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Neuromorphic vision and tactile fusion for upper limb prosthesis control

Mark Haysl, Luke Osborn!, Rohan Ghosh?, Mark Iskarous?, Christopher Hunt!, and Nitish V. Thakor!2

Abstract— A major issue with upper limb prostheses is the
disconnect between sensory information perceived by the user
and the information perceived by the prosthesis. Advances
in prosthetic technology introduced tactile information for
monitoring grasping activity, but visual information, a vital
component in the human sensory system, is still not fully
utilized as a form of feedback to the prosthesis. For able-bodied
individuals, many of the decisions for grasping or manipulating
an object, such as hand orientation and aperture, are made
based on visual information before contact with the object.
We show that inclusion of neuromorphic visual information,
combined with tactile feedback, improves the ability and
efficiency of both able-bodied and amputee subjects to pick up
and manipulate everyday objects. We discovered that combining
both visual and tactile information in a real-time closed loop
feedback strategy generally decreased the completion time of a
task involving picking up and manipulating objects compared
to using a single modality for feedback. While the full benefit of
the combined feedback was partially obscured by experimental
inaccuracies of the visual classification system, we demonstrate
that this fusion of neuromorphic signals from visual and tactile
sensors can provide valuable feedback to a prosthetic arm for
enhancing real-time function and usability.

I. INTRODUCTION

Upper limb prosthesis users face many challenges which
originate from their prosthesis; however, surveys have found
that while there was agreement that almost every aspect
of prosthetic arms could be improved, there wasn’t an
overwhelming agreement on any single improvement that
needed to be made [1]. Regardless, consumers prioritize
enhanced functionality and improved socket comfort, as well
as sensory feedback as future design considerations [2].
These consumer considerations are important for improving
prostheses, given that upper limb prosthesis users have high
device abandonment rates of 35-45% [3].

One active area of research that has proven useful is
the incorporation of movement decoding from myoelectric
(EMG) signals, which has continued to see improvements
over the past several decades [4]. Pattern recognition and
proportional control techniques have offered advanced func-
tionality in terms of control over hand movements for
prosthesis users [5]—[7]. Other advancements such as targeted
muscle reinnervation (TMR) also enable enhanced control by
leveraging muscles as biological amplifiers [5], [8]. Research
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efforts have also led to restoring sensations of touch [9], [10],
texture [11], and even pain [12] in amputees.

Additional efforts have investigated incorporating other
types of sensory information, such as vision. During natural
limb movements, vision plays a key role in our reaching
and grasping. While amputees rely on visual information for
reach and grasp tasks, hand preshaping and alignment with
the target object do not occur as quickly as for an intact
hand. Previous researchers have incorporated visual informa-
tion and a convolutional neural network (CNN) to classify
objects based on their shape and orientation for automatically
preshaping and rotating a prosthetic hand for grasping,
which resulted in improved performance [13]. However, this
method requires the user to provide an EMG command to
take an image for processing and object classification, which
may take several seconds. Researchers have also used a
fusion of different sensors for improving prosthesis function,
such as visual sensors and inertial measurement units (IMU)
[14]. Another solution leverages contextual information from
IMUs as well as grip force and hand aperture [15].

In this work, we present a sensor fusion of neuromor-
phic vision with tactile information as local feedback to a
prosthesis for improving functionality in a grasping task.
This neuromorphic approach is inspired by the behavior
of the biological sensory systems that process the same
kind of information. This biological basis aims to provide
feedback that mimics the responses of sensory receptors in
the nervous system, using active sensors to produce neuron-
like spiking activity. Here, the neuromorphic vision sensor
uses active local-level imaging to act like the retina to
produce representations of the visual images. Similarly, the
tactile sensor produces a spiking response to instances of
tactile slip.

II. METHODS & EXPERIMENT
A. Neuromorphic Vision & Tactile Sensors

We mounted an embedded Dyanmic Vision Sensor (eDVS)
(iniVation, Zurich) on the wrist (MC Wrist Rotator, Utah
Arm, Salt Lake City) of a prosthetic hand (Fig. 1). The
eDVS is neuromorphic in that it acts like the human retina
and only transmits local pixel-level changes (Fig. 2(A)). This
event-driven sensing enables extremely low-latency transfer
of visual information, which has been used in applications
such as autonomous robot locomotion [16]. Piezoresistive
textile sensors were placed on the thumb, index, and middle
fingers of a bebionic3 prosthetic hand (Ottobock, Duderstadt)
to measure grip force (Fig. 1). The tactile sensors used in this
experiment were previously developed and have been used
for other prosthesis applications [17], [18]. In this paper, the
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Fig. 1. (A) The neuromorphic camera is attached to the wrist and the
tactile sensors are placed on the thumb, index, and middle fingers of the
prosthetic hand. The wearable brace enables both amputee and able-bodied
subjects to participate in the grasp task. (B) The participant wears the brace
and controls the prosthesis to grab and move the target object.
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Fig. 2. (A) Sample image output from the eDVS neuromorphic camera
viewing a block object with a 90°orientation. (B) Sample output of the
neuromorphic slip prevention method that uses the rate of change of the
grip force to detect and prevent slip.

tactile feedback from these fingertip sensors utilized the same
slip prevention method as described in [18], where rapid
changes in grip force resulted in corresponding increases in
the prosthesis grip force to prevent additional object slip.
This mimics the kind of signaling and grip force adjustment
found in humans, and the output of this neuromorphic slip
prevention method is shown in Fig. 2(B).

B. Object & Orientation Detection

The objects used were a cylinder, prism, and block, which
require a power, tripod, and pinch grip, respectively (Fig.
3(A)). These objects were chosen from the Prosthetic Hand
Assessment Measure (PHAM) [19]. A previously developed
CNN was used for estimating object orientation from the
eDVS signal [20]. The vision classifier was trained on the
PHAM objects and object orientation was estimated by
creating an axis of symmetry from the neuromorphic vision
output. The grip type was selected by the classifier output,
which utilized the axis-normal distance of the symmetry axis
that is unique to each object type.

C. Experiment

The prosthetic hand and wrist were controlled using a
custom control board (Infinite Biomedical Technologies,
Baltimore). A Myo band (Thalmic Labs, Kitchener) was
used to collect EMG signals (Fig. 3(B)). The hardware
was integrated into a wearable brace with the neuromorphic
camera and tactile sensors. A linear discriminant analysis
(LDA) classifier [21] was used for predicting wrist and hand
movements. A modified version of the Virtual Integration
Environment (VIE) (JHU Applied Physics Laboratory, Lau-
rel) was used to present visual cues for training the pattern
recognition classifier. All sensor signals were processed
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Fig. 3. (A) The PHAM objects used, from left to right, were the cylinder,
block, and prism. (B) The Myo band is placed on the forearm of the subject
to measure EMG activity.

through MATLAB 2017a (MathWorks, Natick) and prosthe-
sis commands were sent using Bluetooth communication to
the control board at a baud rate of 115,200 bits per second.

One amputee (right, transradial) and 2 able-bodied indi-
viduals participated in the experiment. The experiment was
approved by the Johns Hopkins Institutional Review Boards,
and written consent was given by all the participants. The
prosthesis brace was worn over the Myo band electrodes
placed on the right forearm. One of the three objects was
placed in front of the participant. The participant was in-
structed to use the correct grasp based on the object presented
to place that object in a bin approximately 20 cm away. Each
object was presented at least 5 times in a random orientation
of 0°, 45°, or 90°from the horizontal axis.

Each trial was repeated with no feedback to the prosthesis,
only tactile feedback, only vision feedback, or both vision
and tactile feedback. Both kinds of feedback are closed-loop
and local to the prosthesis itself, rather than providing the
user with additional information. When the tactile sensors
detected slip, the prosthesis automatically adjusted grip force
to compensate. For the visual feedback, object type and
orientation were used to set grip and wrist rotation of the
prosthesis at the start of each trial. The prosthesis would
automatically close for 45 ms using the appropriate grip for
the detected object. This partial closing makes it easier for
the user to continue closing the prosthesis with that same
grip. If an incorrect grip was used by the prosthesis, the user
would have to open the hand fully and close the hand again
using the correct grip. Once the grip and wrist rotation were
set by the visual feedback, the user still retained control over
the grip and wrist rotation and could override it if desired.

The trials were randomized and the participants were blind
to the feedback type for each trial. The time to complete each
trial were recorded as well as the number of errors, which
were classified as the object falling, the wrong grip was used,
or a time of 45 s was exceeded for a trial.

III. RESULTS & DISCUSSION

In order to see how the inclusion of two different feedback
modalities affected task performance, we compared average
task completion time and error rate. Fig. 4 and Table I
show these measures respectively for each feedback type.
Overall, completion time decreased with the use of tactile
feedback alone and decreased even more with vision feed-
back alone. For the able-bodied participants, while trials with
the combined feedback had longer times than trials that used
vision feedback alone, both conditions showed significant
decreases compared to the no feedback condition (p<0.05
and p<0.01, respectively). For the amputee participant, the
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Fig. 4. Average movement completion time by feedback type for (A)

amputee and (B) able-bodied participants. Error bars show standard error.

TABLE I
MOVEMENTS ERROR RATES BY FEEDBACK TYPE

Feedback Type Object Falls Wrong Grip Timeout Total Error Rate

Amputee
None 8.7% 4.3% 2.2% 15.2%
Tactile 0.0% 6.3% 4.2% 10.4%
Vision 11.1% 5.6% 5.6% 22.2%
Both 16.7% 22.2% 0.0% 38.9%
Able-Body
None 13.3% 20.0% 13.3% 46.7%
Tactile 6.7% 23.3% 16.7% 46.7%
Vision 8.0% 16.0% 4.0% 28.0%
Both 6.7% 23.3% 6.7% 36.7%

combined feedback resulted in the greatest decrease in aver-
age completion time (p<0.05). While this data comes from
a limited set of participants, these results provide an initial
indication of the utility of incorporating neuromorphic visual
information, especially when combined with other feedback
modalities.

Looking at the error rates in Table I, the able-bodied
participants had overall higher error rates compared to the
amputee participant, with a large portion of this error coming
from the wrong grip being used. This may possibly reflect
able-bodied participants’ unfamiliarity with using a pros-
thesis and performing EMG pattern recognition compared
to an amputee’s experience. The able-bodied participants
did, however, show decreased error rates with the inclusion
of vision feedback while the amputee participant actually
had higher error rates with vision feedback. These error
rates increased even more for trials that used the combined
feedback, in contrast to the pattern seen for completion time.
While this may suggest that vision feedback is detrimental to
the amputee’s performance, it should be noted that the most
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Fig. 5. Average movement completion time by feedback type separated

by the presence of errors for (A) amputee and (B) able-bodied participants.
Error bars show standard error.
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TABLE II
TASK COMPLETION TIME AND ERROR RATE BY VISION CLASSIFICATION
Classification Completion Time (s) Error Rate
Amputee
Correct Object 9.2+1.6 25.0%
Incorrect Object 12.1+0.9 32.1%
Correct Orientation 10.0+1.6 12.5%
Incorrect Orientation 11.9+0.8 35.7%
Able-Body
Correct Object 12.942.0 25.0%
Incorrect Object 13.8+1.5 37.5%
Correct Orientation 17.1£3.2 37.5%
Incorrect Orientation 13.942.0 30.8%

common error, using the wrong grip, does not necessarily
prevent the task from being completed, which is why some
categories can have high error rates yet fast completion times.

However, since the trends in error rates are not consistent
with the trends in average completion times, it is worth
separating these times by trials with and without errors,
shown in Fig. 5, to see how the error rate may be related to
completion time. As expected, trials with an error generally
had significantly longer average completion times than trials
without an error. For trials without any errors, the amputee
participant shows a trend similar to that of the completion
times shown in Fig. 4. However, the able-bodied partici-
pants instead showed the fastest completion time for tactile
feedback alone. While this could suggest that the vision
feedback was actually slowing down able-bodied subjects,
it is important to reiterate that with only two able-bodied
participants, such generalizations should be avoided. In fact,
one of the able-bodied participants actually showed the same
trends in completion times seen in the amputee participant.

For the trials in which an error was recorded, average
completion times across all subjects for trials that used vision
feedback were lower than those without vision feedback.
This may suggest that the presence of vision feedback to
the prosthesis resulted in the best ability to compensate for
errors when they occurred. This impact was even greater
with the combination of vision and tactile feedback for
the amputee participant, possibly indicating why using the
combined feedback modalities resulted in the best average
completion times despite the highest error rate.

This outcome is interesting considering the observed low
accuracy of the visual detection system. Across all trials that
utilized the neuromorphic vision feedback, object classifi-
cation was correct on 35.2% of the trials, and orientation
classification was within 15 degrees of the true object angle
for only 26.4% of the trials. The low experimental accuracy
of the visual detection algorithm seems to contradict its
success in [20]. This may be due to differences in exper-
imental setup or the kind of objects used, since these objects
have multiple axes of symmetry and similiar shapes to each
other that could confuse classification. To see how this might
have affected performance, average task completion time
and error rate are shown for correct and incorrect object
type and orientation classification in Table II. For each
category of classification aside from object orientation for
able-bodied participants, completion time and error rate were



TABLE III
AVERAGE RECORDED SLIP COUNT PER MOVEMENT

Category Average Slip Count
Amputee
Tactile Feedback Alone 1.8+0.3
Vision+Tactile Feedback 3.4+1.7
Correct Vision Classification 3.7£2.3
Incorrect Vision Classification 2.6+1.7
Able-Body
Tactile Feedback Alone 22.3+54
Vision+Tactile Feedback 24.1+£5.9
Correct Vision Classification 18.7£10.7
Incorrect Vision Classification 20772

both greater for incorrect than for correct classifications,
again indicating the benefit of incorporating accurate vision
feedback. However, overall performance may suffer if there
is low visual classification accuracy. Additional trials with
more accurate vision detection would be needed to examine
these effects further.

Slip prevalence can also be used to compare trials that
included tactile feedback alone to those that included both
vision and tactile feedback. Slip count here reflects instances
of slip detected by the neuromorphic tactile sensor and
used to adjust the prosthesis grip force. Most notably, the
trials completed by the amputee participant had much lower
average recorded slip counts than the trials completed by the
able-bodied participants, seen in Table III. This difference
may reflect how well the participants are naturally able to use
the prosthesis to grip an object without having it slip. When
the object is classified correctly, the average slip count is
lower than when only tactile feedback is used, indicating the
benefit of having the fused feedback. However, the average
slip count per trial with the combined feedback was greater
than that with tactile feedback alone across all participants.
After separating the combined feedback results by visual
classification, we can see that incorrect classification may be
responsible for bringing the slip count up. For able-bodied
participants, the trials in which the vision classification was
incorrect had an average slip count much greater than those
with correct classification. This would make sense because
an attempt to grab an object with the wrong orientation or
grasp may increase the chances that it could slip.

IV. CONCLUSION

The neuromorphic vision sensor enables extremely fast,
real-time processing of visual information that can be utilized
along with spiking activity from neuromorphic tactile sensors
to provide biologically relevant feedback to a prosthesis. The
overall improvement in the participants’ ability to use a pros-
thesis to pick up and manipulate objects with the addition of
visual feedback to the prosthesis indicates that the fusion of
visual and tactile feedback can provide valuable information
in a neuromorphic prosthesis system. Future experimentation
with an enhanced visual classification system, perhaps with
higher classification accuracy or the extraction of additional
visual features, could further illuminate the benefit of the
fusion of these feedback modalities.
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