A Quantitative Analysis of Student Solutions to
Graph Database Problems

Mei Chen, Seth Poulsen, Ridha Alkhabaz, Abdussalam Alawini
{meic2,sethp3,ridhama2,alawini}@illinois.edu
University of Illinois at Urbana-Champaign

Abstract

As data grow both in size and in connectivity, the interest to
use graph databases in the industry has been proliferating. How-
ever, there has been little research on graph database education.
In response to the need to introduce college students to graph
databases, this paper is the first to analyze students’ errors in home-
work submissions of queries written in Cypher, the query language
for Neo4j—the most prominent graph database. Based on 40,093
student submissions from homework assignments in an upper-level
computer science database course at one university, this paper pro-
vides a quantitative analysis of students’ learning when solving
graph database problems. The data shows that students struggle the
most to correctly use Cypher’s WITH clause to define variable names
before referencing in the WHERE clause and these errors persist over
multiple homework problems requiring the same techniques, and
we suggest a further improvement on the classification of syntactic
errors.

CCS Concepts

« Applied computing — Education; « Social and profes-
sional topics — Computer science education; - Information
systems — Information retrieval; Query representation.

Keywords

Neo4j, database education, online assessment

ACM Reference Format:

Mei Chen, Seth Poulsen, Ridha Alkhabaz, Abdussalam Alawini. 2021. A
Quantitative Analysis of Student Solutions to Graph Database Problems.
In 26th ACM Conference on Innovation and Technology in Computer Science
Education V. 1 (ITiCSE 2021), June 26-Fuly 1, 2021, Virtual Event, Germany.
ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3430665.3456314

1 Introduction

The relational database has been used for decades [7], but as the
amount of data and the need to store data that is rich in relation-
ships is increasing drastically, a special kind of the NoSQL database
model has emerged: graph databases [17]. Graph databases store
relationships and connections based on the fundamental graph the-
ory constructed via nodes (entities) and edges (relations), making it
an optimal choice to store and query graph structures and seeking
to provide both better performance and better usability for the right
kinds of data. In 2017, over half of the enterprise users across all

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ITiCSE 2021, June 26-July 1, 2021, Virtual Event, Germany

© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-6874-2/20/06.

https://doi.org/10.1145/3430665.3456314

industries utilize graph database due to its speed and enhanced
execution [26].

In this paper, we focus on the Neo4j database and its Cypher
language, a declarative query language that has SQL-like syntax
augmented by the ability to pattern match on graph relationships.
Neo4j is the most popular graph database: eBay uses Neo4j to
support the probabilistic models and aid understandings in the con-
versational shopping scenario; NASA uses Neo4;j to help examine
the relationship between knowledge; more companies [22] have
started using graph model thanks to its capability in constructing
relationships and its simplicity in both visual understandings and
agility in processing graph-related data.

The power of Neo4j is also supported by academic studies. Ac-
cording to Fernandes and Bernardino, Neo4j stands out among
the current graph database thanks to its simplicity, agility, and
flexibility [10]. Vicknair et al. also used Neo4j to demonstrate that
the graph system shows better performance in full-text charac-
ter searches and structural type queries compared to that in the
relational database [28].

The need for introducing students to graph databases is also
rising with potential pervasive usage in multiple areas such as
chemistry, social networking, and recommendation engines [6, 20].
Many universities have begun covering Neo4j in their course, in-
cluding but not limited to: Portland State University, the University
of Pennsylvania, the University of Illinois at Urbana-Champaign,
and ETH Zirich [3, 8, 11, 27]. Additionally, Coursera, the online
learning platform, offers introductory Neo4;j courses [9, 15].

In response to the need for graph database talents and the lack of
CS education research on how students learn about graph database,
we analyze thousands of students submissions to Graph Database
assignments presented in an upper-lever database course offered at
a large public school. In particular, we study those research ques-
tions: (1) What is the distribution of correct submissions, semantic
errors, and syntactic errors for students writing Neo4j queries? (2)
What common errors do students make when they first use the
Cypher query language? and (3) Which concepts students spend
most time learning?

2 Literature Review

Relational database management systems (RDBMS) have been
long-established and used in industries for decades, but due to the
rise of data that are bigger both in size and in interconnectivity,
there is a trend to utilizing non-relational databases, as they are
more efficient for certain use cases [18, 24].

However, computer science education research on NoSQL data-
base languages is significantly lacking compared to that on SQL
databases. Ahadi et al. provide a quantitative analysis of relative
difficulties in SQL queries [1, 2]. The authors’ previous work uses
quantitative approaches to identify the most common students’

https://doi.org/10.1145/3430665.3456314
https://doi.org/10.1145/3430665.3456314

errors when writing SQL queries [23]; other papers study the po-
tential difficulties students face from an ease-of-use perspective
[25]. Some researchers have proposed novel tutors and tools to help
with teaching SQL [5]. There are rare studies conducted about the
NoSQL database. Fowler demonstrated a successful teaching case
that incorporated the NoSQL database into the traditional database
management course to students and received a significant improve-
ment in understandings NoSQL [12]. Sriram proposed a four-tiered
learning model to better teach NoSQL Databases to undergraduate
students [21]. Alkhabaz et al. provide an analysis of the types of
errors students make while learning to write MongoDB queries [4].

We have only found one study about graph database in computer
science education [16] that conducted a Neo4j teaching case that
shows the successful improvements in Vocational Education and
Training environment. Other researches on graph databases are
mainly about performance analysis on different operating systems
or introductions on the differences between graph database and
RDBMS or other NoSQL database [13, 28].

To the best of our knowledge, there has been no research in
understanding the mistakes students make while learning query
graph databases. In this paper, we show the descriptive statistics
derived from the students’ submissions in homework problems
and investigate what concepts students struggle with most. To that
end, we look at students’ median time to finish and the number of
submissions.

3 Introduction to Neo4j and Cypher

Cypher is the query language used to query Neo4j databases.
It has a similar syntax to SQL, with declarative pattern-matching
features added for querying graph relationships. As one of the
best-known graph databases, Neo4j stands out among the current
existing graph models for its performance, simplicity and its pow-
erful query language [10, 14].

In this section we briefly demonstrate the syntax of Neo4;j queries,
showing the similarities and differences when compared to SQL
via two analogous databases. The graph database we will use for
our examples only has two kinds of nodes: Movie and Actor, and
one relationship: ACTED_IN between the two kinds of nodes.

Movie node: each Movie has its unique id (movie_id),
its name (movie_name), release year (release_year),
ratings (ratings), genre (genre).

Actor node: each star has their unique id (actor_id),
name (actor_name), birth year (birth_year) and their
birth country (birth_country).

Actor and Movie nodes have the relationship:
(:Actor)-[:ACTED_IN]->(:Movie).
An actor may act in many movies and a movie may
have many actors.
Figure 1 shows a graph representation of some example data
that may be present in a database with the defined schema.
The equivalent relational database we use for this example has
three tables:

Actor: actor_id (INT), actor_name (VARCHAR), birth_year

(INT), birth_county (VARCHAR)
ACTED_IN: actor_id (INT), movie_id (INT)

Movie 1
{1, "Movie Name 1",
2017, 6.5. Comedy} ACTED IN

Actor 2
" " fctor 1 {"Jane Doe",
{"John [l)Jie; . 1998, 1999, USA}
ACTED_IN

Movie 2
{2, "Movie Name 2",
2016, 7, Sci-Fi}

ACTED_IN

Figure 1: Example of data stored in a graph database.

Movie: movie_id (INT), movie_name (VARCHAR),
release_year (INT), ratings (REAL), genre (VAR-
CHAR)

In order to find the birth country of an actress named "Jane Doe",
we would use the following Cypher query:

MATCH (a:Actor)
WHERE a.actor_name = "Jane Doe"
RETURN a.actor_name, a.birth_country

The corresponding SQL code is very similar to the Neo4j query
with only slight difference in naming of the keywords:

SELECT a.actor_name, a.birth_country
FROM Actor AS a
WHERE a.actor_name = "Jane Doe"

Now that we have shown a simple example, we will examine an
example that shows the strength of Neo4;j in dealing with data that
has a graph structure. The following query will find the number of
comedy movies that each actor has acted in:

MATCH (m:Movie {genre: "Comedy"})-[:ACTED_IN]-(a:Actor)
RETURN a.actor_name, COUNT(m.movie_id) AS count_movie

Here we can see the relationship of actors and movies in the
Neo4j. Compared to the SQL query, Cypher does not require any
JOIN or GROUP BY keywords, and only use pattern matching to
find actors who acted in a "Comedy” movie. On the other hand, the
equivalent SQL query is more complex as it requires joining three
tables and grouping by the actor name:

SELECT a.actor_name, COUNT(m.movie_id) AS count_movie
FROM Actor AS a

JOIN Acted_IN AS act ON (a.actor_name = act.actor_name)
JOIN Movie AS m ON (act.movie_id = m.movie_id)

WHERE m.genre = "Comedy"

GROUP BY a.actor_name

4 Methods

In this section, we first describe the data collection and handling
process, and then we present an example of a student solving a
homework problem. Finally, we discuss how we categorized stu-
dents’ submissions.

4.1 Data Collection

The data was collected by parsing homework submissions made by
students taking the database systems course at the University of
Tllinois at Urbana-Champaign [3]. We analyze data from student
submissions from the Fall 2019 and Spring 2020 offerings of a data-
base course, which is divided into four modules: (1) data models

and query languages, (2) relational database design, (3) relational
database system internals, and (4) advanced database topics

In the first module, students learn about SQL, MongoDB, and
Neo4j sequentially. They learn about label property graph data
model and the Cypher query language (Neo4;j) in two class meetings,
and they have two activities (5 problems each) to finish in class and
one homework (10 problems) to finish after the classes.

Students submitted their assignments on PraireLearn, an online
homework and exam platform which automatically collects all the
submission information [29]. The students are allowed an unlimited
number of submissions for homework problems without penalties,
and the highest score of all submissions will be recorded as the final
score. Students can also solve the problems in any order and can
return to any of the problems at any time before the deadline for
submissions.

Each question offers students the description of the graph data-
base used in the problem, including the name and the attributes
of the nodes and relationships, but students are not able to view
the values stored in the database. Students are also able to see the
description of the desired result and the format requirements for
the result.

Students then can type in their queries in an online text editor
and either save their code to finish later, or directly submit their
code and be assessed by an auto-grader. If the queries have syntactic
errors, the Neo4j status codes and error messages will be sent back
to students to notify them about the errors; sometimes the expected
correct syntax for some operators may be returned as well. If the
queries can be executed successfully but have semantic errors, the
students will receive messages showing the actual results and the
expected results. Otherwise, students will receive full points on
the problem. Instructors will assign teaching assistants to double-
check submissions of students to make sure no hard-code queries
were submitted (i.e., queries that use irrelevant/unnecessary condi-
tions to match the expected results). We analyze 40,093 homework
submissions written by 518 students.

4.2 Data Handling

Each submission record is assigned a numeric identification number
by PraireLearn to protect students’ privacy. Graduate and under-
graduate research assistants are also trained to deal with research
data following the research protocols; research assistants who took
the course were not given access to any of the data until after it
was anonymized.

It is also worth mentioning that the authors of this paper include
former students in this course and the instructor of this course, and
so the interpretation of the data is informed by empirical teaching
experiences from the instructor and the learning perspectives from
the student.

4.3 Overview of Homework Assignments

The ten problems are designed following topics to design, and the
orders also follows the order of the course logic:

(1) Querying Nodes and Relationships (2 questions)
(2) Shortest Path: finding the Shortest Path between two nodes
(1 question)

(3) Advanced Pattern Matching: finding nodes/relationships us-
ing complex patterns (1 question)

(4) MERGE with ON MATCH, ON CREATE Statements: MERGE matches
existing nodes and binds them if they existed in the graph.
Otherwise it creates new data and binds it (1 question)

(5) Update using the FOREACH function: FOREACH allow us to
update elements in a path, or a list created by aggregation.
(1 question)

(6) Simple Aggregation: Aggregate data using COUNT, SUM, or
AVG functions (1 question)

(7) Advanced Combined Queries using UNION: Combine results
of two queries using UNION (1 question)

(8) Advanced Combined Aggregation: Filtering the aggregation
results, which requires the use of WITH command (1 question)

(9) Advanced Aggregation using collect(): collect() col-
lects the elements of a group in a list (1 question)

4.4 The Journey of a Student Solving a Neo4j
Problem

In this section, we use one submission example to demonstrate the
process of how a student solves a Neo4j homework question. The
question we chose was designed by the instructor to assess how
students use the WITH clause to pipeline filtered aggregation results
from one part of the query to the next [22], and we categorize this
question into the concept ‘Advanced Combined Aggregation’. The
prompt for this question showed the requirement for completing
this assignment without explicitly pointing out the recommended
clauses to finish the question, motivating students to find the suit-
able Cypher clauses to use:

Given a Graph Database with two kinds of nodes:
Movie and Actor, find movie genres with an average
rating greater than or equal to 4. When calculating the
average, only movies released later than 2000 should
be included. Return the genre and its average rating
avg_ratings in a descending order.

We first demonstrate instructor’s final solution and then we walk
you through how a student arrived to it.

MATCH (m1:Movie)

WHERE m1.release_year > 2000

WITH m1.genre as movgen, avg(ml.ratings) as avgrat
WHERE avgrat >= 4

RETURN movgen, avgrat

ORDER by avgrat DESC

This solution firstly filters the movie with the restriction on the
release year, then use WITH clause to pipeline the average rating of
each movie genre, and then filter, return and order the the genre
based on the average rating. To achieve this solution, this student
had several submissions.

The student began by writing the following query:

MATCH (m1:Movie)

WITH m1.genre as avgenre, avg(ml.ratings) as avgrat
WHERE m1.genre >= 4

RETURN avgenre, avgrat

However, this student received the following error:
SyntaxError: Variable ‘ml1’ not defined (line 4, column

8).
This ‘Variable Name Undefined’ error indicated that the student
shouldn’t reference variables not defined in the WITH clause, since
WITH only pipelines its variables to the following queries. This is a
very common mistake for students to encounter when they use the
WITH clause (see Table 6).

The student tried eight submissions to get around this error, and
finally realized that the error can be fixed by adding schema of ‘m1’
into the WITH clause:

MATCH (m1:Movie)

WHERE m1.release_year > 2000
WITHm1.genre, avg(ml.ratings) as avgrat
RETURN m1.genre, avgrat

However, the submission received another error:
SyntaxError:Expression in WITH must be aliased (use AS).
This error happens because the code did not specify the name for
the ‘m1.genre’ for the result generated by WITH clause. This error
is also very common (see Table 6). After fixing this issue, the student
encountered another semantic mistake as the student forgot to sort
the result. Finally, after another five trials the student successfully
solved the question with the correct query.

This walk-through shows how a student completes a homework
problem, and what some typical syntactic errors look like.

4.5 Submission Categorization

We partition student submissions into three categories: syntactic
errors, semantic errors, and correct solutions (defined by Ahadi et
al. [1]). Syntactic errors messages are returned by the Neo4j engine
because the submitted code cannot be run; semantic errors occur
when the submitted code can be run, but the returned result does
not match the expected result. A correct solution is when the query
executes, and the returned result matches the expected result. Ta-
ble 1 shows the percentages for the results of students’ submissions.
In this paper, we will mainly examine syntactic errors for students’
submissions and leave analyzing semantic errors to later studies.

Result
Correct Solution

Percentage

24% (9359)
46% (17964)
30% (11664)
Table 1: Breakdown percentages of results in all Students’
submissions

Semantic Error

Syntactic Error

Table 2 breaks down the syntactic errors based on the status
codes and shows the frequency of those errors based on students’
submissions, which categorize the errors better compared to the
Neo4;j status code shown by the second column. Therefore, we
categorize syntactic errors using the reasons given by the Neo4j en-
gine to further analyze the distributions and variations of students’
common errors.

5 Results

Table 3 shows the distributions of submissions for each concept.
The order of the concepts are corresponding to the order they were
presented to students. From the third column which indicates how
many students have submitted a correct solution, it is clear that we

Error Category Neo4j Status | Number| Percent
Code of Sub- | of All

mis- Errors
sions

Semantic Error N/A 17964 46%

Invalid Input SyntaxError 4438 11%

Variable Name Unde- || SyntaxError 2690 7%

fined

Type Error TypeError 698 2%

Expression in WITH || SyntaxError 542 1%

Must Be Aliased

Invalid Use of Function || SyntaxError 488 1%

Under This Context

All Sub queries in a || SyntaxError 438 1%

UNION Must Have the

Same Column Names

Cannot Use the Same || SyntaxError 428 1%

Relationship for Multi-

ple Patterns

Cannot Access Vari- || SyntaxError 300 1%

ables Declared Before

the WITH/RETURN

Table 2: Breakdown Percentages of All Errors & Correspond-
ing Neo4j Error Status Code Categorization

could not use the complete rate to assess the difficulty rate due to
the ceiling effect. However, we can see that the average attempts
per student of the ninth and the tenth concepts are among the
highest of all ten concepts. Those concepts require students to use
advanced aggregation concept, meaning that they have to use less
common aggregation keyword, or pipeline the aggregation result
multiple times using WITH keyword.

Table 4 shows the specific statistics corresponding to each con-
cept. We calculated students’ duration to finish each concept based
on the time between their first submission time and final submission
time. Due to constraints in the way we collected our data, we could
not precisely measure how long each student spent working on
each problem, only the time at which they made each submission.
Based on the learning and teaching experience from the authors, for
questions with a median time to finish of greater than 100 minutes,
we find it extremely unlikely that students worked for this entire
time; rather, we think it likely that the student was unable to solve
the problem, left, and started working on it again later when they
were able to receive assistance. From this table, Advanced Table
Matching has the longest median time for students to finish. We
can see that for the concept that needs WITH, the median time for
students to finish is the longest, and the correctness rate is the
lowest among other concepts.

Table 5 shows the breakdown percentages of all syntactic er-
rors. Even though errors such as ‘“Variable Name Undefined’ has
the comparatively higher percentages in occurred syntactic errors,
students could have multiple potential syntactic mistakes to re-
ceive this error, and under most of the situations the error should
be classified further into errors such as ‘Cannot Access Variables
Declared Before the WITH/RETURN’. In Section 6, we will further
discuss about how error classification could affect students.

Concept # Submissions | # Students Who | # Students who | Average Submissions
Attempted completed per Student
Simple Querying Nodes/Relationships 3951 518 507 7.79
Advanced Querying Nodes/Relationships 4259 518 507 8.4
Shortest Path 3401 517 510 6.67
Advanced Pattern Matching 3715 516 500 7.43
Graph Update (I) ON MERGE, ON CREATE 2338 516 514 4.55
Graph Update (II), FOREACH 2683 517 511 5.25
Simple Aggregation 2702 512 506 5.34
Advanced Combined Queries, UNION 3984 512 509 7.82
Advanced Combined Aggregation 6735 511 497 13.55
Advanced Aggregation, collect() 5277 511 505 10.44
Table 3: Number of Submissions per Question
Concept Median Time to Correct | Syntactically Wrong | Semantically Wrong
Finish (Hours:Minutes)
Simple Querying Nodes and Relationships 0:51 22% 20% 57%
Advanced Querying Nodes and Relationships 1:09 23% 25% 53%
Shortest Path 1:35 26% 29% 45%
Advanced Pattern Matching 3:56 26% 28% 46%
Graph Update with ON MERGE, ON CREATE 0:26 43% 31% 26%
Graph Update with FOREACH 0:28 34% 46% 20%
Simple Aggregation 0:37 33% 36% 31%
Advanced Combined Queries, UNION 0:40 23% 45% 32%
Advanced Combined Aggregation 3:07 14% 25% 61%
Advanced Aggregation using collect() 2:07 19% 26% 55%

Table 4: Breakdown of errors by Neo4j concept evaluated

Table 6 shows the distributions of errors for each concept. The
eighth column has a drastic increase in the concept of Advanced
Pattern Matching, which echoes with the finding in Table 4, in-
dicating that students having difficulty in organizing queries with
multiple relationships and nodes. Another intriguing fact is the
spiking number of error occurrences after the ‘Simple Aggrega-
tion’ for the “Variables Name Undefined’ error (the third column),
which indicates that only in questions that need WITH clauses, this
category jumps to the most frequent error that students tend to
have. This error also persists over multiple problems, implying that
students have problems understanding this error message properly
when they use WITH clauses.

6 Discussion

As first noted in our data exploration and confirmed by the re-
sults in Table 5, students commonly encounter the error ‘Variable
Name Undefined’ when they use WITH because they forget to ref-
erence all variables that needs to be used in the RETURN or in WHERE
clause. From our learning and teaching experiences, we suspect that
this is because of the less-intuitive design of how to filter aggrega-
tion results in Neo4;: students have to use WITH to select aggregation
results to filter it later in the WHERE or RETURN clause, but from what
we observe in students’ submissions, we find out students tend to
directly use WHERE clause to filter the aggregation results directly,
and they will receive this ‘Variable Name Undefined’ error. As
shown in the table, students do not only make this error on one
problem type, but continue to encounter it on subsequent questions,

despite having successfully solved multiple problems that required
a WITH statement.

Furthermore, when students correctly use WITH to aggregate
variables, but forget to define variables in the WITH clause and ref-
erence them in latter clauses, there are two kinds of error messages.
The Variable Name Undefined error happens when students ref-
erence them in RETURN clauses. The other error category, listed in
the last column of Table 6 only appears if students reference those
variables in WHERE clauses. Even though this error message pointing
out where students make mistakes, it instead makes students ignore
that they would make the same mistakes in RETURN clauses. Thus,
we suggest it would be better if the error messages can classify the
situation more clearly. Cypher, as McCall and Kélling mentioned,
shares the same conceptual mistake as Java that can manifest itself
in different error messages, making it very challenging for novice
programmers to make progress [19].

7 Limitations & Future Work

In this paper, we only utilize the homework submissions to spec-
ulate students’ learning behaviors without test submissions due to
the lack of sufficient data. Because we cannot ensure that students’
techniques used in finishing their homework assignments, the reli-
ability of the data needs to be further validated. The data source
is only coming from one university and one course, making the
data less universal and may be limited to the design deficiency of
the courses and the programming levels of the university students.
There are only one to two questions designed for each concept,
making it harder to compare and speculate the difficulty rates for

Error (Neo4j) % of all Syntactic Errors
Invalid Input 38%
Variable Name Undefined 23%
Type Error 6%
Expression in WITH Must be Aliased 5%
Invalid Use of Function Under This Context 4%
All Sub Queries In an UNION Must Have the Same Column Names 4%
Cannot Use the Same Relationship for Multiple Patterns 4%
Cannot Access Variables Declared Before the WITH/RETURN 3%
RETURN Not Used Correctly 2%
Unexpected End of Input 2%
Unknown Function 2%
Table 5: Syntactic Error Percentages
Concept (Neo4;j) Invalid | Variable | Type | Expression| Invalid All Sub | Cannot Use | Cannot
Input | Name Error | in WITH | Use of | Queries in an | Same Rela- | Access
Unde- Must Be | Function | UNION Must | tionship for | Variables De-
fined Aliased Under Have the | Multiple clared Before
This Same Column | Patterns the WITH /
Context Names RETURN
Simple Querying Nodes and Re- || 503 120 18 31 4 0 3 17
lationships
Advanced Querying Nodes and || 620 152 7 10 2 12 48 1
Relationships
Shortest Path 549 68 53 3 1 0 4
Advanced Pattern Matching 339 194 31 38 6 5 236 18
Graph Update with ON MERGE, ON || 456 89 71 0 2 0 0
CREATE
Graph Update with FOREACH 531 196 305 6 32 1 0 7
Simple Aggregation 235 287 64 235 40 3 0 69
Advanced Combined Queries, || 297 531 42 67 180 407 3 34
UNION
Advanced Combined Aggrega- || 474 591 52 78 113 6 83 72
tion
Advanced Aggregation using || 432 464 59 74 111 0 55 81
collect()

Table 6: Error submissions per Concept

each concept in Neo4j, as the results might be greatly affected by
the wording of the questions. In the future, we can further design
the course content to serve the purpose of comparison between
students’ performances in different classes.

Another limitation is the ceiling effects discussed in the previ-
ous section. Because the overall percentage of correctness among
students is high, failed numbers may be affected by random factors
based on individual’s learning preferences. We also only analyze
based on error messages without investigating the students’ sub-
missions, which isn’t sufficient for us to understand the semantic
errors. More qualitative analysis of submissions could give greater
insight into student’s semantic errors.

For future work, it would also be very intriguing if we could
partition the students based on their final grades in this course and
study their learning behaviors separately in comparison, which
may lead to further discussions on the correlation between how
students learn through their mistakes and how they perform on the

overall course content, providing educators with more insights. We
could also use a qualitative approach to interview several students
in the course, asking them to talk aloud through their thought
processes while solving the homework problems. This would give
great insights into why students make the mistakes that they do.

8 Conclusion

There has been almost no research up to this point on graph-
database education. In this paper, we build on our previous work
on SQL database learning to understand how students learn graph
databases. We use over 40 thousand students’ submissions to ana-
lyze syntactic errors students encounter while solving Neo4j home-
work problems. Our analysis shows that students often encounter
difficulties in understanding the syntax of WITH, even after working
through multiple questions requiring this construct.

Acknowledgments
This work supported in part by NSF IUSE grant 2021499.

References

(1]

[2

—

3

=

=
&

[10]

[11

[12]

[13

[14]

=
i)

[16

[17]

[18]

[19]

[20]

[21]

[22]
[23]

[25]

[26]

Alireza Ahadi, Vahid Behbood, Arto Vihavainen, Julia Prior, and Raymond Lister.
2016. Students’ Syntactic Mistakes in Writing Seven Different Types of SQL
Queries and Its Application to Predicting Students’ Success. In Proceedings of the
47th ACM Technical Symposium on Computing Science Education (SIGCSE ’16).
ACM, New York, NY, USA, 401-406. https://doi.org/10.1145/2839509.2844640
Alireza Ahadi, Julia Prior, Vahid Behbood, and Raymond Lister. 2015. A Quan-
titative Study of the Relative Difficulty for Novices of Writing Seven Different
Types of SQL Queries. In Proceedings of the 2015 ACM Conference on Innovation
and Technology in Computer Science Education (ITiCSE °15). ACM, New York, NY,
USA, 201-206. https://doi.org/10.1145/2729094.2742620

Abdussalam Alawini. 2018. Database Systems. https://alawini.com/teaching/
cs411-database-systems/

Ridha Alkhabaz, Seth Poulsen, Mei Chen, and Abdussalam Alawini. 2021. Insights
from Student Solutions to MongoDB Homework Problems. In Proceedings of the
2021 ACM Conference on Innovation and Technology in Computer Science Education
(ITiCSE °21). Association for Computing Machinery, New York, NY, USA, 7.
Peter Brusilovsky, Sergey Sosnovsky, Michael V. Yudelson, Danielle H. Lee,
Vladimir Zadorozhny, and Xin Zhou. 2010. Learning SQL Programming with
Interactive Tools: From Integration to Personalization. ACM Trans. Comput. Educ.
9, 4, Article 19 (Jan. 2010), 15 pages. https://doi.org/10.1145/1656255.1656257
Mike Buerli. 2012. The current state of graph databases. Department of Computer
Science, Cal Poly San Luis Obispo, mbuerli@ calpoly. edu 32, 3 (2012), 67-83.
Edgar F Codd. 2002. A relational model of data for large shared data banks. In
Software pioneers. Springer, 263-294.

Susan Davidson. 2020. Data Management in the Cloud.
www.seas.upenn.edu/~cis550/

Maria del Pilar Angeles. [n.d.]. NoSQL systems. https://www.coursera.org/learn/
nosql-databases

Diogo Fernandes and Jorge Bernardino. 2018. Graph Databases Comparison:
AllegroGraph, ArangoDB, InfiniteGraph, Neo4], and OrientDB.. In DATA. 373~
380.

Ghislain Fourny. 2019. Big Data. https://video.ethz.ch/lectures/d-infk/2019/
autumn/263-3010-00L.html

Brad Fowler, Joy Godin, and Margaret E Geddy. 2016. Teaching Case: Introduction
to NoSQL in a Traditional Database Course. J. Inf. Syst. Educ. 27 (2016), 99-104.
José Guia, Valéria Gongalves Soares, and Jorge Bernardino. 2017. Graph Databases:
Neo4j Analysis. In ICEIS.

José Guia, Valéria Gongalves Soares, and Jorge Bernardino. 2017. Graph Databases:
Neo4j Analysis.. In ICEIS (1). 351-356.

Amarnath Gupta. [n.d.]. Graph Analytics for Big Data. https://www.coursera.org/
learn/big-data-graph-analytics

Dimitrios Kotsifakos, Dimitrios Magetos, Alexandros Veletsos, and Christos
Douligeris. 2019. Teaching the Basic Commands of NoSQL Databases Using
Neo4;j in Vocational Education and Training (VET). European Journal of Engi-
neering Research and Science CIE (Apr. 2019), 13-18. https://doi.org/10.24018/
ejers.2019.0.CIE.1291

Josep Lluis Larriba-Pey, Norbert Martinez-Bazan, and David Dominguez-Sal.
2014. Introduction to Graph Databases. Springer International Publishing, Cham,
171-194. https://doi.org/10.1007/978-3-319-10587-1_4

Joao Ricardo Lourenco, Bruno Cabral, Paulo Carreiro, Marco Vieira, and Jorge
Bernardino. 2015. Choosing the right NoSQL database for the job: a quality
attribute evaluation. Journal of Big Data 2, 1 (2015), 1-26.

Davin McCall and Michael Kélling. 2014. Meaningful categorisation of novice pro-
grammer errors. In 2014 IEEE Frontiers in Education Conference (FIE) Proceedings.
IEEE, 1-8.

Justin J Miller. 2013. Graph database applications and concepts with Neo4;.
In Proceedings of the Southern Association for Information Systems Conference,
Atlanta, GA, USA, Vol. 2324.

Sriram Mohan. 2018. Teaching NoSQL Databases to Undergraduate Students:
A Novel Approach. In Proceedings of the 49th ACM Technical Symposium on
Computer Science Education (SIGCSE ’18). Association for Computing Machinery,
New York, NY, USA, 314-319. https://doi.org/10.1145/3159450.3159554

Neo4j, Inc. 2019. Neodj. https://neodj.com/

Seth Poulsen, Liia Butler, Abdussalam Alawini, and Geoffrey L. Herman. 2020.
Insights from Student Solutions to SQL Homework Problems. In Proceedings
of the 2020 ACM Conference on Innovation and Technology in Computer Science
Education (ITiCSE "20). Association for Computing Machinery, New York, NY,
USA, 404-410. https://doi.org/10.1145/3341525.3387391

Rabi Prasad, Padhy Manas, Ranjan Patra, and Suresh Chandra Satapathy. 2011.
RDBMS to NoSQL: Reviewing Some Next-Generation Non-Relational Databases.
, 15-30 pages.

Phyllis Reisner. 1981. Human Factors Studies of Database Query Languages: A
Survey and Assessment. ACM Comput. Surv. 13, 1 (March 1981), 13-31. https:
//doi.org/10.1145/356835.356837

Facts & Factors Research. Feb, 2020. Graph Database Market By Product Type
(Resource Description Framework and Property Graph), and By Application (BFSI, IT

https://

[27

[28

]

& Telecom, Healthcare & Life Sciences, Transportation & Logistics, Retail & Ecom-
merce, Government & Public, and Others): Global Industry Perspective, Compre-
hensive Analysis, and Forecast, 2019 - 2026. https://www.fnfresearch.com/graph-
database-market-by-product-type-resource-description

Kristin Tuft and David Maier. 2014. Data Management in the Cloud. http:
//datalab.cs.pdx.edu/education/clouddbms-win2014/page.php?content=index
Chad Vicknair, Michael Macias, Zhendong Zhao, Xiaofei Nan, Yixin Chen, and
Dawn Wilkins. 2010. A Comparison of a Graph Database and a Relational Data-
base: A Data Provenance Perspective. In Proceedings of the 48th Annual Southeast
Regional Conference (ACM SE ’10). Association for Computing Machinery, New
York, NY, USA, Article 42, 6 pages. https://doi.org/10.1145/1900008.1900067
Matthew West, Geoffrey L. Herman, and Craig Zilles. 2015. PrairieLearn:
Mastery-based Online Problem Solving with Adaptive Scoring and Recom-
mendations Driven by Machine Learning. In 2015 ASEE Annual Conference
& Exposition. ASEE Conferences, Seattle, Washington, 26.1238.1-26.1238.14.
https://peer.asee.org/24575.

https://doi.org/10.1145/2839509.2844640
https://doi.org/10.1145/2729094.2742620
https://alawini.com/teaching/cs411-database-systems/
https://alawini.com/teaching/cs411-database-systems/
https://doi.org/10.1145/1656255.1656257
https://www.seas.upenn.edu/~cis550/
https://www.seas.upenn.edu/~cis550/
https://www.coursera.org/learn/nosql-databases
https://www.coursera.org/learn/nosql-databases
https://video.ethz.ch/lectures/d-infk/2019/autumn/263-3010-00L.html
https://video.ethz.ch/lectures/d-infk/2019/autumn/263-3010-00L.html
https://www.coursera.org/learn/big-data-graph-analytics
https://www.coursera.org/learn/big-data-graph-analytics
https://doi.org/10.24018/ejers.2019.0.CIE.1291
https://doi.org/10.24018/ejers.2019.0.CIE.1291
https://doi.org/10.1007/978-3-319-10587-1_4
https://doi.org/10.1145/3159450.3159554
https://neo4j.com/
https://doi.org/10.1145/3341525.3387391
https://doi.org/10.1145/356835.356837
https://doi.org/10.1145/356835.356837
https://www.fnfresearch.com/graph-database-market-by-product-type-resource-description
https://www.fnfresearch.com/graph-database-market-by-product-type-resource-description
http://datalab.cs.pdx.edu/education/clouddbms-win2014/page.php?content=index
http://datalab.cs.pdx.edu/education/clouddbms-win2014/page.php?content=index
https://doi.org/10.1145/1900008.1900067

	Abstract
	1 Introduction
	2 Literature Review
	3 Introduction to Neo4j and Cypher
	4 Methods
	4.1 Data Collection
	4.2 Data Handling
	4.3 Overview of Homework Assignments
	4.4 The Journey of a Student Solving a Neo4j Problem
	4.5 Submission Categorization

	5 Results
	6 Discussion
	7 Limitations & Future Work
	8 Conclusion
	Acknowledgments
	References

