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Lateral migration of a ferrofluid droplet in a plane Poiseuille flow under uniform magnetic fields

Md Rifat Hassan and Cheng Wang *

Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409, USA

(Received 8 April 2020; accepted 28 July 2020; published 31 August 2020)

The lateral migration of a two-dimensional (2D) viscous ferrofluid droplet in a plane Poiseuille flow under a

uniform magnetic field is studied numerically by using the level set method. Focusing on low droplet Reynolds

number flows (Red � 0.05), several numerical simulations are carried out to analyze the effects of magnetic

field direction and strength, droplet size, and viscosity ratio on the lateral migration behavior of the droplet. The

results indicate that the magnetic field direction plays a pivotal role in the trajectory of lateral migration of the

droplet and the final equilibrium position in the channel. When the magnetic field is parallel to the channel,

i.e., α = 0◦ (the direction of magnetic field), the droplet is found to settle closer to the wall with an increase in

magnetic Bond number Bom, while at α = 45◦, the droplet settles closer to the channel center. Varying the initial

droplet sizes at a fixed magnetic Bond number Bom and viscosity ratio λ results in different final equilibrium

positions within the channel. Additionally, the effect of different viscosity ratios on the migration behavior of the

droplet is examined at variable magnetic Bond numbers Bom. At α = 45◦, a critical steady state of deformation

is found for λ = 0.5 and 1 where the droplet changes its migration direction and shifts toward the center of the

channel, while at λ = 0.05, the droplet crosses the center. At α = 90◦, the droplet is found to settle exactly at the

center of the flow domain irrespective of different magnetic Bond numbers, droplet sizes, and viscosity ratios.

DOI: 10.1103/PhysRevE.102.022611

I. INTRODUCTION

Dispersion of droplets in another immiscible fluid is impor-

tant in a number of industrial applications that deal with nat-

ural and synthetic products, including food products, drugs,

and milk [1,2]. Dispersion is also important in a variety of

technological processes that involve liquid-liquid extraction

[3,4] where phase separation is crucial to the purification of

the product, such as separation of water from crude oil and

separation of glycerol from biodiesel [5].

Crude oil from an oil well contains a significant amount

of dispersed water droplets with an average diameter around

50 μm. The volume fraction of water in crude oil must be

reduced to less than 0.3% before further processing in order

to avoid process equipment corrosion and possibly catalyst

poisoning [6,7]. Therefore, understanding the dynamics of

droplets in a channel flow, i.e., Poiseuille flow, is of paramount

importance to the separation of droplets in the microscale. A

single droplet in a pressure-driven flow serves as an excellent

model problem to investigate the lateral migration behavior of

droplets and can provide fundamental insights on the behavior

of more complex phenomena that involves suspension of mul-

tiple droplets, e.g., blood flow through blood vessels, tissue

and bone passages, and transport of emulsions through porous

media [8,9]. In the existing literature, numerous theoretical

[10–12], experimental [13,14], and numerical [15,16] studies

have been carried out to investigate the migration behavior of

droplets in shear flows.

*wancheng@mst.edu

Theoretical investigations on deformed droplets are mostly

restricted to the Stokes flow limit. Reversibility of the Stokes

flow requires that droplets must be deformed in order to

migrate, and small deviations from the spherical shape are

considered in all migration theories corresponding to small

capillary numbers and small Reynolds numbers. Chan and

Leal [17] studied the migration of a nearly spherical drop

(small in size compared to the channel width) and obtained

a closed form solution for the cross-stream migration velocity

in a linear shear flow and two-dimensional Poiseuille flow.

They also found that the axial velocity of the drop always

lags behind the undisturbed velocity of the flow field. Pak

et al. [18] and Hanna and Vlahovska [19] analytically at-

tributed the cross-stream migration of a spherical drop toward

the center of the channel in a Poiseuille flow due to the effect

of surfactant at the drop surface. Zhou and Pozrikidis [20–22]

numerically investigated the migration of a deformable drop

in a two-dimensional Couette flow and Poiseuille flow at

zero Reynolds number and found that the droplet migrates

away from the walls. Cross-stream migration of a deformable

drop in a two-dimensional Hagen-Poiseuille flow has been

studied numerically by Mortazavi and Tryggvason [23], while

Afkhami et al. [24] performed a two-dimensional numerical

analysis to investigate the motion of drops in an unbounded

parabolic field. Also, a three-dimensional single droplet mi-

gration simulation near a wall in a simple shear flow has been

done by Kennedy et al. [25].

In order to provide insights into the droplet dynamics in

a creeping flow condition, several authors, in their experi-

ments, considered the behavior of solitary drops in linear and

parabolic flows. Experimental investigation on the migration

of neutrally buoyant drops and solid particles in a tube flow
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with a near zero Reynolds number has been performed by

Goldsmith and Mason [10,26]. Hiller and Kowalewski [27]

conducted experiments on a very dilute suspension of droplets

in a plane Poiseuille flow in the limit of creeping flow. These

investigations found that at a low viscosity ratio (ratio between

the droplet phase viscosity to the continuous phase viscosity),

the droplet reached an equilibrium position at the channel

axis, whereas at high viscosity ratios the droplet concentration

peak moved to a position between the center and the wall of

the channel. For a comprehensive review on droplet migration

in a Poiseuille flow, readers are referred to Ref. [28], which is

an excellent review article.

Due to the very small size of the droplet, settling of droplets

by means of only gravitation takes a considerable amount

of time. In addition to using viscous shear forces, phase

separation can be enhanced by applying external force fields,

such as electric or magnetic fields [29,30], which provide an

additional means of controlling the dynamics of droplets [31].

Vlahovska [32] performed a perturbation analysis in order

to study the effects of drop deformation and shear rheology

under a uniform electric field in a shear flow field. Cross-

stream migration of a droplet under the effect of a uniform

electric field in a Poiseuille flow is analytically investigated

by Mandal et al. [33], while Feng [34] studied the effect of

surface charge convection on the deformation of a drop in a

leaky dielectric model at finite Reynolds numbers.

Magnetic fields can also be used to manipulate the shape

of a ferrofluid droplet [35,36] or an emulsion system [37].

In particular, the ease of both integration and flexibility of

operation render a magnetic field as a popular means of

droplet manipulation in microfluidic devices. In order to use

magnetic manipulation, either the droplet or the suspending

medium needs to be a ferrofluid—a dispersion of magnetic

nanoparticles (diameter typically around 10 nm and volume

fraction about 5%). Due to the presence of different magnetic

properties, Maxwell stresses occur at the fluid-fluid interface

in addition to the hydrodynamic stresses. Additionally, mul-

tiphase ferrofluid droplets have notable biomedical applica-

tions, such as treatment of retinal detachment [38], due to their

ability to be delivered to a specific site with the help of proper

manipulation of a magnetic field. Liu et al. [39] studied the

ferrofluid droplet formation under a uniform magnetic field.

Afkhami et al. [40] numerically investigated the deformation

of a neutrally buoyant hydrophobic ferrofluid droplet sus-

pended in a viscous fluid under a uniform magnetic field. Shi

et al. [41] numerically investigated the dynamics of a falling

ferrofluid droplet in a nonmagnetic fluid under the influence

of a uniform magnetic field. A thorough investigation on

the deformation and orientation of a ferrofluid droplet under

uniform magnetic fields has been carried out in our recent

work [42].

Until now, only a few have studied the lateral migration

behavior of a ferrofluid droplet in a Poiseuille flow under

the influence of a uniform magnetic field. Recently, Zhang

et al. [43] experimentally investigated the effects of magnetic

field strength, direction, and interfacial tension on the lateral

migration mechanism of a ferrofluid droplet and found that

the migration speed increases with an increase in magnetic

field strength and a decrease in interfacial tension. However,

a comprehensive numerical understanding on the effect of

other important parameters (i.e., droplet size and viscosity

ratio) on the migration behavior of a ferrofluid droplet in

a Poiseuille flow under a uniform magnetic field is missing

in the existing literature. Therefore, in this paper, we focus

on investigating the lateral migration behavior of a ferrofluid

droplet in a plane Poiseuille flow under a uniform magnetic

field along a few specific directions. Here a two-dimensional

(2D) numerical simulation model is chosen in order to study a

wide range of parameters, i.e., magnetic Bond number, droplet

size, viscosity ratio, and field direction. Prior studies show

that 2D numerical models are capable of qualitatively and

correctly capturing the deformation of a ferrofluid droplet

under a uniform magnetic field with great computational effi-

ciency [29,30,41,42,44,45]. Our numerical model, built with a

commercial FEM solver, models the droplet interface by using

the level set method and coupling the magnetic and flow fields.

The remainder of this paper is organized as follows: The

numerical model is described in Sec. II. In Sec. III, we present

the numerical and mathematical methods that are required to

solve our computational model. In Sec. IV, we first validate

our model in a Poiseuille flow with different viscosity ratios

by comparing our results against the existing theories in

the literature and then examine the effect of magnetic field

direction, magnetic field strength, droplet size, and viscosity

ratio on the migration behavior of the droplet. Finally, the

major findings are summarized in Sec. V.

II. NUMERICAL MODEL

Figure 1 schematically represents the suspension of a

viscous ferrofluid droplet in another viscous medium in a

Poiseuille flow under a uniform magnetic field, H0. Initially,

the viscosity of both phases are matched with each other

(i.e., ηd = ηc). Here the magnetic susceptibility of the droplet

phase is considered as χd = 0.25, while it is zero (i.e., χc = 0)

in the surrounding phase. The interfacial tension between the

two phases is considered as σ = 0.0135 N/m. Note that the

values of interfacial tension and magnetic susceptibility are

chosen to be typical for actual experiments.

In the current investigation, all the distances are measured

from the center of the droplet, and, initially, a circular fer-

rofluid droplet with a radius of 75 μm is placed 80 μm below

FIG. 1. Schematic representation of a viscous ferrofluid droplet

suspended in another viscous medium in a Poiseuille flow under a

uniform magnetic field, H0, at arbitrary directions, α.
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TABLE I. Simulation parameters and values.

Parameter Symbol Value Unit

Channel height Hd 500 μm

Permeability of vacuum μ0 4π × 10−7 H/m

Initial droplet radius R0 75 μm

Interfacial tension σ 0.0135 N/m

Average flow velocity ua 50 mm/s

Density of droplet phase ρd 1000 kg/m3

Density of continuous phase ρc 840 kg/m3

Magnetic permeability of droplet phase μd 1.25 μ0 H/m

Magnetic permeability of continuous phase μc μ0 H/m

the center of the domain, which indicates 80-μm vertical

separation between the droplet center and center of the flow

domain, while it is placed far from the inlet along the hori-

zontal direction to ignore the entrance effect. The velocity at

any point in the computational domain can be calculated as

u = um(1 − 4Y ∗2), where um is the maximum flow velocity

in the domain, and the velocity profile is symmetric with

respect to the x axis along the center of the domain. The

dimensionless parameter Y ∗ defines the relative position of the

droplet in the channel along y direction (i.e., Y ∗ =
y

Hd

). The

average velocity at the inlet is taken as 50 mm/s. A no-slip

boundary condition is applied to both the top and bottom

walls. Additionally, a uniform magnetic field is applied along

an arbitrary direction to the flow domain, which is denoted by

the angle α. The deformation of the droplet is characterized

by the largest dimension L and smallest dimension B along the

major and minor axes of the droplet, respectively. The droplet

shapes are analyzed in MATLAB to find the properties related

to the deformed droplets where the centroid of the droplet

is determined by the arithmetic mean of all the points in

different coordinate directions. Additionally, when a droplet

deforms, it is approximately transformed into an ellipsoidal

shape, and the major axis of the droplet refers to the diameter

of the ellipsoid along the major-axis direction. Afterward,

the orientation angle of the droplet θ is defined as the angle

between the major axis of the droplet and positive x axis,

measured in the counterclockwise direction. Additionally, for

the convenience of the readers, the magnitudes of different

parameters that are implemented in the simulations are listed

in Table I.

III. NUMERICAL SIMULATION METHOD

A. Level set method

In order to track the dynamic evolution of the droplet

interface between the two phases, a conservative level set

method is used in our model. The level set method uses an

auxiliary scalar step function, φ, which has a value of 1 in

droplet phase and zero in continuous phase. It varies smoothly

from 0 to 1 between the two phases across the interface of the

droplet, and φ = 0.5 defines the interface of the droplet. The

level set function is governed by the following equation [46]:

dφ

dt
+ u · ∇φ = γ∇ ·

[

ε∇φ − φ(1 − φ)
∇φ

|∇φ|

]

, (1)

where γ and ε denote the amount of reinitialization and the

thickness of the droplet interface, respectively. The terms

on the left-hand side of the equation represent the motion

of the interface, while the terms on the right-hand side are

required for numerical stability. The thickness of the interface

ε is set equal to the largest mesh size of the domain. The

reinitialization parameter γ ensures that the level set function

gradient remains concentrated to the droplet interface thick-

ness over time, which again needs to be tuned carefully to

obtain accurate results. A lower magnitude of γ results in the

entrapment of level set function variation in the bulk of one of

the fluids, while a higher magnitude leads to smaller time steps

and larger computational times. The maximum magnitude of

the velocity in the flow domain is considered as a suitable

value of γ in level set method. The level set function can also

be used to find the unit normal to the interface n:

n =
∇φ

|∇φ|
. (2)

The level set method treats a multiphase flow as a single-

phase flow, but the flow properties across the flow domain

vary according to the level set function. The properties of the

fluids such as density (ρ), dynamic viscosity (η), magnetic

permeability (μ), and magnetic susceptibility (χ ) can be

related to φ through the following equations:

ρ = ρc + (ρd − ρc)φ, η = ηc + (ηd − ηc)φ, (3)

μ = μc + (μd − μc)φ, χ = χc + (χd − χc)φ, (4)

where the subscripts c and d represent the continuous and

droplet phases, respectively.

B. Governing equations

The flow field consisting of an incompressible, immiscible

ferrofluid droplet suspended in another incompressible, im-

miscible medium under the application of a uniform magnetic

field is governed via the following continuity and momentum

equations:

∇ · u = 0 (5)

and

ρ

(

∂u

∂t
+ u · ∇u

)

= −∇p + ∇ · τ + Fσ + Fm, (6)

where p denotes pressure, τ = [η(∇u + (∇u)T )] denotes vis-

cous stress, and Fσ and Fm represent the surface tension and

magnetic forces per unit volume, respectively. The surface

tension force Fσ is defined as

Fσ = ∇ · [σ {I + (−nnT )}δ], (7)

where σ is the coefficient of surface tension, I is the second-

order identity tensor, δ is the Dirac delta function, and n is

the unit normal to the interface that can be calculated using

Equation (2). The Dirac delta function δ is approximated using

the level set function as

δ = 6|φ(1 − φ)||∇φ|. (8)
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TABLE II. Mesh element sizes for grid independence test.

Mesh 1 Mesh 2 Mesh 3 Mesh 4 Mesh 5 Mesh 6 Mesh 7

Flow field domain 53 870 65 532 82 076 102 976 132 624 143 734 155 866

The magnetic force can be calculated as [47]

Fm = ∇ · τm = ∇ ·

(

μHH −
μ

2
H2I

)

(9)

where τm is the magnetic stress tensor for the applied mag-

netic field and H2 = H · H = |H|2. To calculate the magnetic

stress tensor, the magnetostatics equations, including mag-

netic induction (B), magnetization (M), and magnetic field

(H), are solved. Assuming linear and homogeneous material

properties, the magnetostatic Maxwell equation relates B, H,

and M via the following relationships [48]:

∇ · B = 0, ∇ × H = 0, M = χH, and

B = μ0(H + M) = μ0(1 + χ )H, (10)

where μ0 = 4π × 10−7 N/A2 is the permeability of vacuum

and μ and χ depend on the phase function φ according to

Eq. (4). A scalar potential ψ can be defined, and its gradient

represents curl-free H (i.e., H = −∇ψ). We can now write

∇ · (μ∇ψ ) = 0. (11)

C. Governing equations in nondimensional form

Now we rewrite the governing equations into nondimen-

sional forms to understand the effect of different nondimen-

sional groups on the droplet dynamics. The length and time

are scaled by the height of the channel Hd and the inverse of

the average shear rate γ̇a, respectively. The parameter γ̇a can

be defined as
2ua

Hd

, where ua is the average velocity in the flow

domain, which again equals 2/3 times the maximum velocity

um in the flow domain (i.e., ua = 2
3
um). The other dimensional

variables are converted to nondimensional forms through the

following relationships:

X ∗ =
x

Hd

, Y ∗ =
y

Hd

, R∗ =
R0

Hd

, p∗
a =

p

ηγ̇a

ρ∗ =
ρ

ρc

, η∗ =
η

ηc

, μ∗ =
μ

μ0

, H∗ =
H

H0

,

where Hd is the channel height and H0 is the magnitude of

the externally applied magnetic field H0. Therefore, governing

equations (5) and (6) can be written as

∇
∗ · u∗ = 0 (12)

and

Red

(

ρ∗ Du∗

Dt∗

)

= −∇
∗ p∗

a + ∇
∗ · τ ∗ + 2

Bom

Ca
∇

∗ · τ
∗
m

+
1

Ca
F∗

σ . (13)

In the above equations, the superscript ∗ represents the

nondimensional variables. The different dimensionless groups

are the droplet Reynolds number (Red ), average capillary

number (Ca), and magnetic Bond number (Bom), which are

defined as follows:

Red =
ρcR0

2γ̇a

ηc

, (14)

Ca =
ηcR0γ̇a

σ
, (15)

and

Bom =
R0μ0H0

2

2σ
. (16)

The viscosity ratio λ and permeability ratio ζ are also

defined as follows:

λ =
ηd

ηc

and ζ =
μd

μ0

. (17)

Here we will mainly concentrate on the effects of

Bom, α, R0, and λ on the lateral migration behavior of the

droplet in low droplet Reynolds number flows (Red � 0.05).

D. Grid independence test

A grid independence test is performed to determine the

optimum size of the mesh elements that gives accurate results,

while saving a reasonable amount of computational time. In

this case, we have used different mesh sizes and compared the

lateral migration behavior of the droplet. Different triangular

mesh element sizes for the grid independence test are tabu-

lated in Table II, and Fig. 2 represents the lateral migration

of the droplet Y ∗
d for the respective configurations. It can be

seen that when there are more than 132,624 elements in the

flow field domain, the lateral migration profiles of the droplet

(Meshes 6 and 7) completely overlap with each other. We have

FIG. 2. Grid independence test: The time evolution of lateral

migration behavior of the droplet, Y ∗
d , for different mesh configu-

rations: Mesh 1, blue (solid) line; Mesh 2, orange (diamond) line;

Mesh 3, yellow (plus) line; Mesh 4, violet (dash-dot) line; Mesh 5,

green (circle) line; Mesh 6, cyan (dashed) line; and Mesh 7, maroon

(dotted) line.
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FIG. 3. Time evolution of droplet trajectory in a Poiseuille flow at Red = 0.03 and Bom = 0. (a) Lateral migration of droplet for different

viscosity ratios, Yd vs. t∗; (b) comparison of simulated droplet deformation D results against Taylor’s theory at variable capillary numbers, D

vs. Ca at λ = 0.05.

used 143 734 elements for the simulations throughout the rest

of the paper.

IV. RESULTS AND DISCUSSIONS

A. Validation of numerical method

Droplet migration in a Poiseuille flow

At first, we validated our model by comparing the results

against the existing theories in the literature in terms of the

lateral migration of a droplet in a Poiseuille flow for different

viscosity ratios at Red = 0.03 and Bom = 0. The most thor-

ough theoretical analysis on droplet migration behavior in a

two-dimensional Poiseuille flow is given by Chan and Leal

[17], who considered the effect of the deformed shape of the

droplet as a critical factor on the droplet trajectory motion

in a unidirectional shear flow. Two different hydrodynamic

interactions are mainly responsible for droplet migration. First

is the interaction between the deformed drop and the bottom

wall of the channel, which causes the droplet to migrate away

from the bottom wall toward the center of the flow domain,

and this interaction gradually decreases as the distance be-

tween the droplet and bottom wall increases. Second is the

interaction between the deformed drop and the flow field,

which vanishes in a simple shear flow but plays an important

role in the quadratic flow field [27]. According to Chan and

Leal [17], the migration behavior of the droplet due to its

interaction with the flow field is essentially dependent on the

viscosity ratio λ. When λ < 0.5 and λ > 10, both types of

interactions act in the same direction, and the droplet migrates

toward the centerline of the channel. On the other hand, for

intermediate values of viscosity ratios (0.5 < λ < 10), the

interaction of the deformed droplet with the velocity profile

forces the droplet to migrate toward the bottom wall. Since,

for 0.5 < λ < 10, both types of interactions take place at the

same time and are in opposite directions, the droplet finds a

steady-state position at some point between the center and

the bottom wall of the channel due to the combined effect

of these forces. Moreover, it is important to note that this

equilibrium position where the two forces become equal also

depends on the relative size of the droplet [27]. Experimental

investigations of Karnis and Mason [10] show that a single

drop moves away from the wall in a pressure-driven channel

flow and reaches the center of the channel for low viscosity

ratios. Furthermore, Hiller and Kowaleski [27] experimentally

found the highest drop number density at the center line for

the low viscosity ratio (i.e., λ = 0.1), while for the moderate

viscosity ratio (i.e., λ = 1), the highest concentration was

located at a position between the center and the wall.

Figure 3(a) represents the lateral migration behavior of

a droplet for different viscosity ratios. It can be seen that

when λ = 0.05, the droplet migrates toward the center of the

channel. On the other hand, at λ = 1, the droplet settles down

at a point between the center and wall of the channel. Both

simulation results qualitatively agree well with the existing

theories in the literature.

We also validated the deformation of the droplet D at

different positions in the channel against Taylor’s theory.

According to Taylor [49,50], the deformation of a neutrally

buoyant droplet suspended in another incompressible and

immiscible viscous medium at the Stokes flow limit under a

simple shear flow can be calculated as

D =
L − B

L + B
=

19ηd + 16ηc

16ηd + 16ηc

Ca, (18)

where the average capillary number Ca is defined in Eq. (15).

Equation (18) is based on the assumption of an unbounded

shear flow and a vanishing Reynolds number. Figure 3(b) il-

lustrates the comparison of simulation results against Taylor’s

theory, which are in very good agreement with each other.

Additionally, we validated the ferrofluid droplet deformation

in a quiescent flow under a uniform magnetic field in our

previous work [42].

B. Lateral migration behavior of a droplet under uniform

magnetic fields

1. Effect of magnetic field direction

When a magnetic field is applied to a ferrofluid droplet in a

Poiseuille flow, the droplet undergoes deformation due to the

combined effect of the shear flow and the magnetic field [42].

Here, in this section, we investigate the effect of magnetic field
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FIG. 4. Effect of different magnetic field directions on the migration behavior of the droplet at Red = 0.03 and λ = 1. (a) Bom = 0 and

(b) Bom = 8.72.

directions on the lateral migration behavior of the ferrofluid

droplet suspended in a parabolic flow field. For the subsequent

studies, we will use a droplet Reynolds number, Red = 0.03

and λ = 1.

Figure 4 shows the effect of different magnetic field di-

rections on the migration behavior of the droplet. Here we

have chosen some representative α for better illustration of

the results. From Fig. 4(a), we can see that in the absence

of any magnetic field, at λ = 1, the droplet finally settles

down approximately 0.038 below the center of the channel,

which also takes a considerable amount of time to reach the

equilibrium position. In contrast, from Fig. 4(b), it can be seen

that applying a uniform magnetic field from different arbitrary

directions results in different final equilibrium positions along

the channel relatively in a shorter period of time. Interestingly,

we can also see that the droplet follows different trajectories

before reaching the final equilibrium position. For example,

when α = 45◦ and 90◦, the droplet migrates upward, while

at α = 0◦, the droplet migrates downward. A magnetic field

strength of H0 = 50 000 A/m is used in all these cases, which

corresponds to a magnetic bond number equal to 8.72. Fig-

ure 5 depicts the steady-state velocity, magnetic field profiles,

and equilibrium droplet shapes at Red = 0.03 and Bom =

8.72. It can be seen that the droplet undergoes deformation

and tends to orient itself along the direction of the magnetic

field, which is also consistent with our previous findings [42].

At α = 90◦, the droplet shape is found to be symmetric with

respect to the x axis, which in turn aids the droplet to settle at

FIG. 5. Steady-state velocity, magnetic field profiles, and equilibrium droplet shapes at Red = 0.03 and Bom = 8.72. (a) α = 0◦, (b) α =

45◦, and (c) α = 90◦.
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FIG. 6. Effect of magnetic field strengths, H0, on the migration behavior of the droplet at α = 0◦, Red = 0.03, and λ = 1. (a) Y ∗
d vs. t∗,

(b) D vs. t∗, and (c) θ vs. t∗.

the center of the channel. Contrarily, at α = 0◦ and 45◦, due

to the asymmetry in the shape of the droplet, the droplet

experiences different hydrodynamic interactions along the in-

terface of the droplet, which force it to find an equilibrium po-

sition at a point somewhere between the center and the bottom

wall of the channel. The flow field becomes more distorted as

the droplet tends to further align itself in the vertical direction

to conform to the droplet shape. From the magnetic field

profiles, it can be seen that the droplet experiences maximum

magnetic field strength along the direction the magnetic field

is applied, while the strength is least in magnitude in the other

orthogonal direction. The magnetic field is also uniform both

inside and far outside the droplet. Additionally, the magnetic

field lines are parallel to each other; however, they are slightly

deflected at the interface of the droplet due to the change in

magnetic susceptibility at the interface. Therefore, it is clear

that the different droplet shapes and their alignment with the

flow field along with hydrodynamic interactions play a crucial

role in the trajectory of the lateral migration and the final

equilibrium position in a channel.

2. Effect of magnetic field strength

External force fields, i.e., magnetic fields, electric fields

are capable of inducing topological changes to a droplet

suspended in another medium, and in the previous section,

we observed that the magnetic field direction can significantly

influence the final equilibrium position of a ferrofluid droplet

in a channel flow. Now, we apply variable magnetic field

strengths along different directions to analyze how they affect

the lateral migration behavior of the droplet at λ = 1.

a. α = 0◦. Figure 6 illustrates the effect of different mag-

netic field strengths on the migration behavior of the droplet

at α = 0◦. From Fig. 6(a), it can be seen that as the magnetic

field strength increases, the droplet moves closer to the bottom

wall of the channel, while the droplet was found to settle

closer to the center of the channel in the absence of any

external forces. The droplet settles faster at the equilibrium

position at a higher magnetic field strength. This is because

with increasing magnetic field strength, the droplet under-

goes greater deformation, which is clearly demonstrated in

Fig. 6(b). Additionally, if we look at the trend in the orien-

tation angle of the droplet in Fig. 6(c), then it can be seen

that with increasing magnetic field strength, the orientation

angle decreases. This is because as the droplet moves closer

to the wall, the shear rate increases, which in turn reduces

the orientation angle values of the droplet [42]. Moreover, the

increasing magnetic field strength forces the droplet to align

itself more toward the direction of the magnetic field. As a

result, the resultant between the direction of the flow field and

magnetic field decreases, i.e., the orientation angle decreases.

In this case, the deformation of the droplet in combination

with the orientation angle plays a pivotal role in determining

the final equilibrium position of the droplet.

b. α = 45◦. When we apply the magnetic field at 45◦, it

can be seen from Fig. 7(a) that the droplet migrates upward

toward the center of the channel, and as the magnetic field

strength increases, it migrates further away from the bottom
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FIG. 7. Effect of magnetic field strengths, H0, on the migration behavior of the droplet at α = 45◦, Red = 0.03, and λ = 1. (a) Y ∗
d vs. t∗,

(b) D vs. t∗, and (c) θ vs. t∗.

wall of the channel; however, the change in migration rate

is much smaller in this case compared to each other. The

primary reason behind the migration behavior is related to the

deformation of the droplet, which increases with increasing

magnetic field strength [Fig. 7(b)]. In addition, it takes less

time to reach a steady state at a higher magnetic field strength,

which is similar to the previous case mentioned above. Fig-

ure 7(c) represents the orientation angle for all cases. It can

be seen that the results overlap with each other, and the

orientation angle reaches a saturation point, which is close to

the direction along which the magnetic field is applied. Since

the orientation angle remains the same irrespective of different

magnetic field strengths, in this case, it is clear that droplet

deformation is crucial to the final equilibrium position of the

droplet.

c. α = 90◦. Finally, we applied the magnetic field along

a direction perpendicular to the direction of the flow field

to observe its effect on the lateral migration behavior of the

droplet. We can see from Fig. 8(a) that the droplet finally

settles at the center of the channel for all the cases, and with

increasing magnetic field strength, the droplet settles faster

in the equilibrium position. The reason behind this can be

attributed to the droplet deformation trend with increasing

magnetic field strength [Fig. 8(b)]. Figure 8(c) represents the

orientation angle trends of the droplet, and it is clear that

at a steady-state condition, the orientation angle becomes

approximately equal to 90◦ for all the cases. Additionally,

the steady-state droplet shape is found to be symmetric with

respect to the center of the domain, which also helps the

droplet to maintain the final equilibrium position at the center

of the channel. Therefore, the results show that at a fixed

viscosity ratio, the final equilibrium position of the droplet

in a Poiseuille flow can be manipulated by means of applying

magnetic fields of different strengths along various directions.

3. Effect of droplet size

In this section, we investigate the dependence of the migra-

tion behavior of the droplet on different initial droplet sizes at

λ = 1. Like previous sections, surface tension and magnetic

susceptibility of the ferrofluid droplet are kept constant, i.e.,

σ = 0.0135 N/m and χd = 0.25, while the droplet aspect

ratios R∗
0 are varied from 0.11 to 0.24. Here we also apply

the magnetic field in arbitrary directions to observe its effect

on the final equilibrium position of the droplet in the channel.

a. α = 0◦. Figure 9 illustrates the effect of different droplet

sizes on the migration behavior of the droplet at α = 0◦. From

Fig. 9(a), it can be seen that when the magnetic field is applied,

the droplet starts to migrate downward, and as the droplet size

increases, it settles at a position far away from the bottom wall.

This behavior can be directly attributed to the deformed shape

of the droplet. Figure 9(b) shows that with the increase in the

size of the droplet, the deformation of the droplet increases,

and this phenomenon can be explained by the definition of the

magnetic Bond number [Eq. (16)]. Since the magnetic Bond

number is directly proportional to the size of the droplet, as

the droplet size increases, the magnetic force becomes larger

compared to the interfacial force, i.e., droplet deformation
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FIG. 8. Effect of magnetic field strengths, H0, on the migration behavior of the droplet at α = 90◦, Red = 0.03, and λ = 1. (a) Y ∗
d vs. t∗,

(b) D vs. t∗, and (c) θ vs. t∗.

increases. Consequently, as the droplet becomes larger, the

gap between the deformed droplet and bottom wall decreases,

which in turn increases the force exerted by the wall, and

therefore the centroid of the droplet is pushed further away

from the bottom wall. Furthermore, the droplet reaches its

final equilibrium position faster with an increase in the initial

size of the droplet.

b. α = 45◦. Now we apply the magnetic field along α =

45◦ to analyze its effect on the final equilibrium position of

different initial sized droplets. Figure 10 represents the effect

of different droplet sizes, R∗
0, on the migration behavior of the

droplet at α = 45◦, and it can be seen from Fig. 10(a) that for

all initial sizes, the droplet migrates away from the bottom

wall, and with an increase in droplet size, it moves closer

to the center of the channel. Additionally, as the droplet size

increases, the droplet finds its equilibrium position along the

flow domain in a relatively short period of time. Similarly to

the previous case mentioned above, this migration behavior is

also related to the deformation of the droplet. As we can see

from Fig. 10(b), the droplet undergoes a larger deformation

FIG. 9. Effect of different droplet sizes, R∗
0 , on the migration behavior of the droplet at α = 0◦, Red = 0.03, and λ = 1. (a) Y ∗

d vs. t∗ and

(b) D vs. t∗.
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FIG. 10. Effect of droplet sizes, R∗
0 , on the migration behavior of the droplet at α = 45◦, Red = 0.03, and λ = 1. (a) Y ∗

d vs. t∗ and (b) D

vs. t∗.

and reaches a steady-state deformation faster with an increase

in the initial droplet sizes. Furthermore, the droplet is found

to orient itself along the direction of the magnetic field where

the orientation angle reaches a saturation point close to 45◦.

c. α = 90◦. Finally, we apply the magnetic field along a

direction perpendicular to the flow domain to observe how

this arbitrary direction affects the settling of the droplet for

different initial size conditions. In this case, we can see from

Fig. 11(a) that the droplet finds its equilibrium position at the

center of the channel irrespective of the initial size conditions.

With an increase in the droplet size, the deformation of the

droplet increases [Fig. 11(b)], which in turn helps the droplet

to reach the equilibrium position faster at the center of the

flow domain. When the magnetic field is applied, the droplet

tries to align itself toward the direction of the magnetic field

due to the dominant nature of the magnetic field at a low

capillary number, and the orientation angle of the droplet be-

comes approximately 90◦ for all the cases. Additionally, this

symmetric shape of the droplet aids the droplet in maintaining

its equilibrium position at the center.

Figure 12 illustrates the effect of different droplet sizes

on the final equilibrium position, Y ∗
e , of the droplet at H0 =

50 000 A/m and λ = 1 along different arbitrary directions. As

we have seen before in Fig. 4(a), at λ = 1, in the absence of

a magnetic field, the droplet settles at a position between the

bottom wall and center of the channel, but Fig. 12 shows that

as the droplet size increases, it moves closer to the center;

however, when the size of the droplet is comparable enough

to the width of the channel, i.e., R∗
0 = 0.24, it migrates toward

the centerline, which is also consistent with the findings in

the literature [23]. Moreover, if we apply a constant magnetic

field strength along different arbitrary directions in addition

to varying sizes of the droplet, the results show that it is

possible to efficiently separate droplets at different positions

along the channel based on the deformation and orientation of

the droplet.

4. Effect of viscosity ratio

The viscosity ratio plays an important role in the exper-

imental analyses that deal with the behavior of drops of

different fluids suspended in another fluid [14,22]. Here we

investigate the contribution of viscosity ratios on the steady-

state position of the droplet in a parabolic flow under the effect

of a uniform magnetic field along different directions. In order

to perform this analysis, the relative size of the droplet is kept

constant, i.e., R∗
0 = 0.15, while the magnetic field is applied

along arbitrary directions for different viscosity ratios.

At first, we apply the magnetic field in a direction parallel

to the flow field to observe its effect on the migration behavior

FIG. 11. Effect of droplet sizes, R∗
0 , on the migration behavior of the droplet at α = 90◦, Red = 0.03, and λ = 1. (a) Y ∗

d vs. t∗ and (b) D

vs. t∗.

022611-10



LATERAL MIGRATION OF A FERROFLUID DROPLET IN … PHYSICAL REVIEW E 102, 022611 (2020)

FIG. 12. Effect of droplet sizes, R∗
0 , on the final equilibrium position, Y ∗

e , of the droplet at H0 = 50000 A/m and λ = 1. (a) α = 0◦,

(b) α = 45◦, and (c) α = 90◦.

of the droplet. Figure 13(a) illustrates the effect of different

viscosity ratios on the lateral migration behavior of the droplet

at α = 0◦. From Fig. 13(a), it can be seen that at a fixed mag-

netic Bond number, Bom, as the viscosity ratio increases, the

droplet starts to migrate away from the center of the channel,

and at a higher magnetic Bond number, i.e., Bom > 8, it settles

closer to the wall. This is because when the magnetic field is

applied at α = 0◦, the steady-state deformation of the droplet

increases with the increase of viscosity ratio at a fixed Bom,

which in turn helps the droplet to settle closer to the wall.

Interestingly, the equilibrium position starts to overlap with

each other at a critical magnetic Bond number, i.e., Bocr ≈ 7,

and a reverse trend appears where the droplet with higher

viscosity is found to settle further away from the bottom wall

compared to the lower viscous drops. This happens because as

the viscosity ratio increases, the increased droplet deformation

at a higher magnetic Bond number reduces the clearance space

between the droplet and the bottom wall. As a result, the

force exerted by the wall increases, which ultimately pushes

the droplet away from the wall toward the center of the flow

domain.

Figure 13(b) represents the effect of different viscosity

ratios on the lateral migration behavior of the droplet at

α = 45◦. Without a magnetic field (i.e., Bom = 0), at λ = 0.5

and 1 the droplet settles at a position between the center

and bottom wall of the channel, while at λ = 0.05, the final

equilibrium position is located at the center. These results

are also consistent with the findings of Chan and Leal [17].

Also, with the decrease in viscosity ratios, the droplet moves

closer to the center of the channel. But in the presence of a

magnetic field, the droplet presents an interesting migration

behavior. Figure 13(b) shows that at λ = 0.5 and 1, as the

magnetic Bond number Bom increases, the droplet starts to

move away from the center, and at a certain magnetic Bond

number, i.e., Bom ≈ 8.72, it changes its migration direction

back toward the center of the channel. We found that there

exists a critical steady-state deformation (i.e., Dcr ≈ 0.12)

where this behavior appears. Additionally, as the magnetic

field strength increases past that critical point, at a fixed

magnetic Bond number Bom, the final equilibrium position of

the droplet moves closer to the center of the channel as the

viscosity ratio decreases. On the other hand, when λ = 0.05,

the droplet starts to cross the center of the channel as soon as

the magnetic field is applied, and as magnetic bond number

increases, the droplet moves further away from the center. In

this case, the asymmetry of the droplet shape helps the droplet

cross the center of the channel.

Now we investigate the effect of different viscosity ratios

on the final equilibrium position of the droplet with the mag-

netic field applied perpendicularly to the flow field direction

(i.e., α = 90◦). Figure 13(c) shows that in the presence of

a magnetic field, the droplet finds an equilibrium position

exactly at the center of the channel for all different viscosity

ratios. This happens because as soon as the magnetic field

is applied the droplet undergoes deformation and tries to

orient itself along the direction of the magnetic field, thus
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FIG. 13. Effect of viscosity ratios, λ, on the final equilibrium position, Y ∗
e , of the droplet at R∗

0 = 0.15 and Red = 0.03. (a) α = 0◦,

(b) α = 45◦, and (c) α = 90◦.

resulting in a symmetric shape, which in turn aids the droplet

in maintaining its position at the center. Furthermore, with

decreasing viscosity ratio, the droplet reaches its final equi-

librium position faster in the channel.
Last, an overview on the dependence of lateral migration

behavior of a droplet in a channel flow on the deformation D

and orientation angle θ is illustrated in Fig. 14. Figure 14(a)
shows that in the absence of any external forces (Red =

0.03, Bom = 0), D and θ are dependent on the viscosity ratio
λ and capillary number Ca [i.e., (D, θ ) = f (λ, Ca)], which
ultimately contribute in determining the final equilibrium
position of droplet in a Poiseuille flow. On the other hand,
in the absence of any external flows (Red = 0) in Fig. 14(b),
the magnetic field defines the shape of a droplet, while the
orientation angle is defined by the magnetic field direction
[i.e., (D, θ ) = f (λ, Bom, α)]. As a result, in Fig. 14(c), un-
der the combined effect of flow and magnetic fields, the
lateral migration behavior of droplet becomes more complex
where the final equilibrium position is dictated by the vis-
cosity ratio λ, capillary number Ca, magnetic Bond number
Bom, and magnetic field direction α (i.e., Y ∗

e = f (D, θ ) =

f (λ, Ca, Bom, α)). Additionally, the final equilibrium posi-
tions of droplet under variable magnetic field strengths at
Red = 0.03 and λ = 1 are portrayed in Fig. 15, which further
demonstrate the dependence of final equilibrium position on
the shape and orientation of droplet in a channel.

V. CONCLUSION

The lateral migration of a ferrofluid droplet in a plane

Poiseuille flow under the influence of a uniform magnetic field

along several directions is systematically studied in this paper.

In the absence of a magnetic field, the droplet finds its equi-

librium position at a location between the center and bottom

wall of the channel for λ = 0.5 and 1, while at λ = 0.05 it

settles at the center of the channel. Applying a magnetic field

along arbitrary directions results in different final equilibrium

positions in the channel due to the different alignments of

the droplet with the flow field. As we increase the magnetic

field strength along α = 0◦, at a viscosity ratio λ = 1, the final

equilibrium position of the droplet moves closer to the bottom

wall of the channel. However, if we apply the magnetic field

along α = 45◦, then the droplet moves closer to the center of

the channel as the magnetic field strength is increased. Even-

tually, if the magnetic field is applied along α = 90◦, then the

droplet will find its equilibrium position exactly at the center

of the flow domain. The droplet will reach the equilibrium

position faster as the magnetic field strength increases due to

the increased deformation at a higher magnetic Bond number.

We also found that at a fixed viscosity ratio λ = 1, in the

absence of any magnetic field, as the droplet size increases,

the droplet moves closer to the center of channel, and if the
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FIG. 14. Dependence of lateral migration behavior of a droplet on deformation D and orientation angle θ in a channel flow. (a) Pressure-

driven flow, Red = 0.03, Bom = 0, λ = 1, where the arrow size is proportional to the velocity in the domain; (b) droplet under magnetic field,

Red = 0, Bom = 17.1, α = 45◦, λ = 1; and (c) final equilibrium position of droplet, Red = 0.03, Bom = 17.1, α = 45◦, λ = 1.

droplet size becomes comparable enough to the width of the

channel, i.e., R∗
0 = 0.24, it settles at the center of the flow

domain. Furthermore, if we apply a constant magnetic field

strength along arbitrary directions with variable drop sizes, it

helps manipulate the final equilibrium position of the droplet

along the channel. For example, at α = 0◦ a smaller sized

droplet settles closer to the wall due to reduced steady-state

deformation. On the other hand, at α = 45◦, as the droplet

size increases, the droplet moves closer to the center of the

channel, while at α = 90◦, the equilibrium position is found

at the center for all drop sizes.

Furthermore, we investigated the effect of different vis-

cosity ratios on the lateral migration behavior of the droplet

under the influence of a uniform magnetic field at arbitrary

directions and found that for a fixed droplet size at α = 0◦,

the droplet moves closer to the bottom wall with decreasing

viscosity ratios. At α = 45◦, we observed an interesting be-

havior for λ = 0.5 and 1 where the direction of migration

changes at a critical steady-state deformation and migrates

back toward the center. However, if the magnetic field is

applied along 45◦ at λ = 0.05, then the droplet crosses the

center and settles on the other side of the channel due to

the asymmetry of the droplet shape. Finally, at α = 90◦, the

final equilibrium position of the droplet is found at the center

of the channel irrespective of different viscosity ratios. The

different lateral migration behavior results suggest an efficient

but simple means of separating the ferrofluid droplets from

nonmagnetic droplets along different lateral positions in the

channel based on different magnetic field direction, magnetic

field strength, droplet size, and viscosity ratio at microscale.
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FIG. 15. Final equilibrium positions of droplet under variable magnetic bond numbers Bom at Red = 0.03 and λ = 1. (a) α = 0◦, (b) α =

45◦, and (c) α = 90◦.
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