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Abstract

There are known limitations in methods of detecting positive selection. Common methods do not enable differentiation
between positive selection and compensatory covariation, a major limitation. Further, the traditional method of calcu-
lating the ratio of nonsynonymous to synonymous substitutions (dN/dS) does not take into account the 3D structure of
biomacromolecules nor differences between amino acids. It also does not account for saturation of synonymous muta-
tions (dS) over long evolutionary time that renders codon-based methods ineffective for older divergences. This work
aims to address these shortcomings for detecting positive selection through the development of a statistical model that
examines clusters of substitutions in clusters of variable radii. Additionally, it uses a parametric bootstrapping approach
to differentiate positive selection from compensatory processes. A previously reported case of positive selection in the

leptin protein of primates was reexamined using this methodology.
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Introduction

Detecting lineage-specific changes in protein function, partic-
ularly those associated with positive directional selection, is
an important goal in comparative genomics. The most com-
mon method for achieving this goal is through estimation of
the ratio of nonsynonymous to synonymous nucleotide sub-
stitution rates in a lineage-specific manner (dN/dS or )
(Yang 1998), referred to as the branches model. A limitation
of this approach is that it averages across all sites in a protein-
encoding gene, which often results in tests that are under-
powered, particularly when selective pressures are localized to
a few sites in the alignment. In other words, if a few sites are
under heavy selective pressure resulting in high o values, this
may not be enough to outweigh low @ values from the re-
mainder of the alignment, and thus selection would not be
detected at all. A statistical method for detecting sitewise
variation on a branch was introduced with the branch-site
model (Yang and Nielsen 2002), in which a likelihood ratio
test was devised to compare an alternative model where @ is
allowed to vary at each amino acid site of the alignment,
versus a null model in which it does not. However, although
this model is an increase in biological realism, it still relies on
the ubiquitous site-independence assumption that is also
known to be biologically unrealistic.

Another class of approaches considers contiguous sets of
genetic material. In primary sequence space, that is, DNA
nucleotide sequences, one can examine windows of contigu-
ous sites to detect regions of a protein that have undergone

positive directional selection, whereas the remainder of the
protein is under negative selection (Endo et al. 1996; Fares
et al. 2002). However, this so-called “primary windowing”
does not account for the tertiary structure of the resulting
protein product that dictates which sites functionally interact
with each other. Because proteins fold into 3D structures and
selection acts upon functional sites in this context, tertiary
windowing was introduced as a structure-aware alternative to
finding functional regions under positive directional selection
using the dN/dS statistic (Suzuki and Gojobori 1999; Berglund
et al. 2005; Liang et al. 2006; Tusche et al. 2012). Additionally,
because the dN/dS ratio is dependent upon proper calcula-
tion of the synonymous site substitution rate, it is subject to
saturation and is only applicable over relatively short evolu-
tionary distances (Anisimova and Liberles 2012). Structure-
independent amino acid-based statistical methods have been
developed to characterize selection, including rate shift meth-
ods (Gu and Vander Velden 2002; Penn et al. 2008) and
mutation-selection models (Halpern and Bruno 1998;
Spielman and Wilke 2016; Teufel et al. 2018). A protein
structure-aware alternative that is applicable over much lon-
ger evolutionary periods and can be applied phylogenetically
is desirable.

Early methods that rely on clustering statistics have been
developed (Yu and Thorne 2006; Adams et al. 2017). Arnold
and coworkers have established the general destabilizing ef-
fect of adaptive substitutions on protein structure, which can
lead to compensation, observed as multiple substitutions
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(Bloom and Arnold 2009). However, it is also known that
mildly deleterious changes can fix as well, in particular in small
effective population size organisms and that these changes
will also result in compensation, an effect known by Pollock
and Goldstein as the Stokes shift (Pollock et al. 2012
Goldstein and Pollock 2016). In large effective population
size lineages, where the time to fixation is longer, compensa-
tory changes can arise in the same genetic background as the
original destabilizing change and these can fix together neu-
trally, an effect known as stochastic tunneling (Lynch 2010).

Beyond these effects, it is generally known that different
parts of a protein undergo substitution at different rates,
giving rise to a distribution of rates consistent with the
gamma distribution when tested using standard model selec-
tion software (Abascal et al. 2005; Yang 2007; Grahnen et al.
2011; Echave et al. 2016). Biologically, one explanation of this
observation is because position solvent accessible surface area
(SASA) and the contact number of a position (i.e, the num-
ber of neighboring sites within a given distance of that posi-
tion) are correlated with each other and are both known to
be drivers of amino acid substitution rate. Specifically, the
hydrophobic core of a protein evolves more slowly than
the hydrophilic surface (Lesk and Chothia 1980; Chothia
and Lesk 1982; Chi and Liberles 2016); thus, higher SASA
and contact number would both be associated with faster
substitution rates. A method that controls for this known
biology to identify statistically unexpected patterns of amino
acid substitution when positive selection is acting would be a
valuable tool in the comparative genomic toolbox.

Here, we introduce such a method. The method relies
upon the set of substitutions identified along the branch of
a phylogenetic tree mapped onto a 3D protein structure,
termed substitutional mapping (Bollback 2006; Monit and
Goldstein 2018). As a starting point, we consider the method
described by Yu and Thorne (2006) (henceforth referred to in
this work as “YT06,” after its authors’ surnames and the year
of publication) as it is a structure-aware method to detect
clusters of amino acid substitution in proteins along a lineage.
Specifically, it falls broadly into the category of tertiary win-
dowing methods, by considering spheres around each amino
acid residue in the context of the structure of the protein that
it is in. Positive selection is detected if there is an increase in
the number of substitutions that occur within each sphere
than would be expected by chance. We introduce a few
modifications to their method and provide a comparison of
Type | Error rates and Power to detect spatial clustering na-
ively, that is, without controlling for the effects mentioned
above. Additionally, and more crucially, we devise a novel
parametric bootstrap to explicitly account for the known
biology that would give rise to clustering in the absence of
positive selection. To accomplish this, we formulate a null
model of substitutions that is consistent with varying rates
due to SASA and contact distance and compensatory
changes in the absence of positive selection and utilize this
to construct a hypothesis test for positive selection against
this backdrop. We demonstrate that our method, referred to
in a likewise manner as “CKL20” throughout the remainder of
this manuscript, is able to avoid incorrectly identifying this
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backdrop as positive selection while maintaining high power
to detect positive selection under our simulation schemes.

New Approaches

We begin with a brief description of the aforementioned
YT06 method, following the notation in the original manu-
script: For a particular branch i of a phylogenetic tree, let N; be
the average number of the substitutions within each 10-A
sphere of every site of the protein. Then, via a permutation
test where each of T iterations is random a shuffling of which

sites are substituted, Nj(s) then represents the overall sample
mean of all of the means from each iteration; that is,

T t
_ Nt
Ni(S) Zt;] I . (1)
This is then used to standardize the original observed av-

erage count N; from the data,

N; — N;
Z; :fm, ()

Gi(s)

where g7s) is the sample standard deviation of all N} values. A
nonparametric P value is obtained by calculating analogous Z
values for each permuted N¢ value and obtaining the propor-
tion of these that are at least as extreme as the data Z; value.

Permutation Test

Our new permutation test is structurally similar to the YT06
approach but contains three key differences: 1) Rather than a
fixed radius of 10 A, we allow for the radius to be specified by
the user, with a default value of 7 A based on our findings (see
Results section). 2) In Yu and Thorne (2006), the statistic is
based upon the count of substitutions in each sphere,
whereas we consider the fraction of substitutions out of the
total number of sites in each sphere. 3) Rather than consid-
ering spheres around every site of the protein, we only con-
sider spheres around sites that were themselves substituted.

Parametric Bootstrap

Our greater contribution in this work is the development of
our novel parametric bootstrap, which represents a greater
shift in approach than the modifications to the YT06 permu-
tation test described in the previous subsection. Here, our
goal is to detect not just an increase in spatial clustering
compared with that expected by pure chance, but rather,
an increase beyond what would be expected due to the bi-
ological processes of SASA effects and compensatory pro-
cesses. To accomplish this, our parametric bootstrap
simulates a null model in which sites with higher SASA values
have an increased rate of substitution, while simultaneously
giving sites closer to existing substitutions an increased rate of
substitution as well. A statistically significant P value would
then only be observed if the data demonstrated an increase in
clustering beyond these effects. Additionally, as opposed to
testing for a mean shift, our test statistic here is based upon
the 95th quantile. Further details are in the Materials and
Methods section and the Discussion section.
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Results

3D Protein Structure

Figure 1 shows a graphical representation of one of the pro-
tein structures under consideration, with a PDB ID of 210Q
(Berman et al. 2000; Buczek and Horvath 2006) (see Materials
and Methods section for further details). Under the naive null
model, substitutions occur completely at random on the
structure, shown in panel 1. Shown in the middle panel is
the scenario for SASA + compensatory processes, which
serves as our null hypothesis for our parametric bootstrap.
The third scenario shows positive selection acting against a
backdrop of SASA + compensatory processes. Our ultimate
aim is to be able to detect this while simultaneously avoiding
false positives due to clustering that is solely due to SASA
effects and compensatory processes (middle panel of fig. 1).

Detection of Compensatory Clustering

For the detection of compensatory clustering, our proposed
test is still a permutation test similar to that of the YT06
method (Yu and Thorne 2006), but with important modifi-
cations. To confirm that our proposed permutation test is a
proper a-level test, we performed simulations under null sce-
narios to determine whether the Type | Error rates match
with the o-level cutoff. Using the previously mentioned 210Q
protein structure, we first simulated a naive null scenario in
which there is the complete absence of spatial clustering in
other words, this null scenario does not account for varying
rates due to SASA and compensatory changes, but rather
simply permutes the substitutions completely at random
across the protein structure. Simulations were performed
with a branch length of ~0.05 (in other words, an expected
number of substitutions of 0.05 per site). One aspect of the
YT06 method as described in Yu and Thorne (2006) is that it
uses a fixed radius of 10 A, which the authors acknowledge to
be somewhat arbitrarily chosen. We thus explore a variety of
radius sizes in our test, at 65,9, and 11.5 A, Type | Error rates
of CKL20 were all estimated to be in fact slightly below that of
YT06 and closer to the nominal & = 0.05 level, and there

Null SASA + compensatory

does not appear to be an association between Type | Error
rate and radius size, as shown in figure 2. The 95% confidence
intervals were calculated according to the length/coverage
optimal (LCO) method, as it was demonstrated to have de-
sirable statistical properties over the usual Wald method
(Schilling and Doi 2014). This suggests that our permutation
test is approximately a proper o-level test for any radius size,
at least within the range of 65-11.5 A that was investigated.

We also investigated the impact of radius choice on power
performance in our new permutation test, shown in figure 3.
In particular, we wanted to evaluate how our test would
perform against that of the 10 A fixed radius in YT06. For
this test, we simulated data under the alternative hypothesis
of clustering due to SASA effects and compensatory pro-
cesses. First, using the 210Q structure previously mentioned,
we notice maximum power attained at a radius of 7-75A
and gains in power over the YT06 approach at all radii up to
145 A. To see whether this trend would hold across different
structures, we chose two proteins in different protein super-
families (from 210Q and from each other), with PDB IDs of
1D4T (Poy et al. 1999) and 1AX8 (Zhang et al. 1997).
Substitutions were simulated again at a branch length of
~0.05, for each structure, and results are shown in the middle
and bottom panels of figure 3. Again, we note that in each
case, maximal power is attained with our method around 7 A,
suggesting that the 10 A of the YT06 method may not be the
optimal radius size to use. Furthermore, power gains over the
YT06 method are achieved in these two structures as well, as
shown.

Detection of Positive Selection

Here, we propose a new test to detect positive selection, and
specifically to distinguish positive selection from SASA effects
and compensatory processes known to occur in the absence
of selection. Our null hypothesis, then, includes the presence
of the aforementioned SASA effects and compensatory pro-
cesses. As the YT06 method was not designed to take this
into account, it will have an exorbitantly high Type | Error rate

3

Positive Selection +
SASA/compensatory

Fic. 1. Protein structure with PDB ID: 210Q. Substitutions are shown as black dots, and a potential sphere within which substitutions are to be
counted is shown as a circle. Representations of three scenarios are shown in the following panels: 1) Null, in which substitutions occur completely
at random with respect to structure. 2) SASA + compensatory, in which clustering may occur due to SASA effects and compensatory processes, as
illustrated by an increase of substitutions on the surface of the protein. 3) Positive selection against a backdrop of SASA effects and compensatory
processes, as illustrated by an even further increase in clustering beyond that shown in panel 2.
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when clustering is occurring due to this reason. This is shown
in comparison to the Type | Error rates of our proposed
method, in figure 4. All estimated Type | Error rates from
our method are fairly close to the a-level of 0.05. We note
briefly though that unlike previously, there does appear to be
a possible inverse relationship between Type | Error rate and
radius size, with estimated Type | Error rates trending down-
wards as the radius size increases. However, the 95% confi-
dence interval error bars are overlapping, thus suggesting that
this trend may not be statistically significant.

Thus, given that our proposed test can avoid signatures of
clustering that are due to forces aside from positive selection,

Simulations under naive null hypothesis

15

0.1

Estimated Type | Error rate
0.05
!
——
[ |
-
=+

e T T T T

YT06 6.5A 9A 11.5A

Fi. 2. Type | Error rates of permutation tests across three different
radius sizes, for both versions of our test and the original method in
Yu and Thorne (2006). The dotted horizontal line represents the o-
level of 0.05. Error bars represent 95% confidence intervals. The grayed
portion of the graph represents the CKL20 method, at three different
radii. Simulations were performed with 1,000 iterations.

our primary question of interest is whether it can then still
adequately detect positive selection. Alternative hypothesis
scenarios were simulated in which two, three, or four substitu-
tions were deterministically chosen on the surface of the 210Q
structure. These sites were selected iteratively, starting from the
site in the structure with the highest SASA value, and then the
three nearest sites to that original one, mimicking the evolution
of anew bindingsite in proteins such as that proposed for leptin
in mammalian species (Gaucher et al. 2003). The remainder of
substituted sites were simulated due to SASA effects and com-
pensatory processes. This was designed to mimic the overall
suite of biological forces that may induce clustering.

Results are shown in figure 5, summarized in a receiver
operating characteristic curve (ROC) manner, with Type |
Error rates (i.e, 1-specificity) on the x-axis and power (i.e,
sensitivity) on the y-axis. In the CKL20 method, we show
power and Type | Error rates at a radius of 6.5 A. When we
compare this with the YT06 method, we observe that in the
scenarios with three and four deterministically chosen sites,
our method outperforms YT06, attaining an estimated power
of 1. In the scenario with two deterministically chosen sites,
although on a strict power scale it does not perform as well as
YT06 (power of 0.297 vs. 0.599), we note that it is still further
from the diagonal line than YT06 for two deterministic sites,
indicating that it is overall a better discriminator of positive
selection against the backdrop of SASA and compensatory
processes. It is worth reiterating that this observation is oc-
curring in spite of the fact that our proposed method is
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Fic. 3. Investigating power versus radius size to detect clustering due to SASA and compensatory processes, across three different structures. The
gray horizontal line represents the power of the original method in Yu and Thorne (2006). Simulations were performed with 1,000 iterations.
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Null 2: SASA and compensatory processes

©
S

(0]

= W

JER T

[e]

o<

w o

g @ -

=

T N

3 N |

“‘EO

£ -

LIVJ)D E == £
e T T T T

YT06 6.5A 9A 11.5A

Fic. 4. Type | Error rates under the SASA + compensatory processes
scenario are shown for YT06 and across three different radii for our
method. The dotted horizontal line represents the o-level of 0.05. The
grayed portion of the graph represents the CKL20 method, at three
different radii. Error bars represent 95% confidence intervals.
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Fic. 5. An ROC-like graph illustrating the relationship between Type |
Error rates and Power. The diagonal dotted line represents a test that
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fundamentally ignoring clustering due to SASA effects and
compensatory processes and correctly treating these as noise,
whereas the YT06 method is treating these as signal (as seen
in its high Type | Error rate in fig. 4).

We note here that the choice of a radius of 6.5 A is due to
the fact that this radius provided the highest power in this
scenario. Radius size should be considered as a tuning param-
eter, for which an optimal value must be decided upon. In
practice, this should of course be done a priori. In order to
provide some guidance as to how this should be done, we
attempted to characterize optimal radius size with respect to
power based on any signatures of the data (such as the dis-
tribution of pairwise distances between substituted sites in
the null distribution of the parametric bootstrap) but were
unable to obtain any conclusive information. For more detail,
see supplementary figures S1and S2, Supplementary Material
online, in which we show that the distribution of pairwise
distances appears to differ when the optimal radius is differ-
ent, but not in a predictable manner. We also show results

Table 1. P Values from the YT06 Test, CKL20 Permutation Test, and
CKL20 Parametric Bootstrap.

CKL20 CKL20

YT06 Perm Test Par Boot
Hominoid 0.740 0.309 0.631
Macaca 0.262 0.077 0.552

from power analyses across a range of radii for all three
structures. We note also that in the 1D4T and 1AX8 struc-
tures, the power of our CKL20 method does in fact surpass
that of YT06 at certain radii, as shown in supplementary
figure S1, Supplementary Material online. Moreover, at all
radii, the power of our CKL20 method is fairly close to that
of YT06, while still avoiding false positives due to SASA effects
and compensatory processes as designed. This suggests that
in certain structures and perhaps at certain branch lengths,
the CKL20 method may in fact be far superior to YTO06 in the
sense that it can both avoid false positives due to SASA effects
and compensatory processes and also have greater ability to
detect when positive selection is occurring within this
backdrop.

Application to Empirical Data

The protein structure with PDB ID 1AX8 (investigated in
fig. 3) is the human leptin protein, which has been well stud-
ied and is known to be linked to obesity (Caro et al. 1996;
Mantzoros 1999). Particularly, evidence of positive adaptive
selection has been found in leptin on the branch of the evo-
lutionary history leading to apes (termed hominoids) as well
as the lineage leading to rhesus macaque (Benner et al. 2002;
Siltberg and Liberles 2002; Gaucher et al. 2003). Three differ-
ent lines of evidence were used in these studies. One study
examined increases in the clade-specific alpha value of the
gamma distribution, whereas the other two studies relied
upon dN/dS with tertiary windowing or with structural par-
titioning. We compare those results with analysis based upon
YT06 and CKL20. Here, we use the aligned set of sequences
used by Gaucher et al. (2003) and shown in figure 3 of their
manuscript, which, in addition to hominoids includes the
rhesus monkey (Macaca mulatta), cat, dog, sheep, and several
other mammals. We reanalyze the homonoid branch, and
also the branch leading to the rhesus macaque. Ancestral
sequences were reconstructed using the aaml program within
the PAML suite (Yang 2007), and then sites in which substi-
tutions were inferred to have occurred were analyzed using
the YT06 method, the CKL20 permutation test (radius of
70A), and the CKL20 parametric bootstrap (radius of
65 A). These radii were selected from the a priori optimiza-
tion for power as shown previously. The P values from these
three tests for the two branches of interest are shown in
table 1.

As seen in table 1, neither branch showed significant sup-
port for nonrandom clustering, although the permutation
test of CKL20 for the Macaca lineage presented a P value of
0.077. From this result, it is likely that many of the changes on
both branches were not driven by positive selection and that
any positive selection that did occur either was reflected by
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Fic. 6. Distributions of pairwise distances in the data, and that of simulated data with a strong signal for positive selection. The branch data from
the alignment are shown in dark gray, whereas the simulated distribution is shown in lighter gray.

changes that either were spatially separated over a larger
binding interface or were small in number (1 or 2
substitutions).

To investigate whether a statistically significant signal is to
have been expected by the CKL20 parametric bootstrap if
multiple changes driven by positive selection were tightly
clustered, we examine the distribution of pairwise distances
observed in our data and compare that with the distribution
of pairwise distances formed by a strong signal for positive
selection. Specifically, we simulate three sites in proximity that
are all substituted, followed by the remainder of substitutions
being simulated by probabilities according to their SASA and
compensatory processes (similar to what was performed for
fig. 5). In this case, the three deterministically chosen sites are
positions 117, 118, and 119, based on the finding by Gaucher
et al. (2003) that site 118 may be a strong target for functional
change. The distributions are shown in figure 6, in which we
observe that the amino acid substitutions observed on both
focal branches were much more distant from each other than
in the simulated case of strong selection at contiguous resi-
dues. It should further be noted that the lack of a significant
signal in either the YT06 or the CKL20 permutation test may
be driven by the large geometric space of the binding inter-
face suggested by Gaucher et al. (2003).

Discussion

Starting with the set of amino acid substitution that have
been mapped to a lineage of a phylogenetic tree using existing
methods, we present an approach aimed at differentiating
positive directional selection from neutral evolution and from
compensatory processes. Our overall aim in this work is to
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present a novel parametric bootstrap methodology to detect
positive selection in the presence of SASA considerations and
compensatory processes. As both processes can result in an
increase in clustering of substitutions in the 3D space of a
protein, methods that do not account for the SASA and
compensatory processes will result in highly inflated Type |
Error rates, as demonstrated here with YT06. Conversely, our
proposed method avoids signatures of clustering due to SASA
and compensatory processes by design; the question, then, is
whether it would still have enough power to pick up any
signal of positive selection. Our results show that it does.

However, some questions remain. Specifically, although we
have determined that a radius of 10A may not always be
optimal with regard to maximizing power, we have not de-
termined any specific patterns that could be used to estimate
what it should be a priori for any given protein structure.
Further work could attempt to characterize this, perhaps by
obtaining a larger sample of protein structures across an array
of protein families, and investigating power trends by radius
size on each one.

One of the major modifications to the YT06 method that
we propose is to construct our statistic based upon the 95th
quantile of the proportions of substituted sites within each
sphere, as opposed to a z-score statistic as proposed in Yu and
Thorne (2006). Specifically, we do this in our parametric boot-
strap test to distinguish between positive directional selection
versus SASA effects and compensatory processes. Our biolog-
ical rationale for doing so is because although data patterns
according to the alternative hypothesis should indeed result
in a mean shift, this is an indirect consequence of the mech-
anism that actually occurs. In other words, suppose that

0202 JoquianoN |z uo 1sanb Aq 61.62985/€SEE/ L L/2€/aI0IHE/aqW/W0D dNo"dlWapEd.//:SA)Y WOlj PAPEOjUMOQ



Detecting Signatures of Positive Selection - doi:10.1093/molbev/msaa161

MBE

selection acts upon some neighboring sites to produce a
functional change. Then, spheres that involve these selected
sites should produce an inflation, specifically in the upper tail
of the overall distribution since this signal will be most pro-
nounced in a few spheres that would be expected to have a
high proportion of substituted sites in them. In this way, we
believe that we are capturing the signal directly, as opposed to
a side-effect of the actual signal.

Conversely, our permutation test for clustering (e.g, shown
in figs. 2 and 3) does still rely on a mean shift rather than the
95th quantile. In this scenario, our biological rationale for
using the mean instead of the 95th quantile is that the
data-generating process is not quite as precisely targeted as
it is when selection is acting to produce a functional change as
described above. Thus, a mean shift will indeed be a more
direct consequence of the data patterns expected under the
alternative hypothesis. For more details, refer to the Materials
and Methods section and Supplementary Material online.

Positive selection acts on multiple residues arrayed at a
binding interface (Ames et al. 2016) or in an enzyme active
site (Lai et al. 2012). The distance dependence of those mul-
tiple residues under selection for function in contrast with the
background distribution of distances under selection for com-
pensatory processes will dictate the power and performance
of our proposed parametric bootstrap test. This was noted in
the analysis of cluster distributions on primate lineages of
leptin. In the example studied here, our method did not de-
tect significant evidence for clustering in leptin. On both
lineages that were studied, signatures of positive selection
did not correlate with structural clustering according to the
methods developed here. Ultimately, power will relate to the
number of changes driven by selection, their structural rela-
tionship to each other, and the total background changes on
the same branch. Further studies are suggested to evaluate
the geometric relationship of multiple residues selected for
the same adaptive feature.

Across the three folds studied in this work, the distribution
of residue distances (see supplementary fig. S2,
Supplementary Material online) varied with the optimal ra-
dius in our permutation test for clustering, but not in a pre-
dictable way. Further exploration of this across different levels
of hierarchy in CATH (Dawson et al. 2017) remains an avenue
for further investigation. Currently, our three structures of
210Q, 1D4T, and 1AX8 were chosen simply to represent
one from each of the main superfamilies of “Mainly Alpha,”
“Mainly Beta,” and “Alpha Beta.” One aspect of protein sta-
bility that was not accounted for in this study was the pres-
ence of negative design in protein structures and selective
pressures for folding and binding specificity (Noivirt-Brik et al.
2009; Liberles et al. 2011). Along these lines, the null distribu-
tion for our parametric bootstrap functions as a very simple
force field, one that is much more computationally tractable
than previous approaches (Grahnen et al. 2011) but that
captures the most important factors in sequence evolution
(Chi et al. 2018). This method fundamentally captures the
epistatic process in generating a null distribution for positive
directional selection, something that is important in differen-
tiating compensatory processes from selection that occurs at

a higher level of biological organization. Epistasis is under-
stood to give rise to conditional selection at a local level
that broadly leaves function unchanged (Eguchi et al. 2019).
Capturing underlying nondirectional and nonselective pro-
cesses that can masquerade as positive directional selection
is ultimately necessary for accurately identifying it.

Materials and Methods

Ascertainment of Structural Information
Protein structural information, including 3D Euclidean coor-
dinate values for each atom in the protein, was obtained from
the Protein Data Bank at rcsb.org (Berman et al. 2000), for the
structures with PDB IDs 210Q, 1D4T, and 1AX8 (Zhang et al.
1997; Poy et al. 1999; Buczek and Horvath 2006). Proteins
were chosen from different superfamilies to represent a range
of different features that may be present in the structure.
Within each structure, each amino acid’s putative location
was represented by the coordinates of its respective central
carbon atom for our analyses. The null distribution generated
by our parametric bootstrap (see below) relies on knowledge
of SASA; thus, solvent accessibility of each amino acid in the
structure was calculated with the DSSP program, via the on-
line interface at mrs.cmbi.umcn.nl (Kabsch and Sander 1983;
Touw et al. 2015). In order to obtain the relative solvent
accessibility for each amino acid, the maximum possible sol-
vent accessibility of each amino acid type was assigned
according to Tien et al. (2013). Each amino acid’s solvent
accessibility was thus divided by its maximum possible sol-
vent accessibility to obtain the final SASA values used for
analyses.

Permutation Test

Implementation of the YT06 method was written in R
according to the description in Yu and Thorne (2006), for
inference on one branch of a tree, as described above in the
New Approaches section. Our novel permutation test, de-
scribed textually there as well, proceeds according to the
pseudocode outlined in Algorithm 1.

Simulating SASA Effects and Compensatory Processes
Our permutation test is intended for detecting clustering that
may occur due to rate variation that may arise due to SASA,
and compensatory processes dictating that sites near
substituted sites have an increased probability of themselves
substituting. To simulate this, we first obtain SASA informa-
tion for the structure as described above. Then, the discrete
gamma model as originally described in Yang and Nielsen
(2002) and frequently used to model rate variation was
used to obtain putative varying rates of each site of the
structure.

Specifically, we used the gamma distribution with o
=0.80 and f = 1.0, discretized into four categories.
Accordingly, the 0.125, 0.375, 0.625, and 0.875 quantiles
from this distribution were obtained, and then scaled so
that their true mean is equal to 1. Each site was then mapped
to one of these gamma quantile values based on its SASA
value, dependent upon which quartile the SASA value was in.
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Algorithm 1 CKL20 Permutation Test
Input:
Cdata: Central carbon atoms from PDB
subs: Site positions of substitutions
radius: Sphere radius size in A
reps: Number of iterations
Output:
Permutation test P value
Perform:
num.neighbors <- number of other residues
within radius for each residue
data.fractions <- fraction of residues
within radius of each substitution
that are also substituted
data.mean <- mean(data.fractions)
foriin 1: reps do
permuted.data <- Cdata with
substituted site positions shuffled at
random
Calculate perm.fractions in the
same manner as data.fractions,
but on permuted.data
perm.mean([i] <- mean(perm.fractions)
end for
return: sum(perm.mean > data.mean)/reps

In other words, the sites with the smallest 25% of all SASA
values were given the smallest gamma quantile value; the sites
with the next highest 25% of all SASA values were given the
second gamma quantile value, and so on. These quantile
values were then scaled to sum to 1 across all sites, so that
they could be used directly as probabilities of substitution.
These probabilities were then used to make a single draw
from a multinomial distribution with n equaling the number
of sites, and probability vector equal to the scaled quantile
values. This draw represents the first substitution in the
protein.

Next, compensatory processes were simulated by consid-
ering the distance from existing substitutions. The smallest
distance to any existing substitution was obtained for every
site on the protein. The goal here is to mimic biophysical
interactions between residue sites that might cause sites
near other substituted sites to have an increased probability
of themselves substituting. To mimic this, we calculate the
square of the reciprocal of each distance, and then these
values were scaled to add to 1. The scaled quantile values
and scaled were then added together, with the product sub-
tracted, mimicking the probability of the union of two inde-
pendent events. These probabilities were then again used to
make another single draw from a multinomial distribution, to
obtain the next substitution. After each substitution, the min-
imum distance to any existing substitution was recalculated,
and substitutions proceeded until the desired branch length
was obtained. For further details, see pseudocode in
Algorithm 2 in the following subsection and also the actual
code supplied in the Supplementary Material online.
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Algorithm 2 CKL20 Parametric Bootstrap
Input:
Cdata: Central carbon atoms from PDB
subs: Site positions of substitutions
radius: Sphere radius size in A
B: Number of bootstrap iterations
Output:
Parametric bootstrap P value
Perform:
n.subs <- length(subs)
gam([1:4] <- T4 5 ,(0.125,0.375,0.625, 0.875)
scaled.gam <- gam/sum(gam)
sasa.prob <- scaled.gam values mapped to each site
based on its SASA value quartile
foriin 1: B do
subs[1] <- rmultinom(1, sasa.prob)
for j in 2: n.subs do
mindist <- vector of distances from each site to
nearest substituted site
dist.prob <- min.dist/sum(min.dist)
new.prob <- sasa.prob + dist.prob
- sasa.prob*dist.prob
subs[j] <- rmultinom(1, new.prob)
end for
boot fractions <- fraction of residues within radius of
each substitution that are also substituted
boot.95th[i] <- quantile(boot.fractions , 0.95)
end for
data.fractions <- fraction of residues within radius of
each substitution that are also substituted
data.95th <- quantile(data.fractions, 0.95)
return: sum(boot.95th > data.95th)/B

Parametric Bootstrap
The core of our novel parametric bootstrap is its null distri-
bution generated by the same simulation described above
and outlined in the pseudocode shown in Algorithm 2. To
generate the null distribution for the test for positive direc-
tional selection that avoids inflated Type | Errors caused by
the signals of SASA and compensatory processes, this simu-
lation is performed repeatedly (B = 1,000 in our trials). Then,
our test statistic is the 0.95 quantile of the proportion of
substituted sites within each sphere.Rather than using the
most simple order statistic estimator of the 0.95 quantile
(e.g, with 20 data values, the 19th order statistic would be
the estimate of the 0.95 quantile), we use a bias-reduced
quantile estimator described as Definition 7 in Hyndman
and Fan (1996) and designated as type =7 in the quantile
function in R. This is in fact the default setting in the quantile
function and has advantages over other quantile estimators;
its definition can be found in the quantile function
documentation.

In this manner, we generate the sampling distribution un-
der the null hypothesis for the 0.95 quantile of the proportion
of substituted sites in each sphere for a given structure. The P
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value is then the proportion of this null distribution that is at
least as extreme as the 095 quantile from the data
distribution.

Software

An R package called evolclustR is currently under preparation
for submission to the Comprehensive R Archive Network,
and all code used to run simulations in this manuscript are
available at github.com/peterbchi/evolclustR. In parallel, py-
thon code for the same tasks is also under development and
is available at github.com/wes-kosater/Py-evolclustR.

Supplementary Material

Supplementary data are available at Molecular Biology and
Evolution online.
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