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Abstract

There are known limitations in methods of detecting positive selection. Common methods do not enable differentiation
between positive selection and compensatory covariation, a major limitation. Further, the traditional method of calcu-

lating the ratio of nonsynonymous to synonymous substitutions (dN/dS) does not take into account the 3D structure of

biomacromolecules nor differences between amino acids. It also does not account for saturation of synonymous muta-
tions (dS) over long evolutionary time that renders codon-based methods ineffective for older divergences. This work

aims to address these shortcomings for detecting positive selection through the development of a statistical model that

examines clusters of substitutions in clusters of variable radii. Additionally, it uses a parametric bootstrapping approach
to differentiate positive selection from compensatory processes. A previously reported case of positive selection in the

leptin protein of primates was reexamined using this methodology.
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Introduction

Detecting lineage-specific changes in protein function, partic-
ularly those associated with positive directional selection, is

an important goal in comparative genomics. The most com-

mon method for achieving this goal is through estimation of
the ratio of nonsynonymous to synonymous nucleotide sub-

stitution rates in a lineage-specific manner (dN/dS or x)
(Yang 1998), referred to as the branches model. A limitation

of this approach is that it averages across all sites in a protein-

encoding gene, which often results in tests that are under-
powered, particularly when selective pressures are localized to

a few sites in the alignment. In other words, if a few sites are

under heavy selective pressure resulting in highx values, this
may not be enough to outweigh low x values from the re-

mainder of the alignment, and thus selection would not be
detected at all. A statistical method for detecting sitewise

variation on a branch was introduced with the branch-site

model (Yang and Nielsen 2002), in which a likelihood ratio
test was devised to compare an alternative model wherex is

allowed to vary at each amino acid site of the alignment,

versus a null model in which it does not. However, although
this model is an increase in biological realism, it still relies on

the ubiquitous site-independence assumption that is also
known to be biologically unrealistic.

Another class of approaches considers contiguous sets of

genetic material. In primary sequence space, that is, DNA
nucleotide sequences, one can examine windows of contigu-

ous sites to detect regions of a protein that have undergone

positive directional selection, whereas the remainder of the

protein is under negative selection (Endo et al. 1996; Fares

et al. 2002). However, this so-called “primary windowing”

does not account for the tertiary structure of the resulting

protein product that dictates which sites functionally interact

with each other. Because proteins fold into 3D structures and

selection acts upon functional sites in this context, tertiary

windowingwas introduced as a structure-aware alternative to

finding functional regions under positive directional selection

using the dN/dS statistic (Suzuki and Gojobori 1999; Berglund

et al. 2005; Liang et al. 2006; Tusche et al. 2012). Additionally,

because the dN/dS ratio is dependent upon proper calcula-

tion of the synonymous site substitution rate, it is subject to

saturation and is only applicable over relatively short evolu-

tionary distances (Anisimova and Liberles 2012). Structure-

independent amino acid-based statistical methods have been

developed to characterize selection, including rate shift meth-

ods (Gu and Vander Velden 2002; Penn et al. 2008) and

mutation-selection models (Halpern and Bruno 1998;

Spielman and Wilke 2016; Teufel et al. 2018). A protein

structure-aware alternative that is applicable over much lon-

ger evolutionary periods and can be applied phylogenetically

is desirable.
Early methods that rely on clustering statistics have been

developed (Yu and Thorne 2006; Adams et al. 2017). Arnold

and coworkers have established the general destabilizing ef-

fect of adaptive substitutions on protein structure, which can

lead to compensation, observed as multiple substitutions
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(Bloom and Arnold 2009). However, it is also known that
mildly deleterious changes can fix as well, in particular in small
effective population size organisms and that these changes
will also result in compensation, an effect known by Pollock
and Goldstein as the Stokes shift (Pollock et al. 2012;
Goldstein and Pollock 2016). In large effective population
size lineages, where the time to fixation is longer, compensa-
tory changes can arise in the same genetic background as the
original destabilizing change and these can fix together neu-
trally, an effect known as stochastic tunneling (Lynch 2010).

Beyond these effects, it is generally known that different
parts of a protein undergo substitution at different rates,
giving rise to a distribution of rates consistent with the
gamma distribution when tested using standard model selec-
tion software (Abascal et al. 2005; Yang 2007; Grahnen et al.
2011; Echave et al. 2016). Biologically, one explanation of this
observation is because position solvent accessible surface area
(SASA) and the contact number of a position (i.e., the num-
ber of neighboring sites within a given distance of that posi-
tion) are correlated with each other and are both known to
be drivers of amino acid substitution rate. Specifically, the
hydrophobic core of a protein evolves more slowly than
the hydrophilic surface (Lesk and Chothia 1980; Chothia
and Lesk 1982; Chi and Liberles 2016); thus, higher SASA
and contact number would both be associated with faster
substitution rates. A method that controls for this known
biology to identify statistically unexpected patterns of amino
acid substitution when positive selection is acting would be a
valuable tool in the comparative genomic toolbox.

Here, we introduce such a method. The method relies
upon the set of substitutions identified along the branch of
a phylogenetic tree mapped onto a 3D protein structure,
termed substitutional mapping (Bollback 2006; Monit and
Goldstein 2018). As a starting point, we consider the method
described by Yu and Thorne (2006) (henceforth referred to in
this work as “YT06,” after its authors’ surnames and the year
of publication) as it is a structure-aware method to detect
clusters of amino acid substitution in proteins along a lineage.
Specifically, it falls broadly into the category of tertiary win-
dowing methods, by considering spheres around each amino
acid residue in the context of the structure of the protein that
it is in. Positive selection is detected if there is an increase in
the number of substitutions that occur within each sphere
than would be expected by chance. We introduce a few
modifications to their method and provide a comparison of
Type I Error rates and Power to detect spatial clustering na-
ively, that is, without controlling for the effects mentioned
above. Additionally, and more crucially, we devise a novel
parametric bootstrap to explicitly account for the known
biology that would give rise to clustering in the absence of
positive selection. To accomplish this, we formulate a null
model of substitutions that is consistent with varying rates
due to SASA and contact distance and compensatory
changes in the absence of positive selection and utilize this
to construct a hypothesis test for positive selection against
this backdrop. We demonstrate that our method, referred to
in a likewise manner as “CKL20” throughout the remainder of
this manuscript, is able to avoid incorrectly identifying this

backdrop as positive selection while maintaining high power

to detect positive selection under our simulation schemes.

New Approaches

We begin with a brief description of the aforementioned

YT06 method, following the notation in the original manu-

script: For a particular branch i of a phylogenetic tree, letNi be

the average number of the substitutions within each 10-Å

sphere of every site of the protein. Then, via a permutation

test where each of T iterations is random a shuffling of which

sites are substituted, �NiðSÞ then represents the overall sample

mean of all of the means from each iteration; that is,

�NiðSÞ ¼

PT
t¼1 N

t
i

T
: (1)

This is then used to standardize the original observed av-

erage count Ni from the data,

Zi ¼
Ni � �NiðSÞ

~riðSÞ
; (2)

where ~riðSÞ is the sample standard deviation of allNt
i values. A

nonparametric P value is obtained by calculating analogous Z

values for each permuted Nt
i value and obtaining the propor-

tion of these that are at least as extreme as the data Zi value.

Permutation Test
Our new permutation test is structurally similar to the YT06

approach but contains three key differences: 1) Rather than a

fixed radius of 10 Å, we allow for the radius to be specified by

the user, with a default value of 7 Å based on our findings (see

Results section). 2) In Yu and Thorne (2006), the statistic is

based upon the count of substitutions in each sphere,

whereas we consider the fraction of substitutions out of the

total number of sites in each sphere. 3) Rather than consid-

ering spheres around every site of the protein, we only con-

sider spheres around sites that were themselves substituted.

Parametric Bootstrap
Our greater contribution in this work is the development of

our novel parametric bootstrap, which represents a greater

shift in approach than the modifications to the YT06 permu-

tation test described in the previous subsection. Here, our

goal is to detect not just an increase in spatial clustering

compared with that expected by pure chance, but rather,

an increase beyond what would be expected due to the bi-

ological processes of SASA effects and compensatory pro-

cesses. To accomplish this, our parametric bootstrap

simulates a null model in which sites with higher SASA values

have an increased rate of substitution, while simultaneously

giving sites closer to existing substitutions an increased rate of

substitution as well. A statistically significant P value would

then only be observed if the data demonstrated an increase in

clustering beyond these effects. Additionally, as opposed to

testing for a mean shift, our test statistic here is based upon

the 95th quantile. Further details are in the Materials and

Methods section and the Discussion section.
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Results

3D Protein Structure
Figure 1 shows a graphical representation of one of the pro-

tein structures under consideration, with a PDB ID of 2I0Q
(Berman et al. 2000; Buczek and Horvath 2006) (see Materials
andMethods section for further details). Under the naive null

model, substitutions occur completely at random on the
structure, shown in panel 1. Shown in the middle panel is
the scenario for SASA þ compensatory processes, which
serves as our null hypothesis for our parametric bootstrap.

The third scenario shows positive selection acting against a
backdrop of SASA þ compensatory processes. Our ultimate
aim is to be able to detect this while simultaneously avoiding
false positives due to clustering that is solely due to SASA

effects and compensatory processes (middle panel of fig. 1).

Detection of Compensatory Clustering
For the detection of compensatory clustering, our proposed
test is still a permutation test similar to that of the YT06

method (Yu and Thorne 2006), but with important modifi-
cations. To confirm that our proposed permutation test is a
proper a-level test, we performed simulations under null sce-
narios to determine whether the Type I Error rates match

with the a-level cutoff. Using the previously mentioned 2I0Q
protein structure, we first simulated a naive null scenario in
which there is the complete absence of spatial clustering; in

other words, this null scenario does not account for varying
rates due to SASA and compensatory changes, but rather
simply permutes the substitutions completely at random
across the protein structure. Simulations were performed

with a branch length of �0.05 (in other words, an expected
number of substitutions of 0.05 per site). One aspect of the
YT06 method as described in Yu and Thorne (2006) is that it

uses a fixed radius of 10 Å, which the authors acknowledge to
be somewhat arbitrarily chosen. We thus explore a variety of
radius sizes in our test, at 6.5, 9, and 11.5 Å. Type I Error rates
of CKL20 were all estimated to be in fact slightly below that of

YT06 and closer to the nominal a ¼ 0:05 level, and there

does not appear to be an association between Type I Error

rate and radius size, as shown in figure 2. The 95% confidence

intervals were calculated according to the length/coverage

optimal (LCO) method, as it was demonstrated to have de-

sirable statistical properties over the usual Wald method

(Schilling and Doi 2014). This suggests that our permutation

test is approximately a proper a-level test for any radius size,

at least within the range of 6.5–11.5 Å that was investigated.
We also investigated the impact of radius choice on power

performance in our new permutation test, shown in figure 3.

In particular, we wanted to evaluate how our test would

perform against that of the 10 Å fixed radius in YT06. For

this test, we simulated data under the alternative hypothesis

of clustering due to SASA effects and compensatory pro-

cesses. First, using the 2I0Q structure previously mentioned,

we notice maximum power attained at a radius of 7–7.5 Å

and gains in power over the YT06 approach at all radii up to

14.5 Å. To see whether this trend would hold across different

structures, we chose two proteins in different protein super-

families (from 2I0Q and from each other), with PDB IDs of

1D4T (Poy et al. 1999) and 1AX8 (Zhang et al. 1997).

Substitutions were simulated again at a branch length of

�0.05, for each structure, and results are shown in themiddle

and bottom panels of figure 3. Again, we note that in each

case, maximal power is attained with ourmethod around 7 Å,

suggesting that the 10 Å of the YT06 method may not be the

optimal radius size to use. Furthermore, power gains over the

YT06 method are achieved in these two structures as well, as

shown.

Detection of Positive Selection
Here, we propose a new test to detect positive selection, and

specifically to distinguish positive selection from SASA effects

and compensatory processes known to occur in the absence

of selection. Our null hypothesis, then, includes the presence

of the aforementioned SASA effects and compensatory pro-

cesses. As the YT06 method was not designed to take this

into account, it will have an exorbitantly high Type I Error rate

FIG. 1. Protein structure with PDB ID: 2I0Q. Substitutions are shown as black dots, and a potential sphere within which substitutions are to be

counted is shown as a circle. Representations of three scenarios are shown in the following panels: 1) Null, in which substitutions occur completely

at randomwith respect to structure. 2) SASAþ compensatory, in which clusteringmay occur due to SASA effects and compensatory processes, as

illustrated by an increase of substitutions on the surface of the protein. 3) Positive selection against a backdrop of SASA effects and compensatory

processes, as illustrated by an even further increase in clustering beyond that shown in panel 2.
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when clustering is occurring due to this reason. This is shown
in comparison to the Type I Error rates of our proposed
method, in figure 4. All estimated Type I Error rates from
our method are fairly close to the a-level of 0.05. We note
briefly though that unlike previously, there does appear to be
a possible inverse relationship between Type I Error rate and
radius size, with estimated Type I Error rates trending down-
wards as the radius size increases. However, the 95% confi-
dence interval error bars are overlapping, thus suggesting that
this trend may not be statistically significant.

Thus, given that our proposed test can avoid signatures of
clustering that are due to forces aside from positive selection,

our primary question of interest is whether it can then still

adequately detect positive selection. Alternative hypothesis

scenarios were simulated inwhich two, three, or four substitu-

tions were deterministically chosen on the surface of the 2I0Q

structure.Thesesiteswereselectediteratively, starting fromthe

site in the structure with the highest SASA value, and then the

threenearestsitestothatoriginalone,mimickingtheevolution

ofanewbindingsite inproteinssuchasthatproposedfor leptin

inmammalian species (Gaucher et al. 2003). The remainder of

substituted siteswere simulateddue to SASAeffects and com-

pensatory processes. This was designed to mimic the overall

suite of biological forces that may induce clustering.
Results are shown in figure 5, summarized in a receiver

operating characteristic curve (ROC) manner, with Type I

Error rates (i.e., 1-specificity) on the x-axis and power (i.e.,

sensitivity) on the y-axis. In the CKL20 method, we show

power and Type I Error rates at a radius of 6.5 Å. When we

compare this with the YT06 method, we observe that in the

scenarios with three and four deterministically chosen sites,

ourmethod outperforms YT06, attaining an estimated power

of 1. In the scenario with two deterministically chosen sites,

although on a strict power scale it does not perform as well as

YT06 (power of 0.297 vs. 0.599), we note that it is still further

from the diagonal line than YT06 for two deterministic sites,

indicating that it is overall a better discriminator of positive

selection against the backdrop of SASA and compensatory

processes. It is worth reiterating that this observation is oc-

curring in spite of the fact that our proposed method is
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FIG. 3. Investigating power versus radius size to detect clustering due to SASA and compensatory processes, across three different structures. The

gray horizontal line represents the power of the original method in Yu and Thorne (2006). Simulations were performed with 1,000 iterations.
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FIG. 2. Type I Error rates of permutation tests across three different
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level of 0.05. Error bars represent 95% confidence intervals. The grayed
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radii. Simulations were performed with 1,000 iterations.
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fundamentally ignoring clustering due to SASA effects and

compensatory processes and correctly treating these as noise,

whereas the YT06 method is treating these as signal (as seen

in its high Type I Error rate in fig. 4).
We note here that the choice of a radius of 6.5 Å is due to

the fact that this radius provided the highest power in this

scenario. Radius size should be considered as a tuning param-

eter, for which an optimal value must be decided upon. In

practice, this should of course be done a priori. In order to

provide some guidance as to how this should be done, we

attempted to characterize optimal radius size with respect to

power based on any signatures of the data (such as the dis-

tribution of pairwise distances between substituted sites in

the null distribution of the parametric bootstrap) but were

unable to obtain any conclusive information. For more detail,

see supplementary figures S1 and S2, Supplementary Material

online, in which we show that the distribution of pairwise

distances appears to differ when the optimal radius is differ-

ent, but not in a predictable manner. We also show results

from power analyses across a range of radii for all three

structures. We note also that in the 1D4T and 1AX8 struc-

tures, the power of our CKL20 method does in fact surpass

that of YT06 at certain radii, as shown in supplementary

figure S1, Supplementary Material online. Moreover, at all

radii, the power of our CKL20 method is fairly close to that

of YT06, while still avoiding false positives due to SASA effects

and compensatory processes as designed. This suggests that

in certain structures and perhaps at certain branch lengths,

the CKL20 method may in fact be far superior to YT06 in the

sense that it can both avoid false positives due to SASA effects

and compensatory processes and also have greater ability to

detect when positive selection is occurring within this

backdrop.

Application to Empirical Data
The protein structure with PDB ID 1AX8 (investigated in

fig. 3) is the human leptin protein, which has been well stud-

ied and is known to be linked to obesity (Caro et al. 1996;

Mantzoros 1999). Particularly, evidence of positive adaptive

selection has been found in leptin on the branch of the evo-

lutionary history leading to apes (termed hominoids) as well

as the lineage leading to rhesus macaque (Benner et al. 2002;

Siltberg and Liberles 2002; Gaucher et al. 2003). Three differ-

ent lines of evidence were used in these studies. One study

examined increases in the clade-specific alpha value of the

gamma distribution, whereas the other two studies relied

upon dN/dS with tertiary windowing or with structural par-

titioning. We compare those results with analysis based upon

YT06 and CKL20. Here, we use the aligned set of sequences

used by Gaucher et al. (2003) and shown in figure 3 of their

manuscript, which, in addition to hominoids includes the

rhesusmonkey (Macacamulatta), cat, dog, sheep, and several

other mammals. We reanalyze the homonoid branch, and

also the branch leading to the rhesus macaque. Ancestral

sequences were reconstructed using the aaml programwithin

the PAML suite (Yang 2007), and then sites in which substi-

tutions were inferred to have occurred were analyzed using

the YT06 method, the CKL20 permutation test (radius of

7.0 Å), and the CKL20 parametric bootstrap (radius of

6.5 Å). These radii were selected from the a priori optimiza-

tion for power as shown previously. The P values from these

three tests for the two branches of interest are shown in

table 1.
As seen in table 1, neither branch showed significant sup-

port for nonrandom clustering, although the permutation

test of CKL20 for the Macaca lineage presented a P value of

0.077. From this result, it is likely that many of the changes on

both branches were not driven by positive selection and that

any positive selection that did occur either was reflected by
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has no discriminatory value.

Table 1. P Values from the YT06 Test, CKL20 Permutation Test, and
CKL20 Parametric Bootstrap.

YT06

CKL20 CKL20

Perm Test Par Boot

Hominoid 0.740 0.309 0.631

Macaca 0.262 0.077 0.552

0
0

.1
0
.2

0
.3

0
.4

0
.5

0
.6

E
s
ti
m

a
te

d
 T

y
p

e
 I
 E

rr
o

r 
ra

te

YT06 6.5A 9A 11.5A

Null 2: SASA and compensatory processes

FIG. 4. Type I Error rates under the SASAþ compensatory processes

scenario are shown for YT06 and across three different radii for our

method. The dotted horizontal line represents the a-level of 0.05. The

grayed portion of the graph represents the CKL20 method, at three

different radii. Error bars represent 95% confidence intervals.
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changes that either were spatially separated over a larger

binding interface or were small in number (1 or 2
substitutions).

To investigate whether a statistically significant signal is to
have been expected by the CKL20 parametric bootstrap if

multiple changes driven by positive selection were tightly
clustered, we examine the distribution of pairwise distances
observed in our data and compare that with the distribution

of pairwise distances formed by a strong signal for positive
selection. Specifically, we simulate three sites in proximity that
are all substituted, followed by the remainder of substitutions

being simulated by probabilities according to their SASA and
compensatory processes (similar to what was performed for

fig. 5). In this case, the three deterministically chosen sites are
positions 117, 118, and 119, based on the finding by Gaucher
et al. (2003) that site 118may be a strong target for functional

change. The distributions are shown in figure 6, in which we
observe that the amino acid substitutions observed on both
focal branches weremuchmore distant from each other than

in the simulated case of strong selection at contiguous resi-
dues. It should further be noted that the lack of a significant

signal in either the YT06 or the CKL20 permutation test may
be driven by the large geometric space of the binding inter-
face suggested by Gaucher et al. (2003).

Discussion

Starting with the set of amino acid substitution that have

beenmapped to a lineage of a phylogenetic tree using existing
methods, we present an approach aimed at differentiating

positive directional selection from neutral evolution and from
compensatory processes. Our overall aim in this work is to

present a novel parametric bootstrap methodology to detect

positive selection in the presence of SASA considerations and

compensatory processes. As both processes can result in an

increase in clustering of substitutions in the 3D space of a

protein, methods that do not account for the SASA and

compensatory processes will result in highly inflated Type I

Error rates, as demonstrated here with YT06. Conversely, our

proposedmethod avoids signatures of clustering due to SASA

and compensatory processes by design; the question, then, is

whether it would still have enough power to pick up any

signal of positive selection. Our results show that it does.
However, some questions remain. Specifically, although we

have determined that a radius of 10 Å may not always be

optimal with regard to maximizing power, we have not de-

termined any specific patterns that could be used to estimate

what it should be a priori for any given protein structure.

Further work could attempt to characterize this, perhaps by

obtaining a larger sample of protein structures across an array

of protein families, and investigating power trends by radius

size on each one.
One of the major modifications to the YT06 method that

we propose is to construct our statistic based upon the 95th

quantile of the proportions of substituted sites within each

sphere, as opposed to a z-score statistic as proposed in Yu and

Thorne (2006). Specifically, we do this in our parametric boot-

strap test to distinguish between positive directional selection

versus SASA effects and compensatory processes. Our biolog-

ical rationale for doing so is because although data patterns

according to the alternative hypothesis should indeed result

in a mean shift, this is an indirect consequence of the mech-

anism that actually occurs. In other words, suppose that

FIG. 6. Distributions of pairwise distances in the data, and that of simulated data with a strong signal for positive selection. The branch data from

the alignment are shown in dark gray, whereas the simulated distribution is shown in lighter gray.
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selection acts upon some neighboring sites to produce a
functional change. Then, spheres that involve these selected
sites should produce an inflation, specifically in the upper tail
of the overall distribution since this signal will be most pro-
nounced in a few spheres that would be expected to have a
high proportion of substituted sites in them. In this way, we
believe that we are capturing the signal directly, as opposed to
a side-effect of the actual signal.

Conversely, our permutation test for clustering (e.g., shown
in figs. 2 and 3) does still rely on a mean shift rather than the
95th quantile. In this scenario, our biological rationale for
using the mean instead of the 95th quantile is that the
data-generating process is not quite as precisely targeted as
it is when selection is acting to produce a functional change as
described above. Thus, a mean shift will indeed be a more
direct consequence of the data patterns expected under the
alternative hypothesis. For more details, refer to the Materials
and Methods section and Supplementary Material online.

Positive selection acts on multiple residues arrayed at a
binding interface (Ames et al. 2016) or in an enzyme active
site (Lai et al. 2012). The distance dependence of those mul-
tiple residues under selection for function in contrast with the
background distribution of distances under selection for com-
pensatory processes will dictate the power and performance
of our proposed parametric bootstrap test. This was noted in
the analysis of cluster distributions on primate lineages of
leptin. In the example studied here, our method did not de-
tect significant evidence for clustering in leptin. On both
lineages that were studied, signatures of positive selection
did not correlate with structural clustering according to the
methods developed here. Ultimately, power will relate to the
number of changes driven by selection, their structural rela-
tionship to each other, and the total background changes on
the same branch. Further studies are suggested to evaluate
the geometric relationship of multiple residues selected for
the same adaptive feature.

Across the three folds studied in this work, the distribution
of residue distances (see supplementary fig. S2,
Supplementary Material online) varied with the optimal ra-
dius in our permutation test for clustering, but not in a pre-
dictable way. Further exploration of this across different levels
of hierarchy in CATH (Dawson et al. 2017) remains an avenue
for further investigation. Currently, our three structures of
2I0Q, 1D4T, and 1AX8 were chosen simply to represent
one from each of the main superfamilies of “Mainly Alpha,”
“Mainly Beta,” and “Alpha Beta.” One aspect of protein sta-
bility that was not accounted for in this study was the pres-
ence of negative design in protein structures and selective
pressures for folding and binding specificity (Noivirt-Brik et al.
2009; Liberles et al. 2011). Along these lines, the null distribu-
tion for our parametric bootstrap functions as a very simple
force field, one that is much more computationally tractable
than previous approaches (Grahnen et al. 2011) but that
captures the most important factors in sequence evolution
(Chi et al. 2018). This method fundamentally captures the
epistatic process in generating a null distribution for positive
directional selection, something that is important in differen-
tiating compensatory processes from selection that occurs at

a higher level of biological organization. Epistasis is under-

stood to give rise to conditional selection at a local level

that broadly leaves function unchanged (Eguchi et al. 2019).

Capturing underlying nondirectional and nonselective pro-

cesses that can masquerade as positive directional selection

is ultimately necessary for accurately identifying it.

Materials and Methods

Ascertainment of Structural Information
Protein structural information, including 3D Euclidean coor-

dinate values for each atom in the protein, was obtained from

the Protein Data Bank at rcsb.org (Berman et al. 2000), for the

structures with PDB IDs 2I0Q, 1D4T, and 1AX8 (Zhang et al.

1997; Poy et al. 1999; Buczek and Horvath 2006). Proteins

were chosen from different superfamilies to represent a range

of different features that may be present in the structure.
Within each structure, each amino acid’s putative location

was represented by the coordinates of its respective central

carbon atom for our analyses. The null distribution generated

by our parametric bootstrap (see below) relies on knowledge

of SASA; thus, solvent accessibility of each amino acid in the

structure was calculated with the DSSP program, via the on-

line interface at mrs.cmbi.umcn.nl (Kabsch and Sander 1983;

Touw et al. 2015). In order to obtain the relative solvent

accessibility for each amino acid, the maximum possible sol-

vent accessibility of each amino acid type was assigned

according to Tien et al. (2013). Each amino acid’s solvent

accessibility was thus divided by its maximum possible sol-

vent accessibility to obtain the final SASA values used for

analyses.

Permutation Test
Implementation of the YT06 method was written in R

according to the description in Yu and Thorne (2006), for

inference on one branch of a tree, as described above in the

New Approaches section. Our novel permutation test, de-

scribed textually there as well, proceeds according to the

pseudocode outlined in Algorithm 1.

Simulating SASA Effects and Compensatory Processes
Our permutation test is intended for detecting clustering that

may occur due to rate variation that may arise due to SASA,

and compensatory processes dictating that sites near

substituted sites have an increased probability of themselves

substituting. To simulate this, we first obtain SASA informa-

tion for the structure as described above. Then, the discrete

gamma model as originally described in Yang and Nielsen

(2002) and frequently used to model rate variation was

used to obtain putative varying rates of each site of the

structure.
Specifically, we used the gamma distribution with a

¼ 0:80 and b ¼ 1:0, discretized into four categories.

Accordingly, the 0.125, 0.375, 0.625, and 0.875 quantiles

from this distribution were obtained, and then scaled so

that their true mean is equal to 1. Each site was then mapped

to one of these gamma quantile values based on its SASA

value, dependent upon which quartile the SASA value was in.
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In other words, the sites with the smallest 25% of all SASA

values were given the smallest gamma quantile value; the sites

with the next highest 25% of all SASA values were given the

second gamma quantile value, and so on. These quantile

values were then scaled to sum to 1 across all sites, so that

they could be used directly as probabilities of substitution.

These probabilities were then used to make a single draw

from a multinomial distribution with n equaling the number

of sites, and probability vector equal to the scaled quantile

values. This draw represents the first substitution in the

protein.
Next, compensatory processes were simulated by consid-

ering the distance from existing substitutions. The smallest

distance to any existing substitution was obtained for every

site on the protein. The goal here is to mimic biophysical

interactions between residue sites that might cause sites

near other substituted sites to have an increased probability

of themselves substituting. To mimic this, we calculate the

square of the reciprocal of each distance, and then these

values were scaled to add to 1. The scaled quantile values

and scaled were then added together, with the product sub-

tracted, mimicking the probability of the union of two inde-

pendent events. These probabilities were then again used to

make another single draw from amultinomial distribution, to

obtain the next substitution. After each substitution, themin-

imum distance to any existing substitution was recalculated,

and substitutions proceeded until the desired branch length

was obtained. For further details, see pseudocode in

Algorithm 2 in the following subsection and also the actual

code supplied in the Supplementary Material online.

Parametric Bootstrap
The core of our novel parametric bootstrap is its null distri-

bution generated by the same simulation described above

and outlined in the pseudocode shown in Algorithm 2. To

generate the null distribution for the test for positive direc-

tional selection that avoids inflated Type I Errors caused by

the signals of SASA and compensatory processes, this simu-

lation is performed repeatedly (B¼ 1,000 in our trials). Then,

our test statistic is the 0.95 quantile of the proportion of

substituted sites within each sphere.Rather than using the

most simple order statistic estimator of the 0.95 quantile

(e.g., with 20 data values, the 19th order statistic would be

the estimate of the 0.95 quantile), we use a bias-reduced

quantile estimator described as Definition 7 in Hyndman

and Fan (1996) and designated as type¼ 7 in the quantile

function in R. This is in fact the default setting in the quantile

function and has advantages over other quantile estimators;

its definition can be found in the quantile function

documentation.
In this manner, we generate the sampling distribution un-

der the null hypothesis for the 0.95 quantile of the proportion

of substituted sites in each sphere for a given structure. The P

Algorithm 2 CKL20 Parametric Bootstrap
Input:

Cdata: Central carbon atoms from PDB
subs: Site positions of substitutions
radius: Sphere radius size in Å
B: Number of bootstrap iterations

Output:
Parametric bootstrap P value

Perform:

n.subs <- length(subs)
gam[1:4] <- C�1

a¼0:8;b¼1ð0:125; 0:375; 0:625; 0:875Þ
scaled.gam <- gam/sum(gam)
sasa.prob <- scaled.gam values mapped to each site
based on its SASA value quartile

for i in 1: B do

subs[1] <- rmultinom(1, sasa.prob)
for j in 2: n.subs do
min.dist<- vector of distances from each site to

nearest substituted site
dist.prob <- min.dist/sum(min.dist)
new.prob <- sasa.prob þ dist.prob
- sasa.prob*dist.prob

subs[j] <- rmultinom(1, new.prob)
end for

boot.fractions<- fraction of residues within radius of
each substitution that are also substituted

boot.95th[i] <- quantile(boot.fractions , 0.95)
end for
data.fractions<- fraction of residues within radius of

each substitution that are also substituted
data.95th <- quantile(data.fractions , 0.95)
return: sum(boot.95th � data.95th)/B

Algorithm 1 CKL20 Permutation Test
Input:

Cdata: Central carbon atoms from PDB
subs: Site positions of substitutions
radius: Sphere radius size in Å
reps: Number of iterations

Output:
Permutation test P value

Perform:

num.neighbors <- number of other residues
within radius for each residue

data.fractions <- fraction of residues
within radius of each substitution
that are also substituted

data.mean <- mean(data.fractions)
for i in 1: reps do
permuted.data <- Cdata with
substituted site positions shuffled at
random

Calculate perm.fractions in the
same manner as data.fractions,
but on permuted.data

perm.mean[i] <- mean(perm.fractions)
end for

return: sum(perm.mean � data.mean)/reps
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value is then the proportion of this null distribution that is at

least as extreme as the 0.95 quantile from the data

distribution.

Software
An R package called evolclustR is currently under preparation

for submission to the Comprehensive R Archive Network,

and all code used to run simulations in this manuscript are

available at github.com/peterbchi/evolclustR. In parallel, py-

thon code for the same tasks is also under development and

is available at github.com/wes-kosater/Py-evolclustR.

Supplementary Material

Supplementary data are available at Molecular Biology and

Evolution online.
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