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Abstract

The generalization power of deep-learning models is
dependent on rich-labelled data. This supervision using
large-scaled annotated information is restrictive in most real-
world scenarios where data collection and their annotation
involve huge cost. Various domain adaptation techniques
exist in literature that bridge this distribution discrepancy.
However, a majority of these models require the label sets of
both the domains to be identical. To tackle a more practical
and challenging scenario, we formulate the problem state-
ment from a partial domain adaptation perspective, where
the source label set is a super set of the target label set.
Driven by the motivation that image styles are private to each
domain, in this work, we develop a method that identifies
outlier classes exclusively from image content information
and train a label classifier exclusively on class-content from
source images. Additionally, elimination of negative trans-
fer of samples from classes private to the source domain is
achieved by transforming the soft class-level weights into
two clusters, 0 (outlier source classes) and 1 (shared classes)
by maximizing the between-cluster variance between them.

1. Introduction

Deep neural networks have remarkably leveraged the per-
formance of a varied spectrum of models aimed at catering
different machine learning problems. The generalization
power of such models is, however, contingent on the avail-
ability of large-scale annotated data. This supervision using
rich-labelled data is restrictive in some real-world applica-
tions where data collection and its annotation incur huge
expenses. To circumvent this rich labelling procedure, tech-
niques that utilize label information and knowledge from a
related domain can be employed. However, the distribution
shift between the datasets representing different domains
poses a major bottleneck when designing networks for adapt-
ing to new tasks on unlabelled data. A considerable pro-

portion of domain adaptation techniques exist in literature
that bridges this distribution discrepancy by learning do-
main invariant representations of the data from two different
domains. The models, thus constructed, can be directly de-
ployed to unlabelled domain data. Although, these models
form ideal candidates for solving the task at hand, a majority
of them deals with a naive scenario where the label sets of
the two domains (labeled source and unlabeled target do-
mains) are equal. The setup turns out to be more realistic if
the restriction on the label set overlap is relaxed. To illustrate
further, in the era of big data, it is not difficult to envision
transferring of knowledge from a large-scale source dataset,
containing information from a wide variety of classes, to
a smaller unlabelled target dataset, where it is safe to as-
sume that the class label set of the smaller dataset is already
contained within that of the larger dataset.

Prior works on partial transfer learning [2, 13, 3, 4] have
attempted to find representations that are shared between the
source and target domains that circumvent negative transfer
by penalizing the inclusion of outlier source classes. How-
ever, the feature extractors present in such techniques jointly
process both the styles and content components of the do-
main representations, which are further processed for outlier
class computation. Such style components act as noise and
contaminates the initial phases of training, thereby leading
to erroneous computation of outlier classes. In this work,
we propose to eliminate that problem by imposing domain
discrimination exclusively on the class-content representa-
tion. Current methods, focus on eliminating outlier source
classes by introducing soft class weights, which means there
lies possibilities of some degrees of transfer from samples in
the outlier classes. Our technique circumvents this issue by
introducing a thresholding mechanism by maximizing the
between-cluster variances that binarizes the quantification
of transferability of samples from the source domain.

To summarize, we propose a methodology that allows
to produce split representations of class-content and image
style. Since image styles are private to each domain, the
classifier is trained exclusively on class-content information
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common between both the domains. Furthermore, to elim-
inate the negative transfer of samples from classes private
to source domain, we introduce hard class weights by trans-
forming the soft-class weights into two categories (0 and 1)
by maximizing between-cluster variance between them.

2. Problem Formulation

Equivalent to a standard transfer learning scenario, in
this setup we are furnished with information from two dif-
ferent domains, source S and target T respectively. Ds =
{(xis, yis)}

ns
i=1 is a dataset of ns samples, representing do-

main S, where every data point xis ∈ Rd is drawn in an
i.i.d. fashion from a distribution ps and is associated with
a label yis ∈ Cs. An unlabelled dataset Dt = {xit}

nt
i=1, rep-

resenting domain T , consists of nt data points where each
xit ∈ Rd is sampled in an i.i.d. manner from a different
distribution pt (pt 6= ps). The goal of this paper is to design
a classifier hypothesis fc : fc(xt) → yt for data (xt, yt)
in T , yt ∈ Ct, that minimizes the target classification risk
rt = Pxt∼pt

[fc(xt) 6= yt]. However, since the class label
information yt is unavailable during hypothesis learning, the
task is performed by leveraging Source domain supervision.

In partial domain adaptation, in addition to the exist-
ing distribution discrepancy, the model faces the challenge
of transferring relevant data from source to target as the
knowledge of shared labels between source and target label
space is unknown (Ct is unavailable during training). There-
fore, as a crucial step to obtain accurate classifications, it
is essential to prevent learning from data samples associ-
ated with labels private to S i.e., label set represented by
Cs\Ct (Cs\Ct = Cs − Ct). Since information on Ct is
concealed during training, identification of the shared label
set Ct among a pool of 2|Cs| possible label sets in the power
set ℘(Cs) that minimizes rt is a non-trivial task.

3. Proposed Method

The proposed network, inspired by [1], is designed to
model the private and shared representations of the different
domains explicitly. The private representations are specific
to each domain and the shared representations are common
between domains. To model this property, we use three sep-
arate set of encoders. Two private encoders are trained to
capture the domain specific features. The shared encoder is
trained to capture features that are common across domains
and is trained on both the labeled source and unlabeled tar-
get samples. A variety of loss functions are utilized in the
model to capture different features relevant to the task at
hand. Furthermore, to ensure that the content of the private
representations are still useful and to generalize even better,
we apply image reconstructions over the shared and private
representations using source and target decoders. A classi-
fier is trained on the shared representations to improve the

generalization across domains and avoid being influenced
by factors specific to each domain. The loss functions are
defined as follows:

Lrecon =∑
xs
i∈Ds

W s
classys

i

Lsim(DEs(Esh(xsi )⊕ Es(x
s
i )), x̂

s
i )

+
∑

xt
i∈Dt

Lsim(DEt(Esh(xti)⊕ Et(x
t
i)), x̂

t
i) (1)

where Lsim is defined as:

Lsim(x, x̂) =
1

k
‖x− x̂‖22 +

1

k2
(|x− x̂| .1k)2 (2)

Lrecon is the scale-invariant version of mean squared error
term which penalizes differences between pairs of pixels.
This allows the model to learn to reproduce the overall shape
of the objects being modeled, without expending modeling
power on the absolute color or intensity of the inputs.

In the proposed model, we have a label classifier Gy and
a domain classifier network Gd. Our framework aims to
reduce the shift of shared classes between source and target
domains. The loss of the label classifier is as follows:

Lclass =
1

ns

∑
xs
i∈Ds

W s
classys

i

L(Gy(Esh(xsi )), yi) (4)

where Esh provides the shared the representation for each
sample, with Gy trained using the cross-entropy loss L. Gd,
on the other hand, is learned by minimizing the following:

Ladv = − 1

ns

∑
xs
i∈Ds

W s
classys

i

[logGd(Esh(xsi ))]

− 1

nt

∑
xt
i∈Dt

[1− logGd(Esh(xti))] (5)

Entropy minimization regularization is generally used to
reduce the adverse-effects caused by classifier uncertainty,
due to large domain shift and difficulty in transferring sam-
ples. In the proposed model, we make use of the entropy
minimization principle, which is defined as follows:

Lent = − 1

nt

nt∑
i=1

|Cs|∑
c=1

ŷticy
t
ic

It is important to address the transferability of shared
source classes. To find out which class in source domain
belongs to the shared classes, we make use of shared class
weights W s

class, which is a |Cs| dimensional vector; each
element ws

j represents the probability of the jth class of the
source domain belonging to the shared classes. W s

class is
defined as following:

W s
class =

1

nt
Σnt

i=1Gy(Esh(xti)) (6)
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Figure 1. A schematic diagram of the proposed network. In STEP 1, The source and target content encoder (both the encoders share
weights) learns to generate representations that represent content relevant for classification. The common content representation learning is
achieved with the aid of the domain classifier using adversarial learning and a label classifier. The source and target style encoders learn
features private to images in their respective domains. The source and target decoders accept representations containing common content
and style information private to each domain and tries to reconstruct the input images. The loss Ldiff ensures that representations learnt by
the content and style encoders are different. STEP 2 covers computation of class weights using output scores of the label classifier on the
target images. In this module, the threshold technique described in eq. 11, is utilized to binarize the soft labels into hard labels, thereby
completely restricting negative transfer from outlier class samples in the source domain.

A recent work [7] has utilized the concept of class weights.
However, they are often computed upon feature descriptors
that may contain both content and style of domain images.
In our proposed model, we utilize domain separation net-
works to capture different representation components of any
given input sample. The common and the domain specific
features are separated using the different sets of encoders.
The shared feature representations, thus obtained, are used
to train the domain classifier, whose loss (Ladv) when back-
propagated aids in generating more robust domain-invariant
features. Instead of using features that contain both style and
content of the respective domain, we are proposing the use of
features shared across the domains in computing the shared
class weights. Our conjecture is that this will improve the
generalization across domains and avoid being influenced
by domain specific factors.

Current methods [2, 13, 3], identify the outlier source

classes by introducing soft class weights. This signifies
that there exists possibilities of some degrees of transfer
from samples in the outlier classes. Our technique elimi-
nates this issue by introducing a thresholding mechanism by
maximizing the between-cluster variances that binarizes the
quantification of transferability of samples from the source
domain. We divide these source classes into two groups :
Cout and Cshare. Cout denotes classes with weights ∈ [0, t)
and Cshare denotes classes with weights [t, 1]. The probabil-
ity of class occurrences wout and wshare and the class mean
weights µout and µshare are defined as follows:

wout =
|cout|
|Cs|

, µout =
t∑

ws
classj

=0

ws
classj

|cout|
(7)

wshare =
|cshare|
|Cs|

, µshare =

1∑
ws

classj
=t

ws
classj

|cshare|
(8)
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Method Ar→ Cl Ar→ Pr Ar→ Rw Cl→ Ar Cl→ Pr Cl→ Rw Pr→ Ar Pr→ Cl Pr→ Rw Rw→ Ar Rw→ Cl Rw→ Pr Avg.
Resnet-50[6] 46.33 67.51 75.87 59.14 59.94 62.73 58.22 41.79 74.88 67.40 48.18 74.17 61.35

DAN[8] 43.76 67.90 77.47 63.73 58.99 67.59 56.84 37.07 76.37 69.15 44.30 77.48 61.72
DANN[5] 45.23 68.79 79.21 64.56 60.01 68.29 57.56 38.89 77.45 70.28 45.23 78.32 62.82
ADDA[11] 45.23 68.79 79.21 64.56 60.01 68.29 57.56 38.89 77.45 70.28 45.23 78.32 62.82

RTN[9] 49.31 57.70 80.07 63.54 63.47 73.38 65.11 41.73 75.32 63.18 43.57 80.50 63.07
IWAN[13] 53.94 54.45 78.12 61.31 47.95 63.32 54.17 52.02 81.28 76.46 56.75 82.90 63.56

SAN[2] 44.42 68.68 74.60 67.49 64.99 77.80 59.78 44.72 80.07 72.18 50.21 78.66 65.30
PADA[3] 51.95 67.00 78.74 52.16 53.78 59.03 52.61 43.22 78.79 73.73 56.60 77.09 62.06
SSPDA[4] 52.02 63.64 77.95 65.66 59.31 73.48 70.49 51.54 84.89 76.25 60.74 80.86 68.07

Our approach 56.21 73.34 80.63 64.08 61.72 66.41 70.83 53.13 83.57 77.01 58.31 81.24 68.87

Table 1. Classification accuracy (%) of Partial Domain Adaptation on Office-Home dataset with Resnet-50 as backbone.

Method A→W A→ D W→ A W→ D D→ A D→W Avg.
Resnet-50[6] 75.59 83.44 84.97 98.09 83.92 96.27 87.05

DAN[8] 59.32 61.78 67.64 90.45 74.95 73.90 71.34
DANN[5] 73.56 81.53 86.12 98.73 82.78 96.27 86.50
ADDA[11] 75.67 83.41 84.25 99.85 83.62 95.38 87.03

RTN[9] 78.98 77.07 89.46 85.35 89.25 93.22 85.56
IWAN[13] 89.15 90.45 94.26 99.36 95.62 99.32 94.69

SAN[2] 90.90 94.27 88.73 99.36 94.15 99.32 94.96
PADA[3] 86.54 82.17 95.41 100.00 92.69 99.32 92.69
SSPDA[4] 91.52 90.87 94.36 98.94 90.61 92.88 93.20

Our approach 92.07 94.46 93.72 99.24 93.68 95.84 94.84
Table 2. Classification accuracy (%) of Partial Domain Adaptation on Office-31 dataset with Resnet-50 as backbone.

µtotal = µout ∗ wout + µshare ∗ wshare (9)

This is followed by measuring the between-cluster vari-
ance

δ2 = (µout−µtotal)
2 ∗wout + (µshare−µtotal)

2 ∗wshare

(10)
A larger value of δ2 signifies greater differences between

the two clusters. Consequently, the value of t producing the
largest variance value δ2 is the ideal candidate, i.e.,

t = argmax(δ2) (11)

When the value of threshold t is maximized, it implies
that the probability of misclassification of Cout and Cshare

is minimized. By utilizing this threshold value, we binarize
the soft class weight vectorW s

class, where values in the range
[0, t) = 0 and that within [t, 1] = 1.

To sum up, the overall loss function is as follows (λ:
regularization parameter for image reconstruction loss):

L = λLrecon + Lclass + Ladv + Lent (1)

4. Experiments

To evaluate the efficacy of the proposed approach, we
perform experiments on two benchmark datasets (Office-
Home[12] and Office-31[10]) across multiple tasks. The
following sections highlight the datasets, tasks for experi-
mentation and the network hyper-parameters.

4.1. Datasets

For performance evaluation of the proposed method, we
utilize two commonly used datasets for domain adaptation,
namely Office-Home and Office-31. The relatively small
Office-31[10] dataset contains 4652 images from 31 differ-
ent classes with images from three domains: Webcam (W),
Amazon (A) and DSLR (D). Following the method in [3],
we build the target dataset with images from 10 different
categories. The evaluation is carried out on 6 different tasks,
namely A→W, A→D, W→A, W→D, D→A and D→W.

To further establish the efficacy of our model, we tested
it on the larger Office-Home [12] dataset (a collection of
around 15,500 images), with images collected from four
different domains: Real-world (Rw), Artistic (Ar), Product
(Pr) and Clip Art (Cl). Similar to the procedure utilized
in [3], we build the target dataset from 25 classes and the
source domain with images from 65 classes. 12 different do-
main adaptation tasks were arranged for evaluation, namely:
Ar→Cl, Ar→Pr, Ar→Rw, Cl→Ar, Cl→Pr, Cl→Rw, Pr→Ar,
Pr→Cl, Pr→Rw, Rw→Ar, Rw→Cl and Rw→Pr.

4.2. Comparison Models

The performance of the proposed model is compared
with the state-of-the-art deep learning models addressing
partial domain adaptation: Resnet-50 [6], Deep Adaptation
Network (DAN) [8], Domain Adversarial Neural Network
(DANN) [5], Adversarial Discriminative Domain Adaptation
(ADDA) network [11], Residual Transfer Networks (RTN)
[9], Importance Weighted Adversarial Nets (IWAN) [13], Se-
lective Adversarial Network (SAN) [2], Partial Adversarial
Domain Adaptation(PADA) [3] and class Subset Selection
for Partial Domain Adaptation (SSPDA) [4].
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4.3. Network Parameters

We implement both the encoders using ResNet-50 [6]
and introduce a bottleneck layer of length 256 before the
fully connected layers, as in DANN [5]. The decoders are
created using a series of three 3× 3 convolution (with relu
activation) and up-sampling layers, followed by a final con-
volutional layer. The new layers, introduced in the network,
are trained from scratch with a learning rate 10 times faster
than that of the fine-tuned layers. Mini-batch stochastic gra-
dient descent(SGD) is utilized, with momentum set to 0.9
and learning rate strategy in DANN [5]. The loss weight
lambda for image reconstruction is set to 10−4. The trans-
ferability of shared source classes is addressed by using
binarized aggregated output scores of the label classifier on
target images.

5. Results

From Tables 1 and 2, it is observed that approaches specif-
ically targeted towards mitigating distribution in a partial
domain adaptation setup yield better accuracy than stan-
dard domain adaptation methods like DAN [8], DANN [5],
ADDA [11] and RTN [9]. When tested on the Office-31
dataset, the proposed model achieves best performance in
two out of six tasks. It produces the second-best average
accuracy value (trailing by 0.12%) when compared to other
baselines. During evaluation on a much larger and complex
dataset (Office-Home), it is observed that our model outper-
forms the rest in seven out of fourteen tasks, in addition to
achieving the best average performance.

6. Conclusion

This paper presents a novel domain-invariant feature
learning framework for partial domain adaptation. The
proposed model learns domain-invariant features by elim-
inating that image style properties private to each domain,
and utilizing the class discriminating properties existing be-
tween domains. Furthermore, the negative transferability
of the private source classes is diminished by utilizing a
weighted mechanism which operates by maximizing the
between-cluster variance. From experiments conducted on
two benchmark datasets, it is established that our approach
successfully tackles the partial domain adaptation problem.
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