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Abstract

We present a compositional embedding framework that
infers not just a single class per input image, but a set of
classes, in the setting of one-shot learning. Specifically, we
propose and evaluate several novel models consisting of (1)
an embedding function f trained jointly with a “composi-
tion” function g that computes set union operations between
the classes encoded in two embedding vectors; and (2) em-
bedding f trained jointly with a “query” function h that
computes whether the classes encoded in one embedding
subsume the classes encoded in another embedding. In con-
trast to prior work, these models must both perceive the
classes associated with the input examples and encode the
relationships between different class label sets, and they are
trained using only weak one-shot supervision consisting of
the label-set relationships among training examples. Experi-
ments on the OmniGlot, Open Images, and COCO datasets
show that the proposed compositional embedding models
outperform existing embedding methods. Our compositional
embedding models have applications to multi-label object
recognition for both one-shot and supervised learning.

1. Introduction

Embeddings, especially as enabled by advances in deep
learning, have found widespread use in natural language
processing, object recognition, face identification and ver-
ification, speaker verification and diarization, i.e., who is
speaking when [28], and other areas. What embedding func-
tions have in common is that they map their input into a fixed-
length distributed representation (i.e., continuous space) that
facilitates more efficient and accurate [27] downstream anal-
ysis than simplistic representations such as one-of-k (one-
hot). Moreover, they are amenable to one-shot and few-shot
learning since the set of classes that can be represented does
not depend directly on the dimensionality of the embedding
space.

The focus of most previous research on embeddings has
been on cases where each example is associated with just
one class (e.g., the image contains only one person’s face).
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In contrast, we investigate the case where each example is
associated with not just one, but a subset of classes from a
universe S. Given 3 examples z,, x;, and ., the goal is to
embed each example so that questions of two types can be
answered (see Fig. 1): (1) Is the set of classes in example
x4 equal to the union of the classes in examples z;, and x.?
(2) Does the set of classes in example x, subsume the set of
classes in example x;,? For both these questions, we focus
on settings in which the classes present in the example must
be perceived automatically.

We approach this problem using compositional embed-
dings. Like traditional embeddings, we train a function f
that maps each example x € R™ into an embedding space
R™ so that examples with the same classes are mapped close
together and examples with different classes are mapped
far apart. Unlike traditional embeddings, our function f
is trained to represent the set of classes that is associated
with each example, so that questions about set union and
subsumption can be answered by comparing vectors in the
embedding space. We do not assume that the mechanism by
which examples are rendered from multiple classes is known.
Rather, the rendering process must be learned from training
data. We propose two models for one-shot learning, whereby
f is trained jointly with either a “composition” function g
that answers questions about set union, or a “query” function
h that answers question about subsumption (see Figure 1).
This work has applications to multi-object recognition in im-
ages: Given the embedding of an image x,, answer whether
z, contains the object(s) in another image x,, where the
latter could contain classes that were never observed during
training (i.e., one-shot learning). Storing just the embed-
dings but not the pixels could be more space-efficient and
provide a form of image compression.

Contributions: To our best knowledge, our model is
the first to perform multi-class one-shot learning using
only weak supervision consisting of label-set relationships
between training examples (in contrast to the strongly-
supervised training approach in [1]; see the last section in
Related Work). We explore how embedding functions can
be trained both to perceive multiple objects that are possi-
bly entangled (overlapping in space) and to represent them
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Figure 1: Overview: embedding function f is trained jointly
with either a composition function g or a query function
h. In particular, ¢g’s goal is to “compose” the embeddings
of two examples, containing classes 7 and U respectively,
to approximate the embedding of an example containing
classes T UU.

so that set operations can be conducted among embedded
vectors. We instantiate this idea in two ways — Model I for
set union (f&g) and Model II for set containment (f&h) —
and evaluate our models on visual domain. Our experiments
show promising results that compositional embeddings can
perceive and compute set relationships in highly challenging
perceptual contexts. Since one-shot learning for multi-label
classification is a new problem domain, we devise baseline
methods based on traditional (non-compositional) embed-
dings, and our experiments provide evidence that compo-
sitional embeddings offer significant accuracy advantages.
Finally, we explore applications of compositional embed-
dings to multi-label image classification for supervised (not
one-shot) learning settings (Model III).

Supp. Material includes appendix and code is available

in!.

2. Related Work

Embeddings: We distinguish two types of embeddings:
(1) “Perceptual” embeddings such as for vision (Facenet
[26]) and speech (x-vector [29]), where each class (e.g., per-
son whose voice was recorded or face was photographed)
may contain widely varying examples across emotion, light-
ing, background noise, etc. (2) Item embeddings for words
(word2vec [19], GloVe [22]), or for items & users in rec-
ommendation systems [5]; here, each class contains only
one exemplar by definition. Within the former, the task of
the embedding function is to map examples from the same

'https://drive.google.com/drive/folders/
1zjsK9DP3CUqwcVSNwDPshIxOV5hQwExt ?usp=sharing

class close together and examples from other classes far
apart. This often requires deep, non-linear transformations
to be successful. With item embeddings, the class of each
example does not need to be inferred; instead, the goal is
to give the embedded vectors geometric structure to reflect
co-occurrence, similarity in meaning, etc.

Compositional embeddings: Most prior work on com-
positionality in embedding models has focused on word
embeddings [23, 21, 14, 10]. More recent work has explored
“perceptual” embeddings: [6] combined embeddings from
different sources in multimodal training. [12] proposed a
model to infer the relative pose from embeddings of objects
in the same scene. [32] proposed a method to decompose
the attributes of one object into multiple representations. [2]
introduced a method for generating judgments about com-
positional structure in embeddings. [31] showed that com-
positional information was deeply related to generalization
in zero-shot learning. [30] proposed a way to train CNNs
to learn features that had compositional property so that ob-
jects could be separated better from their surroundings and
each other. [18] used compositional network embeddings
to predict whether two new nodes in a graph, which were
not observed during training, are adjacent, using node-based
features as predictors.

Multi-label few-shot learning: The last few years have
seen some emerging interest in the field of multi-label few-
shot and zero-shot learning. [25] proposed a network to
learn basic visual concepts and used compositional concepts
to represent singleton objects not seen during training. Liu
et al. [17] introduced an approach to infer compositional
language descriptions of video activities and achieved zero-
shot learning by composing seen descriptions. Huynh and
Elhamifar [9] proposed a visual attention-based method for
multi-label image classification that can generalize to classes
not seen during training, but it requires auxiliary semantic
vectors (e.g., attributes or word embeddings) associated with
the unseen classes. The most similar work to ours is by
Alfassy et al. [1]. Their model also tackles the problem
of generating latent representations that reflect the set of
labels associated with each input, and it also uses trained
set operations (union, intersection, difference) that operate
on pairs of examples. Algorithmically, our work differs
from Alfassy’s in several ways: Their method depends on
strong supervision whereby the embedding and composition
functions are trained using a fixed set of classes (they train
on 64 classes from COCO), such that each image in the
training set must be labeled w.r.t. all the classes in the entire
training set. Their method also requires an extra multi-label
classifier, and as a result they have 4 separate losses that
are applied at different points during training. In contrast,
our model requires only weak supervision: Each training
episode has its own subset of classes, and each image in
the episode must be labeled only w.r.t. that subset — there



is no need for it to be labeled w.r.t. all classes in the entire
training set, or even for the set of training classes to be finite.
Also, each of our models is trained using just 1 loss function.
To emphasize, their approach requires class-labeled data
for a fixed set of classes, whereas our approach requires
merely sets of examples that possess certain compositional
relationships.

3. Model I: Embedding / and Composition ¢

Assumptions and notation: For generality, we refer to
the data to be embedded (images, videos, etc.) simply as
“examples”. Let the universe of classes be S. From any sub-
set 7 C S, a ground-truth rendering function 7 : 25 5 R™
“renders” an example, i.e., 7(7) = x. Inversely, there is
also a ground-truth classification function ¢ : R" — 2°
that identifies the label set from the rendered example, i.e.,
c(x) = T. Neither r nor c is observed. We let e repre-
sent the embedding (i.e., output of f) associated with some
example containing classes 7 .

Model: Given two examples z, and x;, that are associated
with singleton sets {s} and {¢}, respectively, the hope is that,
for some third example x. associated with both classes {s, ¢},
we have

g(f(xa)’ f(xb)) ~ f(xc) (1)

Moreover, we hope that g can generalize to any number of
classes within the set S. For example, if example x4 is associ-
ated with a singleton set {u} and .. is an example associated
with {s,t,u}, then we hope g(g(/(za), f(x1)), f(2a)) ~
flze).

There are two challenging tasks that f and g must solve
cooperatively: (1) f has to learn to perceive multiple objects
that appear simultaneously and are possibly non-linearly en-
tangled with each other — all without knowing the rendering
process r of how examples are formed or how classes are
combined. (2) g has to define geometrical structure in the
embedding space to support set unions. One way to under-
stand our computational problem is the following: If f is
invertible, then ideally we would want g to compute

gler,eu) = f(r(c(fHer)) Ue(fH(ew)))) ()

In other words, one way that g can perform well is to learn
(without knowing r or c) to do the following: (1) invert each
of the two input embeddings; (2) classify the two correspond-
ing label sets; (3) render an example with the union of the
two inferred label sets; and (4) embed the result. Training
f and g jointly may also ensure systematicity of the em-
bedding space such that any combination of objects can be
embedded.

One-shot learning: Model I can be used for one-shot
learning on a set of classes ' C S not seen during train-
ing in the following way: We obtain k labeled examples
x1,..., 2 from the user, where each {s;} = c(x;) is the

singleton set formed from the ith element of A and |N| = k.
We call these examples the reference examples. (Note that
N typically changes during each episode; hence, these ref-
erence examples provide only a weak form of supervision
about the class labels.) We then infer which set of classes is
represented by a new example x’ using the following proce-
dure: (1) Compute the embedding of 2/, i.e., f(x’). (2) Use
f to compute the embedding of each singleton example z;,
ie.,eqy = f(z). (3) Fromegyy, ..., ey, estimate the em-
bedding of every subset T = {s1,...,s} C N according
to the recurrence relation:

€518} — g(e{sl,.“,sl,lbe{sl}) (3

Finally, (4) estimate the label of 2’ as
argmin |f(2') — er|3 4)
TCN

3.1. Training Procedure

Functions f and g are trained jointly: For each example x
associated with classes 7, we compute e from the singleton
reference examples according to Eq. 3. (To decide the order
in which we apply the recursion, we define an arbitrary
ordering over the elements of A/ and iterate accordingly.)
We then compute a triplet loss

max(0,[|f(z) = erll2 = |If(z) —er[la+€) (5)

for every 7' # T C N, where € is a small positive real
number [33, 26]. In practice, for each example =, we ran-
domly pick some 77 € 2V for comparison. Both f and g
are optimized jointly in backpropagation because the loss
function is applied to embeddings generated from both.
Note that we also tried another method of training f and
g with the explicit goal of encouraging g to map e and
ey to be close to ey . This can be done by training f
and g alternately, or by training them jointly in the same
backpropagation. However, this approach yielded very poor
results. A possible explanation is that g could fulfill its goal
by mapping all vectors to the same location (e.g., 0). Hence,
with this training method, a trade-off arose between g’s goal
and f’s goal (separating examples with distinct label sets).

3.2. Experiment 1: OmniGlot

We first evaluated our method on the OmniGlot dataset
[15]. OmniGlot contains handwritten characters from 50
different alphabets; in total it comprises 1623 symbols, each
of which was drawn by 20 people and rendered as a 64 x64
image. OmniGlot has been widely used in one-shot learning
research (e.g., [24, 3]).

In our experiment, the model is provided with one refer-
ence image for each singleton test class (5 classes in total).
Then, f and g are used to select the subset of classes that
most closely match the embedding of each test example



(Eq. 4). The goal is to train f and ¢ so that, on classes not
seen during training, the exact set of classes contained in
each test example can be inferred.

We assessed to what extent the proposed model can cap-
ture set union operations. To create each example with label
set 7, the rendering function r randomly picks one of the
20 exemplars from each class s € 7 and then randomly
shifts, scales, and rotates it. Then, r computes the pixel-wise
minimum across all the constituent images (one for each
element of 7). Finally, r adds Gaussian noise. See Fig. 2
and Supp. Material. Due to the complexity of each character
and the overlapping pen strokes in composite images, rec-
ognizing the class label sets is challenging even for humans,
especially for || = 3.

In this experiment, we let the total number of possible
symbols in each episode be k£ = 5. We trained f&g such
that the maximum class label set size was 3 (i.e., |T| < 3).
There are 25 such (non-empty) sets in total (5 singletons,
(g) = 10 2-sets, and (g) = 10 3-sets).

Architecture: For f, we used ResNet-18 [7] that was
modified to have 1 input channel and a 32-dimensional out-
put. For g, we tested several architectures. First, define
Symm(a, b; k) = Wia+ Wib+ Wa(a © b) to be a symmet-
ric function? (with parameter matrices W, W) of its two
examples a,b € R™ that produces a vector in R¥. We then
defined four possible architectures for g:

* Mean (gyjean): 4% — L2Norm.
¢ Bi-linear (g1;,): Symm(a, b; 32) — L2Norm.

* Bi-linear + FC (ginirc): Symm(a, b;32) — BN —
ReLU — FC(32) — L2Norm.

* DNN (gpnN): Symm(a, b;32) — BN — ReLU —
FC(32) — BN — ReLU — FC(32) — BN —
ReLU — FC(32) — L2Norm.

BN is batch normalization, and FC(n) is a fully-connected
layer with n neurons. We note that gyea 1S Similar to the
implicit compositionality found in word embedding models
[19].

Training: For each mini-batch, A was created by ran-
domly choosing 5 classes from the universe S (where
|S| = 944 in training set). Images from these classes are ren-
dered using function  from either singleton, 2-set class label
sets, or 3-set class label sets. In other words, 1 < |7] < 3
for all examples. See Supp. Material for details.

Testing: Testing data are generated similar to training
data, but none of the classes were seen during training. We
optimize Eq. 4 to estimate the label set for each test example.

2To be completely order-agnostic, g would have to be both symmet-
ric and associative. Symmetry alone does not ensure g(g(z,y),z) =
g(z, g(y, z)), but it provides at least some (if imperfect) invariance to
order.

Baselines: Because multi-label few-shot learning is a new
learning domain, and because none of the existing literature
exactly matches the assumptions of our model ([1] assumes
strongly supervised training labels, and [9] requires auxiliary
semantic labels for unseen classes), it was not obvious to
what baselines we should compare. When evaluating our
models, we sought to assess the unique contribution of the
compositional embedding above and beyond what traditional
embedding methods achieve. We compared to two baselines:

1. Traditional embedding f and average (TradEm): A
reasonable hypothesis is that a traditional embedding
function for one-shot learning trained on images with sin-
gleton class label sets can implicitly generalize to larger
label sets by interpolating among the embedded vectors.
Hence, we trained a traditional (i.e., non-compositional)
embedding f just on singletons using one-shot learning,
similar to [34, 11]. (Accuracy on singletons after training
on OmniGlot: 97.9% top-1 accuracy in classifying test
examples over 5 classes.) The embedding of a composite
image with label set 7 is then estimated using the mean
of the embeddings of each class in 7. In contrast to gyean
above, the f in this baseline is trained by itself, without
knowledge of how its embeddings will be composed.

Note: In our experiments, the models always needed to
pick the correct answer from 25 candidates. “1-sets” in
the table means the accuracy when the ground truth is a
singleton, but the model still sees 25 candidates.

2. Most frequent (MF): Always guess the most frequent
element in the test set. Since all classes occurred
equally frequently, this was equivalent to random guess-
ing. While simplistic, this baseline is useful to get a basic
sense of how difficult the task is.

Assessment: We assessed accuracy (%-correct) in 3
ways: (a) Accuracy, over all test examples, of identifying 7.
(b) Accuracy, over test examples for which | 7| = [ (where
I € {1,2,3}), of identifying 7. Note: we did not give the
models the benefit of knowing | 7| — each model predicted
the class label set over all T C AN such that | 7| < 3. This
can reveal whether a model is more accurate on examples
with fewer vs. more classes. (c) Accuracy, over all examples,
in determining just the number of classes in the set, i.e., | T]|.

Results: As shown in Table 1, the MF baseline accuracy
was just 4% for an exact (top-1) and 12% for top-3 match.
(Recall that the models did not “know” |7 | and needed to
pick the correct answer from all 25 possible label sets.)
Using the TradEm approach, accuracy increased to 25.5%
and 40.9%, respectively. All of the proposed f&g models
strongly outperformed the TradEm baseline, indicating that
training f jointly with a composition function is helpful.
For all the f&g approaches as well as the TradEm baseline,
model predictions were well above chance (MF) for all label
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Figure 2: Examples of the images from the OmniGlot dataset,
used in Experiments 1 and 2. Below each image is its asso-
ciated class label set 7.

set sizes, i.e., these approaches could all distinguish label
sets with more than one element at least to some degree.

In terms of architecture for composition function g, over-
all, the gri,, which contains a symmetric bi-linear layer be-
fore Lo-normalization, did best: 64.7% and 87.6% for top-1
and top-3 matches over all examples, respectively. This sug-
gests that composition by averaging alone is not optimal for
this task. However, adding more layers (i.e., gLin+FCs DNN)
did not help, especially when |7 | increases. It is possible
that the more complex g overfit, and that with regularization
or more training data the deeper models might prevail.

Discussion: Experiments 1 suggests that, for f&g com-
positionality for set union, a simple linear layer works best.
Function gy, despite the L2ZNorm at the end, might retain a
greater degree of associativity (i.e., (a+b)+c¢ = a+ (b+¢))
than deeper g functions. This property may be important
especially for larger 7, where ¢ is invoked multiple times to
create larger and larger set unions.

Scalability: The number of subsets is exponential in [N/,
which poses a scalability problem for both training and test-
ing, and hence Model I may in some sense be regarded more
as a proof-of-concept than practical algorithm. However, in
settings where the number of simultaneously present classes
is inherently small (e.g., in speaker diarization from audio
signals, it is rare for more than just a few people to speak
at once), the model can still be practical. In our Model 11
(Section 4), we overcome this scalability issue by switching

Experiment 1 (OmniGlot): Train with |7] < 3
Label Set Identification

f&g Approaches Baselines
IDNN |gLin+FC | 9Lin |JMean || TradEm| MF
All |Exact|50.6| 56.7 (64.7|52.8| 255 |4.0
Top-3|76.5| 81.7 |87.6/80.0|| 40.9 |12.0
1-sets|Exact|94.5| 96.0 |97.0/86.9|| 89.3 |4.0
Top-3{99.1| 99.4 199.6/95.4| 96.6 |12.0
2-sets|Exact|51.2| 54.6 |64.5/49.7| 154 |4.0
Top-3|82.9| 83.0 |87.9/81.4| 37.7 |12.0
3-sets|Exact|27.9| 39.1 |48.9|39.0 37 4.0
Top-3|58.7| 71.6 |81.1/71.1|| 16.4 |12.0

Set Size Determination
All \81.7\ 87.4 \90.1\71.4 H 44.9 \36.0

Table 1: Experiment 1 (OmniGlot): One-shot mean accuracy
(% correct) of Model I in inferring the label set of each
example exactly (top 1), within the top 3, and the size of
each label set. Set Size Determination measures the ability
to infer the set size. TradEm is similar to [34, 11], and MF
is based on random guessing.

from set union to set containment.

4. Model II: Embedding f and Query h

With this model we explore compositional embeddings
that implements set containment: In some applications, it
may be more useful to determine whether an example con-
tains an object or set of objects. For instance, we might
want to know whether a specific object is contained in an
image. Moreover, in some settings, it may be difficult dur-
ing training to label every example (image, video, etc.) for
the presence of all the objects it contains — for each exam-
ple, we might only know its labels for a subset of classes.
Here we propose a second type of compositional embedding
mechanism that tests whether the set of classes associated
with one example subsumes the set of classes associated
with another example. We implement this using a “query’
function h that takes two embedded examples as inputs:
h(f(za), f(xp)) = True <= c¢(ap) C ce(x,). Note that h
can be trained with only weak supervision w.r.t. the individ-
ual examples: it only needs to know pairwise information
about which examples “subsume” other examples. Com-
pared with typical multiple instance learning models, Model
IT deals with single samples instead of bags of instances.
Additionally, training procedure of Model II is more focused
on one-shot learning.

>

4.1. Training procedure

Functions f and h are trained jointly. Since h is not
symmetric, its first layer is replaced with a linear layer



Experiment 2 (OmniGlot)

honn|hiinsec| hiin || TradEm
Acc %| 71.8| 71.1 |50.8] 63.8
AUC | 80.0| 79.1 |51.4| 78.2

Table 2: One-shot learning results for Model II (with differ-
ent versions of A) on OmniGlot compared to a traditional
(non-compositional) embedding baseline (TradEm).

Wia + Wsb (see Supp. Material). In contrast to Model I,
reference examples are not needed; only the subset relation-
ships between label sets of pairs of examples are required.
We backpropagate a binary cross-entropy loss, based on
correctly answering the query defined above, through A to f.

4.2. Experiment 2: OmniGlot

Here we assess Model I on OmniGlot where size of class
label sets is up to 5, and we use the same rendering function
in Experiment 1. Let f(z,) and f(z;) be the two arguments
to h. For z,, each image can be associated with multiple
classes, from 1 class (i.e., c(z,) = {s1}) to 5 classes (i.e.,
c(xq) = {51, 82,...,55}), where all label sets occur with
equal frequency. For z;, (which is always a singleton in
this experiment), half are positive examples (i.e., such that
h(f(xa), f(xp)) = True) which are associated with classes
contained in x,, so that ¢(xp) C ¢(z,). The other half are
negative examples (h(f(z,), f(z)) = False), where xy, is
associated with some other singleton class ¢(zp) € ¢(zq).
Both the training set and test set have this configuration.

Architecture: The f was the same as in Experiment
1. For h, we tried several functions (ApnN, PLintEC, PLin)s
analogous to the different g from Section 3.2 except the final
layers are 1-dim sigmoids. See Supp. Materials.

Baseline: How would we tackle this problem without
compositional embeddings? We compared our method
with a traditional (non-compositional) embedding method
(TradEm) that is trained to separate examples according to
their association with just a single class. In particular, for
each composite example z, (i.e., |c(x4)| = 2), we picked
one of the two classes arbitrarily (according to some fixed
ordering on the elements of S); call this class s;. Then, we
chose a positive example x;, (such that ¢(z) = {s1}) and a
negative example x.. (such that c(z.) = {s3} Z c(x,)). We
then compute a triplet loss so the distance between f(x,)
and f(xp) is smaller than the distance between f(z,) and
f(z.), and backpropagate the loss through f. During testing,
we use f to answer a query—does ¢(z, ) contain ¢(z)?—by
thresholding (0.5) the distance between f(z,) and f(xp).

Results are shown in Table 2. Compositional embed-
dings, as implemented with a combination of f trained
jointly with either hpnn or Apintrc, outperform the TradEm
baseline, in terms of both % correct accuracy and AUC.

() (b) (© (d) (e)

Figure 3: An example image (top) of a running dog and
the lower body of a human. The image is padded to form a
square and downscaled. The composite embedding with f is
computed and then queried with h about the presence of the
object in images (a-e), containing dog, trousers, footwear,
countertop, and caterpillar. The query function h, when
given the embeddings of the top image and another image,
should return True for (a,b,c) and False for (d,e).

Unlike in Model I, where hy;, achieved the best results, f
trained jointly with hy;, is just slightly better than random
guess (50%). The deeper h worked better.

4.3. Experiment 3: Open Images

Here we trained and evaluated Model I on Open Images
[13]. This dataset contains a total of 16M bounding boxes
for 600 object classes on 1.9M images. This is a highly chal-
lenging problem: in the example in Fig. 3, f has to encode a
dog, trousers and footwear; then, given completely different
images of these classes (and others), h has to decide which
objects were present in the original image. In Open Images,
each image may contain objects from multiple classes, and
each object has a bounding box. We acquire singleton sam-
ples by using the bounding boxes to crop singleton objects
from images. In this experiment, 500 classes are selected for
training and 73 other classes for testing. The training and
evaluation settings are the same as Experiment 2.

Architectures: For f, we use ResNet-18 that was modi-
fied to have a 32-dimensional output. We used the same h
as in Experiment 2.

Baselines:

1. TradEmb: Similar to Model II, here we compare with
a non-compositional embedding trained using one-shot
learning on singleton classes (TradEm). All objects
are cropped according to their labeled bounding boxes
and then resized and padded to 256 x 256. All original
images are also resized and padded to the same size.

2. SlideWin: In Open Images, multiple objects co-occur
in the same image but rarely overlap. Hence, one might



Experiment 3 (Open Images)

hDNN hLin+FC hLin TradEm|[SlideWin
Acc %||76.9 | 76.8 |50.0{| 50.1 52.6
AUC |/ 854 85.2 |50.3|| 59.2 52.1

Table 3: One-shot learning results for Model II on Open
Images compared to either the TradEm or the SlideWin
baselines (similar to [8]).

wonder how well the following approach would work
(somewhat similar to [8] on one-shot detection): train a
traditional embedding model on examples of cropped
objects; then apply it repeatedly to many “windows”
within each test image (like a sliding window). To
answer a query about whether the test image contains
a certain object, compute the minimum (or median, or
other statistic) distance between the embedding of each
window and the embedding of the queried object.

We trained a baseline model using this approach (ac-
curacy in 2-way forced-choice task on pre-cropped
256x256 images not seen during training: 93.6%). To
answer queries, we partitioned each test image into a
rectangular grid of at most 4x4 cells (depending on
image aspect ratio). We then constructed windows cor-
responding to all possible contiguous subgrids (there
were between 70-100 windows for each image), and
then resized each window to 256x256 pixels. We found
that taking the minimum embedding distance worked
best.

Results are shown in Table 3. The compositional models
of f combined with either hpny and Ay jn.rc (though not with
hiin) achieve an AUC of over 85% and easily outperform
TradEm. It also outperforms the SlideWin method: even
though this baseline was trained to be highly accurate on
pre-cropped windows (as reported above), it was at-chance
when forced to aggregate across many windows and answer
the containment queries. It is also much more slower than
the compositional embedding approach.

Discussion: An interesting phenomenon we discovered
is that while the linear model gp ;, achieves the best results
in the f&g setting (set union), it is hardly better than ran-
dom chance for the f&Hh setting (set containment). On the
other hand, while gpny is worse than other trainable g func-
tions for set union, it outperforms the other functions for
set containment. One possible explanation is that training
f in Model I to distinguish explicitly between all possible
subsets causes f to become very powerful (relative to the f
in Model II), after which only a simple ¢ is needed for set
unions. The training procedure in Model II based on set con-
tainment might provide less information to f, thus requiring
g to be more powerful to compensate. Another possibility

ResNet 18 Embedding layer

fim flabel

Figure 4: Supervised multi-label image classification:
Left is a traditional approach based on a CNN with mul-
tiple independent sigmoid outputs. Right is the proposed
Model III with 3 jointly trained embeddings fim, flabel, & h.

is that, since g is applied recursively to construct unions, its
complexity must be kept small to avoid overfitting.

5. Model III (supervised): fims fiabels & I

Given the promising results on one-shot learning tasks for
object recognition, we wanted to assess whether composi-
tional embeddings could be beneficial for multi-label classi-
fication in standard supervised learning problems where the
testing and training classes are the same (i.e., not one-shot).
Specifically, we developed a model to answer questions of
the form, “Does image x contain an object of class y?”. The
intuition is that a compositional embedding approach might
make the recognition process more accurate by giving it
knowledge of which object is being queried before analyzing
the input image for its contents. Model III consists of three
functions trained jointly: (1) a deep embedding fi,, for the
input image x; (2) a linear layer fi,e to embed a one-hot
vector of the queried label y into a distributed representation;
and (3) a query function A that takes the two embeddings as
inputs and outputs the probability that the image contains
an object with the desired label. This approach enables the
combined model to modulate its perception of the objects
contained within an image based on the specific task, i.e., the
specific label that was queried, which may help it to perform
more accurately [20].

5.1. Experiment 4: COCO

To evaluate Model III, we conducted an experiment on the
Microsoft COCO dataset [16], which has |S| = 80 classes in
both the training and validation sets. During evaluation, half
the test labels are positive and the other half are negative.



Architecture: For fi,, we modify ResNet-18 (pretrained
on ImageNet) so that its last layer has dimension 128. The
embedding layer fi,ner maps 80-dimensional 1-hot labels
to 32-dimension real-valued embeddings. Then the im-
age embedding and label embedding are concatenated to
a 160-dimension vector and fed to the DNN h, consisting
of FC(160) — BN — ReLU — FC(136) — BN —
ReLU — FC(136) — Sigmoid(1), where Sigmoid(k) is
a sigmoidal layer with k independent probabilistic outputs.
The output of h represents the probability that image « con-
tains an object of class y. See Figure 4 (right). Binary cross-
entropy, summed over all classes, is used as the loss function.
Because of class imbalance, different weights are used for
positive and negative classes according to their numbers in
each image.

Baseline: We compare to a baseline consisting of a
pretrained ResNet-18 followed by a DNN (to enable a
fairer comparison with our Model III). The DNN consists
of FC(128) — BN — ReLU — FC(128) — BN —
ReLU — FC(128) — Sigmoid(80). The final layer gives
independent probabilistic predictions of the 80 classes. Note
that this DNN has almost exactly the same number of pa-
rameters as the DNN for Model III. For multi-label image
classification, we simply check whether the output for the
desired label is close to 1. See Figure 4 (left).

Results: The baseline accuracy using the ResNet attained
an accuracy of 64.0% and AUC of 67.7%. In contrast, the
compositional embedding approach ( fim& fiaber&h) achieved
a substantially higher accuracy of 82.0% and AUC is 90.8%.
This accuracy improvement may stem from the task mod-
ulation of the visual processing, or from the fact that the
compositional method was explicitly designed to answer
binary image queries rather than represent the image as a
|S|-dimensional vector (as with a standard object recognition
CNN).

6. Conclusions

We developed a compositional embedding mechanism
whereby the set of objects contained in the input data must
be both perceived and then mapped into a space such that
the set relationships — union (Model I) and containment
(Model IT) — between multiple embedded vectors can be in-
ferred. Importantly, the ground-truth rendering process for
how examples are rendered from their component classes
must implicitly be learned. This new domain of multi-label
one-shot learning is highly challenging but has interesting
applications to multi-object image recognition in computer
vision, as well as multi-person speaker recognition and di-
arization in computer audition. In contrast to prior work
[1, 9], our models require only relatively weak one-shot su-
pervision consisting of the label-set relationships among the
training examples. Our experiments on OmniGlot, Open Im-
ages, and COCO show promising results: the compositional

embeddings strongly outperformed baselines based on tradi-
tional embeddings. These results provide further evidence
that embedding functions can encode rich and complex struc-
ture about the multiple objects contained in the images they
came from. Our results also shed light on how the task struc-
ture influences the best design of the functions f, g, and h.
Finally, we demonstrated the potential of compositional em-
beddings for standard supervised tasks of multi-label image
recognition (Model III): task-specific perception of images,
as enabled by jointly trained embedding functions, can boost
perceptual accuracy.

One direction for future research — motivated by percep-
tual expertise research on, for example, how chess experts
perceive real vs. random game configurations [4] — is to take
better advantage of the class co-occurrence structure in a
specific application domain (e.g., which objects co-occur in
images).
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