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Highlights

• Developed a system, CS Materials, to input and classify pedagogical ma- terials against curriculum guidelines.
• Classified over 200 materials in the system.
• Show how the system is useful for instructors of early CS courses to find and adopt PDC content.
• Show how the system is useful for PDC experts to identify classic early CS topics that do not have good PDC content.
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Abstract

The NSF/IEEE-TCPP Parallel and Distributed Computing curriculum guide-

lines released in 2012 (PDC12) represents an effort to bring more parallel com-

puting concepts into early computer science courses. To date, it has been mod-

erately successful, with the inclusion of some PDC topics in the ACM/IEEE

Computer Science curriculum guidelines in 2013 (CS13) and mentions of PDC

topics in the Computing Curricula 2020. Additionally, some universities in the

U.S. and around the world have started to cover some of these topics in early

CS courses. Lack of knowledge of or training in PDC topics among instructors,

along with the need to align early CS course content with prescribed learning

objectives in the curricula, are often cited as hurdles for adoption in early CS

courses. There have been attempts at bringing PDC materials, such as textbook
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chapters, lecture slides, assignments, and demos to assist instructors of early CS

classes. However, the effort required on the part of the instructor to figure out

what is relevant to a particular class can be daunting.

In this work, we contend that simultaneously classifying pedagogical materi-

als against the CS13 and the PDC12 curriculum guidelines can address some of

the challenges faced by instructors and can promote broader adoption of PDC

materials in early CS courses. We present CS Materials, a system that can be

used to categorize pedagogical materials according to well-known and estab-

lished curricular guidelines. We show that CS Materials can be leveraged 1)

by instructors of early CS courses to find materials that are similar to the one

that they use but that also cover PDC topics, and 2) by instructors to check

the coverage of topics (and gaps) in a course, and 3) by PDC experts to identify

topics for which PDC instructional materials do not exist or are insufficient in

order to inform development of additional PDC curricular materials.

1. Introduction

As Dennard scaling came to an end around 2005 and as the ubquity of Inter-

net systems continued to increase, interest in the area of Parallel and Distributed

Computing (PDC) has grown substantially. However, PDC topics still have not

reached the classroom; few students enrolled in computer science degree pro-

grams programs are exposed to these important concepts. To provide guidance

that could help to drive the development of courses that cover PDF concepts,

the NSF/IEEE-TCPP curriculum guidelines were developed and published in

2012 [1] 4. Further, the importance of PDC in Computer Science curriculum

was recognized and a joint ACM/IEEE group integrated PDC topics in their

2013 Computer Science curriculum guidelines [2] as a dedicated area, as well

as spread them in multiple places in the guidelines. In parallel, Computing

4As topics in PDC and computing education itself have matured, a new iteration of thes

NSF/IEEE-TCPP guidelines has been developed, with a beta version released in 2020 and a

finalized version expected in 2021
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Curricula 2005(CC 2005) [3] and the newer Computing Curriculua 2020(CC

2020) [4, 5, 6] guidelines focus on computing guidelines at a higher level, in

terms of distinctions between computing programs, international and cultural

factors in the programs, and variations in discipline specific computing pro-

grams, that can be useful to inform academia, industry and governments. It

is to be noted that these standards emphasize the importance of parallel and

distributed computing in today’s curricula and the recent CC2020 guidelines

include PDC concepts as key concepts for all the various computing programs

it surveys.

While at a national level there is an understanding that PDC topics are

important, the practical integration of these topics in curricula has been slow.

Rather than proposing to add a PDC course in curriculum, a more promising

strategy for widespread adoption and broad student exposure is to integrate

PDC topics across the undergraduate curriculum, from early CS courses, such

as introductory programming, data structures and algorithms, to more advanced

courses, such as operating systems, and computer architecture. Although this

may be a more viable approach, multiple strategies to help with the adoption of

PDC integrated across existing courses and curricula have been deployed with

moderate success. Workshops to train instructors are effective at adjusting some

courses, but the strategy is slow and not scalable. Books to explain how to teach

these topics provide some materials and guidance [7, 8], but are not timely, tend

to be very specific, and need to be well publicized to reach a broad audience.

From an early CS course instructor’s perspective, the questions that arise

include “What topics should I adopt in my class?”, and “How do I adopt them

in an already packed class?” A set of well developed learning materials (as-

signments, videos, textbooks, course descriptions, and so on) is a starting point

to such questions, and, indeed, PDC materials have been developed and made

available online [9, 10, 11]; however, this leads to questions such as “How do

I find them?” and “Which ones are relevant to my course and learning objec-

tives?”.

In this work, we propose a way to address this issue by taking advantage of
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two nationally accepted curriculum standards by classifying pedagogical mate-

rials, such as assignments, lecture slides, exams, video lectures, book chapters,

etc. against their well accepted content ontologies. We classify learning mate-

rials against the 2013 ACM/IEEE CS curriculum guidelines [2], and the 2012

NSF/IEEE-TCPP curriculum guidelines for Parallel and Distributed Comput-

ing [1]. Assessing materials against accepted curriculum standards lends credi-

bility to the content and learning objectives of the materials, and assists search

and comparative analysis between sets of materials, which are essential to im-

proving the broader adoption of PDC materials. The CS Materials system ben-

efits both individual instructors as well as PDC experts looking to contribute to

the computing community. CS Materials provides a robust means for instructors

to assess their own courses against national guidelines, to ensure alignment on

content and learning objectives, to take a deeper look at their own courses, and

possibly to make revisions leading to improvements. When populated with suf-

ficient amount of materials, CS Materials will let PDC experts look at existing

content on early CS courses, identify the current models for core courses, and

find opportunities to bring in equivalent PDC materials to instructors; the latter

can be accomplished with robust search and comparative analysis features.

We have developed CS Materials 5, a system that permits instructors system

to classify their materials against curriculum standards. Currently, the system

supports the ACM 2013 and ACM/IEEE TCPP PDC guidelines. The system

currently contains a collection of classified materials that include all the Nifty

Assignments [12], all the Peachy Parallel assignments [9], all the materials used

to teach five courses, including a parallel and distributed computing course [13],

two flavors of a sophomore level data structures courses, a junior/senior level

courses on software engineering and object oriented programming courses, all

of them taught by three of the authors at UNC Charlotte. In addition, four

additional courses from instructors external to UNC Charlotte are in the process

of being classified and entered into the system, spanning CS1/CS2, and data

5System available at: https://cs-materials.herokuapp.com/
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structures.

A preliminary version of this paper appeared in Edupar 2018 [13], which

described an early prototype of our system which was single user and only

had basic search and analysis features. This paper presents the production-

ready system which has been rewritten for scalability, a multi-user environment

with file upload, and support for manipulation sets of materials. The current

version of the system is significantly more robust and has been used by external

users. The new system supports sophisticated search and similarity matching

which were not possible in our prototype system. The new system supports

harmonization views to improve the classification effort. A single class was

classified in [13] while we have now classified 7 courses in the system which

enables us to demonstrate features that cater for both individual instructors as

well as PDC experts looking to find gaps in materials targeted towards early CS

courses. We present the feedback of two external users of the system, showing

a perspective on the system that does not come from the authors.

We showed in [14] how CS Material can be used to design a course (or, any

course), by studying its coverage of topics, the alignment of material between

different component. This manuscript, on the other hand, focuses on how the

system can be used to improve the adoption of PDC in early CS courses: in

particular, it is used to compare Peachy Parallel Assignment and Nifty Assign-

ment which would be useful to Peachy Parallel Assignment designers; it shows

how the system can be used to build detailed models of a well understood class

(such as “Data Structures”), which would be useful to PDC experts; it also fea-

tures an ontology-aware search which would be useful for instructors shopping

for PDC content.

In this paper, we show the new features of the system enable a much deeper

analysis of the field and are practically useful to both instructors of courses and

PDC education experts. We demonstrate how classifying pedagogical material

can help improve the adoption of PDC topics in early CS courses by tackling

three different problems: 1) help PDC experts identify topics for which peda-

gogical material does not exist and that should be developed, 2) help instructors
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of early CS courses to find materials that are similar to the ones they use but

that also cover PDC topics, and, 3) help instructors to check the topics that

their course currently covers and the ones it does not cover (and maybe should

or could).

2. Related Work

2.1. Learning Material Repositories

Nifty Assignments. The Nifty assignments repository [12] is a set of assign-

ments that have been collected since 1999 (over 100 assignments) through an

annual competition, as part of the ACM SIGCSE conference. Selected assign-

ments are presented at the conference and archived. The selection is primarily

based on engagement, adoptability and scalability, and usually targeted at early

courses (CS0, CS1, CS2). Nifty assignments now include metadata (topics, dif-

ficulty, strengths/weaknesses, dependencies, variants). The Nifty assignments

are used as part of the initial assignment set by CS Materials, as they represent

a classical (non-PDC) learning materials for early CS courses. Some specific CS

subcommunities have created their own assignment repository patterned after

Nifty Assignments such as Model AI [15] for Artificial Intelligence and Groovy

Graphics [16] for computer graphics.

Peachy Parallel Assignments. The Peachy Parallel Assignments [9] are a recent

effort of the EduPar and EduHPC [17] workshops to publicize well designed,

exciting, and interesting assignments that include some parallel and distributed

computing aspects. Peachy assignments focus on adoptability and have been

succesfully used in a real classroom. The assignments are peer reviewed and

published and presented at EduPar and EduHPC; so far 11 Peachy Parallel

Assignments have been presented in 2018 and 9 were published in 2019. The

Peachy Parallel Assignments are used as part of the initial set of the CS Ma-

terials system as a representative set of what could be gathered from the PDC

educational community.
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EngageCSEdu. EngageCSEdu [18, 19] is an NCWIT sponsored repository that

provides introductory CS course materials, primarily engaging assignments tar-

geted at CS0, CS1, and CS2. The assignments are categorized by engagement

practices to improve student inclusiveness, confidence and broadening participa-

tion in computing. The repository has over 800 assignments with a competition

for excellence [20] and the assignments submitted are subject to an editorial

process with peer review.

Data Repositories. The CORGIS data repository [21, 22] is a large collection

of tools, datasets and resources that can be used by educators as part of their

programming assignments. The datasets range across a large number of dis-

ciplines and have been used in introductory courses, such as Computational

Thinking [23]. Using real-world datasets can be highly engaging in introductory

courses. Real-world applications and dataset have been successfully integrated

in Data Structures courses [24, 25]. CS Materials includes the usage of datasets

as a dimension of interest for assignments.

CS in Parallel. CS in Parallel [10] is a repository containing a limited set of

learning materials that are used to teach parallel computing in various classes.

Overall, the repository contains a few documents and organizes them according

to the courses they fit into. Organizing materials by courses is difficult since

different universities may have very different ways to organize their curriculum

and the topics within their curriculum. We believe it is preferable to classify

against well accepted topics in order to enable the percolation of the material

in early CS courses by empowering instructors to decide which topics fit best

in their classes. We will see that CS Materials can be used to build models of

courses, removing the uncertainty of which class a material could be useful in.

PDC Unplugged. PDC Unplugged is a repository that contains a collection of

unplugged parallel and distributed computing activities [11]. The activities span

early CS courses (CS0, CS1 and CS2), sophomore courses (Data Structures and

Algorithms) and advanced courses. There are a total of about 130 activities
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spanning these courses. These activities provide an easy introduction to PDC

materials and can be part of an overall assignment, that begins with unplugged

activities and then leading to a more formal programming exercise. PDC Un-

plugged share a common strategy in that the unplugged activities are associated

with the entries of the curriculum guidelines that the activities covers. CS Ma-

terials goes further and advocates that the activities should be mapped to all

the entries in the curriculum guidelines that are relevant and not only the ones

related to PDC.

The CDER Courseware. is a repository of documents related to PDC educa-

tion. The material can be associated with some entries of the CDER PDC12

guidelines and with courses (which as described before requires submitters to

make judgment calls so as to which course a material is appropriate for). Also

the courseware contains lots of document that are not intended for class usage

such as educational paper, posters, and so on. The documents in CDER course-

ware are not classified against the ACM/IEEE curriculum guideline. All these

fact make it hard for non-PDC experts to identify the materials that are rele-

vant to them. Historically, CDER Courseware is the prototype database that

inspired CS Materials; and the authors of this paper hope that CS Materials

can one day replace the CDER Courseware.

Other Repositories. Other repositories include those surveyed by Decker et

al. [26] that also include learning materials for high school teachers, and de-

tail their barrier to entry/participation [27].

Overall, existing repositories tend to only consider early computing educa-

tion by focusing on courses such as CS0, CS1, and CS2; do not provide classifica-

tion against well accepted content ontologies; and tend to focus on assignments

rather than all learning materials. In comparison, the CS Materials system aims

to include a wide range of computer science topics and to provide a more expan-

sive, fine-grained classification system that allows for greater expressiveness in

search queries to finding new, equivalent or engaging materials, assess one’s own

materials for alignment within a course or to national curriculum standards.
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2.2. Curriculum Guidelines/Standards

ACM regularly updates computing curriculum guidelines and the latest

Computer Science curriculum is from 2013 [2], jointly sponsored by ACM and

the IEEE Computer Society (we will denote this guideline CS13). The CS13

guidelines specify a ‘redefined body of knowledge, a result of rethinking the es-

sentials necessary for a Computer Science curriculum’. The guidelines also pro-

vide numerous exemplars of actual courses and programs that can be adopted

by CS departments. In short, the guidelines divide the body of knowledge into a

set of knowledge areas ; knowledge areas are further divided into into knowledge

units which contain topics and learning outcomes. Learning outcomes are classi-

fied into three levels, familiarity, usage and assessment. The system we propose

adopts the classification proposed by the ACM CS13 curriculum guidelines as

a general Computer Science curriculum since it is widely accepted.

The 2012 NSF/IEEE-TCPP curriculum for Parallel Distributed Comput-

ing [1] (we will denote PDC12) is an effort to accurately map the PDC topics

that are necessary for all students to know. It is divided in four areas: Al-

gorithm, Architecture, Programming, and Cross-Cutting and Advanced topics.

Contrary to the CS13 guidelines, the PDC12 curriculum presents learning out-

comes only as a description of topics rather than as separate items. The PDC

guidelines also associate Bloom levels [28] (such as Know, Comprehend, and

Apply) with the topics to clarify the minimum level of understanding a student

should have. While the CS13 curriculum groups topics into a core-1 (must cover

100%), core-2 (should cover 80% at least), and elective; the PDC curriculum

only exposes two levels: core and elective. The PDC curriculum is currently

under revision with a new version coming in 2021 (a beta version was released in

late 2020). We used the NSF/IEEE-TCPP PDC12 curriculum in CS Materials

as a domain specific curriculum.

It is noteworthy that CDER is currently redefining its curriculum guidelines

and that a draft is expected soon. Also, CC2020 [4] is a currently maturing effort

to publish recommendation of what the different computing degrees are meant

to be. For instance it intends to delineate the differences between Computer
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Science, Computer Engineering, Information Technology, and so on. While

CC2020 notes that PDC is a key field to be covered by all degrees, the description

of the degrees and their recommended content is at a too high level to be directly

useful in CS Materials.

Other sub-areas of computing have developed their own standards, such as

cyber security [29] and high school CS curriculum [30, 31] which could also be

used to provide analyses similar to the one we conduct.

An earlier project that shares some goals with CS Materials is a syllabus

repository project of Tungare et al. [32]. The authors of this work built a

repository of syllabi of computing courses by crawling the Internet and classified

them against the 2001 Computing Curricula standards [33]. They also proposed

a syllabus maker and a comparison tool. Syllabi are often fairly high level

and are concerned only about the primary topics intended by a course. CS

Materials on the other hand looks deeper into courses by looking at the level of

learning materials (lecture slides, exams, videos). While it is possible to enter

a syllabus in CS Materials, CS Materials facilitates much deeper analyses and

search features, and takes more of data-driven approach to its analysis based

on the actual content of the course and not on what is written in a syllabus.

3. The CS Materials system

3.1. Needs

Instructors are often looking for inspiration for new lectures, problem sets,

and exercises that must align with computing education curriculum standards

(e.g., ACM Curriculum Guidelines, ABET standards) and that adequately ad-

dress the learning objectives of their courses. However, traditional search tools

are not helpful in finding equivalent assignments or learning materials that pre-

cisely match their own course and learning objectives. The lack of centralization

of materials certainly presents a problem, but the most significant limitation is

the lack of meaningful, searchable features that that can make a material useful

for a given computer science course. Labeling by course title, as is done for
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most existing collections of course assignments and materials [10, 12], is too

simplistic a description as course content can vary widely across institutions;

for instance, not everyone agrees on what CS1 should cover. Flavors of CS1

can vary in terms of course period (quarter, semester), the choice of program-

ming language can result in different specifications of assignments. Moreover,

instructors are often looking for new ways to create assignments that promote

student engagement and are relevant to a diverse student population. They are

also looking for materials that can substitute what they are currently using,

without straying too far in terms of their learning objectives. Some instructors

may use a particular pedagogical approach, instructional technique, or running

theme for assignments, for instance, media computation, use of social media

data, etc.

3.2. Our approach

The CS Materials system addresses the need for more meaningful searches of

computer science course materials. It enables finding materials that are defined

by concrete topics, learning objectives and/or outcomes. The CS Materials sys-

tem pairs learning materials with properly curated metadata to create a more

fine-grained and structured representation, to facilitate sophisticated search.

The system uses classic material descriptors, such as course level, programming

language, and datasets. More importantly, CS Materials also relates materials

to curriculum ontologies. Currently, the system can classify materials against

the ACM Computer Science 2013 curriculum guidelines [2] and the NSF/IEEE-

TCPP Parallel and Distributed Computing 2012 curriculum [1] to extract more

meaningful, discipline-specific, fine-grained features to describe each material.

Specifically, each material will be associated with the topics covered by the mate-

rial and the learning outcomes it fulfills. Note that the system’s design supports

the inclusion of additional standards and guidelines, such as the ones detailed

in Section 2.2, making it highly flexible to support many custom environments,

for instance, a curriculum at a particular institution.

Mapping material to curriculum guidelines and other descriptive features
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Figure 1: Infrastructure design of CS Materials

opens up several opportunities for new search and analysis functionalities. For

instance, one can explicitly filter against a group of features that is of interest to

an instructor looking for a specific material, or look for similarities to an existing

material, and perhaps, create variants of an existing material. It enables one

to ask questions pertinent to a material or to a course, or to understand how a

topic or a learning outcome is typically covered.

We rely on a crowdsourced model to address the need for curation. With

such an approach, instructors can upload their own material in the system and a

number of editors can review the uploaded materials. An editor has experience

or credentials demonstrating knowledge of the standards used by the system,

and can appropriately edit or fix classification issues with a submitted material.

We envision that eventually less knowledgeable users will be able to suggest

changes to the metadata which can then be verified by an editor.

3.3. Implementation

CS-Materials is a modular system, utilizing two web services hosted on

Heroku. While the system is currently closed source, we will eventually open

source it. The system design is depicted in Figure 1. One service is used to

distribute the user interface as a React single-page application implemented

in TypeScript. The application supports dynamic queries thanks to the asyn-

chronous communication with the RESTful API. Additional interactivity and

visualizations are provided by the D3 JavaScript library [34].
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The second service is a Flask webserver which provides RESTful API to a

PostgreSQL database and DigitalOcean Spaces for file storage. In the database,

each material is associated with a type, title, authors, URL and description.

Materials are able to map to “tags” via an intermediate many-to-many table.

Each tag is associated with a title, a type, and an if applicable a key to an

entry in the “Ontology” table. The “Ontology” table encompasses our high

level Curriculum Guidelines representations, with the shared attribute of each

entry having some mapping to a parent node in its Curriculum Guideline if it is

not a root node. Our current implementation uses the ACM CS13 Curriculum

Guidelines [2] to classify material and the NSF/IEEE-TCPP PDC12 Curriculum

Guidelines [1].

In order to handle access control and authentication, the database also in-

cludes a “User” table which keeps track of user emails for verification and pass-

word resets. User passwords are stored as a one way hashed and salted key,

utilizing the cryptographically secure scrypt key derivation function for genera-

tion and verification. Materials and users do not store the relationship between

one another on their respective tables, instead these relationships are tracked on

another many-to-many table, similar to how the material and tag relationships

are tracked. The RESTful API and user interface utilize JSON Web Tokens for

authentication of user’s identity.

The final relationship is between materials and other materials, where also

we utilize a many-to-many table for this relationship tracking. This allows us

to represent collections of materials in a way that does not require the curator

of a collection to necessarily have write access to the materials they would like

to include.

The user interface provides a form for entering the free form information

about materials, such as the title, description and an upstream URL for refer-

ence. All the other fields are instances of tags. Since every tag exists as its own

entry in the database, we are able to provide autocompletion for each tag field,

utilizing existing tags of the same type to generate a dictionary. The intent of

this feature is two-fold, it simplifies the inputing tags for users while also try-
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ing to keep all materials utilizing the same tag entry in the database for easier

searching and comparing. “Ontology” tags operate similarly to the free form

tags but are instead laid out in a tree structure, using the same structure pro-

vided by the curriculum guidelines. The current system allows users to create

materials which only they have write access to. The database design supports an

arbitrary number of relationships between materials and users, with the intent

to support inviting other users to review and edit materials in a collaborative

manner.

Along with classifying the material, the system supports file storage on a per

material basis. The current system is implemented using DigitalOcean Spaces,

which is an Amazon Web Services S3-compatible object storage service. When

a material is displayed in the user interface, the system is able to do a lookup

in the file storage service based on the material’s primary key, getting links for

each file mapped to that material. Similarly, when uploading a file, the system

requests a presigned URL from the RESTful API which allows the client to

upload their file directly to DigitalOcean. This design choice was made to

minimize redundant file transfers.

4. System Features

4.1. Inputting materials

4.1.1. Inputting a single material

A common task for instructors is adding a new learning material (e.g.,

project, lecture slides) to the system and classifying it according to a given

set of topics, learning objectives, or curriculum guidelines. A web form guides

the user to share basic information (e.g., title, authors, description) used to

build the item’s metadata. An example is shown in Figure 2(a) for mapping

part of a Nifty assignment to the ACM 13 classification. The leaf nodes in the

tree list in Figure 2(b) represent topics or learning outcomes in the curriculum

guidelines/standards, and can be selected to indicate that the particular topic is

covered by the assignment; a similar hierarchy is available for selecting learning
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outcomes. After the selection is completed, the newly added material displays

the selected mappings, as seen in the bottom of Figure 2(a).

One can also upload files of the materials into the system rather than just

giving external links. We have found that other systems that reference peda-

gogical materials eventually run into dead-link problems, due to the documents

being no longer available. Having the materials as part of the system is hence,

preferable.

4.1.2. Inputting a collection of materials

The system also allows the user to define collections of materials. This is a

useful feature, in that (1) it lets instructors structure their materials into logi-

cal groupings (lecture slides, assignments, quizzes), and, (2) facilitate analyses

between collections, such as comparing the lecture slides of two flavors of the

same course, and ensuring they are well aligned to learning objectives.

4.1.3. Editing the classification of multiple materials at once

The classification is complex, requiring the user to go through the procedure

a few times to become familiarity with how the topics and learning outcomes

are organized. For instance, any typical DS course maps to topics from at least

three Knowledge Areas: Software Development Fundamentals, Algorithms and

Complexity, Discrete Structures. After having classified a few materials, one

typically realizes that a second pass will be necessary.

CS Materials provide an harmonization view that enables users to visually

edit the curriculum mapping of multiple materials at once. (See Figure 3 for

reference.) The harmonization view is a table that displays the materials as

columns and the classification tags as rows. The table shows whether a material

maps to a curriculum entry by coloring the cell red; it is white otherwise. One

can directly click on a cell to add a mapping (turning it blue) or to remove a

mapping (turning it grey).

To help the user make sense of the materials and their curriculum map-

ping, the harmonization view permutes the rows and columns of the matrix to
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(a) Entering metadata of material into a web form

(b) classifying the material to the ACM CS13 curriculum guidelines

Figure 2: Adding and Classifying a Nifty Assignment
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Figure 3: Harmonization View: Verifying and editing the classification of a Data Structure

class using the harmonization view

highlight recurring patterns. In practice, CS Materials solves a bi-clustering

problem, a type of problem commonly used in bioinformatics to identify corre-

lated up-regulation of genes in a population of subjects [35].

4.2. Visualizing how Materials Map to Curriculum Guidelines

4.2.1. Coverage Views

Users can visualize the coverage of a course (as defined by its collection of

associated materials in the CS Materials system) in terms of topics or objectives

by viewing a hit-tree. The hit-tree is a tree representation with items associ-

ated with the course are highlighted in a subset of the ACM classification tree.

Example views can be seen in Figure 4: nodes in orange are the selected topics

or learning outcomes, those in blue represent nodes that are on the path to a se-

lected node and the remaining gray nodes provide context to the selections. The

selected nodes are sized according to the number of times the topic or outcome

was selected throughout the course.
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The tree is radially laid out by first identifying the level of the tree that has

the most nodes called the reference level. These nodes will all be at the same

level and be uniformly spaced. Then all the other nodes allocated an angle that

is proportional to the number of nodes in the reference level that are upstream

(or downstream) from the node considered. To make better usage of space, the

nodes are laid out in multiple layers (precisely, 3) for each level of the tree.

Finally, the radial distance from one level of the tree to the next is computed

to avoid node overlap while maintaining a good density of the visualization.

4.2.2. Difference Views

Users can also explore alignment of learning materials within or between

courses or modules; for instance, how well does the material align with the

module or course objectives, between different materials within a course (assess-

ments vs. lecture slides), and even equivalent materials between two sections of

a course. For this task, we need a way to compare different sets of materials.

We first create an alignment tree for the two sets of materials, S1 and S2, which

is a subtree of the classification (CS13 or PDC12); a node in the tree is in the

alignment tree if a mapped item appears in any of the materials of S1 or S2.

Visually, the nodes of the tree are sized based on the number of materials that

are mapped against that item. The nodes are colored on a diverging color scale,

where the color represents the difference between the relative number of items

in S1 that are mapped against that item and the same item in S2. Figure 6

presents such an alignment tree.

4.2.3. Focusing on Entries of Interest

The Radial view can also be configured to only display particular entries

of the classification. The visualization takes a set of classification entries as a

parameter. Only these entries and their parents, all the way to the root of the

classification tree, are displayed.

The styling of the nodes of the tree are left the same. That is to say that a

displayed entry that is not covered by any material will be grayed out, and all
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classification entries will be sized based on the number of materials that map

to that entry.

4.3. Searching for Materials

One main advantage in classifying pedagogical materials against curriculum

guidelines is that we gain rich meta data that describe pedagogical materials.

These can be used to perform searches for materials.

The original system [13] used Jaccard coefficients [36] as a metric of simi-

larity. We found that using the Jaccard coefficient to estimate similarity did

not yield satisfactory search results because it uses a very narrow definition of

similarity where two classification entries are either the same or they are com-

pletely different. We now present a more sophisticated similarity measure used

by the current version of CS Materials that leverages the ontology to relate

classification entries that are not exactly the same.

4.3.1. Ontology-Aware Similarity

To leverage the underlying ontology of the classification entries, one needs

to be able to relate different entries in the classification to one another. The

textual description of classification entries may be of help, but making sense

of it could be difficult because of homonyms and synonyms: for instance, the

heap data structure and the memory heap are completely different concepts.

Similarly, while graphs are also referred to as networks, they are very different

from computer networks.

We use the hierarchical structure of the classification tree to estimate the

similarity between two classification entries. The similarity will entirely be

defined based on the location of the entries in the classification tree. For any

two entries t1 and t2, if they are the same then sim(t1, t2) = 1. Otherwise, we

will identify the most recent common ancestor a, the level in the tree l of a (the

root is at level 1; the tree is 5 level deep), the distance d1 between a and t1 and

the distance d2 between a and t2. We chose a function so that the higher d1

and d2 the lower the similarity should be, and the closer to the root of the tree
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a is, the lower the similarity should be. We chose to use the following function:

sim(t1, t2) = (.15 ∗ (l))d1+d2−1.

In the ACM/IEEE 2013 curriculum guidelines, most entries picked by a

user would be at level 4. Two topics that are siblings at level 4 (in the same

Knowledge Area and the same Knowledge Unit) would have a similarity of

0.45, while two cousins at level 4 (in the same Knowledge Area and different

Knowledge Units) would have a similarity of 0.02.

To compute the similarity of two materials m1 and m2, we build a bipartite

graph of all the classification entries in m2 and connect them to all the classifi-

cation entries in m2. Each edge (t1, t2) is weighted by sim(t1, t2). We compute

a maximum bipartite matching which identify the best way to match each entry

of m1 to an entry of m2. Finally, the value of the matching is normalized by

the number of classification entries of m1 and m2.

4.3.2. Visualization of search results

A common problem of search engines is that it is hard for a user to tell at a

glance how good a result is and how the results relate to each other. Fortunately

we can leverage similarity calculation to make useful visualizations. For a set of

materials (we consider the query as a material for search operations), we create

a graph where the materials are vertices of the graph. Each edge between two

materials is weighted by the similarity between the two materials. In practice,

to avoid a cluttered display we only keep the edges of the graph with highest

weight. The number of edges we display is 3 times the number of vertices.

The similarities are passed to a Multidimensional Scaling (MDS) algorithm [37]

to obtain for each vertex a location in a 2D space. The opacity of the graph’s

edges are made proportional to the edge weight normalized by the edge of high-

est weight to visually hint at the similarity between the materials.

5. Using CS Materials to Improve PDC Adoption

The types of usage one will have of CS Materials will depend on who the user

is and what type of task they are trying to accomplish. We will focus on two
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hypothetical users: an instructor of an early CS class who wants to integrate

some PDC content in his/her class, and a PDC educational expert looking to

help the broader CS community adopt PDC content in their courses.

We have used CS Materials to derive an understanding about various courses

and materials. To date, we have added two different sections of a required data

structure class taught at UNC Charlotte, a capstone software development class

taught at UNC Charlotte, an elective parallel computing class taught at UNC

Charlotte, an elective class on object-oriented programming, about 65 Nifty

assignments [12], and all Peachy assignments [9] prior to 2019. Two courses have

been added (one Algorithms course, and one CS 1 course) by users from other

institutions. Three additional courses, ranging from CS1 to Data Structures,

are also in the process of being added to the system by instructors from other

universities.

What we present here are our initial experiences of how we have used CS

Materials, what is involved in using it, and how it can be used to get more

adoption of PDC content.

5.1. Understanding the Guidelines by Entering a Parallel Computing class

We classified ITCS 3145:Parallel and Distributed Computing, taught at UNC

Charlotte [13]. Materials in this class are composed of 12 slide decks and 9 as-

signments. Inputting (including classifying) all the materials took the instructor

of that class (one of the authors, Dr. Saule) about a day of work, with each

item taking between 15-25 minutes to input and classify. The classification of

these three classes of material can be seen in Figure 4.

Keying the meta data is straightforward and fast, but classification against

curriculum guidelines is more involved, because of the size of the ontologies (the

CS13 classification contains about 3000 entries). One could quickly make some

selections, but most likely result in missing relevant entries. For instance, in the

ACM CS13 guidelines, parallelism related topics appear in three different places:

System Fundamental, Computational Science::Processing, and in Parallel and

Distributed Computing. Going quickly through the classification would most
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likely result in a poor classification of the material.

In the PDC12 guidelines, some odd placements also exist; for instance, Amd-

hal’s law and related topics fall under Programming::Performance Issue::Data.

Algorithm::Model based notions::Parallel and Distributed Models and Complex-

ity::Notions from scheduling misses Critical Path. The Map-Reduce program-

ming model seems mostly missing. (There are entries for BSP; which is oddly

bundled with Cilk and Cloud Computing but these are not quite the same).

Overall, the PDC12 guidelines were a first attempt at classifying PDC topics,

and the 2020 edition of PDC is expected to correct these oddities.

In both classifications, topics related to middleware (design and implementa-

tion) seem to be mostly missing. Runtime systems appear under Programming

Languages in CS13, but refer to different things. Also on many topics, both

classifications seem to stay at a high level. While this is appropriate for cur-

riculum guidelines, it is not as precise for classification of material as one would

hope for. For instance, ACM CS13 has an entry for Task-Based Decompositions,

but recursive Cilk-style decomposition are different from OpenMP depends-style

decomposition.

The complexity of the classification makes it easy for one to misclassify some

materials. Using the harmonization view (described in section 4.1.3) enables

a user to easily check whether the materials were classified consistently. For

instance, all OpenMP materials should probably be classified to match “compiler

directives/pragma”. However in the first pass of classification, not all OpenMP

materials were classified with that curriculum entry, that was then corrected

using the harmonization view.

Also it seems that it would be useful not only to say that a material matches

a topic, but at which level the topic is matched. Taking an example, an

early assignment in ITCS 3145 was to implement a numerical integrator using

the rectangle method. Naturally this assignment checks Computational Sci-

ence::Numerical Analysis::Numerical differentiation and integration. But the

assignment only covers integration and only requires the students to implement

a single method from a provided formula. A numerical methods course would
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have a more comprehensive lecture on numerical integration and would check

the box in the same way. Since both ACM CS13 and PDC12 guidelines have

incorporated Bloom levels [28], it would make sense to classify materials with

Bloom levels as well.

Overall, the experience of inputting and classifying a full course, though

somewhat labor intensive, allows an instructor to reflect on the content and

structure of the course and assess it against national guidelines. This frequently

leads to reconsider the course design and content; this was was our experience

with a data structures courses that was input by one of the coauthors (Dr.

Subramanian), and detailed in an upcoming publication [14].

(a) IEEE/ACM CS 2013 (b) CDER PDC 2012

Figure 4: ITCS 3145 classification against two curriculum guidelines.

5.2. Searching for Materials to Integrate in a Data Structures class

A strategy to bring Parallel and Distributed Computing content into existing

curriculum is to add a core course in a degree program. This solution is usually
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not favored in the US because it seems difficult to implement. We believe

it is more scalable to splice the PDC content in early CS courses that are

already taught such as CS1, CS2, Data Structures, Computer Architecture, etc.

Each course can then present what they would normally present, but expanded

with PDC content that is appropriate for the topics and level of the class. We

present here such an analysis for a Data Structures course. We believe Data

Structures is a good candidate because it appears in all programs under one

form or another (with CS1 and CS2), it is composed of topics that are not

naturally presented as parallel or distributed (unlike Computer Architecture or

Operating System), there is little variance in how the class is taught (CS1 on

the other hand has many variants including object-first, imperative-first, and

functional-first approaches), and we have two fully classified Data Structure

classes in CS Materials.

We picked four materials from data structure classes and used the search

feature of CS Materials to identify similar materials within all the material

available in CS Materials, and within PDC materials in particular. The goal of

the search is to find replacement materials or materials that could be used to

expand on the topic. The four materials we selected are a project on linked list,

a lecture on Big-Oh notation, a lecture on Shortest Path, and a homework on

binary trees. We selected these materials because they span the main compo-

nents of what we perceive to be a canonical data structures course: complexity,

linear structure, hierarchical structures, and graphs.

The search results are displayed in Figure 5; we performed the search against

PDC materials to only include the top-5 results, while the search against all

materials use the top-15 results. Note that opacity of edges in the different

pictures relates to the similarity between the materials connected by the edge;

however different pictures see the similarity normalized differently and as such

the opacity of edges in different figures are not directly comparable.

Finding materials related to a Linked List project and covering PDC con-

tent yields two OpenMP lectures, which do not contain linked list concepts, two

Peachy assignments which also do not contain linked list, and one lecture on
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UNCC ITCS 3145: OpenMP Advanced

UNCC ITCS 3145: OpenMP Loops

Peachy Unplugged Parallels
The Wave Equation as a Motivating Example for High Performance Computing

UNCC ITCS 3145: Concurrent Data Structure
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UNCC ITCS 3145: OpenMP Advanced

UNCC ITCS 3145: OpenMP Loops

Peachy Unplugged Parallels
The Wave Equation as a Motivating Example for High Performance Computing

UNCC ITCS 3145: Concurrent Data Structure

(a) Linked list project against PDC materials
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(b) Linked list project against all materials
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(c) Big-Oh lecture against PDC materials
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(d) Big-Oh lecture against all materials
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(f) Shortest path lecture against all materials
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(g) Homework on binary trees against PDC ma-

terials
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(h) Homework on binary trees lecture against

all materials

Figure 5: Searching for replacement materials for a few topics in CS Materials.
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concurrent data structure which uses linked list as an example of lock-free data

structures. The PDC materials related to the original project are underwhelm-

ing. However, one can see that there are good recommendation in the general

pool of materials: the recommended text distance projects are implementations

of dictionary interface using various data structures including a linked list, as

well as lectures and an exam that contain linked list related materials. One of

the three Nifty assignments recommended using a Linked list. The cluster of

ITCS 3112 projects however do not have linked list content.

The Big-Oh lecture yielded PDC results from a parallel computing class,

that were from two lectures, three assignments. All these use Big-Oh notations

or fundamental algorithmic tools to discuss resource consumption of parallel

application. While none of the material would be directly usable to discuss Big-

Oh in a data structure level course, the content could be used to give example

usage of Big-Oh in a parallel computing context, to help students understand

that not only runtime is expressed as Big-Oh. Using the same Big-Oh lecture as

a query against all materials yields one of the PDC materials. Most importantly,

CS Materials suggests alternative lectures, homework, and exam around Big-

Oh. The system also suggest a trove of data structure lectures which use Big-Oh

notations without Big-Oh being the primary topic.

The shortest path lecture yields no directly useful PDC materials. We would

expect to be recommended a lecture on parallel shortest path algorithms, or

shortest path in a distributed context such as in networking protocols. The ma-

terials that get recommended are all parallel algorithm analysis which use graph

abstractions, but none that actually do any shortest path computations. The

general materials that get recommended are all graph and tree materials. Only

one of them does a weighted shortest path, though a few of the graph related

materials (including assignments) discuss BFS traversal which is fundamentally

an unweighted shortest path.

The final query looks for materials similar to a homework on binary trees.

The recommended PDC materials are once again the theoretical parts of a

parallel computing class which are not particularly relevant, however it also
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recommends the lecture on concurrent data structures which uses binary search

trees as an example. The general materials that get recommended are much

more appropriate. Lectures, assignments, and exams on different usage of binary

trees get returned including heaps, binary search trees, and spanning trees.

Some other non-tree data structure also get returned.

Overall, the study of the search feature of CS Materials show that the system

has the ability to find related materials. Though of course, CS Materials can

only recommend the materials that are currently in the system.

5.3. Are Nifty assignments like Peachy assignments?

Peachy assignments were created as a way to showcase high quality assign-

ments which are easily adoptable to teach topics in parallel and distributed

computing. The assignments are meant to be patterned after Nifty assignments

which focus on early CS courses such as CS1, CS2, and data structure courses.

We study here whether Peachy assignments can be used instead of Nifty

assignments as one of the means to introduce PDC content in early CS courses.

We use the radial view to showcase the difference between these two sets of

materials. The generated visualization is shown in Figure 6. In this difference

view, the inner nodes are the ACM classification entries of the two sets, the leaf

nodes which appear white are common between Peachy and Nifty assignments,

the purple ones are only contained in Peachy assignments, while the orange

nodes are Nifty assignments.

Very few leaf nodes are white, which indicates that the two sets mostly map

to different parts of the curriculum guidelines. The area of maximum overlap

is in Software Development Fundamental, more precisely the topics relating

to array processing. Indeed, it is a common topic of CS1, and many Peachy

assignments are essentially and pleasingly parallel for computations.

Interestingly, the two sets map not only to different topics of the curriculum

guidelines, but also to different sections of it. Peachy assignments are almost

the only mapping to Parallel and Distributed Computing, Operating System,

System Fundamental, and Architecture and Organization. These sections of the
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Figure 6: Difference of curriculum mapping between Nifty assignments and Peachy assign-

ments against the ACM/IEEE CS 2013 guideline. The inner nodes are part of the ACM

curriculum entries, the leaf nodes are either purplish (Nifty only), orange (Peachy only) or

white (common to both).

ACM/IEEE CS 2013 are essentially not touched by Nifty assignments.

On the other hand, Nifty assignments map more broadly to the curricu-

lum guidelines. Nifty assignments reach a larger coverage of topics in Com-

putational Science, Algorithms and Complexity, Programming Languages, and

Human Computer Interaction.

This analysis shows that while a meaningful effort, Peachy assignments in

their current form, will probably not easily be adopted in CS1 and CS2 courses.

5.4. Identifying Missing Materials to Integrate PDC content in Data Structures

Classes

One of the primary hurdles of attempting to integrate PDC content into early

CS curriculum is that we may not know precisely what these early courses cover

and what they teach. There are lots of different ways to teach CS1, not only in

the topics covered, but also in pedagogical styles, activities, collaboration, etc.

CS Materials provides us with an opportunity to uncover these differences and

build models of these courses to help PDC expert target their materials to these
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commonly covered topics. We demonstrate this with a data structures course

model.

5.4.1. How to define Data Structures?

We built a preliminary model of what a typical data structure course might

contain. We compute a model of the topic of a single course by taking the union

of all the classification items of the materials of that course. And we compute

a model of data structure as an abstract class by taking the intersection of the

classification items of all the data structures courses available in CS Materials.

Obviously, this model for data structures is very simple but it is appropriate

since there are only two data structures courses in CS Materials at the moment.

With more data structure courses, a more refined model can be designed. Yet

this simple model provides a reasonable list of topics which are listed in Table 1.

We generated coverage views of the modeled data structure topics and learn-

ing outcome for both the data structure courses used to build the model, as

shown in Figure 7. One can see that the two courses cover the data structure

topics in similar proportion, confirming the previous analysis that the course

appeared to agree on the coverage of main data structure topics.

(a) Saule’s ITCS 2214 (b) Subramanian’s ITCS 2214

Figure 7: Coverage of data structure topics by two data structures courses
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Trees

Properties

Traversal strategies

Undirected graphs

Directed graphs

Weighted graphs

Spanning trees/forests

Use for generic libraries such as collections

Asymptotic analysis of upper and expected complexity bounds

Big O notation: formal definition

Complexity classes, such as constant, logarithmic, linear, quadratic, and exponential

Empirical measurements of performance

Time and space trade-offs in algorithms

Big O notation: use

Little o, big omega and big theta notation

Analysis of iterative and recursive algorithms

Balanced trees (e.g., AVL trees, red-black trees, splay trees, treaps)

Greedy algorithms

Shortest-path algorithms (Dijkstra’s and Floyd’s algorithms)

Minimum spanning tree (Prim’s and Kruskal’s algorithms)

Heaps

Sequential and binary search algorithms

Worst case quadratic sorting algorithms (selection, insertion)

Worst or average case O(N log N) sorting algorithms (quicksort, heapsort, mergesort)

Hash tables, including strategies for avoiding and resolving collisions

Binary search trees

Common operations on binary search trees such as select min, max, insert, delete, iterate over tree

Graphs and graph algorithms (Tier 1)

Depth- and breadth-first traversals

Representations of graphs (e.g., adjacency list, adjacency matrix)

Iterative and recursive traversal of data structures

Expressions and assignments

Simple I/O including file I/O

Conditional and iterative control structures

The concept of recursion

Arrays

Records/structs (heterogeneous aggregates)

Strings and string processing

Abstract data types and their implementation

Stacks

Queues

Priority queues

Maps

Linked lists

Strategies for choosing the appropriate data structure

Table 1: Model of Topics in a typical Data Structure course. For clarity, we removed the

Learning Outcome and removed the Knowledge Unit and Knowledge Area prefixes.
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5.4.2. How good is coverage of Data Structures courses by PDC materials in

the system

Provided a model of a class, we can study the coverage of PDC materials

that aligns with that class. Here we used the model of a typical data structure

course to study the coverage of PDC courses in a data structure course. This

analysis is presented in Figure 8. What the analysis show is that while some

topics are mapped to by some PDC materials, most are not.

Figure 8: Coverage of modeled data structure classification item by all PDC materials in CS

Materials

The most meaningfully mapped topics related to array processing and iter-

ative control structure. They are covered by a few of the Peachy assignments,

mapping to parallel array processing. Classification items related to Queues,

Maps, Hash Tables, Binary Search Trees are matched to a lecture on concurrent

data structures from ITCS 3145. Topics on Hashing and Hash tables also match

a lecture on Map Reduce.

Concepts on recursion are mapped to a lecture on OpenMP’s tasking con-

struct which highlight that one could use OpenMP for implementing Cilk-like

parallelism. Sorting concepts are mapped to a couple assignment and an un-

plugged activity.
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The most unexpected matching came from theoretical concepts of a data

structure such as Big-Oh notations, which appear in discussion of parallel com-

plexity, communication complexity. For the same reason lectures on task schedul-

ing map to topics of graphs (for PTGs) and of greedy algorithms (for List

Scheduling).

It is also interesting to note that many topics in data structures do not

appear to be covered by materials mapped to PDC topics in CS Materials such

as topics around linked list, structures, priority queues, stacks, strings, tree

orderings, spanning trees, modeling, library use, complexity classes, analysis of

data structures. The authors believe that all these topics could be covered by

PDC materials, but happen not to be. It is also note worthy that topics that are

matched, are typically matched by only a single material, leaving little choice

for potential instructors looking to adopt PDC content.

6. Evaluation: Early User Feedback

We conducted a CS Materials workshop in summer of 2020, where we pre-

sented an overview of CS Materials, its features and benefits to CS educators.

The workshop had 13 attendees. Four of them followed up with a more hands-on

workshop where they input and classified a few of their course materials over a

2 hour session. The goal was to complete the entire course on their own time

after the workshop. Two of the instructors completed classifying their courses

and, in addition, filled out a survey of their experience in using CS Materials.

The survey had 8 questions, relating to UI (usability, navigation), usefulness

of the visualizations (radial view and the harmonization view) to gain insights,

time taken to complete the classification, and a final overall impression of CS

Materials. The courses that were classified by the two users were on Program-

ming Concepts and Methodology I (equivalent to CS1) and Design and Analysis

of Algorithms.

Overall, feedback from both instructors was positive. They found the system

somewhat easy to navigate and classify their materials, and spent 6-15 hours to
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add and classify their materials on the site. The CS1 course had 13 sets of lecture

slides, 10 homeworks and assignents, and 6 exams. The Algorithm Analysis

course had 10 sets of lecture slides, 8 homeworks, assignments and reflections,

and 5 exams. Amount of time spent on the assignments depends on the number

and complexity of the materials, however, the classification process usually goes

faster as the user becomes more familiar with the curriculum standards. One

user did not gain any insights during the classification process (”can’t say that

during classification process I was thinking holistically yet. I was really just

trying to find where in the classification each material belongs to”). The other

noted gained insight about the course while classifying (”[M]y image processing

assignment [...] covers a pretty wide breath of topics, and so I think it could

almost could be used as a capstone assignment for the assignment, though I

usually issue it about halfway through the semester.”)

Both users benefited from the radial view (“weighting of my class in the

radial view matches what my mental model of the weighting should be”, ”it is

easier for me to see how topics coverage is spread out out of ACM classification”)

and one user “made changes by adding topics I missed during classification”.

Feelings on the the harmonization view were mixed: one user found it beneficial

(“really interesting from the perspective of being able to view all the content in

my course from several different angles”, while the second user found it some-

what unwieldy (“I found matrix (harmonization) view less useful for me to see

overall coverage and mapping”). More work is needed for the harmonization

view as it compresses a significant amount of information in a single visualiza-

tion.

The overall impression of CS Materials from the two users was quite positive.

Users touched on the value of CS Materials with comments that focused on defi-

nition of a specific course, “Figuring out what people actually mean by ‘teaching

CS1’ and what, exactly, they are teaching, with what topics, in what order, with

assignments, is amazingly valuable”, on comparing courses, ”it would be very

interesting to compare courses of the same kind (CS1, Algorithms, etc) with

others” and deriving benefits from such analysis, “This way I’d get an insight
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whether we spend too much time on particular topic and no one else does? Or

vice versa”. One suggestion was to also capture different pedagogies as part of

the classification, “What I found missing is that there is no way to say what kind

my class is in terms of active learning strategies or teamwork, hybrid/flipped

modalities or otherwise”. We will investigate these issues, as these pedagogies

have become quite popular in recent years.

7. Discussion

The overall motivation for the CS Materials was driven by the larger goal

of producing a highly dynamic system that would house a variety of course

designs and content that could be efficiently searched, analyzed and shared

among instructors, program administrators, as well as for audit and assessment.

On the other hand, we did not want CS Materials to suffer the same fate of many

of the existing repositories due to lack of maintenance, support, etc. Thus,

our approach to continually align with nationally accepted standards serves

as a bulwark to keeping the content current, relevant and responsive to new

technologies. In this work, we adapt these goals towards instructors to adopt

PDC content, by building a system that makes it easier and efficient to find

new or equivalent materials; at the same time the system helps identify gaps in

PDC content, that can be valuable for the PDC community for developing new

materials.

CS Materials is in its early stages of development. The system is functional

and ready for use by instructors as well as the PDC community; the main hurdle

is to get a critical mass of content and users. As stated earlier, we have a few

courses in the system and materials relevant to both early CS courses as well

as some PDC content. However, even with this limited amount of content, we

have demonstrated the potential of the system to search and identify materials

by using ontology based searches, compute similarity between sets of materials,

and generate course models for use in comparative analyses. Obviously to derive

better insight, one would need more data. While it is not clear at this point how
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many courses would need to be classified to answer a question like “how many

formats of a data structures course exist?”, however, a system like CS Materials

appears to be the only way to be able to provide an answer to such a question.

As CS Materials is based on using classification tags as the basis for various

analytic features that we have presented in this work, our future plans include

keeping the system updated as the standards change; typically these updates

occur every 5 years (or more), and would require a one time update of the

system to conform the new standards and conversion of the materials in the

system to the new standard, which we believe can be automated.

As mentioned earlier, instructors themselves have a number of advantages

in using the system for their own course development, keeping their content

current and searching for suitable materials for incorporating PDC content.

Similarly, degree auditors can benefit from the current system, as they can

input an entire sequence of courses into the system and perform audits, check

proper sequencing of topics/learning outcomes, and ensure incoming students

have the right prerequisites. While the illustrated results in the current system

are somewhat underwhelming, this is primarily due to the limited amount of

content in the system. We believe that once we get a sufficient amount of

materials populated in the system, more ambitious queries and searches would

result in more relevant content.

The experiments on looking for coverage of PDC content for use in early CS

courses yielded mixed results. This could be due in part to the few materials

that are currently in the system. But the authors manually looked through the

PDC material they are aware of (and listed in Section 2) and do not believe

the results would be significantly different, even if they had been added to the

system. Materials in CDER courseware, or CS in Parallel that are identified

as appropriate for “data structure and algorithms” would not have appeared

for two reasons. First, some of the materials are appropriate for the technical

skills of a student taking data structure but the materials do not integrate

well within the topics of data structures. Second, many PDC materials for a

“data structure and algorithm” course are about divide and conquer algorithms
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and recursive Cilk-like parallelism. These topics would not be taught in a “data

structure” course; rather that assumes a separate “algorithms” course will follow

in the curriculum. Similarly, we did not find assignments on producer-consumer

systems listed as appropriate for “data structures”, despite they fundamentally

rely on concurrent queues. Producer-consumer assignments were only classified

as appropriate for an “operating systems” class probably because that is the

class where they are traditionally taught. This bolsters our claim that one

should classify against topics and let classes be an emergent concept.

Overall, our study highlights the need for the PDC community to develop

new content. Ideally one would work together with instructors of targeted

courses for maximum impact. The main novelty in using CS Materials for

this purpose is that the type of content that needs to be developed is much

clearer in terms of the topics and learning outcomes; in other words, the needs

are identified at a more granular level. Also, CS Materials enables the effort to

be easily discovered by instructors without the need to pair with a PDC expert.

Our own experience in entering courses into the system has also significantly

enlightened us in terms of the content, design and learning outcomes. While

this is not necessarily the primary goal of this work, it provides an opportunity

for course revisions and improvement that cannot be understated. At the same

time, instructors become more familiar with curriculum guidelines and begin to

think of their course designs along with more current content.

8. Conclusion

The efforts to include PDC content in early CS courses, such as incorporating

them in national curriculum guidelines have so far been limited. A commonly

cited reason is that instructors have difficulties finding relevant material to teach

and learn these topics. In this article, we argue that classifying learning materi-

als against standard ontologies such as PDC12 and CS13 and curating them in

a single system provides many advantages for multiple actors. We have demon-

strated this by building CS Materials, a system for classifying, searching and
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performing analyses of materials in the system. We have demonstrated a num-

ber of features in the system, including an ontology based search, determining

the coverage of the guidelines of sets of materials, measuring alignment between

sets of materials, including alignment, and ability to build models of courses

coming from different sources. While the amount of content in the system is

limited at this time, initial tests of the system demonstrate its potential for

the long-term. Future work will focus on publicizing the system to potential

users across the education community to enable instructors to adopt more PDC

materials.
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