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Abstract— Soft robotic fingers provide enhanced flexibility and
dexterity when interacting with the environment. The capability
of soft fingers can be further improved by integrating them with
tactile sensors to discriminate various textured surfaces. In this
work, a flexible 3x3 fabric-based tactile sensor array was
integrated with a soft, biomimetic finger for a texture
discrimination task. The finger palpated seven different textured
plates and the corresponding tactile response was converted into
neuromorphic spiking patterns, mimicking the firing pattern of
mechanoreceptors in the skin. Spike-based feature metrics were
used to classify different textures using the support vector
machine (SVM) classifier. The sensor was able to achieve an
accuracy of 99.21% when two features, mean spike rate and
average inter-spike interval, from each taxel were used as inputs
into the classifier. The experiment showed that an inexpensive,
soft, biomimetic finger combined with the flexible tactile sensor
array can potentially help users perceive their environment better.

Keywords—Soft biomimetic finger; Flexible tactile sensor array;
Neuromorphic model; Supervised learning.

L INTRODUCTION

Soft robotic devices have become increasingly popular in
fields such as surgical robotics, prostheses due to their
biomimetic capabilities. Soft robots are commonly fabricated
from non-traditional materials such as silicone and are activated
via pneumatic, hydraulic, or polymeric methods. The compliant
nature of soft robots allows them to conform to objects and
safely interact with their environment [1]. Additionally, soft
actuators provide many degrees of freedom and large ranges of
motion without adding components or response time [2]-[4].
While it has been reported that soft robotic devices have been
able to detect static information like temperature, curvature, and
force [5]-[7], the detection of dynamic cues such as texture has
not been thoroughly explored.

Dynamic cues are detected using active palpation by
moving a tactile sensor (Fig. 1) over a textured surface. The
texture is perceived by determining the changes in shape, size,
and pliancy of the surface over time. The sensation of texture
allows users to better perceive and interact with objects in their
surroundings [8], [9]. In minimally invasive surgery, robots
have been using texture to identify tumors and abscesses [10].
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Texture discrimination also provides tactile feedback such as
compliance to a prosthesis user to more dexterously manipulate
everyday objects [11], [12]. There has been a previous study
which integrated a single tactile sensor with a soft biomimetic
finger with promising results [13], but a tactile sensor array has
yet to be integrated. Multiple sensors on a soft finger could
create a more realistic sensation for the user. The fabrication of
a biomimetic prosthesis would not only require physical
components such as a soft materials and tactile sensors, but
more organic signal processing as well. This can be
accomplished through neuromorphic encoding and classifiers.

Neuromorphic encoding is a process where tactile
information from sensors is transformed into spike patterns,
mimicking neural signals produced by mechanoreceptors in the
human skin. This work uses the Izhikevich framework’s slowly
adapting neuron model to create spike trains, which vary in
frequency in response to input amplitude. Neuromorphic
encoding allows for efficient relay of feedback information
which can seamlessly integrate with biological systems [14].
After the texture information is translated into spiking patterns,
supervised machine learning algorithm, support vector machine
(SVM), is used to classify the textures.

In this study, we present a soft biomimetic finger integrated
with a 3x3 flexible tactile sensor array capable of texture
discrimination using neuromorphic encoding and supervised
learning.

II.  MATERIALS

A. Sensor Design

The 3x3 fabric-based tactile sensor array (Fig. 1) is a
variation of a previous multilayer sensor design [15]. This
sensor array with 9 taxels, or sensing elements, is small enough
to be integrated with the soft biomimetic fingertip. Each taxel
has a sensing area of 2x2 mm? spaced at 2.5 mm intervals. The
piezoresistive fabric transforms the applied force into changes
in voltage [18]. The sensor voltage output was measured in a
voltage divider by connecting the sensor in series with a 10 kQ
resistor.
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Fig. 1. Graphic overview of the 3x3 flexible tactile sensor array. The
perpendicular crossing 2 mm strips of conductive traces sandwich the
piezoresistive fabric to create 2x2 mm? taxels (sensing element) spaced 2.5 mm
apart. The sensor is integrated with the soft biomimetic finger.

B. Soft Biomimetic Finger

The soft biomimetic finger (Fig. 2) has the same design as
a previous finger [13] but with a different integrated sensor. To
mimic the trajectory of the human finger, the soft biomimetic
finger has three joints, metacarpophalangeal (MCP), proximal
interphalangeal (PIP), and distal interphalangeal (DIP). The
pneumatically actuated finger has two degrees of freedom, with
the MCP joint being actuated independently from the PIP and
DIP joints, which share the same pneumatic channel.

Air inlet to PIP and DIP joints

Tactile sensor array Air inlet to MCP joint

Fig. 2. Soft finger integrated with the tactile sensor array. (A) Bottom view;
(B) Side view. The orange sections form the joints.

The silicone rubber Dragon Skin™ 10 Medium (Smooth-
On, Macungie, PA, USA) composes much of the soft finger
with orange cotton fiber wound twice around the inner layer to
prevent radial expansion. Strips of white cotton fabric were also
wrapped around certain parts of the finger to mimic the joints
of the human finger. The areas without the strain limiting fabric,
become the MCP, PIP, and DIP joints. On the outer layer of
silicone, an additional layer of white cotton fabric was adhered
to the palmar surface of the finger to create the directional
curvature that mimics the human finger.

C. Textured Plates Design

To test the sensor for texture discrimination, 7 textured
plates with varying textures were designed (Fig. 3). The 36x36
mm? textured surfaces with 2.5 mm raised ridges and bumps
were centered on a 108x36 mm? plate. An isolated textured
surface for palpation was created by including flat surfaces on
either side.

Fig. 3. Textured plates designed for testing texture discrimination. (A) Flat;
(B) 2 ridges; (C) 4 ridges; (D) 8 ridges; (E) 3x3 bumps; (F) 4x4 bumps; (G) 6x6
bumps. The red arrow indicates the direction of palpation.

III. METHODS

A. Experimental Procedure

The soft biomimetic finger was mounted on the URS Robot
arm (Universal Robots, Odense, Denmark) to palpate the
textured plates (Fig. 4). The soft finger was used to in its
uninflated state. First, the finger was brought down to one side
of the textured plate until the sensor array made physical contact.
Then, the texture was palpated by moving the entire finger
horizontally along the direction of palpation, shown in (Fig. 3).
Each texture was palpated at approximately 60 mm/s with 32
repetitions. The output of each taxel was sampled at 100 Hz by
the Arduino Mega 2560 microcontroller and processed in
MATLAB.
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Fig. 4. Overview of the experimental setup with the soft biomimetic finger
integrated with the tactile sensor array mounted on the URS arm palpating the
textured plates.

B. Neuromorphic Encoding

To mimic mechanoreceptor activity, the tactile response
from each taxel of the tactile sensor was converted into slowly
adapting (SA-1) neuron spiking patterns using the Izhikevich
neuron model [19]. This approach has been used previously for
similar applications [13], [16], [17], [20], [21]. The Izhikevich
neuron model uses (1), (2), and (3) equations to produce the
spike train with recovery variable #, membrane voltage v, and
injected current / [19].
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To mimic SA-1 neurons, the Izhikevich model parameters
were a=0.02,b=0.2, c=-65, and d = 8. The voltage output of
the taxels were normalized and a gain factor, k, of 15 was
applied before serving as the input current for the neuron
model.

The sensor array’s responses for each of the textures were
collected and segmented into 9 s windows, based on the
duration of each trial, before being converted into spike trains
offline using MATLAB. Then, to compress the information for
the classification algorithms, the mean spike rate and average
inter-spike interval were calculated for each trial. The mean
spike rate was calculated by counting the number of spikes
within 100 ms bins and dividing it by the bin length for each
trial. The average inter-spike interval was calculated by
averaging the time elapsed between each spike in the window.

C. Classification Algorithms

To test the ability of the sensor array to discriminate between
the textures, two features from each taxel for each trial were
used as inputs for the classifier. The two features being mean
spike rate and average inter-spike interval. This resulted in 18
features, 2 per taxel, becoming the input for the classifier. Of
the 32 trials from each textured plate, 24 trials were randomly
selected for the training set and the remaining samples were
used as the testing set. This process was repeated 1000 times to
reduce the training set bias.

A supervised learning algorithm was used for texture
classification because the identities of the textures are known.
The linear kernel of SVM was implemented in MATLAB
because it did not require the assumptions of normal distribution
and similar within-class variance. Additionally, SVM had been
shown to discriminate textures well in previous studies [16].

IV. RESULTS AND DISCUSSION

A. Neuromorphic encoding

The spiking patterns (Fig. 5) were generated by the neuron
model of a single taxel when palpating textures B and E.
Texture B had constant spiking when the normalized voltage
was high, while texture E had more gradual changes in
amplitude and resulted in fewer spikes around the edges of the
bumps.
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Fig. 5. Overview of the neuron spiking response for Textures B & E based on
the input voltage from a single taxel on the tactile sensor.

B. Classification Accuracy

The classification results presented in (Fig. 6), showed the
3x3 tactile sensor was able to reliably discriminate between
seven textures when compressed neuromorphically encoded
features were run through the SVM classifier. The sensor was
able to achieve an overall 99.21% classification accuracy using
SVM, with every texture being reliably classified (>96%
accuracy). When the two features from individual taxels on the
sensor were used separately as inputs for the classifier, the
overall accuracy ranged from 54.01% to 92.86%. Due to the
spatial integration of all the taxels on the sensor, a higher total
classification accuracy was achieved. At almost complete
accuracy over seven textures, this fingertip sensor array, with
an increased spatial resolution, shows promise for robust
texture discrimination for soft robotics.
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Fig. 6. Texture classification results showing the SVM algoritm’s accuracy for
classifying each of the textures from Fig. 3. Overall, the sensor was able to
reliably discriminate between the textures with SVM achieving 99.21% overall
classification accuracy.
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V. CONCLUSION

We showed that a 3x3 flexible tactile sensor array integrated
with a soft biomimetic finger can discriminate textures through
palpation. The compressed neuromorphic representation of the
tactile response was used to classify the textures. This work
combines the aspects of previous work [13], [16], [17] to
improve texture discrimination with an increased number of
taxels on the soft biomimetic finger to achieve more spatial
information in addition to a more robust classifier.

Validation of this approach with a larger texture database and
understanding the varying levels of actuation of the soft
biomimetic finger during palpation needs further investigation.
To palpate finer textures, the higher spatial resolution tactile
sensor would be beneficial. In conclusion, results of this study
indicate that soft biomimetic fingers with tactile sensing ability
have potential to reduce the gap between a healthy arm and
prosthesis by allowing users to improve their sense of touch
while perceiving and interacting with their environment.
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