Teaching & Learning — Data

ITiCSE 2021, June 26-July 1, 2021, Virtual Event, Germany

Insights from Student Solutions to MongoDB
Homework Problems

Ridha Alkhabaz, Seth Poulsen, Mei Chen, Abdussalam Alawini
{ridhama2,sethp3,meic2,alawini}@illinois.edu
University of Illinois at Urbana-Champaign

Abstract

We analyze submissions for homework assignments of 527 stu-
dents in an upper-level database course offered at the University
of lllinois at Urbana-Champaign. The ability to query databases is
becoming a crucial skill for technology professionals and academics.
Although we observe a large demand for teaching database skills,
there is little research on database education. Also, despite the in-
dustry’s continued demand for NoSQL databases, we have virtually
no research on the matter of how students learn NoSQL databases,
such as MongoDB. In this paper, we offer an in-depth analysis of
errors committed by students working on MongoDB homework
assignments over the course of two semesters. We show that as
students use more advanced MongoDB operators, they make more
Reference errors. Additionally, when students face a new function-
ality of MongoDB operators, such as $group operator, they usually
take time to understand it but do not make the same errors again in
later problems. Finally, our analysis suggests that students struggle
with advanced concepts for a comparable amount of time. Our re-
sults suggest that instructors should allocate more time and effort
for the discussed topics in our paper.

CCS Concepts

« Applied computing — Education; « Social and professional
topics — Computer science education; « Information systems
— Information retrieval; Query representation.

Keywords

mongoDB, database education, online assessment

ACM Reference Format:

Ridha Alkhabaz, Seth Poulsen, Mei Chen, Abdussalam Alawini. 2021. In-
sights from Student Solutions to MongoDB Homework Problems. In 26th
ACM Conference on Innovation and Technology in Computer Science Educa-
tion V. 1 (ITICSE 2021), June 26-July 1, 2021, Virtual Event, Germany. ACM,
New York, NY, USA, 7 pages. https://doi.org/10.1145/3430665.3456308

1 Introduction

The evolution of big data exposed the limitations of relational
(SQL) databases. Internet giants, such as Google and Amazon, de-
veloped and used many custom-built databases to work around
the shortcomings of SQL databases. MongoDB, a cross-platform
document-oriented database that uses JSON-like documents, was

O

This work is licensed under a Creative Commons Attribution International 4.0 License.

ITiCSE 2021, June 26-Fuly 1, 2021, Virtual Event, Germany.
© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8214-4/21/06.
https://doi.org/10.1145/3430665.3456308

276

introduced in 2007 as part of this NoSQL (Not Only SQL) revolution.
Since its inception, MongoDB has gained a great reputation and has
become one of the most used and wanted database systems [16].

The flexibility of MongoDB’s semi-structured documents and its
ability to effectively scale to distributed collections of documents
made several large companies shift from SQL to MongoDB. Mon-
goDB provides higher scalability and availability than its SQL-based
counterparts [8]. It also allows users to develop user-defined func-
tions written in JavaScript as well as write Map-Reduce programs.
Map-reduce infrastructure enables users to write distributed ag-
gregate computations over large, highly-distributed, volumes of
data [7].

In response to the new interest in NoSQL, many universities and
educational organization have adopted curriculum that includes
NoSQL database management systems [3, 5, 6, 12, 13].

Addressing the growing interest of students and instructors in
MongoDB, in this paper, we give insight about students’ experience
when learning MongoDB using a quantitative approach. We classi-
fied 76,168 submissions made by 527 students over Fall 2019 and
Spring 2020 semesters while working on homework problems at
the University of Illinois at Urbana-Champaign. This contributes to
the growing literature about analyzing and understanding students’
mistakes when learning a new database language. In this paper,
We answer the following research questions: (1) What concepts are
difficult for students when learning MongoDB? (2) What common
errors do students make when first learning to query a MongoDB
database?

2 Literature Review

Understanding novice programming behavior has been one of
the most researched topics of Computing Education research [18].
More specifically, educators wanted to understand the effectiveness
of CS1 courses and material on novices’ knowledge attainment and
the ability to deploy their gained programming skill. Consequently,
many studies tried to find common struggles between novices at-
tending CS1 courses. For instance, Lahtinen et al. (2005) reported
that "dividing functionality into procedures," and "finding bugs from
their own programs" [11] were one of the most expressed struggles
among novices in CS1 courses. Furthermore, other studies showed
that problems related to loops, arrays and passing data to/from
modules were more frequent than others [18]. The previous stud-
ies among many others exhibit students’ perceived mental models
faults in depicting programming mechanism.

However, unlike object-oriented and imperative programming,
there is not a lot of research about teaching students to program
in database systems and query languages, and the little existing
research is mostly limited to SQL. One exception is the analysis
by Chen et al. on the errors that students make while learning

https://doi.org/10.1145/3430665.3456308
https://creativecommons.org/licenses/by/4.0/

Teaching & Learning — Data

to write graph database queries [4]. Though there are no existing
studies on the difficulties encountered by students while learning
to use MongoDB, there are multiple reports of instructors including
MongoDB into their curriculum in university courses [3, 5, 6,12, 13].

Guo et al. integrated MongoDB into security labs [6]. These
efforts mainly focus on how to order topics related to database
security and how to introduce some of the security drawbacks of
MongoDB'’s implementation. Lei et al. [12], use MongoDB as their
NoSQL database management system in their labs to teach the
drawbacks of NoSQL databases. Mohan reported experiences of a
database education curriculum that incorporated NoSQL [13]. In
Mohan’s work, students were exposed to several NoSQL paradigms
and had a set of projects, lab and research assignments to complete
using the knowledge they gained during the course. The course
received positive feedback from students and industry big data en-
gineers for its addressing of NoSQL paradigms. Some other NoSQL
databases have also been incoporated in university curricula. For
example, Fowler et al. reported their experience in two database
courses with teaching CouchDB, a NoSQL data management system
that uses JavaScript as its query language [5]. They mainly focused
on measuring students’ improvement of understanding NoSQL sys-
tems. Although. the previous papers include MongoDB in their
studies, but they do not study novices’ experiences or difficulties
when learning MongoDB.

Previous work in SQL education has looked at thousands of stu-
dent submissions to both homework and tests to understand what
types of queries are most difficult for students to write, and what
types of errors students make the most [1, 2, 17, 19]. In this paper,
we follow their lead, giving a quantitative insight from students’ so-
lutions of MongoDB homework questions in order to find common
difficulties among novices.

3 Introduction to MongoDB

MongoDB [9] is a document-oriented NoSQL database that stores
JSON-like data in documents with dynamic schemata, so it can store
flexible values without fixing the number of fields or type of fields.
We will show examples of MongoDB objects and some code snippets
that exhibits the basic syntax of MongoDB and the corresponding
queries in SQL with similar database schema. The ‘_id’ attribute
is an indexed attribute that every object must have, and it acts as
the object’s primary key. We will show two instances of objects
that might appear in collection titled ‘Movies’, to demonstrate the
flexibility in MongoDB, avoiding SQL’s rigid relational structure
and the need to translate objects to relational tables. One object in
such a collection might look like:

{
"movie_id": 1,
"movie_name": "The Imitation Game",
"release_year": 2014,
"country": "USA",
"director": "Morten Tyldum"
}

And another object in the ‘Movies’ collection that doesn’t have
the information about director but has the attribute ‘ratings’,
might be:

{

"movie_id": 2,

277

ITiCSE 2021, June 26-July 1, 2021, Virtual Event, Germany

"movie_name": "The Social Network",
"release_year": 2010,

"country": "USA",

"ratings": 7.7

Observing the instances above, though the structures of the items
in a collections are not the same, MongoDB deals with these kinds
of collections flexibly. Compared to SQL relational tables and rigid
structure, MongoDB databases have the potential for scalability
because of its flexibility when dealing with collections.

MongoDB databases can be queried from many different pro-
gramming languages, but the most straightforward interface is
querying it through a JavaScript shell, so that is what the students
are taught in our class. The following is an example of a simple
MongoDB query, written in JavaScript shell, to find the movie ids
of all horror movies in our example database.

db.Movies. find(
{ movie_genre: "Horror” },
{ _id: @, movie_id: 1, movie_genre: 1}
)
The following code is the corresponding SQL syntax with an analo-
gous database that has similar attributes in the database.

SELECT movie_id, movie_genre
FROM Movies

WHERE movie_genre = "Horror"

More complex operations on data in MongoDB are done with Mon-
goDB operators, which start with a ‘$’ character [10]. For example,
$match is an operator that takes a specified conditions as its inputs
in order to filter and produce documents that have met set condi-
tions. Another example, $unwind is an aggregation operator, which
takes a reference to an array and produces multiple objects from
the elements of the array. Another aggregation operator is $group,
which takes an _id field as its first argument, then, it takes fields
combined with accumulator operators to perform basic operations,
such as $sum, on the collection. Finally, $project is an operator
that takes fields as its arguments, then adds, renames, excludes or
includes the specified fields in the resulting collection.

Having the structure of the previous collection in mind, we will
now show an example that uses the previous aggregation operators
to produce a collection. This query finds all movies in the collection
2001 or after, calculates their average ratings, and renames the
country field to produce_country:

db.Movies.aggregate([
{$match: {release_year: {$gte:20013}}},
{$unwind: "$country"},
{$group: {
_id: "$country”,
ave_ratings: {$avg:"$ratings"}} },
{$project: {
ave_ratings:1,
"produce_country”: "$_id",_id:® } }
)]

The following SQL query functions comparably to the above Mon-
goDB query on an analogous database with similar attributes.

SELECT AVG(ratings) as ave_ratings,
country as produce_country

FROM Movies

WHERE release_year >= 2001

Teaching & Learning — Data

4 Data & Methods

The University of Illinois at Urbana-Champaign (UIUC) is a
research-intensive institution with about 1,800 undergraduate Com-
puter Science majors. The data was collected from the Database Sys-
tems course at UIUC [3]. The Database Systems course (C5411) is an
elective course taken primarily by graduate students or undergrad-
uates nearing the end of their degree, with pre-requisites including
introduction to programming and data structures. C5411 is struc-
tured to cover four main units: data models, database management
systems and query languages (relational model: relational algebra,
SQL and MySQL, graph model: Neo4j and cypher and document-
oriented model: JavaScript shells and MongoDB), database design
(conceptual design and normal forms) and database implementation
(storage and indexing, query optimization, concurrency control).
The course spends three lectures to introduce MongoDB. Our data
contains submissions from Fall 2019 and Spring 2020 from students
in CS411. Our sample of students was 527 students, including 64
female and 463 male students.

The students in CS411 completed their homework using
PrairieLearn, an online homework and exam platform [21]. Upon
submitting a MongoDB query in PrairieLearn, the students were
given instant feedback from auto-graders. Students had unlimited
number of attempts and no constraint in what order they may
approach the questions. After close inspection of the statistics we
found that the trends in student errors and number of submissions
were similar for both semesters included in the study, so we will
report them in aggregate.

For each MongoDB problem, the students were given a problem
prompt and a general description of the collections related to the
problem. Students wrote their MongoDB queries in a JavaScript
MongoDB enabled shell, where they used JavaScript as a query
language.

Student had small text editor where they wrote their queries
and had the option of saving and grading them or just saving them.
When the student chooses to grade their submission, the query run
against the MongoDB objects. Should the query face a JavaScript
error or a MongoDB error, it would be reported back to the student
with a descriptive message from the shell. If the query successfully
runs, the student can see whether they have an incorrect result set
(did not receive full points) or whether they achieved the desired
output (received full points).

Also, it is worth mentioning that 2,715 students’ submissions
were omitted from this study, because they had a common error
where students copied JavaScript code from online sources, causing
the interpreter to fail due to an unexpected unicode character. In
addition, we do not include question ten of the homework in our
analysis, because it was optional and not many students attempted
to solve it.

4.1 Data Handling

All graduate and undergraduate researchers completed training
in responsible conduct of research. To protect students’ privacy,
data was anonymized before being accessed by student research
assistants.

278

ITiCSE 2021, June 26-July 1, 2021, Virtual Event, Germany

4.2 Categorization

Prior work in understanding student struggles while writing data-
base queries with SQL have partitioned errors into different cat-
egories based on the type of error returned by the SQL engine
[2, 17, 20]. However unlike most SQL engines, which will only re-
turn a single error message to the user at a time, JavaScript shells,
which are used in executing MongoDB queries, may report any
number of errors when code is run. This significantly complicates
the process of classifying student errors. In order to simplify the
process of arriving at a meaningful categorization, we chose to clas-
sify each submission using only the first error which was returned.
Anecdotally, we find that students often only focus on fixing one
error at a time. Furthermore, often one JavaScript error leads to
another in such a way that fixing the first error resolves all of them
(for example, a Syntax error on a line that defines a variable will
cause an Undefined reference error on the line that variable is used).
Thus, we feel that examining only the first error is a valid approach
to examining student mistakes.

Another aspect which complicates the categorization of Mon-
goDB errors is the fact that MongoDB queries are written through
JavaScript library, rather than having its own dedicated language
like SQL or Neodj’s Cypher query language [14, 15]. In practice,
this means that code written to query a MongoDB database could
fail on a JavaScript error before the MongoDB library code is even
invoked, or the JavaScript could run successfully, only to have the
MongoDB library return an error saying that though it is valid
Javascript, it does not comply with the particular usage rules of the
library.

Thus we arrive at a way to partition student submissions into
4 categories: JavaScript Errors, where the first error returned by
the JavaScript library comes from a JavaScript failure, rather than
from within the MongoDB library, MongoDB errors, where first
error is an error message given by MongoDB library denoting that
the query is incorrect, Incorrect result set, where the query is valid
and is executed by MongoDB, but returns an incorrect result, and
correct solutions, where the query is executed by MongoDB, and
the returned result set matches the expected result set.

4.3 Overview of Homework Assignments

The ten homework questions are designed to address the following
concepts, and students were free to move between the problems
however they wanted:

(1) Selection and projection using find() (Basic): find docu-
ment(s) that satisfies certain conditions. (1 question)

(2) Selection and projection using find() (Advanced): find doc-
ument(s) that satisfies complex conditions. (1 question)

(3) Aggregation pipeline with group and project: aggregate val-
ues of certain keys in documents. (1 question)

(4) Aggregation pipeline with match, sort, group and project:
filter, sort and aggregate values of certain keys in documents.
(1 question)

(5) Aggregation pipeline with unwind operator: dis-aggregate
array elem into document of the array’s items. (1 question)

(6) Querying arrays: finding documents with certain array ele-
ments. (1 question)

Teaching & Learning — Data

(7) Querying embedded documents: query documents embed-
ded inside other documents. (1 question)

(8) Querying linked documents using cursor: Use cursor meth-
ods to iterate over documents and perform certain tasks. (1
question)

(9) Map Reduce: Use the map-reduce platform to perform group-
ing and aggregation over distributed documents (1 question)

(10) Extra Credit: Map Reduce (Advanced) (1 question)

4.4 Data Overview

We will now show an example of one of the homework problems
and student solutions to that problem to demonstrate the informa-
tion that is available to us in our data set. We will be looking at
a student’s work while trying to solve the following homework
problem (the question from Spring 2020 addressing topic 3):

Given a MongoDB database with two collections, Movies
and Actors. For each movie genre, display the genre
and the average ratings of movies under that genre.
Your query should only output the name of the genre
(rename it as "movie_genre") and average ratings of
movies (output it as "ave_ratings”).

Database Description:

Movies collection: each Movie has its unique id
($movie_id), name ($movie_name), country ($country),
director ($director), releasing date ($release_year),
ratings ($ratings), genre ($genre), and $actors [an
array of actor id($actor_id)]. Every movie is associ-
ated with only one genre and one director.

Actors collection: each actor has his/her unique id
($actor_id), name ($actor_name), and his/her birth
country ($birth_country).

We will follow one student’s solution sequence as a way of
exploring the data set. They first attemepted to answer the prompt
with the following query:
db.Movies.aggregate({

$group: {
_id: "$genre",
ave_ratings: { $avg : "$ratings"}
b
And they received the following feedback message:
Expected results

"movie_genre": "Horror",
"ave_ratings": 5.869565217391305
}

Actual results

"_id": "Horror",

"ave_ratings": 5.8695652173913@5
}
The problem here was the student did not use the $project oper-
ator in order to rename the _id field as movie_genre. Then, the

279

ITiCSE 2021, June 26-July 1, 2021, Virtual Event, Germany

student came up with this MongoDB query in order to solve the
renaming issue:
db.Movies.aggregate({
$group: {
movie_genre :
ave_ratings :

"$genre",
{ savg : "$ratings"}

ko]
but then they received the following error message:
Error: command failed: {

errmsg : "The field 'movie_genre' must be an

accumulator object”,

code : 408234,

codeName : "lLocation4@234"
}
The problem here was the misuse of the $group operator, which
takes the first argument as a field name to group the resulting set
by, then takes the following arguments to calculate the aggregate
operations on the specified fields. This is a very common problem
when students try to learn the functionality of $group. Table 4
shows that students often struggled with this error when solving
this particular question.

After a few more tries, the student submitted the below Mon-

goDB query using the $project operator to rename _id asmovie_genre.

The $project operator takes the fields’ names, and parameter that
either excludes (:0) or includes (:1) the field in the resulting docu-
ment(s). It can also be used to rename a field in the output.

Finally, the student was able to get the correct answer:
db.Movies.aggregate({

$group: {
_id : "$genre",
ave_ratings : { $avg :"$ratings" }
}
h{
$project: {
movie_genre: "$_id",
ave_ratings : 1,
_id: o
}
k)]
5 Results

Table 1 shows the breakdown of our categorization in the left
column, and the percentages of each main category with respect to
all submissions in the right column. In this table, we see that the
majority of submissions are classified under “Incorrect result set”,
which accounts for 47% of all submissions. Submission result in
“Incorrect result set” for a variety of reasons. Section 4.4 includes
one of the students’ MongoDB queries that produced an incorrect
result set by not incorporating $project in their MongoDB query.
Due to the complexity of understanding the variety of “Incorrect
result set” submissions, we leave further analysis of these errors
to future work, and will focus mostly on JavaScript errors and
MongoDB errors here.

Tables 2 and 3 show the most common JavaScript and MongoDB
errors in their right column and their percentages of appearing
among MongoDB or JavaScript errors. As shown in the first row

Teaching & Learning — Data

Category Percentage
(1) Incorrect result set 47 %
(2) MongoDB error 32%
(3) JavaScript error 6%
(4) Correct 14 %

Table 1: This is the General breakdown of our Categoriza-
tion

JavaScript Error Codes | Percentages
(1) Syntax error 68 %
(2) Type error 27 %
(3) Failed to parse 3%
(4) Unknown error 2%

Table 2: Breakdown of JavaScript error messages percent-
ages

MongoDB Error Codes Percentages
(1) Reference error 60 %
(2) Field must be an accumulator object 8%
(3) Unknown operator $and 6%
(4) Undefined field 4%
(5) A pipeline stage specification object must 4%
contain exactly one field

(6) Unrecognized pipeline stage name: _id $ 3%
(7) Unknown group operator 2%
(8) Cannot return an array from Map Reduce 1%
(9) Assert failed 1%
(10) Namespace not found 1%
(11) Unrecognized expression 1%
(12) An object representing an expression must 1%
have exactly one field

(13) llegal number of arguments used in $gte. 1%
(14) Fields’ name shouldn’t begin with ‘$’ 1%
(15) Path option to $unwind stage should be 1%
prefixed with a °$’

(16) Bad projection specification, excluding 1%
more fields than required

Table 3: Breakdown of MongoDB error messages percentage-
wise

of Table 3, the most prominent MongoDB error is Reference error,
which happens when students do not address the specific fields
correctly. Hence, Reference errors have multiple causes, such as
misspelling a field name or misunderstanding the structure of the
data output by a MongoDB operator. Furthermore, Table 4 fifth
column, in particular questions 5 to 8, shows that on advanced Mon-
goDB concepts, students have more Reference errors. Likewise, the
authors previous work shows similar students’ performance trends
between advanced SQL queries and Undefined Column errors [17].

Table 3 reveals some problems students face when writing Mon-
goDB queries’ operators against a certain fields or operators with
or without prefixing $, specifically seen in rows 6, 14 and 15. Table 2
third entry shows students’ problems with parsing their MongoDB

280

ITiCSE 2021, June 26-July 1, 2021, Virtual Event, Germany

queries in the JavaScript shell. Table 4 third column indicates that
Type errors spike in question 3. Type errors occur when students do
not pass the correct arguments to a MongoDB operator. Therefore,
since question 3 is the first question that assesses aggregate opera-
tors, such as $group and $project, students spend more time and
effort getting accustomed to the dynamics of aggregate operators.

Table 5 shows the distribution of students’ individual submis-
sions per question by median time (second column), the numbers of
submissions (third column), the number of students who attempted
the questions (fourth column) and the number of students who com-
pleted the question (fifth column). Table 5 fourth and fifth columns
show us that most students completed each required question. Also,
Table 5 confirms that students take more time when introduced to a
new MongoDB operators, as we notice that median time of sessions
positively correlate with the difficulty of the questions. The median
time is calculated from our median of students’ session duration
sample for each question, where we calculate sessions using the
time elapsed from the first submission and the last submission in
a sequence where the time difference between two submissions is
not longer than 15 minutes.

6 Discussion

In section 5, we mentioned that as students get assessed in new
MongoDB operators, they make more mistakes and need more
time to generate the expected dataset. This argument finds further
validity in Table 4. The fifth column of Table 4 indicates that ad-
vanced MongoDB queries and operators had a comparable and high
number of Reference errors.

Another student behavior we found interesting is that when
students are assessed in a new MongoDB operator, they spend more
time to learn and tend to make less of that mistake as time progress.
Table 4 sixth column shows that students make the highest number
of Field must be an accumulator object in question 3, which is the
question in which the $group operator is first assessed. Considering
that the $group operator was also assessed in most of the remaining
questions (i.e., questions 4-8), the Field must be an accumulator error
appear significantly less in the later questions since students have
already solved question 3 and are now more comfortable with the
$group operator.

In addition, we observe in Table 5 that students spend com-
parable time when approaching advanced concepts in MongoDB,
specifically in questions 5 through 9. Also, Table 4 second and fifth
columns show that students made comparable amount of reference
errors and syntax errors in questions 5 to 9.

6.1 Limitations

For the sake of simplicity we only considered the first appearing
error message for the student. A thorough examination of all error
messages may give more in-depth insight into novices’ experience
with MongoDB. Also, our study only considered queries as individ-
ual entities, so, considering the context of submissions, including
what error messages students received before and after the cur-
rent submission, can reveal more details about students’ difficulties
when learning MongoDB.

Our data set only had two problem statements for each con-
cept. Hence, we couldn’t give insight about the effect of problems’

Teaching & Learning — Data

ITiCSE 2021, June 26-July 1, 2021, Virtual Event, Germany

Javascript Errors MongoDB Errors
Syntax er- | Type error | Failed to | Unknown || Reference | Field must be | Unknown
ror parse error error an accumulator | operator
object $and
(1) Selection and projection us- | 108 46 0 0 890 9 145
ing find() (Basic)
(2) Selection and projection us- | 672 34 3 0 1774 14 12
ing find() (Advanced)
(3) Aggregation pipeline with | 372 116 76 0 854 1250 7
group and project
(4) Aggregation pipeline with | 353 473 19 0 768 137 244
match, group, sort and project
(5) Aggregation pipeline with | 343 68 9 17 1873 150 213
unwind operator
(6) Querying arrays 402 122 6 0 2305 251 284
(7) Querying embedded docu- | 496 42 1 0 2413 42 390
ments
(8) Querying linked documents | 428 216 46 0 2150 100 146
using cursor
(9) Map Reduce 292 228 0 87 1369 4 42
Table 4: Breakdown of most common Javascript and MongoDB errors by question
Question Median Time | # Submissions | # Attempted Questions | # Completed Questions
(MM:SS)
(1) Selection and projection using find() (Ba- 11:00 2788 527 525
sic)
(2) Selection and projection using find() (Ad- 42:00 6563 524 524
vanced)
(3) Aggregation pipeline with group and project 42:00 7899 525 525
(4) Aggregation pipeline with match, group, sort 42:03 7421 523 522
and project
(5) Aggregation pipeline with unwind operator 43:00 10014 521 518
(6) Querying arrays 32:14 10951 521 517
(7) Querying embedded documents 38:59 10528 517 515
(8) Querying linked documents using cursor 53:00 9811 514 510
(9) Map Reduce 51:00 10216 502 499

Table 5: The Breakdown of Concepts and attempts to apply them with median time

wording on students’ understanding. In addition, most of students
completed the question prompts and students had a plenty of time
to do the homework. This made it impossible to gauge the difficulty
of the questions by looking at completion rates, due to strong ceil-
ing effects. In addition, our data did not include students’ ethnic or
cultural background.

Another limitation is that we examine only the error output
of the queries, not the queries themselves. We could gain greater
insight into why students obtained so many “Incorrect result set”
errors by doing a qualitative analysis of the code that the students
wrote. Future work could also benefit greatly from talk-aloud in-
terviews with students in order to gain better understanding of
student’s though processes while writing database queries.

7 Conclusion
In this paper we shed a light on students experiences when
learning a NoSQL Database, MongoDB, using over 76 thousands

281

MongoDB queries written by 527 students. Our work shows that
students take comparable time and number of submissions on ad-
vanced concepts. Also, we found that students make more Reference
errors in advanced queries than other queries. In addition, we found
that students seem to make more JavaScript errors when they write
more complex MongoDB queries. These results should help instruc-
tors to enhance their curriculum by allotting students more time for
the MongoDB concepts discussed above and giving novices better
expectations about learning MongoDB.

Acknowledgments

This work supported in part by NSF IUSE grant 2021499. We
would also like to thank emeritus professor Michael C. Loui for his
thoughtful notes and feedback.

Teaching & Learning — Data

References

[1] Alireza Ahadi, Vahid Behbood, Arto Vihavainen, Julia Prior, and Raymond Lister.

2016. Students’ Syntactic Mistakes in Writing Seven Different Types of SQL

Queries and Its Application to Predicting Students’ Success. In Proceedings of

the 47th ACM Technical Symposium on Computing Science Education (Memphis,

Tennessee, USA) (SIGCSE ’16). ACM, New York, NY, USA, 401-406. https://

doi.org/10.1145/2839509.2844640

Alireza Ahadi, Julia Prior, Vahid Behbood, and Raymond Lister. 2015. A Quan-

titative Study of the Relative Difficulty for Novices of Writing Seven Different

Types of SQL Queries. In Proceedings of the 2015 ACM Conference on Innovation

and Technology in Computer Science Education (Vilnius, Lithuania) (ITiCSE "15).

ACM, New York, NY, USA, 201-206. https://doi.org/10.1145/2729094.2742620

[3] Abdussalam Alawini. 2021. Overview - C5411 Database Systems Spring 2021 -

Nlinois Wiki. https://wiki.illinois.edu/wiki/display/C5411AASP21

Mei Chen, Seth Poulsen, Ridha Alkhabaz, and Abdussalam Alawini. 2021. A Quan-

titative Analysis of Student Solutions to Graph Database Problems. In Proceedings

of the 2021 ACM Conference on Innovation and Technology in Computer Science

Education (Virtual Event, Germany) (ITiCSE '21). Association for Computing

Machinery, New York, NY, USA, 7.

[5] Brad Fowler, Joy Godin, and Margaret Geddy. 2016. Teaching case: introduction to
NoSQL in a traditional database course. Journal of Information Systems Education
27, 2 (2016), 99.

[6] Minzhe Guo, Kai Qian, and Li Yang. 2016. Hands-on labs for learning mobile
and NoSQL database security. In 2016 IEEE 40th Annual Computer Software and
Applications Conference (COMPSAC), Vol. 2. IEEE, 606—607.

[7]1 MongoDB Inc. 2020. Map-Reduce. https://docs. mongodb. com/manual/core/map-
reduce/

[8] MongoDB Inc. 2020. MongoDB vs MySQL. https://www.mongodb.com/compare/
mongodb-mysql

[9] MongoDB Inc. 2020. The most popular database for modern apps. https:
/fwww.mongodb.com/

[10] MongoDB Inc. 2020. Operators. https://docs.mongodb. com/manual/reference/
operator/

[11] Essi Lahtinen, Kirsti Ala-Mutka, and Hannu-Matti Jirvinen. 2005. A Study of
the Difficulties of Novice Programmers. In Proceedings of the 10th Annual SIGCSE
Conference on Innovation and Technology in Computer Science Education (Caparica,
Portugal) (ITiCSE '05). Association for Computing Machinery, New York, NY,
USA, 14-18. https://doi.org/10.1145/1067445.1067453

[2

_—

[4

—

282

[12]

[13]

[18]

[19]

[20]

[21]

ITiCSE 2021, June 26-July 1, 2021, Virtual Event, Germany

Lei Li, Kai Qian, Qian Chen, Ragib Hasan, and Guifeng Shao. 2016. Developing
Hands-on Labware for Emerging Database Security. In Proceedings of the 17th
Annual Conference on Information Technology Education (Boston, Massachusetts,
USA) (SIGITE "16). Association for Computing Machinery, New York, NY, USA,
60-64. https://doi.org/10.1145/2978192.2978225

Sriram Mohan. 2018. Teaching NoSQL Databases to Undergraduate Students:
A Novel Approach. In Proceedings of the 49th ACM Technical Symposium on
Computer Science Education (Baltimore, Maryland, USA) (SIGCSE °18). Association
for Computing Machinery, New York, NY, USA, 314-319. https://doi.org/10.1145/
3159450.3159554

Neodj Inc. 2019. Neodj. htips://neodj.com/

Oracle Corporation. 2019. MySQL. https://www.mysgl.com/

Stack Overflow. 2019. Stack Overflow Developer Survey 2019. https:
//insights.stackoverflow.com/survey,/2019/ [Online; accessed 10-January-2020].
Seth Poulsen, Liia Butler, Abdussalam Alawini, and Geoffrey L. Herman. 2020.
Insights from Student Solutions to SQL Homework Problems. In Proceedings of the
2020 ACM Conference on Innovation and Technology in Computer Science Education
(Trondheim, Norway) (ITiCSE '20). Association for Computing Machinery, New
York, NY, USA, 404-410. https://doi.org/10.1145/3341525.3387391

Anthony V. Robins. 2019. Novice Programmers and Introductory Program-
ming. Cambridge University Press, 327-376. https://doi.org/10.1017/
9781108654555.013

Toni Taipalus and Piia Perald. 2019. What to Expect and What to Focus on in
SOL Query Teaching. In Proceedings of the 50th ACM Technical Symposium on
Computer Science Education (Minneapolis, MN, USA) (SIGCSE "19). Association for
Computing Machinery, New York, NY, USA, 198-203. https://doi.org/10.1145/
3287324.3287359

Toni Taipalus, Mikko Siponen, and Tero Vartiainen. 2018. Errors and Compli-
cations in SQL Query Formulation. ACM Trans. Comput. Educ. 18, 3, Article 15
(Aug. 2018), 29 pages. https://doi.org/10.1145/3231712

Matthew West, Geoffrey L. Herman, and Craig Zilles. 2015. PrairieLearn:
Mastery-based Online Problem Solving with Adaptive Scoring and Recom-
mendations Driven by Machine Learning. In 2015 ASEE Annual Conference
& Exposition. ASEE Conferences, Seattle, Washington, 26.1238.1-26.1238.14.
https://peer.asee.org/24575.

 HistoryItem_V1
 AddMaskingTape

 Range: From page 1 to page 1
 Mask co-ordinates: Horizontal, vertical offset 45.43, 60.86 Width 254.57 Height 100.29 points
 Origin: bottom left

 1
 0
 BL

 1
 SubDoc
 1

 CurrentAVDoc

 45.4284 60.8604 254.5703 100.2853

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 0
 7
 0
 1

 1

 HistoryList_V1
 qi2base

