite graph with n vertezx disjoint edges e; = bywy, ..., e, =
b,w, selected. Set

G°=G—A{ey,...,en},
G':G—{bl,wl,...,bn,wn}.

Suppose that, for all i, there exists a channel B; € Cg(G®) such that
Bi N {bla s 7bn} - {bz}

Then mg and mg have the same parity. If equality holds for all i, then |Cp(G)| =
ICs(G)|-

Proof. 1f any nonempty channel in Cg(G*¢) uses none of by, . .., by, then it is also a channel
in G and GG, so both mg and mg are even. Otherwise there exist channels By, ..., B, in

Cp(G°) such that B; N {by,...,b,} = {b;} for all 7.
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Figure 18: The first two diagrams show G¢ and its associated channels in orange. By
Theorem 5.9, the number of matchings of G’ (the third figure) has the same parity as
that of the original graph G = R4x7. Any matching of G’ will use the purple edges, so
this result continues to hold if we remove those vertex pairs.

Since b; € By, channel routing (Lemma 5.6(ii)) implies |C5(G)| = [C(G — {b1, w1 })].
Since by ¢ B; for i > 1, the channels Bs,..., B, are also channels in Cg(G — {by,w;}).
Thus we may proceed by induction to find |Cs(G)| = |Cs(G')|, as desired. O

As one consequence, we can use Theorem 5.9 to determine the parity of the number
of domino tilings of a rectangle grid graph.

Proposition 5.10. The m x n rectangular grid graph has an odd number of matchings if
and only if ged(m +1,n+ 1) = 1.

Proof. If m =n =0, then mg = 1. If m = n > 0, then m¢ is even, either by Proposition
3.8 for n even or since mg = 0 for n odd. Thus we may assume without loss of generality
that m < n.

Refer to Figure 18. Declare the lower left vertex of R,,«x, to be black. Let ey,... e,
(where » = [m/2]) be the edges between the black vertices in the mth column and
the white vertices in the (m + 1)th column. Set G* = G — {ey,...,e,}. The channels
constructed in Proposition 3.8 give r independent channels in Cg(R,,xm). These are also
valid channels of G¢ which satisfy the hypothesis of Theorem 5.9. Thus by that theorem,
we may remove black vertices in column m and white vertices in column m + 1 while
preserving the parity of mg. We are left with GG’ a graph consisting of two rectangle grid
graphs connected by bridges as in the third row of Figure 18. Since there are an equal
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number of white and black vertices in each rectangle, any matching of G’ must use the
middle edge on each bridge. Thus we may remove the rest of the vertices in those columns
without changing the number of matchings. The resulting graph will be the disjoint union
of am x (m — 1) rectangle and a m x (n —m — 1) rectangle. The result then follows by
induction on the size of the rectangle, since

gedim+1,n—m—141)=gedim+1,n+1) and gedim+1,m—-1+1)=1. O

6 Graph operations (or, how to dig channels)

Lemma 5.6 shows that in some cases deleting a vertex pair preserves the number of
channels in a graph. In this section, we describe a set of local graph moves which uncon-
ditionally preserve channels. In many cases, these operations will allow us to compute
the number of channels by reducing to a graph with no edges.

The nature of these graph operations requires that we allow multiple edges between
a pair of vertices. We continue to use N(v) to denote the neighborhood of v; however, it
may now be a multiset in which a vertex appears with multiplicity equal to the number of
edges connecting it to v. In this case, for a channel C, N(v) NC denotes the sub-multiset
of N(v) consisting of all vertices which appear in C' (with the same multiplicity as they
appear in N(v)). All other set operations that appear involve standard sets.

We begin by introducing our operations of interest.

6.1 Channel-preserving moves

A 2-valent vertex contraction may be applied to any vertex v of degree two that is adjacent
to distinct vertices vy, vo. The resulting graph is formed by contracting the edges incident
to v and deleting self-loops if they occur.

\\\ /// VC \\\ ///
e - ——> e --
| v LV e AN

A doubled edge deletion may be applied to any pair of edges ey, e; that share the same
endpoints. This operation removes e; and e, from the graph.

€2
AN .-~ ED AR
e O
// 61 \\ //

A forced vertex pair removal may be applied to distinct adjacent vertices vy, vo such
that v; has degree one. The resulting graph is formed by removing vy, v and all edges
incident to these vertices.
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Definition 6.1. A channel-preserving mowve is one of:
(VC) 2-valent vertex contraction,

(ED) doubled edge deletion, or

(FV) forced vertex pair removal.

As the name suggests, applying a channel-preserving move to a graph preserves the
number of channels in that graph. In the following, we write n =, m to mean n — m is
even.

Lemma 6.2. Let G be a graph and let G' be the result of applying a channel-preserving
move to G. Then

IC(G)] = [C(G)].
If additionally G is bipartite, then

ICa(G)| = [CB(G")| and |Cw (G)| = [Cw (G")].

Proof. First, ED moves clearly preserve the parity of |[N(v) N C| for all vertices v and
vertex sets C, implying the claim. We will show the result for VC moves; the argument
for FV moves is similar.

Let v be a vertex of degree two with adjacent vertices v; and vy. Call the resulting
contracted vertex w in G'. If C' € C(G), then in order for the evenness condition to hold
at v, it follows that v; € C if and only if v, € C. Thus we may define

if vy, 09 € C,

C' = C\{v,v,0e} UW, where W = {{w} '
%) otherwise.

This preserves the neighborhood size of all unchanged vertices by replacing any occurrence
of v1 or vy in a neighborhood with w. Thus evenness holds everywhere except possibly at
w. To see that |N(w) N C’| is even, note that

IN(w) N ' = |N(v1) N C| + [N(vs) N C| — 2|{v} N C| — kl{vr, 02} N C,

where k is the number of edges between v; and vy. Since |[{vy,v2} NC| = |N(v) N C| is
even, it follows that

[N(w) N ' =2 [N(v1) N C|+ [N(vz) N C|

is even and hence C" € C(G").
Conversely, if C" € C(G'), then |N(w) N C’| is even. Since

IN(w)NC'| = |N(vy) NC'| + |[N(vy) N C'Y
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it follows that |N(v1) N C’"| =2 |[N(v2) N C’|. Again let k denote the number of edges
between v; and ve. We may now define C' = C"\{w} UV} U V4, where

Vo {{vl,vg} if we andVQ:{{U} if [N (vi) N C'| + k| {w} N C"| is odd,

%) otherwise, (%) otherwise,

which is the inverse to the map C' — (' described above. Again this preserves the
neighborhood size of all unchanged vertices. The definition of C' ensures that |N(vy) N
C| =5 |N(v2) N C| is even by adding v to C' if necessary. Also |[N(v)NC| =2 if w e ",
and 0 otherwise. Thus evenness holds at all vertices, and C' € C(G).

Further, notice that if G is bipartite, then w has the same color as v; and vy. So if
C uses only vertices of a single color, then C’ only uses vertices of the same color. The
converse also holds, since for singly colored channels, at most one of |[N(v;) NC’| # 0 and
w € C' can hold. Hence we have a bijection C(G) <> C(G’) that descends to Cp and Cy
for bipartite graphs. O

We will call a graph reducible if it can be reduced to a set of degree 0 vertices using
only channel-preserving moves.

Theorem 6.3. Let G be a reducible graph. Then the number of degree 0 vertices remaining
after G has been fully reduced is the dimension of C(G). In particular, this number is
independent of the choice of channel-preserving moves used to reduce the graph.

Proof. Since channel-preserving moves preserve channels, we just need to show that a set
of n vertices of degree 0 has 2™ channels. This is clear, since any subset of these vertices
is a valid channel. O]

Example 6.4. The graph G shown in Figure 7 is a reducible graph. Figure 19 shows
a possible sequence of channel-preserving moves. Because G reduces to two vertices of
degree 0, G must have 22 channels. This is indeed the case; the three nonempty channels
are shown in Figure 7. O

FV

Figure 19: A reduction of the graph shown in Figure 7.

Example 6.5. Not all graphs are reducible. Figure 20 shows a planar bipartite graph
that admits no channel-preserving moves. O
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Figure 20

As this example indicates, it is not clear at first if reducibility occurs often enough to
be useful—we would like to have a simple structural property that will imply reducibility.
The following lemma will be useful for identifying potential VC or FV moves. Note that
the degree of a face in a planar graph is its degree as a vertex in the dual graph.

Lemma 6.6 (Corner identification). Let G be a connected planar graph with at least two
vertices such that each internal vertex and internal face have degree at least 4. Let b be
the number of external vertices in G. Then the average degree of the external vertices in
G is at most

4
3—6.

In particular, there is an external vertex of degree less than 3.

Proof. By assumption, the degree of each vertex is at least one. We will use the following
notation:

b = the number of external vertices,
1 = the number of internal vertices,

= the total degree of all external vertices,
e = the number of edges,

= the number of internal faces.
By planarity of GG, we have that
b+i—e+ f=1. (6.1)

Because the total degree of all internal and external vertices is 2e, and the degree of each
internal vertex is at least 4, it follows that

2e 2 4i+ D.

The total degree of all internal and external faces is also 2e. Since the degree of the
external face is the total number of vertices counted with multiplicity as one proceeds
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through its boundary cycle, this number is at least b. Thus the total degree of all internal
faces is at most 2e — b, and consequently

2e —b>4f.
Adding the two inequalities and utilizing Euler’s formula (6.1) then gives
D < 3b—4.
Dividing by b reveals the claim. O]

A planar graph is called inner Fulerian if all internal vertices have even degree. The
following results show the utility of this class of graphs.

Lemma 6.7. Channel-preserving moves preserve the property of being inner Eulerian.

Proof. Assume G is inner Eulerian. Let v be a vertex of G of degree 2. Let the degrees
of the two vertices v; and vy adjacent to v be d; and ds, respectively, and let the number
of edges connecting v; and v, be n. If we perform a VC move on v, then we will be left
with a vertex of degree di + dy — 2n — 2. If dy + d5 is even, then we are done. Otherwise,
one of the two vertices adjacent to v has odd degree and must therefore be incident to
the external face since G is inner Eulerian. Thus the vertex resulting from contracting v
is also external and therefore has unconstrained degree. Thus VC moves preserve being
inner Eulerian.

Let v now be a vertex of degree one. Then v is external, so the vertex v' adjacent to
v is also external. If we apply an FV move to v, then v and v' will be removed. This
will change only the degree of vertices adjacent to v'. However, once v’ is removed all
of these vertices will be adjacent to the external face and therefore have unconstrained
degree. Thus FV moves preserve being inner Eulerian.

Finally, ED moves preserve the parity of the degree of every vertex and thus also
preserve the property of being inner Eulerian. O

Theorem 6.8. Let G be an inner Eulerian bipartite graph. Then G is reducible.

Proof. By the previous lemma, we are free to perform any channel-preserving move while
remaining inner Eulerian. If we can show that it is always possible to perform a channel-
preserving move on an inner FKulerian bipartite graph G' with at least one edge, then the
result will follow by induction on the number of edges.

Without loss of generality, we may assume that G is connected, so every vertex has
degree at least one. If any internal vertex has degree 2, then we can perform a VC
move. Otherwise every internal vertex has degree at least 4 (it must be even as G is inner
Eulerian). If any internal face has degree 2, then we can perform an ED move. Otherwise
every internal face has degree at least 4 (it must be even as G is bipartite).

Thus if neither a VC or ED move is possible in the graph interior, then by Lemma 6.6,
there exists an external vertex of degree 1 or 2 to which an FV or VC move can be
applied. O

THE ELECTRONIC JOURNAL OF COMBINATORICS 28(2) (2021), #P2.51 40



L J
L 4
O L ]

Ve L 4 L 4 O ©; 4 O
C \ 4 D L 4 L J I  J
® L 4 @ D) D)
O L @ L J o—e

w
X X

= Ll

Figure 21: Contracting the highlighted diagonal by deleting the diagonal vertices and
merging the vertices immediately opposite.

6.2 Contracting diagonals

When our graph is a suitably nice subgraph of the square lattice, there is often a useful
sequence of channel-preserving moves available called a diagonal contraction. Pick a
degree 2 vertex v that is a corner of the graph. Then v defines a unique diagonal passing
through it, as in the top of Figure 21.

We say that the diagonal is contractible if each internal vertex and each internal face
it intersects have degree 4. Such a diagonal can be contracted as follows. Consider all
vertices on the diagonal from v to w, the last vertex on the diagonal before it reaches the
external face. For each such vertex v;, delete v; and combine each neighbor of v; with its
mirror image across the diagonal, as shown in Figure 21. If a vertex is to combine with a
missing vertex (denoted by a red x in the figure), then that vertex is instead deleted.
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Theorem 6.9. Let G be a subgraph of the square lattice. Let G’ be the result of applying
a diagonal contraction to a contractible diagonal from a black corner vertex v to a vertex
w. If w has degree 2, then

ICs(G)| = 2CB(G)] and |Cw (G)] = [Cw (G)].

Otherwise,

Cs(G)| = [C5(G)] and |Cw (G)| = [Cw (G')].

Proof. We will show that a diagonal contraction move consists of a sequence of channel-
preserving moves. If v = w, then diagonal contraction is just a VC move. Otherwise,
the diagonal passes through an internal face which v shares with exactly one other black
vertex v’ and two white vertices v; and vo. Applying a VC move to v combines v, v, and
vy. Since v; and vy were both adjacent to v’, there are now two edges between v and v’.
Thus we can apply an ED move to this edge pair. Now, if v’ has degree 2 at this point,
then we may repeat this argument starting with v’

Otherwise, v' now has degree 1 or 0, so it originally had degree 3 or 2, so it must have
been w, the last vertex on the diagonal. We can either apply an F'V move to the degree
1 vertex or remove the degree 0 vertex from the graph. (The possible ending scenarios
are shown in Figures 22, 23, and 24.) Our resulting graph is the diagonal contraction G’
essentially by definition. All of our moves were channel preserving, except for removing
the degree 0 vertex w; this occurs if and only if w had degree 2 in G. Removing a degree 0
black vertex from the graph halves the number of channels on black vertices and preserves
the number of channels on white vertices. Thus the claim is shown. O]

Bj‘“ 17 1LY

Figure 22: Diagonal contraction (from v to w) that ends on a degree 2 vertex. Removing
the degree 0 vertex w removes a basis channel for G.
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Figure 23: Diagonal contraction (from v to w) that ends on a degree 3 vertex. In this case
we end with an FV move that removes the vertex adjacent to w. Channels are preserved.

Figure 24: Diagonal contraction (from v to w) that ends on a degree 4 vertex. Channels
are preserved.

Example 6.10. Let us apply diagonal contraction to a well-known class of graphs. The
Aztec diamond G, of rank n is a diamond of side length n in the square lattice. The
Aztec diamonds G, for n = 1, 2, and 2 are shown in Figure 25.

T T

Figure 25: The Aztec diamonds of rank 1, 2, and 3.

We will show that |C(G,,)| = 2*" by induction on n. The rank 1 Aztec diamond has 4
channels. For the rank n Aztec diamond with n > 1, we perform the following diagonal
contractions:
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This produces the Aztec diamond of rank n — 1. Since both diagonal contractions
ended on a vertex of degree 2,

C(Gn)] = 2°|C(G-1)]-

The result follows by induction. Since there are 2?® channels in G,,, by Theorem 3.5 it
follows that 2" divides the number of matchings of GG,,. Indeed, it is well-known that G,

has 2("3") matchings. O

The fact that diagonal contraction preserves channels has some implications that have
been noticed previously in the literature. For instance, Tenner [17] proves a Tiling Parity
Theorem and uses it to great effect. When stated in our language, the Tiling Parity
Theorem is a statement about diagonal contraction for certain diagonals that do not end
on a corner. Here we describe a generalization of Tenner’s theorem. (In her language, we
cover the case k > 3, though the cases k < 3 follow by a similar argument.) Recall that
n =9 m means that n — m is even.

s

(Y

% U3 V4
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Figure 26: A graph to which the Parity Theorem is applicable. By Theorem 6.11,

41 = mg =- mer, + 2mG/v =2 Mg, = 11.

Theorem 6.11 (Parity Theorem). Let G be a subgraph of the square lattice and let
V1, Vg, U3, Vg be collinear consecutive external vertices such that vy and vs have degree 3.
Let G, = G — 103 and G, = G —{vy,v2} be the edge-deleted and vertex-deleted subgraphs
of G, so that vy defines a unique diagonal in G, and vs defines a unique diagonal in G,.
If both of these diagonals are contractible, then

mag =9 265771@/5 + 26”mgg,

where G', and G are the graphs resulting from contracting the diagonals in G. and G,
respectively, and d; is 1 or 0 depending on if the diagonal in G; ends on a vertex of degree
2 or of degree at least 3, respectively.

Proof. By Proposition 2.1,
mg = mg, + Mg, -

By Theorem 6.9, channels are preserved by diagonal contractions if and only if the diagonal
ends on a vertex of degree at least 3. Specifically,

C(Ge)l = 2|C(GY)| and [C(G.)| = 2[C(GY)-
Now by Proposition 2.2, mg, is even if and only if |C(G;)| > 1. Thus
=, 25emG/€ and mg, =2 25”m04}.

mg

e

The claim follows. O
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Remark 6.12. In fact, if G has at least one matching, then
mag =2 77’LG1e + mGL.

This holds because G has a matching only if G has an equal number of black and white
vertices, whereas a diagonal contraction that ends on a degree 2 vertex removes unequal
numbers of white and black vertices. Thus 6; = 1 only if mg, = 0.

We conclude this section by showing that diagonal contraction is always possible for
certain subgraphs of the square lattice.

Theorem 6.13. Let G be a subgraph of the square lattice such that every internal face
of G is a unit square and such that every edge bounds an internal face. Then G has a
contractible diagonal starting at a degree 2 vertex.

Proof. Each internal vertex is incident only to internal faces and therefore to exactly four
unit squares. Hence all internal faces and vertices have degree 4, so any diagonal in G
will be contractible. Any degree 2 vertex in G' will be a corner, since by assumption the
two incident edges bound a unit square. Thus we just need to show that there is a degree
2 vertex in G. But this follows from Lemma 6.6 since every internal face and vertex have
degree four. O

7 Conclusion

As we have seen, channels provide an effective lower bound on the power of two dividing a
matching count. In addition, when there are no nonempty channels, they tell us that the
number of matchings is odd. It would be nice to find exact powers of two more generally.
This prompts a natural question.

Problem 7.1. Determine when the number of channels is the exact power of two dividing
m%. Even better, determine how many additional powers of two are carried by each
channel more generally. Alternatively, provide a method for determining an upper bound

on powers of two dividing m¢.

For more on how additional powers of two are distributed in the Smith normal form
of the Kasteleyn matrix (and therefore among channels), see [10]. Additional powers of
two may be associated to a result such as Ciucu’s Factorization Theorem (Proposition
1.2). Indeed, graphs where this theorem applies tend to have additional powers of two
beyond what channels would predict (for instance the Aztec Diamond in Example 6.10,
cf. [2]). One possible route for approaching Problem 7.1 is to study equivalence classes of
perfect matchings under the action of channels described in Theorem 5.3. Another route
may arise by solving the following problem.

Problem 7.2. Find a combinatorial proof of Theorem 3.5.
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Since Theorem 3.5 requires the Kasteleyn signing of GG, such a proof would likely invoke
planarity. As mentioned in Remark 5.5, one possible approach to this is constructing a
free action of Cp(G) on the set of matchings of G. (For the general, non-bipartite case,
we would want an action of C(G) on pairs of matchings.) Because the definition of
channels involves neighborhoods of even size, searching for an action that uses properties
of Eulerian circuits may yield productive results. A related problem is to construct an
action of billiard nests on matchings, for graphs which admit them. This could be more
tractable due to the canonical path basis for the space of nests.

The reducible graphs described in Section 6 may provide a tractable entry point to
these problems. For such graphs, the problem of constructing an action of channels on
matchings reduces to understanding how such an action plays with the channel-preserving
moves. Since vertex contraction and forced vertex deletion both preserve matchings, this
further reduces to studying the impact of doubled edge deletion on matchings.
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