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Abstract— Soft robotic fingers provide enhanced flexibility and 
dexterity when interacting with the environment. The capability 
of soft fingers can be further improved by integrating them with 
tactile sensors to discriminate various textured surfaces. In this 
work, a flexible 3x3 fabric-based tactile sensor array was 
integrated with a soft, biomimetic finger for a texture 
discrimination task. The finger palpated seven different textured 
plates and the corresponding tactile response was converted into 
neuromorphic spiking patterns, mimicking the firing pattern of 
mechanoreceptors in the skin. Spike-based feature metrics were 
used to classify different textures using the support vector 
machine (SVM) classifier. The sensor was able to achieve an 
accuracy of 99.21% when two features, mean spike rate and 
average inter-spike interval, from each taxel were used as inputs 
into the classifier. The experiment showed that an inexpensive, 
soft, biomimetic finger combined with the flexible tactile sensor 
array can potentially help users perceive their environment better. 
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I. INTRODUCTION  

Soft robotic devices have become increasingly popular in 
fields such as surgical robotics, prostheses due to their 
biomimetic capabilities. Soft robots are commonly fabricated 
from non-traditional materials such as silicone and are activated 
via pneumatic, hydraulic, or polymeric methods. The compliant 
nature of soft robots allows them to conform to objects and 
safely interact with their environment [1]. Additionally, soft 
actuators provide many degrees of freedom and large ranges of 
motion without adding components or response time [2]-[4]. 
While it has been reported that soft robotic devices have been 
able to detect static information like temperature, curvature, and 
force [5]-[7], the detection of dynamic cues such as texture has 
not been thoroughly explored. 

Dynamic cues are detected using active palpation by 
moving a tactile sensor (Fig. 1) over a textured surface. The 
texture is perceived by determining the changes in shape, size, 
and pliancy of the surface over time. The sensation of texture 
allows users to better perceive and interact with objects in their 
surroundings [8], [9]. In minimally invasive surgery, robots 
have been using texture to identify tumors and abscesses [10]. 

Texture discrimination also provides tactile feedback such as 
compliance to a prosthesis user to more dexterously manipulate 
everyday objects [11], [12]. There has been a previous study 
which integrated a single tactile sensor with a soft biomimetic 
finger with promising results [13], but a tactile sensor array has 
yet to be integrated. Multiple sensors on a soft finger could 
create a more realistic sensation for the user. The fabrication of 
a biomimetic prosthesis would not only require physical 
components such as a soft materials and tactile sensors, but 
more organic signal processing as well. This can be 
accomplished through neuromorphic encoding and classifiers. 

Neuromorphic encoding is a process where tactile 
information from sensors is transformed into spike patterns, 
mimicking neural signals produced by mechanoreceptors in the 
human skin. This work uses the Izhikevich framework’s slowly 
adapting neuron model to create spike trains, which vary in 
frequency in response to input amplitude. Neuromorphic 
encoding allows for efficient relay of feedback information 
which can seamlessly integrate with biological systems [14]. 
After the texture information is translated into spiking patterns, 
supervised machine learning algorithm, support vector machine 
(SVM), is used to classify the textures.  

In this study, we present a soft biomimetic finger integrated 
with a 3x3 flexible tactile sensor array capable of texture 
discrimination using neuromorphic encoding and supervised 
learning. 

II. MATERIALS 

A. Sensor Design 

The 3x3 fabric-based tactile sensor array (Fig. 1) is a 
variation of a previous multilayer sensor design [15]. This 
sensor array with 9 taxels, or sensing elements, is small enough 
to be integrated with the soft biomimetic fingertip. Each taxel 
has a sensing area of 2x2 mm2 spaced at 2.5 mm intervals. The 
piezoresistive fabric transforms the applied force into changes 
in voltage [18]. The sensor voltage output was measured in a 
voltage divider by connecting the sensor in series with a 10 kΩ 
resistor.  
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Fig. 1. Graphic overview of the 3x3 flexible tactile sensor array.  The 
perpendicular crossing 2 mm strips of conductive traces sandwich the 
piezoresistive fabric to create 2x2 mm2 taxels (sensing element) spaced 2.5 mm 
apart. The sensor is integrated with the soft biomimetic finger. 

B. Soft Biomimetic Finger 

The soft biomimetic finger (Fig. 2) has the same design as 
a previous finger [13] but with a different integrated sensor. To 
mimic the trajectory of the human finger, the soft biomimetic 
finger has three joints, metacarpophalangeal (MCP), proximal 
interphalangeal (PIP), and distal interphalangeal (DIP). The 
pneumatically actuated finger has two degrees of freedom, with 
the MCP joint being actuated independently from the PIP and 
DIP joints, which share the same pneumatic channel. 

 
Fig. 2. Soft finger integrated with the tactile sensor array. (A) Bottom view; 
(B) Side view. The orange sections form the joints. 

The silicone rubber Dragon SkinTM 10 Medium (Smooth-
On, Macungie, PA, USA) composes much of the soft finger 
with orange cotton fiber wound twice around the inner layer to 
prevent radial expansion. Strips of white cotton fabric were also 
wrapped around certain parts of the finger to mimic the joints 
of the human finger. The areas without the strain limiting fabric, 
become the MCP, PIP, and DIP joints. On the outer layer of 
silicone, an additional layer of white cotton fabric was adhered 
to the palmar surface of the finger to create the directional 
curvature that mimics the human finger.  

C. Textured Plates Design 

 To test the sensor for texture discrimination, 7 textured 
plates with varying textures were designed (Fig. 3). The 36x36 
mm2 textured surfaces with 2.5 mm raised ridges and bumps 
were centered on a 108x36 mm2 plate. An isolated textured 
surface for palpation was created by including flat surfaces on 
either side. 

 
Fig. 3. Textured plates designed for testing texture discrimination. (A) Flat; 
(B) 2 ridges; (C) 4 ridges; (D) 8 ridges; (E) 3x3 bumps; (F) 4x4 bumps; (G) 6x6 
bumps. The red arrow indicates the direction of palpation. 

III. METHODS 

A. Experimental Procedure 

The soft biomimetic finger was mounted on the UR5 Robot 
arm (Universal Robots, Odense, Denmark) to palpate the 
textured plates (Fig. 4). The soft finger was used to in its 
uninflated state. First, the finger was brought down to one side 
of the textured plate until the sensor array made physical contact. 
Then, the texture was palpated by moving the entire finger 
horizontally along the direction of palpation, shown in (Fig. 3). 
Each texture was palpated at approximately 60 mm/s with 32 
repetitions. The output of each taxel was sampled at 100 Hz by 
the Arduino Mega 2560 microcontroller and processed in 
MATLAB. 

 
Fig. 4. Overview of the experimental setup with the soft biomimetic finger 
integrated with the tactile sensor array mounted on the UR5 arm palpating the 
textured plates. 

B. Neuromorphic Encoding 

To mimic mechanoreceptor activity, the tactile response 
from each taxel of the tactile sensor was converted into slowly 
adapting (SA-1) neuron spiking patterns using the Izhikevich 
neuron model [19]. This approach has been used previously for 
similar applications [13], [16], [17], [20], [21]. The Izhikevich 
neuron model uses (1), (2), and (3) equations to produce the 
spike train with recovery variable u, membrane voltage v, and 
injected current I [19].  ௗ௩ௗ௧ ൌ ଶݒ0.04 ൅ ݒ5 ൅ 140 െ ݑ ൅  (1) ܫ݇
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To mimic SA-1 neurons, the Izhikevich model parameters 
were a = 0.02, b = 0.2, c = -65, and d = 8. The voltage output of 
the taxels were normalized and a gain factor, k, of 15 was 
applied before serving as the input current for the neuron 
model.  

The sensor array’s responses for each of the textures were 
collected and segmented into 9 s windows, based on the 
duration of each trial, before being converted into spike trains 
offline using MATLAB. Then, to compress the information for 
the classification algorithms, the mean spike rate and average 
inter-spike interval were calculated for each trial. The mean 
spike rate was calculated by counting the number of spikes 
within 100 ms bins and dividing it by the bin length for each 
trial. The average inter-spike interval was calculated by 
averaging the time elapsed between each spike in the window.  

C. Classification Algorithms 

To test the ability of the sensor array to discriminate between 
the textures, two features from each taxel for each trial were 
used as inputs for the classifier. The two features being mean 
spike rate and average inter-spike interval. This resulted in 18 
features, 2 per taxel, becoming the input for the classifier. Of 
the 32 trials from each textured plate, 24 trials were randomly 
selected for the training set and the remaining samples were 
used as the testing set. This process was repeated 1000 times to 
reduce the training set bias.  

 A supervised learning algorithm was used for texture 
classification because the identities of the textures are known. 
The linear kernel of SVM was implemented in MATLAB 
because it did not require the assumptions of normal distribution 
and similar within-class variance. Additionally, SVM had been 
shown to discriminate textures well in previous studies [16].   

IV. RESULTS  AND DISCUSSION 

A. Neuromorphic encoding 

The spiking patterns (Fig. 5) were generated by the neuron 
model of a single taxel when palpating textures B and E. 
Texture B had constant spiking when the normalized voltage 
was high, while texture E had more gradual changes in 
amplitude and resulted in fewer spikes around the edges of the 
bumps. 

 
Fig. 5. Overview of the neuron spiking response for Textures B & E based on 
the input voltage from a single taxel on the tactile sensor.  

B. Classification Accuracy 

The classification results presented in (Fig. 6), showed the 
3x3 tactile sensor was able to reliably discriminate between 
seven textures when compressed neuromorphically encoded 
features were run through the SVM classifier. The sensor was 
able to achieve an overall 99.21% classification accuracy using 
SVM, with every texture being reliably classified (>96% 
accuracy). When the two features from individual taxels on the 
sensor were used separately as inputs for the classifier, the 
overall accuracy ranged from 54.01% to 92.86%. Due to the 
spatial integration of all the taxels on the sensor, a higher total 
classification accuracy was achieved. At almost complete 
accuracy over seven textures, this fingertip sensor array, with 
an increased spatial resolution, shows promise for robust 
texture discrimination for soft robotics.  

 
Fig. 6. Texture classification results showing the SVM algoritm’s accuracy for 
classifying each of the textures from Fig. 3. Overall, the sensor was able to 
reliably discriminate between the textures with SVM achieving 99.21% overall 
classification accuracy. 

V. CONCLUSION 

We showed that a 3x3 flexible tactile sensor array integrated 
with a soft biomimetic finger can discriminate textures through 
palpation. The compressed neuromorphic representation of the 
tactile response was used to classify the textures. This work 
combines the aspects of previous work [13], [16], [17] to 
improve texture discrimination with an increased number of 
taxels on the soft biomimetic finger to achieve more spatial 
information in addition to a more robust classifier.  

Validation of this approach with a larger texture database and 
understanding the varying levels of actuation of the soft 
biomimetic finger during palpation needs further investigation. 
To palpate finer textures, the higher spatial resolution tactile 
sensor would be beneficial. In conclusion, results of this study 
indicate that soft biomimetic fingers with tactile sensing ability 
have potential to reduce the gap between a healthy arm and 
prosthesis by allowing users to improve their sense of touch 
while perceiving and interacting with their environment. 
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