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DECOUPLED, LINEAR, AND UNCONDITIONALLY ENERGY

STABLE FULLY DISCRETE FINITE ELEMENT NUMERICAL

SCHEME FOR A TWO-PHASE FERROHYDRODYNAMICS MODEL\ast 

GUO-DONG ZHANG† , XIAOMING HE‡ , AND XIAOFENG YANG§

Abstract. We consider in this paper numerical approximations of a phase field model for two-
phase ferrofluids, which consists of the Navier–Stokes equations, the Cahn–Hilliard equation, the
magnetostatic equations, and the magnetic field equation. By combining the projection method for
the Navier–Stokes equations and some subtle implicit-explicit treatments for coupled nonlinear terms,
we construct a linear, decoupled, fully discrete finite element scheme to solve the highly nonlinear
and coupled multiphysics system efficiently. The scheme is provably unconditionally energy stable
and leads to a series of decoupled linear equations to solve at each time step. Through numerous
numerical examples in simulating benchmark problems such as the Rosensweig instability and droplet
deformation, we demonstrate the stability and accuracy of the numerical scheme.

Key words. ferrofluid, phase field, unconditional energy stability, magnetic field, ferrohydro-
dynamics
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1. Introduction. Ferrofluids (also called magnetic fluids) are colloidal solutions
made of ferromagnetic nanoparticles suspended in a dispersing liquid (usually an
organic solvent or water). Such fluids can be controlled directly by the application of
a magnetic field. Their basic properties, including the high magnetic polarization of
saturation and zero remanences, predestine their applications in some systems that
need precise control, such as optics, drug delivery, and electronic devices [35, 38,
41]. Some emerging applications of ferrofluids can be found in nanotechnologies and
biomedical engineering, including assembly of micro/nanoparticles [8, 9, 31, 65], fluid
transport and control [26, 27, 30, 36], and the treatment of retinal detachment [32],
etc.

The hydrodynamics of magnetic suspension, known as ferrohydrodynamics (FHD),
was well established by two generally accepted constitutive models, the Rosensweig
[4, 5, 10, 40, 41, 42, 54] and Shliomis [3, 52, 53] models, which both treat ferrofluids as
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homogeneous monophase fluids. The main difference between these two monophase
models is that Rosensweig’s model considers the internal rotation of the nanoparticles
while Shliomis’ model deals with the rotation as a magnetic torque. Recently, some
engineering applications arise naturally in the form of two-phase flow, namely, one
phase has magnetic properties and the other does not, e.g., magnetic manipulation of
microchannel flows, microvalves, magnetically guided transport, etc. In the pioneer-
ing work of [33], the authors developed a phase field model for two-phase ferrofluid
flows which couples the monophase Shliomis model and the Cahn–Hilliard equations
where an artful weighted function is utilized to confine the magnetic field on the fer-
rofluid phase. Another phase field model for two-phase magnetohydrodynamic flows
was also similarly developed in [57]. The model developed in [33] presents the typical
benchmarks like the morphology of spikes due to the Rosensweig instability. However,
for simplicity in this pioneering work, some nonlinear terms were dropped in [33] such
that the challenges of algorithm development and analysis are reduced. Furthermore,
it is remarkable that the numerical scheme developed in [33] is nonlinear and fully
coupled; thus the implementation of the scheme is relatively complicated with the
high computational cost.

In this paper, we first reformulate the two-phase FHD model into a more complete
form by restoring all dropped terms and establishing the energy dissipation law. Then,
we aim to develop a fully discrete scheme that is not only easy to implement for time
discretization (linear and decoupled) and spatial discretization (continuous Galerkin
finite element method) but also provably unconditionally energy stable. This is by
no means an easy task due to a large number of highly nonlinear couplings among
the velocity, pressure, phase variable, magnetization field, and effective magnetiz-
ing field through the nontrivial elastic stress tensor, Kelvin force, and fluid convec-
tion. To achieve this goal, by combining the projection method for the Navier–Stokes
equations, the linear stabilization approach for the double-well potential, the subtle
implicit-explicit treatments for nonlinear coupling terms, and some extra stabilization
terms, we finally arrive at an efficient fully discrete numerical scheme, and it satisfies
the following properties: (i) it is unconditionally stable and satisfies a discrete energy
law and (ii) it leads to linear decoupled equations to solve at each time step. To the
best of the authors’ knowledge, the scheme is the first decoupled, linear, uncondition-
ally energy stable scheme for a phase field model of two-phase ferrofluid flows. We
then implement this numerical scheme to conduct the accuracy/stability tests and
study dynamic motions of a ferrofluid driven by the Rosensweig instability. Numer-
ical experiments demonstrate the desired accuracy in the time step and spatial grid
size, and the presented numerical examples capture some essential phenomenological
features of ferrofluid flows.

The rest of the paper is organized as follows. In section 2, we present a two-phase
phase field ferrofluid model and derive its energy law. In section 3, we develop a fully
discrete finite element numerical scheme and prove its unconditional energy stability
rigorously. Various numerical experiments are given in section 4 to show the accuracy
and efficiency of the proposed numerical scheme. Finally, some concluding remarks
are given in section 5.

2. Two-phase FHD model. We recall that the well-known monophase Shliomis
model for a viscous, homogenous, nonconducting ferrofluid flow system confined in a
bounded convex polygon/polyhedron Ω \subset Rd with d = 2 or 3 reads as follows [33, 53]:
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ut  - \nu ∆u+ (u \cdot \nabla )u+\nabla p = \mu (m \cdot \nabla )h+
\mu 

2
\nabla \times (m\times h),

\nabla \cdot u = 0,

mt + (u \cdot \nabla )m - 
1

2
\nabla \times u\times m =  - 

1

\tau 
(m - \chi 0h) - \beta m\times (m\times h),

 - ∆\varphi = \nabla \cdot m,

u| \partial Ω = 0, \partial n\varphi | \partial Ω = (ha  - m) \cdot n,

u(0,x) = u0, m(0,x) = m0,

(2.1)

where u is the velocity field, p is the pressure, m is magnetization field which expresses
the density of induced magnetic dipole moments in a magnetic material, h(:= \nabla \varphi ) is
the effective magnetizing field, h = ha + hd where hd is the so-called demagnetizing
field, ha is a smooth harmonic applied magnetizing field, and \nabla \times ha = 0,\nabla \cdot ha = 0,
\nu is the kinematic fluid viscosity, \chi 0 is magnetic susceptibility, \mu is permeability of
free space, \tau is relaxation time constant, \beta = 1

6\nu \vargamma , \vargamma is volume fraction of dispersed
solid phase, n is the outward normal on the boundary \partial Ω, and the term (m \cdot \nabla )h is
the so-called Kelvin force.

We now consider a two-phase FHD phase field model for immiscible mixtures of
ferrofluid immersed in a viscous fluid matrix, where the starting point is to extend
the above monophase Shliomis model to the two-phase scenario. For the two-phase
system (a ferrofluid and its nonferromagnetic viscous medium) with their respective
viscosities \nu f and \nu w, using the phase field approach, we introduce a labeling variable
Φ as

Φ(t,x) =

\Biggl\{ 

1 ferrofluid phase,

0 nonmagnetizable viscous medium,

with a thin smooth transition layer of thickness \epsilon connecting the two fluids. Then
the interface of the mixture can be described by Γ = \{ x : Φ(t,x) = 1/2\} . Let
F (Φ) = 1

4\epsilon Φ
2(Φ - 1)2 be the Ginzburg–Landau double-well potential, and define the

mixing energy functional as

Emix = \lambda 

\int 

Ω

\Bigl( \epsilon 

2
| \nabla Φ| 2 + F (Φ)

\Bigr) 

dx,

where \lambda represents the surface tension parameter and the first term (the capillary
term) and the second term represent the tendency of hydrophilic and hydrophobic
properties, respectively.

By assuming that the evolution of the phase field variable follows the Cahn–
Hilliard dynamics (a gradient flow system in H - 1), we can derive the following diffu-
sive system:

\left\{ 

 

 

 

 

 

 

 

 

 

 

Φt +\nabla \cdot (uΦ) =M∆W,

W =  - \lambda \epsilon ∆Φ+ \lambda f(Φ),

Φ(0,x) = Φ0,

\partial nΦ| \partial Ω = 0, \partial nW | \partial Ω = 0,

(2.2)

where M > 0 is the mobility parameter, W is the chemical potential, and f(Φ) =
F \prime (Φ).
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In this paper we modify the double-well potential F (Φ) in order to make its
second-order derivative bounded, namely,

F (Φ) =

\left\{ 

 

 

 

 

1
4\epsilon Φ

2, Φ \in ( - \infty , 0),
1
4\epsilon Φ

2(Φ - 1)2, Φ \in [0, 1],
1
4\epsilon (Φ - 1)2, Φ \in (1,+\infty ).

It is clear that there exists a constant L (e.g., L = 1
2\epsilon ) such that the following bound-

edness property holds:

| f \prime (Φ)| = | F \prime \prime (Φ)| \leq L.(2.3)

Remarkably, the magnetization field m is zero for the nonmagnetizable viscous
medium; thus m has to be confined only on the ferrofluid region (Φ = 1) instead
of the whole domain. To this end, we introduce the magnetic susceptibility function
\chi (Φ) such that \chi (Φ) = \chi 0 in ferrofluid region; \chi (Φ) = 0 otherwise. In this paper,
we let \chi (Φ) = \chi 0

1
1+e−(2Φ−1)/\epsilon [33] (one can use an alternative choice \chi (Φ) = Φ2\chi 0

for simplicity). Since the viscosities of the two fluids differ as well, we assume the
viscosity is a function of the phase variable Φ [33], namely,

\nu (Φ) = \nu w + (\nu f  - \nu w)
1

1 + e - (2Φ - 1)/\epsilon 
,

where \nu f and \nu w are viscosities for the ferrofluid phase and nonferromagnetic viscous
medium, respectively.

By using the above notations, we generalize the monophase case to the two-phase
model by combining the Shliomis model (2.1) and Cahn–Hilliard system (2.2). Thus
the two-phase ferrofluids system reads as follows:

Φt +\nabla \cdot (uΦ) =M∆W,(2.4)

W =  - \lambda \epsilon ∆Φ+ \lambda f(Φ),(2.5)

ut  - \nabla \cdot \nu (Φ)D(u) + (u \cdot \nabla )u+\nabla p+Φ\nabla W = \mu (m \cdot \nabla )h+
\mu 

2
\nabla \times (m\times h),(2.6)

\nabla \cdot u = 0,(2.7)

mt + (u \cdot \nabla )m - 
1

2
\nabla \times u\times m+ \beta m\times (m\times h) =  - 

1

\tau 
(m - \chi (Φ)h) ,(2.8)

 - ∆\varphi = \nabla \cdot (m - ha),(2.9)

\partial nΦ| \partial Ω = 0, \partial nW | \partial Ω = 0, u| \partial Ω = 0, \partial n\varphi | \partial Ω = (ha  - m) \cdot n,(2.10)

Φ(0,x) = Φ0, u(0,x) = u0, m(0,x) = m0,(2.11)

where D(u) = 1
2 (\nabla u+\nabla uT ) and the term Φ\nabla W is the induced elastic stress by the

mixing energy [33, 49, 50, 51, 60].

Remark 2.1. We remark that this model is consistent with the monophase case
(2.1) when Φ \equiv 1. When Φ = 0, we take the L2 inner product of (2.8) with m to get

1

2

d

dt
\| m\| 2 +

1

\tau 
\| m\| 2 = 0,

where we use ((u \cdot \nabla )m,m) = 0, (\nabla \times u\times m,m) = 0, and (m\times (m\times h),m) = 0.
Taking integration of above equation in time, we have

1

2
\| m(t)\| 2  - 

1

2
\| m(0)\| 2 +

1

\tau 

\int t

0

\| m(s)\| 2ds = 0.
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Therefore, we derive the magnetization field m = 0 in the nonferrofluid phase only if
m| t=0 = 0 in the nonferrofluid phase.

To show the two-phase FHD model (2.4)–(2.11) follows the energy law, we need
the following lemma.

Lemma 2.1. Suppose m,u \in L2(Ω)d, h \in H1(Ω)d, d = 2, 3; there holds the

identity

((m \cdot \nabla )h,u) + (u\times m,\nabla \times h) = ((u \cdot \nabla )h,m).(2.12)

Proof. For two dimensions with d = 2, we obtain the following identity by some
simple calculations:

((u \cdot \nabla )h,m) - ((m \cdot \nabla )h,u) =

\int 

Ω

\biggl( 

\partial h1
\partial y

 - 
\partial h2
\partial x

\biggr) 

(u2m1  - u1m2)dx

= (u\times m,\nabla \times h).

Similarly, for three dimensions with d = 3, we derive

((u \cdot \nabla )h,m) - ((m \cdot \nabla )h,u)

=

\int 

Ω

\biggl( 

\partial h1
\partial y

 - 
\partial h2
\partial x

\biggr) 

(u2m1  - u1m2) +

\biggl( 

\partial h1
\partial z

 - 
\partial h3
\partial x

\biggr) 

(u3m1  - u1m3)

+

\biggl( 

\partial h2
\partial z

 - 
\partial h3
\partial y

\biggr) 

(u3m2  - u2m3)dx

= (u\times m,\nabla \times h).

The proof is complete.

The two-phase FHD system (2.4)–(2.11) satisfies the following energy law.

Theorem 2.1. Assuming \chi (Φ) \leq \chi 0, the system (2.4)–(2.11) satisfies the follow-

ing energy law in the sense that

d

dt
E(Φ,u,h,m) +D(W,u,h,m) \leq 

\mu 

\tau 
\| ha\| 

2 + \tau \mu \| (ha)t\| 
2,

where

E(Φ,u,h,m) = \lambda 
\Bigl( \epsilon 

2
\| \nabla Φ\| 2 + (F (Φ), 1)

\Bigr) 

+
1

2
\| u\| 2 +

\mu 

2
\| h\| 2 +

\mu 

2\chi 0
\| m\| 2,

D(W,u,h,m) =M\| \nabla W\| 2 + \| 
\sqrt{} 

\nu (Φ)D(u)\| 2

+
\mu 

2\tau 
\| h\| 2 + \mu \beta \| m\times h\| 2 +

3\mu 

4\tau \chi 0
\| m\| 2.

Proof. By taking the L2 inner product of (2.4) with W and applying integration
by parts, we obtain

(Φt,W ) - (uΦ,\nabla W ) =  - M\| \nabla W\| 2.(2.13)

By taking the L2 inner product of (2.5) with  - Φt, we derive

 - (W,Φt) =  - \lambda 
d

dt

\Bigl( \epsilon 

2
\| \nabla Φ\| 2 + (F (Φ), 1)

\Bigr) 

.(2.14)
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By taking the L2 inner product of (2.6) with u, we derive

1

2

d

dt
\| u\| 2 + \| 

\sqrt{} 

\nu (Φ)D(u)\| 2 + (Φ\nabla W,u) = \mu ((m \cdot \nabla )h,u) +
\mu 

2
(m\times h,\nabla \times u).

(2.15)

By taking the L2 inner product of (2.8) with \mu h, we get

\mu 

\tau 
\| 
\sqrt{} 

\chi (Φ)h\| 2 + \mu \beta \| m\times h\| 2  - \mu (mt,h) - 
\mu 

\tau 
(m,h)(2.16)

= \mu ((u \cdot \nabla )m,h) - 
\mu 

2
(\nabla \times u\times m,h).

By taking the L2 inner product of (2.9) with \mu 
\tau \varphi , we get

\mu 

\tau 
\| \nabla \varphi \| 2 +

\mu 

\tau 
(m,\nabla \varphi ) =

\mu 

\tau 
(ha,\nabla \varphi ).(2.17)

By taking the time derivative of (2.9) and taking the L2 inner product of it with \mu \varphi ,
we get

d

dt

\Bigl( \mu 

2
\| \nabla \varphi \| 2

\Bigr) 

+ \mu (mt,\nabla \varphi ) = \mu ((ha)t,\nabla \varphi ).(2.18)

From Lemma 2.1 and noting that \nabla \times h = \nabla \times \nabla \varphi = 0, we derive

((m \cdot \nabla )h,u) + ((u \cdot \nabla )m,h) = ((u \cdot \nabla )h,m) - (u\times m,\nabla \times h) + ((u \cdot \nabla )m,h)

= ((u \cdot \nabla )h,m) + ((u \cdot \nabla )m,h)

= 0,

(2.19)

where the last equality holds since u is divergence free and u \cdot n| \partial Ω = 0 (see also
Lemma 3.1 in [33]).

Therefore, by combining (2.13)–(2.18), using (2.19) and h = \nabla \varphi , we obtain

d

dt

\Biggl( 

\lambda 

\Biggl( 

\epsilon 

2
\| \nabla Φ\| 2 + (F (Φ), 1)

\Biggr) 

+
1

2
\| u\| 2 +

\mu 

2
\| h\| 2

\Biggr) 

+M\| \nabla W\| 2 + \| 
\sqrt{} 

\nu (Φ)D(u)\| 2 +
\mu 

\tau 
\| 
\sqrt{} 

\chi (Φ)h\| 2

+
\mu 

\tau 
\| h\| 2 + \mu \beta \| m\times h\| 2

=
\mu 

\tau 
(ha,h) + \mu ((ha)t,h).

(2.20)

Furthermore, by taking the L2 inner product of (2.8) with \mu 
\chi 0

m, we get

d

dt

\biggl( 

\mu 

2\chi 0
\| m\| 2

\biggr) 

+
\mu 

\tau \chi 0
\| m\| 2 =

\mu 

\tau \chi 0
(\chi (Φ)h,m),(2.21)

where we use following three identities:

(\nabla \times u\times m,m) = 0,

(m\times (m\times h),m) = 0,

((u \cdot \nabla )m,m) = 0 if \nabla \cdot u = 0,u \cdot n| \partial Ω = 0.

(2.22)D
o
w

n
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By combining (2.20) with (2.21), we derive

d

dt

\Biggl( 

\lambda 

\Biggl( 

\epsilon 

2
\| \nabla Φ\| 2 + (F (Φ), 1)

\Biggr) 

+
1

2
\| u\| 2 +

\mu 

2
\| h\| 2 +

\mu 

2\chi 0
\| m\| 2

\Biggr) 

+M\| \nabla W\| 2 + \| 
\sqrt{} 

\nu (Φ)D(u)\| 2 +
\mu 

\tau 
\| 
\sqrt{} 

\chi (Φ)h\| 2

+
\mu 

\tau 
\| h\| 2 + \mu \beta \| m\times h\| 2 +

\mu 

\tau \chi 0
\| m\| 2

=
\mu 

\tau 
(ha,h) + \mu ((ha)t,h) +

\mu 

\tau \chi 0
(\chi (Φ)h,m).(2.23)

We estimate the term on the right-hand side by

\mu 

\tau \chi 0
(\chi (Φ)h,m) \leq 

\mu 

\tau \chi 0
\| 
\sqrt{} 

\chi (Φ)h\| \| 
\sqrt{} 

\chi (Φ)m\| \leq 
\mu 

\tau 
\| 
\sqrt{} 

\chi (Φ)h\| 2 +
\mu 

4\tau \chi 2
0

\| 
\sqrt{} 

\chi (Φ)m\| 2

\leq 
\mu 

\tau 
\| 
\sqrt{} 

\chi (Φ)h\| 2 +
\mu 

4\tau \chi 2
0

\chi 0\| m\| 2

=
\mu 

\tau 
\| 
\sqrt{} 

\chi (Φ)h\| 2 +
\mu 

4\tau \chi 0
\| m\| 2,

(2.24)

\mu 

\tau 
(ha,h) \leq 

\mu 

\tau 
\| ha\| \| h\| \leq 

\mu 

4\tau 
\| h\| 2 +

\mu 

\tau 
\| ha\| 

2,(2.25)

\mu ((ha)t,h) \leq \mu \| (ha)t\| \| h\| \leq 
\mu 

4\tau 
\| h\| 2 + \tau \mu \| (ha)t\| 

2.(2.26)

Finally, by combining (2.23) with (2.24)–(2.26), we arrive at

d

dt
E(Φ,u,h,m) +M\| \nabla W\| 2+\| 

\sqrt{} 

\nu (Φ)D(u)\| 2+
\mu 

2\tau 
\| h\| 2 + \mu \beta \| m\times h\| 2+

3\mu 

4\tau \chi 0
\| m\| 2

\leq 
\mu 

\tau 
\| ha\| 

2 + \tau \mu \| (ha)t\| 
2,(2.27)

which completes the proof.

Remark 2.2. For comparisons, we present the two-phase FHD model given in [33]
that reads as

\left\{ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Φt +\nabla \cdot (uΦ) =M∆W,

W =  - \lambda \epsilon ∆Φ+ \lambda f(Φ),

ut  - \nabla \cdot \nu (Φ)D(u) + (u \cdot \nabla )u+\nabla p+Φ\nabla W = \mu (m \cdot \nabla )h,

\nabla \cdot u = 0,

mt + (u \cdot \nabla )m =  - 
1

\tau 
(m - \chi (Φ)h) ,

 - ∆\varphi = \nabla \cdot (m - ha).

(2.28)

One can see that the model (2.28) actually dropped one term in the momentum equa-
tion (\mu 2\nabla \times (m\times h)) and two terms in the magnetization field equation ( - 1

2\nabla \times u\times m

and \beta m\times (m\times h)) which may somewhat reduce the difficulties of algorithm devel-
opment. Meanwhile, the dissipative law obtained in [33] requests an extra condition
on \chi 0 (\chi 0 \leq 4) which is apparently not needed in our proof.
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3. Numerical scheme. To solve the two-phase FHD model (2.4)–(2.11), by
discretizing the space using the continuous Galerkin finite element method, we develop
an efficient scheme that is linear, decoupled, unconditionally energy stable, and first-
order accurate in time.

Let N > 0 to denote the total number of time steps, define the uniform time step
size as \delta t = [ TN ], and set tn = n\delta t. We also define the backward difference operator

dt as dt\psi 
n = \psi n

 - \psi n−1

\delta t for any variable \psi .
We introduce a series of finite-dimensional discrete subspaces:

Yh \subset H1(Ω),V h \subset H1
0 (Ω)

d, Qh \subset L2
0(Ω),Nh \subset L2(Ω)d,Ψh \subset H1(Ω) \cap L2

0(Ω).(3.1)

Here the L2
0(Ω) = \{ q \in L2(Ω) :

\int 

Ω
qdx = 0\} . The semidiscrete formulations of the

system (2.4)–(2.11) in the weak form reads as follows: find (Φ,W,u, p,m, \varphi ) \in Yh \times 
Yh\times V h\times Qh\times Nh\times Ψh such that for (Λ, X,v, q,n, \psi ) \in Yh\times Yh\times V h\times Qh\times Nh\times Ψh,

\left\{ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(Φt,Λ) - (uΦ,\nabla Λ) =  - M(\nabla W,\nabla Λ),

(W,X) = \lambda \epsilon (\nabla Φ,\nabla X) + \lambda (f(Φ), X),

(ut,v) + (\nu (Φ)D(u), D(v)) + (B(u,u),v) - (p,\nabla \cdot v) + (Φ\nabla W,v)

= \mu ((m \cdot \nabla )h,v) +
\mu 

2
(m\times h,\nabla \times v),

(\nabla \cdot u, q) = 0,

(mt,n) + ((u \cdot \nabla )m,n) - 
1

2
(\nabla \times u\times m,n) - \beta (m\times h,m\times n)

=  - 
1

\tau 
(m,n) +

1

\tau 
(\chi (Φ)h,n),

(\nabla \varphi ,\nabla \psi ) =  - (m,\nabla \psi ) + (ha,\nabla \psi ),

(3.2)

where the bilinear form B(u,v) is defined as

B(u,v) := (u \cdot \nabla )v +
1

2
(\nabla \cdot u)v.(3.3)

Remark 3.1. B(u,v) is the skew-symmetric form of the nonlinear convective
terms. If the velocity is divergence free, then B(u,v) = (u \cdot \nabla )v and B(u,m) =
(u \cdot \nabla )m. We define a trilinear form as

b(u,v,w) = (B(u,v),w) = ((u \cdot \nabla )v,w) +
1

2
((\nabla \cdot u)v,w).

In the numerical scheme, the velocity may not be divergence free, but notice the
following identity:

b(u,v,v) = (B(u,v),v) = 0 if u \cdot n| \partial Ω = 0.(3.4)

In other words, this identity holds regardless of whether u or v are divergence free or
not, which would help to preserve the discrete energy stability. Meanwhile, through
some basic calculations, for u \in H1

0 (Ω)
d, v,w \in H1(Ω)d, the following identity also

holds:

b(u,v,w) =
1

2
((u \cdot \nabla )v,w) - 

1

2
((u \cdot \nabla )w,v).(3.5)
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Assuming that the polygonal/polyhedral domain Ω is discretized by a conform-
ing and shape regular triangulation/tetrahedron mesh \scrT h that is composed by open
disjoint elements K such that Ω̄ =

\bigcup 

K\in \scrT h
K̄, we use \scrP l to denote the space of poly-

nomials of total degree at most l and define the following finite element spaces:

Yh =
\bigl\{ 

X \in C0(Ω) : X| K \in \scrP l1(K) \forall K \in \scrT h
\bigr\} 

,

V h =
\bigl\{ 

v \in C0(Ω)d : v| K \in \scrP l2(K)d \forall K \in \scrT h
\bigr\} 

\cap H1
0 (Ω)

d,

Qh =
\bigl\{ 

q \in C0(Ω) : q| K \in \scrP l2 - 1(K) \forall K \in \scrT h
\bigr\} 

\cap L2
0(Ω),

Nh =
\bigl\{ 

n \in C0(Ω)d : n| K \in \scrP l3 - 1(K)d \forall K \in \scrT h
\bigr\} 

,

Ψh =
\bigl\{ 

\psi \in C0(Ω) : \psi | K \in \scrP l3(K) \forall K \in \scrT h
\bigr\} 

\cap L2
0(Ω).

(3.6)

Besides, we assume the pair of spaces (V h, Qh) satisfy the inf-sup condition [20]:

\beta \| q\| \leq sup
v\in V h

(\nabla \cdot v, q)

\| \nabla v\| 
\forall q \in Qh,

where the constant \beta only depends on Ω. A well-known inf-sup stable pair (V h, Qh)
is the Taylor–Hood element [20].

Our numerical scheme reads as follows.
Initially, given m0 and h0

a, we find \varphi 0 \in Ψh such that

(\nabla \varphi 0,\nabla \psi ) =  - (m0,\nabla \psi ) + (h0
a,\nabla \psi ) \forall \psi \in Ψh(3.7)

and h̃
0
\in Nh such that

(h̃
0
,Z) = (\nabla \varphi 0,Z) \forall Z \in Nh.(3.8)

Step 1. Find (Φn,Wn) \in Yh \times Yh such that for all (Λ, X) \in Yh \times Yh,

(dtΦ
n,Λ) - (un - 1Φn - 1,\nabla Λ) +

\delta t

2
(Φn - 1\nabla Wn,Φn - 1\nabla Λ) +M(\nabla Wn,\nabla Λ) = 0,

(3.9)

(Wn, X) = \lambda \epsilon (\nabla Φn,\nabla X) + S(Φn  - Φn - 1, X) + \lambda (f(Φn - 1), X).

(3.10)

Step 2. Find ũn \in V h such that for all v \in V h,

\biggl( 

ũn  - un - 1

\delta t
,v

\biggr) 

+ (\nu (Φn)D(ũn), D(v)) + b(un - 1, ũn,v) - (pn - 1,\nabla \cdot v)(3.11)

+ bstab(m
n - 1, ũn,v) + (Φn - 1\nabla Wn,v)

= \mu ((mn - 1 \cdot \nabla )h̃
n - 1

,v) +
\mu 

2
(mn - 1 \times h̃

n - 1
,\nabla \times v)

+ \mu (mn - 1 \times \nabla \times h̃
n - 1

,v),

where bstab includes three extra first-order stabilization terms that read as

bstab(m
n - 1, ũn,v) =\mu \delta t((ũn \cdot \nabla )mn - 1, (v \cdot \nabla )mn - 1)

+ 2\mu \delta t
\bigl( 

(\nabla \cdot ũn)mn - 1, (\nabla \cdot v)mn - 1
\bigr) 

+
\mu 

2
\delta t(mn - 1 \times \nabla \times ũn,mn - 1 \times \nabla \times v).
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Step 3. Find pn \in Qh such that for all q \in Qh,

(\nabla pn,\nabla q) =  - 
1

\delta t
(\nabla \cdot ũn, q) + (\nabla pn - 1,\nabla q).(3.12)

Step 4. Update un from

un = ũn  - \delta t\nabla pn + \delta t\nabla pn - 1.(3.13)

Step 5. Find (m̃n, \varphi n, h̃
n
) \in Nh \times Ψh \times Nh such that for all (n, \psi ,Z) \in Nh \times 

Ψh \times Nh,

(dtm̃
n,n) + ((ũn \cdot \nabla )mn - 1,n) + ((\nabla \cdot ũn)mn - 1,n) - 

1

2
(\nabla \times ũn \times mn - 1,n)(3.14)

=  - 
1

\tau 
(m̃n,n) +

1

\tau 
(\chi (Φn)h̃

n
,n) + \beta (mn - 1 \times h̃

n
,mn - 1 \times n),

(\nabla \varphi n,\nabla \psi ) =  - (m̃n,\nabla \psi ) + (hna ,\nabla \psi ),(3.15)

(h̃
n
,Z) = (\nabla \varphi n,Z).(3.16)

Step 6. Set hn = \nabla \varphi n, and find mn \in Nh such that for n \in Nh,

(dtm
n,n) + b(ũn,mn,n) - 

1

2
(\nabla \times un \times mn,n)

=  - 
1

\tau 
(mn,n) +

1

\tau 
(\chi (Φn)h̃

n
,n) + \beta (mn - 1 \times hn,mn \times n).

(3.17)

Several remarks are in order.

Remark 3.2. There exist a couple of substantial numerical challenges to develop
the fully discrete scheme with unconditional energy stability for the FHD model (2.4)–
(2.11). First, we recall that two test functions, h and m, are needed to be taken for
(2.8) in the proof of Theorem 2.1. It is well known that the proof of the discrete
energy law for a numerical scheme usually follows the same lines of the energy law for
the PDE system. Therefore, for the discrete scheme, two test functions, hn and mn,
are needed to be taken as well if we follow a similar procedure. This naturally brings
up a dilemma that both the variables h and m have to be treated in the implicit
way, which leads to a fully coupled nonlinear scheme with the high computational
cost. Second, the definition of h = \nabla \varphi implies that one has to adopt the hybrid
finite element method, e.g., the discontinuous Galerkin method for h and continuous
Galerkin method for \varphi in [33, 34] which is not easy to implement as well.

These two difficulties are overcome by introducing two auxiliary intermediate
variables m̃n and h̃

n
in Step 5 that is briefly described as follows.

\bullet First, instead of taking the L2 inner product of h and m within the same
equation, we solve the intermediate variable m̃n by (3.14) first and then solve
the final solution mn by (3.17). Therefore, in the stability proof, we take the

L2 inner product of (3.14) with h̃
n
, and of (3.17) with mn, respectively,

which leads to a linear scheme in turn. Moreover, for the convective term,
in (3.17), we use the trilinear form b(u,m,n). But in (3.14), we still use
((u \cdot \nabla )m,n) but add an extra consistent term ((\nabla \cdot u)m,n) (a zero term at
the continuous case) which plays the key role to obtain the energy stability.

\bullet Second, the intermediate variable h̃
n
is actually the L2 projection of \nabla \varphi n.

Thus both h and \varphi could be treated by using the continuous Galerkin method.
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However, the usage of these two intermediate variables brings up another dis-
advantage, i.e., the term \nabla \times h̃

n
might not be equal to zero, rigorously. Thus,

to obtain the unconditional energy stability, we add an extra consistent term
m \times \nabla \times h (a zero term at the continuous case) in the momentum equa-
tion, which helps to hold the desired skew-symmetric property even though
\nabla \times h̃

n
\not = 0 using Lemma 2.1.

Remark 3.3. We discretize the cubic nonlinear term f(Φ) by the so-called stabi-
lized explicit method [49], where f(Φ) is discretized explicitly and an extra first-order
stabilizer (associated with S) is added in the scheme. The error that this term in-
troduces is of the order S\delta t\phi t(\cdot ), that is, of the same order as the error introduced
by the first-order explicit approach of the nonlinear term f(Φ). It is worth mention-
ing that there exist many successful techniques to discretize the nonlinear potential to
obtain energy stable schemes for the Cahn–Hilliard equation, for instance, the convex-
splitting method [13, 14, 16, 28, 43, 46, 55, 66], the implicit quadrature method [22],
the invariant energy quadratization method [11, 56, 58, 59, 61, 62, 63, 64], the scalar
auxiliary variable method [12, 29, 47, 48], etc. A comparison between the numerical
simulation results and lab experiment results was also provided in [6]. Note that
we can easily incorporate these methods in (3.9) to discretize f(Φ). Since the main
difficulty to develop energy stable scheme of the two-phase FHD system is how to
discretize the coupled nonlinear terms, we choose the stabilized explicit method in
this paper due to its simplicity for multiphysics problems [19].

Remark 3.4. The computation of u and p is decoupled by using the pressure-
correction method (a typical kind of projection method); see also [23, 24, 25, 37, 39,
44, 45]. The final solution un satisfies the discrete divergence free condition which
can be deduced by taking the L2 inner product of (3.13)) with \nabla q, q \in Qh,

(un,\nabla q) =  - (\nabla \cdot ũn, q) - \delta t(\nabla (pn  - pn - 1),\nabla q).(3.18)

This implies (un,\nabla q) = 0 from (3.12).

Remark 3.5. In (3.9), inspired by [7] which deals with the three-phase flow and
[50] which deals with the two-phase complex fluids, we add an explicit stabilization
term \delta t

2 (Φ
n - 1\nabla Wn,Φn - 1\nabla Λ)to decouple the computations of (Φ,W ) and u. More-

over, three extra first-order stabilization terms are added in (3.11) (the terms in bstab)
that play the key role to obtain the energy stability. In summary, the scheme (3.9)–
(3.17) is a linear, decoupled scheme. At each time step, one only needs to solve a
sequence of linear equations.

We now prove the unconditional energy stability as follows.

Theorem 3.1. Assuming S \geq 1
2\lambda L and \chi (Φ) \leq \chi 0, then the solutions of the

scheme (3.9)–(3.17) satisfy the following energy law:

dtE(Φn,un,hn,mn, pn) +Gn \leq 
\mu 

\tau 
\| hna\| 

2 + \tau \mu \| dth
n
a\| 

2,(3.19)

where

E(Φn,un,hn,mn, pn) = \lambda 
\Bigl( \epsilon 

2
\| \nabla Φn\| 2 + (F (Φn), 1)

\Bigr) 

+
1

2
\| un\| 2(3.20)

+
\mu 

2
\| hn\| 2 +

\mu 

2\chi 0
\| mn\| 2 +

\delta t2

2
\| \nabla pn\| 2,
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Gn =M\| \nabla Wn\| 2 + \| 
\sqrt{} 

\nu (Φn)D(ũn)\| 2 +
\mu 

2\tau 
\| hn\| 2(3.21)

+ \mu \beta \| mn - 1 \times h̃
n
\| 2 +

3\mu 

4\chi 0\tau 
\| mn\| 2.

Proof. By taking Λ =Wn in (3.9), we obtain

(dtΦ
n,Wn) - (un - 1Φn - 1,\nabla Wn) +

\delta t

2
\| Φn - 1\nabla Wn\| 2 +M\| \nabla Wn\| 2 = 0.(3.22)

By taking X = dtΦ
n in (3.10), we obtain

\lambda \epsilon 

2\delta t
(\| \nabla Φn\| 2  - \| \nabla Φn - 1\| 2 + \| \nabla Φn  - \nabla Φn - 1\| 2) +

S

\delta t
\| Φn  - Φn - 1\| 2

+ \lambda (f(Φn - 1), dtΦ
n) = (Wn, dtΦ

n).
(3.23)

By taking v = ũn in (3.11) and using (3.5), we get

1

2\delta t
(\| ũn\| 2  - \| un - 1\| 2 + \| ũn  - un - 1\| 2) + \| 

\sqrt{} 

\nu (Φn)D(ũn)\| 2

(3.24)

 - (pn - 1,\nabla \cdot ũn) + (Φn - 1\nabla Wn, ũn)

+ \mu \delta t\| (ũn \cdot \nabla )mn - 1\| 2 + 2\mu \delta t\| (\nabla \cdot ũn)mn - 1\| 2 +
\mu 

2
\delta t\| mn - 1 \times \nabla \times ũn\| 2

= \mu ((mn - 1 \cdot \nabla )h̃
n - 1

, ũn) + \mu (mn - 1 \times \nabla \times h̃
n - 1

, ũn)

+
\mu 

2
(mn - 1 \times h̃

n - 1
,\nabla \times ũn),

where the term b(un - 1, ũn, ũn) vanishes due to the skew-symmetry.
We rewrite (3.13) as the following equivalent form:

un + \delta t\nabla pn = ũn + \delta t\nabla pn - 1.

By taking the L2 inner product of the above equation with itself on both sides, using
(3.18), and integrating by parts, we deduce

1

2\delta t
(\| un\| 2  - \| ũn\| 2) +

\delta t

2
(\| \nabla pn\| 2  - \| \nabla pn - 1\| 2) =  - (\nabla \cdot ũn, pn - 1).(3.25)

By combining (3.24) and (3.25), we obtain

1

2\delta t
(\| un\| 2  - \| un - 1\| 2 + \| ũn  - un - 1\| 2) + \| 

\sqrt{} 

\nu (Φn)D(ũn)\| 2

(3.26)

+
\delta t

2
(\| \nabla pn\| 2  - \| \nabla pn - 1\| 2) + (Φn - 1\nabla Wn, ũn)

+ \mu \delta t\| (ũn \cdot \nabla )mn - 1\| 2 + 2\mu \delta t\| (\nabla \cdot ũn)mn - 1\| 2 +
\mu 

2
\delta t\| mn - 1 \times \nabla \times ũn\| 2

= \mu ((mn - 1 \cdot \nabla )h̃
n - 1

, ũn) + \mu (mn - 1 \times \nabla \times h̃
n - 1

, ũn)

+
\mu 

2
(mn - 1 \times h̃

n - 1
,\nabla \times ũn).
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By taking n =  - \mu h̃
n
in (3.14), we obtain

\mu 

\tau 
\| 
\sqrt{} 

\chi (Φn)h̃
n
\| 2 + \mu \beta \| mn - 1 \times h̃

n
\| 2  - \mu (dtm̃

n, h̃
n
) - 

\mu 

\tau 
(m̃n, h̃

n
)(3.27)

= \mu ((ũn \cdot \nabla )mn - 1, h̃
n
) + \mu ((\nabla \cdot ũn)mn - 1, h̃

n
)

 - 
\mu 

2
(\nabla \times ũn \times mn - 1, h̃

n
).

By taking \psi = \varphi n and Z = m̃n in (3.15) and (3.16), respectively, we derive

\| \nabla \varphi n\| 2 + (m̃n,\nabla \varphi n) = (hna ,\nabla \varphi 
n), (h̃

n
, m̃n) = (\nabla \varphi n, m̃n),

which yields

\mu 

\tau 
\| \nabla \varphi n\| 2 +

\mu 

\tau 
(h̃
n
, m̃n) =

\mu 

\tau 
(hna ,\nabla \varphi 

n).(3.28)

By applying dt to (3.15), we get

(\nabla dt\varphi 
n,\nabla \psi ) + (dtm̃

n,\nabla \psi ) = (dth
n
a ,\nabla \psi ).

Letting \psi = \varphi n in above equation and Z = dtm̃
n in (3.16), we have

(\nabla dt\varphi 
n,\nabla \varphi n) + (dtm̃

n,\nabla \varphi n) = (dth
n
a ,\nabla \varphi 

n), (h̃
n
, dtm̃

n) = (\nabla \varphi n, dtm̃
n).(3.29)

Note hn = \nabla \varphi n; hence (3.29) becomes

1

2\delta t
(\| hn\| 2  - \| hn - 1\| 2 + \| hn  - hn - 1\| 2) + (h̃

n
, dtm̃

n) = (dth
n
a ,h

n).(3.30)

By combining (3.27), (3.28), and (3.30), we derive

\mu 

2\delta t
(\| hn\| 2  - \| hn - 1\| 2 + \| hn  - hn - 1\| 2)

(3.31)

+
\mu 

\tau 
\| hn\| 2 +

\mu 

\tau 
\| 
\sqrt{} 

\chi (Φn)h̃
n
\| 2 + \mu \beta \| mn - 1 \times h̃

n
\| 2

= \mu ((ũn \cdot \nabla )mn - 1, h̃
n
) + \mu ((\nabla \cdot ũn)mn - 1, h̃

n
) - 

\mu 

2
(\nabla \times ũn \times mn - 1, h̃

n
)

+
\mu 

\tau 
(hna ,h

n) + \mu (dth
n
a ,h

n).

By combining (3.22), (3.23), (3.26), and (3.31), we derive

(3.32)

\lambda \epsilon 

2\delta t
(\| \nabla Φn\| 2 - \| \nabla Φn - 1\| 2 + \| \nabla Φn  - \nabla Φn - 1\| 2) +

S

\delta t
\| Φn  - Φn - 1\| 2

+
\delta t

2
\| Φn - 1\nabla Wn\| 2 +M\| \nabla Wn\| 2

+
1

2\delta t
(\| un\| 2  - \| un - 1\| 2 + \| ũn  - un - 1\| 2)

+ \| 
\sqrt{} 

\nu (Φn)D(ũn)\| 2 +
\delta t

2
(\| \nabla pn\| 2  - \| \nabla pn - 1\| 2)

+ \mu \delta t\| (ũn \cdot \nabla )mn - 1\| 2 + 2\mu \delta t\| (\nabla \cdot ũn)mn - 1\| 2
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+
\mu 

2
\delta t\| mn - 1 \times \nabla \times ũn\| 2 +

\mu 

2\delta t
(\| hn\| 2  - \| hn - 1\| 2 + \| hn  - hn - 1\| 2)

+
\mu 

\tau 
\| hn\| 2 +

\mu 

\tau 
\| 
\sqrt{} 

\chi (Φn)h̃
n
\| 2 + \mu \beta \| mn - 1 \times h̃

n
\| 2

= (un - 1Φn - 1,\nabla Wn) - (Φn - 1\nabla Wn, ũn) (: term I)

+ \mu ((mn - 1 \cdot \nabla )h̃
n - 1

, ũn) + \mu (mn - 1 \times \nabla \times h̃
n - 1

, ũn)

+ \mu ((ũn \cdot \nabla )mn - 1, h̃
n
) + \mu ((\nabla \cdot ũn)mn - 1, h̃

n
) (: term II)

+
\mu 

2
(mn - 1 \times h̃

n - 1
,\nabla \times ũn) - 

\mu 

2
(\nabla \times ũn \times mn - 1, h̃

n
) (: term III)

 - \lambda (f(Φn - 1), dtΦ
n) (: term IV)

+
\mu 

\tau 
(hna ,h

n) + \mu (dth
n
a ,h

n). (: term V)

We estimate terms I–V on the right-hand side of (3.32) as follows.
First, term I can be estimated as

term I = (un - 1Φn - 1,\nabla Wn) - (Φn - 1\nabla Wn, ũn)

= (Φn - 1\nabla Wn,un - 1  - ũn)

\leq \| Φn - 1\nabla Wn\| \| un - 1  - ũn\| 

\leq 
1

2\delta t
\| un - 1  - ũn\| 2 +

\delta t

2
\| Φn - 1\nabla Wn\| 2.

(3.33)

Second, by using Lemma 2.1 and integration by parts, term II can be estimated
as

term II = \mu ((mn - 1\cdot \nabla )h̃
n - 1

, ũn) + \mu (mn - 1 \times \nabla \times h̃
n - 1

, ũn) + \mu ((ũn\cdot \nabla )mn - 1, h̃
n
)

+ \mu ((\nabla \cdot ũn)mn - 1, h̃
n
)

= \mu ((ũn \cdot \nabla )h̃
n - 1

,mn - 1) + \mu ((ũn \cdot \nabla )mn - 1, h̃
n
) + \mu ((\nabla \cdot ũn)mn - 1, h̃

n
)

= \mu ((ũn \cdot \nabla )(h̃
n - 1

 - h̃
n
),mn - 1)

=  - \mu ((ũn \cdot \nabla )mn - 1, h̃
n - 1

 - h̃
n
) - \mu ((\nabla \cdot ũn)mn - 1, h̃

n - 1
 - h̃

n
)

\leq \mu \| (ũn \cdot \nabla )mn - 1\| \| h̃
n - 1

 - h̃
n
\| + \mu \| (\nabla \cdot ũn)mn - 1\| \| h̃

n - 1
 - h̃

n
\| 

\leq 
\mu 

4\delta t
\| h̃

n - 1
 - h̃

n
\| 2 + \mu \delta t\| (ũn \cdot \nabla )mn - 1\| 2 +

\mu 

8\delta t
\| h̃

n - 1
 - h̃

n
\| 2

+ 2\mu \delta t\| (\nabla \cdot ũn)mn - 1\| 2

\leq 
3\mu 

8\delta t
\| hn - 1  - hn\| 2 + \mu \delta t\| (ũn \cdot \nabla )mn - 1\| 2 + 2\mu \delta t\| (\nabla \cdot ũn)mn - 1\| 2,

(3.34)

where we use the following identity:

((u \cdot \nabla )v,w) + ((u \cdot \nabla )w,v) =  - ((\nabla \cdot u)v,w) if u \cdot n| \partial Ω = 0

and the inequality \| h̃
n
 - h̃

n - 1
\| 2 \leq \| hn  - hn - 1\| 2 which is derived by (3.16).
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Third, we estimate term III as

term III =
\mu 

2
(mn - 1 \times h̃

n - 1
,\nabla \times ũn) - 

\mu 

2
(\nabla \times ũn \times mn - 1, h̃

n
)

=
\mu 

2
(h̃
n - 1

 - h̃
n
,\nabla \times ũn \times mn - 1)

\leq 
\mu 

2
\| h̃

n - 1
 - h̃

n
\| \| \nabla \times ũn \times mn - 1\| 

\leq 
\mu 

8\delta t
\| h̃

n - 1
 - h̃

n
\| 2 +

\mu 

2
\delta t\| mn - 1 \times \nabla \times ũn\| 2

\leq 
\mu 

8\delta t
\| hn - 1  - hn\| 2 +

\mu 

2
\delta t\| mn - 1 \times \nabla \times ũn\| 2.

(3.35)

Fourth, for term IV, by using the Taylor expansion, there exists \xi such that

F (Φn) - F (Φn - 1) = f(Φn - 1)(Φn  - Φn - 1) +
1

2
f \prime (\xi )(Φn  - Φn - 1)2.

Hence, from (2.3), we derive

(dtF (Φ
n), 1) =

1

\delta t
(F (Φn) - F (Φn - 1), 1)

= (f(Φn - 1), dtΦ
n) +

1

2\delta t
(f \prime (\xi ), (Φn  - Φn - 1)2)

\leq (f(Φn - 1), dtΦ
n) +

L

2\delta t
\| Φn  - Φn - 1\| 2,

which implies

term IV =  - \lambda (f(Φn - 1), dtΦ
n) \leq  - \lambda (dtF (Φ

n), 1) +
\lambda L

2\delta t
\| Φn  - Φn - 1\| 2,(3.36)

term V \leq 
\mu 

\tau 
\| hna\| \| h

n\| + \mu \| dth
n
a\| \| h

n\| (3.37)

\leq 
\mu 

4\tau 
\| hn\| 2 +

\mu 

\tau 
\| hna\| 

2 +
\mu 

4\tau 
\| hn\| 2 + \tau \mu \| dth

n
a\| 

2.

By combining (3.32)–(3.37), we obtain

\lambda \epsilon 

2\delta t
(\| \nabla Φn\| 2  - \| \nabla Φn - 1\| 2 + \| \nabla Φn  - \nabla Φn - 1\| 2)

+ \lambda (dtF (Φ
n), 1) +

1

\delta t

\biggl( 

S  - 
\lambda L

2

\biggr) 

\| Φn  - Φn - 1\| 2 +M\| \nabla Wn\| 2

+
1

2\delta t
(\| un\| 2  - \| un - 1\| 2) + \| 

\sqrt{} 

\nu (Φn)D(ũn)\| 2

+
\delta t

2
(\| \nabla pn\| 2  - \| \nabla pn - 1\| 2) +

\mu 

2\delta t
(\| hn\| 2  - \| hn - 1\| 2)

+
\mu 

2\tau 
\| hn\| 2 +

\mu 

\tau 
\| 
\sqrt{} 

\chi (Φn)h̃
n
\| 2 + \mu \beta \| mn - 1 \times h̃

n
\| 2

\leq 
\mu 

\tau 
\| hna\| 

2 + \tau \mu \| dth
n
a\| 

2.

(3.38)

By taking n = \mu 
\chi 0

mn in (3.17), we derive

\mu 

2\chi 0\delta t
(\| mn\| 2  - \| mn - 1\| 2 + \| mn  - mn - 1\| 2) +

\mu 

\tau \chi 0
\| mn\| 2 =

\mu 

\tau \chi 0
(\chi (Φn)h̃

n
,mn).

(3.39)
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We estimate the term on the right-hand side as

\mu 

\tau \chi 0
(\chi (Φn)h̃

n
,mn) \leq 

\mu 

\tau \chi 0
\| 
\sqrt{} 

\chi (Φn)h̃
n
\| \| 
\sqrt{} 

\chi (Φn)mn\| 

\leq 
\mu 

\tau 
\| 
\sqrt{} 

\chi (Φn)h̃
n
\| 2 +

\mu 

4\tau \chi 2
0

\| 
\sqrt{} 

\chi (Φn)mn\| 2

\leq 
\mu 

\tau 
\| 
\sqrt{} 

\chi (Φn)h̃
n
\| 2 +

\mu 

4\tau \chi 0
\| mn\| 2.

(3.40)

Finally, by combining (3.38), (3.39), and (3.40), we obtain

\lambda \epsilon 

2\delta t
(\| \nabla Φn\| 2  - \| \nabla Φn - 1\| 2 + \| \nabla Φn  - \nabla Φn - 1\| 2) + \lambda (dtF (Φ

n), 1) +M\| \nabla Wn\| 2

+
1

2\delta t
(\| un\| 2  - \| un - 1\| 2) + \| 

\sqrt{} 

\nu (Φn)D(ũn)\| 2

+
\delta t

2
(\| \nabla pn\| 2  - \| \nabla pn - 1\| 2) +

\mu 

2\delta t
(\| hn\| 2  - \| hn - 1\| 2) +

\mu 

2\tau 
\| hn\| 2

+ \mu \beta \| mn - 1 \times h̃
n
\| 2 +

\mu 

2\chi 0\delta t
(\| mn\| 2  - \| mn - 1\| 2 + \| mn  - mn - 1\| 2)

+
3\mu 

4\tau \chi 0
\| mn\| 2 +

1

\delta t

\biggl( 

S  - 
\lambda L

2

\biggr) 

\| Φn  - Φn - 1\| 2 \leq 
\mu 

\tau 
\| hna\| 

2 + \tau \mu \| dth
n
a\| 

2.

(3.41)

After dropping several positive terms on the left-hand side, we obtain (3.19).

Remark 3.6. It is worth noting that ha is a given external magnetic field acting
as a source term. Since it may change over time (cf. the numerical example in section
4.3), the symbol “hna” used in the numerical scheme only means that its value may
change with time, but it does not mean that it needs to computed inside the scheme.
Moreover, after multiplying \delta t on the both sides of (3.19) and summing up from n = 1
to K, we can obtain the energy stability for E(ΦK ,uK ,hK ,mK , pK) at t = tK that
reads as

E(ΦK ,uK ,hK ,mK , pK) + \delta t

K
\sum 

n=1

Gn \leq E(Φ0,u0,h0,m0, p0)

+ \delta t
K
\sum 

n=1

\Bigl( \mu 

\tau 
\| hna\| 

2 + \tau \mu \| dth
n
a\| 

2
\Bigr) 

.

4. Numerical tests. We now present series of numerical experiments to validate
the theoretical results derived in the previous section and demonstrate the efficiency,
energy stability, and accuracy of the proposed numerical scheme (3.9)–(3.17). In all
numerical tests, we choose L = 1

2\epsilon , thus the stabilizing constant is S = \lambda 
4\epsilon . We

only present two-dimensional simulations in this paper to verify our scheme. It is
quite challenging to implement the three-dimensional simulations due to the high
computational cost while the scheme developed in this paper is applicable in three
dimensions.

4.1. Accuracy tests for temporal and spatial discretizations. We now
test the convergence rates of the proposed scheme (3.9)–(3.17). Let Ω = [0, 1]2; we
choose forcing functions such that the exact solutions for the system (2.4)–(2.9) are
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\left\{ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Φ(t,x) = 0.5 sin(t) cos(\pi x) cos(\pi y) + 0.5,

u(t,x) = (sin(t) sin(\pi x) sin(\pi (y + 0.5)), sin(t) cos(\pi x) cos(\pi (y + 0.5))) ,

p(t,x) = sin(t)(2x - 1)(2y  - 1),

m(t,x) = (sin(t+ y), sin(t+ x)) ,

\varphi (t,x) = (x - 0.5)y sin(t).

(4.1)

We set the model parameters as follows:

\epsilon =M = 0.05, \nu f = 2.0, \nu w = 1.0, \lambda = \mu = \tau = \beta = \chi 0 = 1.0.

We set the finite element spaces (3.6) with l1 = 1, l2 = l3 = 2. In this way, the
following optimal convergence error estimates are expected:

\| enΦ\| L2 \lesssim \delta t+ h2, \| enΦ\| H1 \lesssim \delta t+ h, \| enu\| L2 \lesssim \delta t+ h3,

\| enu\| H1 + \| enp\| L2 \lesssim \delta t+ h2, \| enh\| L2 + \| enm\| L2 \lesssim \delta t+ h2,
(4.2)

where en\psi = \psi (tn) - \psi n for any function \psi .
To verify the convergence orders of our scheme, we first set \delta t = h and refine

the spatial grid size with h = 2 - i, i = 3, 4, 5, 6, 7, and 8. According to (4.2), the
convergent orders are expected to be

\| enΦ\| L2 \lesssim \delta t+ h2 \lesssim h, \| enΦ\| H1 \lesssim \delta t+ h \lesssim h, \| enu\| L2 \lesssim \delta t+ h3 \lesssim h,

\| enu\| H1 + \| enp\| L2 \lesssim \delta t+ h2 \lesssim h, \| enh\| L2 + \| enm\| L2 \lesssim \delta t+ h2 \lesssim h.

In Figure 4.1, we plot the computed errors at t = 0.5 with various grid sizes h, where
we observe that all above error functions attain almost perfect first-order accuracy,
which confirm the above predicted convergence rates.

Second, we set \delta t = h2 and refine the meshes with h = 2 - i, i = 3, 4, 5, 6, and 7.
Hence the convergent orders are expected to be

\| enΦ\| L2 \lesssim \delta t+ h2 \lesssim h2, \| enu\| L2 \lesssim \delta t+ h3 \lesssim h2,

\| enu\| H1 + \| enp\| L2 \lesssim \delta t+ h2 \lesssim h2, \| enh\| L2 + \| enm\| L2 \lesssim \delta t+ h2 \lesssim h2.
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Fig. 4.1. Convergent rates of the error functions of \| eΦ\| L2 , \| eΦ\| H1 , \| eu\| L2 , \| eu\| H1 , \| ep\| L2 ,
\| eh\| L2 (\| \nabla eϕ\| L2 ), and \| em\| L2 with δt = h at t = 0.5.
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Fig. 4.2. Convergent rates of the error functions of \| eΦ\| L2 , \| eu\| L2 , \| eu\| H1 , \| ep\| L2 ,
\| eh\| L2 (\| \nabla eϕ\| L2 ), and \| em\| L2 with δt = h2 at t = 0.5.

Fig. 4.3. Snapshots of the phase field Φ are taken at t = 0, 1, 2, 3, 4, and 5 by using the time
step δt = 1e - 3 and grid size h = 1

64
.

In Figure 4.2, we plot the computed errors at t = 0.5 with various grid sizes h. The
convergent rates of all variables present the almost perfect second-order accuracy
which is consistent with the above expected convergence orders.

4.2. Stability tests. In this subsection, we show the developed scheme (3.9)–
(3.17) is unconditionally energy stable with various time steps. We set the compu-
tational domain Ω = [0, 2\pi ]2 and use the same model parameters as the previous
section. We set the finite element spaces (3.6) with l1 = 1, l2 = l3 = 2. We impose
the initial conditions and applied magnetic field as

Φ0 = 0.5 - 0.5 tanh

\biggl( 

| x - x0| + | y  - y0|  - r

1.2\epsilon 

\biggr) 

,

u0 = (0, 0), m0 = (0, 0), ha = (0, 0),

where (x0, y0, r) = (\pi , \pi , 1.75).
In Figure 4.3, we plot the snapshots of the phase field variable Φ at various times

by using the time step size \delta t = 1e - 3 and mesh size h = 1
64 . We observe that a square

at the t = 0 gradually evolves into a circle under the effects of surface tensions. In
Figure 4.4, we plot the total free energy (3.20) until t = 5 by using various time steps
and fixing h = 1

64 . For all tested time steps, the obtained energy curves show the
monotonic decays that confirms that the developed scheme is unconditionally stable.
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(a) Energy evolution.
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(b) A close-up view.

Fig. 4.4. (a) Time evolution of the total free energy by using six different time step sizes
where δt = 0.5, 0.2, 0.1, 0.02, 0.01, and 0.005. (b) A close-up view of the free energy evolution for
t \in [0.5, 5].

Fig. 4.5. A ferrofluid in a magnetic field (from Wikipedia).

4.3. Rosensweig instability under uniformly applied magnetic field. We
now simulate a benchmark simulation, the so-called Rosensweig instability (also called
normal-field instability; cf. [1, 15, 17, 18, 21, 33]) to validate the developed model
(2.4)–(2.9) and show the robustness of our scheme (3.9)–(3.17). Figure 4.5 presents
the spike shape of a ferrofluid drop that is situated on the substrate caused by a
neodymium magnet beneath the dish (from Wikipedia).

We consider a mixture of ferrofluid and nonferrofluid with different viscosities and
almost matching densities. We supplement the gravity force as a forcing term fg on
the right-hand side of (2.6), where the Boussinesq approximation is used, i.e.,

fg =

\biggl( 

1 +
r

1 + e
1−2Φ

\epsilon 

\biggr) 

g,

where r is a positive constant depending on fluid density and | g| stands for the mag-
nitude of gravity. A linear combination of dipoles is used as the applied magnetizing
field ha that reads as

ha =
\sum 

s

\alpha s\nabla \phi s(x), \phi s(x) =
d \cdot (xs  - x)

| xs  - x| 2
,

where | d| = 1 indicates the direction of the dipole and xs is the dipole’s position. It
is easy to verify that \nabla \phi s defines a harmonic field (i.e., \nabla \times \nabla \phi s = 0, div\nabla \phi s = 0).
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Fig. 4.8. Snapshots of the velocity streamlines at t = 0.7, 0.8, 0.9, 1, 1.1, 1.2, 1.3, and 1.4 with
the uniformly applied magnetic field.
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(a) The magnetization field m.
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(b) The effective magnetizing field h.

Fig. 4.9. Snapshots of the magnetization field m and effective magnetizing field h at t = 1.4
with the uniformly applied magnetic field.

4.4. Rosensweig instability under nonuniformly applied magnetic field.

We further simulate the Rosensweig instability under a nonuniformly applied magnetic
field. We set the initial condition of Φ as

Φ(t = 0) =

\Biggl\{ 

1, y \leq 0.1,

0, y > 0.1.
(4.5)

All model parameters are still (4.4) but with \chi 0 = 0.9, h = 1
120 , and \delta t = 2e - 4.

The applied magnetic field ha =
\sum 

s \alpha s\nabla \phi s is generated by 42 dipoles. The
dipoles are placed in three rows, at y =  - 0.5, y =  - 0.75, and y =  - 1.0, and the
14 pointing upwards (d = (0, 1)) dipoles in each row are equidistributed in the x
direction. The intention of this setup of the dipoles is to create a crude approximation
of a bar magnet of 0.4 units width and 0.5 units height. The intensity \alpha s is the same
for every dipole but increases linearly in time with a slope of 1.2 (\alpha s = 0 at t = 0).
The sketch of setup is shown in Figure 4.10; see also [33].

In Figure 4.11, we plot the snapshots of the phase variable Φ at various times. In
contrast to the uniformly applied magnetic field case shown in Figure 4.7, the spikes
exhibit a radiative pattern. The velocity streamlines, shown in Figure 4.12, present
more complex irregular distributions. In Figure 4.13, we plot the magnetization field
m and the effective magnetizing field h at t = 3.

4.5. Deformation of a ferrofluid droplet under uniformly applied mag-

netic field. In this subsection, we simulate the deformation of a ferrofluid droplet
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Fig. 4.13. Snapshots of the magnetization field m and effective magnetizing field h at t = 3
with the nonuniformly applied magnetic field.

where H0 is the external applied magnetic strength and \kappa 0 is the curvature of the
initial undeformed droplet with radius R0 and \kappa 0 = 2/R0. When Bom increases,
the magnetic effect dominates the surface tension such that the interface tends to be
parallel to the magnetic field, and thus the ferrodroplet will deform and be elongated
gradually.

An analytic expression associated with the ratio = b/a of deformed ferrodroplet
and the magnetic bond number is derived in [2]:

Bom =

\biggl[ 

1

\chi 0
+ k

\biggr] 2\biggl( 
b

a

\biggr) 
1
3

\Biggl( 

2
b

a
 - 

\biggl( 

b

a

\biggr)  - 2

 - 1

\Biggr) 

,(4.6)

where 2a and 2b are the minor axis and the major axis of deformed droplet, respec-
tively. The parameter k is called the demagnetizing factor:

k =

\biggl( 

1 - E2

2E3

\biggr) \biggl( 

ln
1 + E

1 - E
 - 2E

\biggr) 

,

where E =
\sqrt{} 

1 - a2/b2 is called eccentricity.
We set the computational domain: Ω = [0, 1]2 and the initial condition as

Φ(t = 0) =

\Biggl\{ 

1,
\sqrt{} 

(x - 0.5)2 + (y  - 0.5)2 \leq 0.1,

0 otherwise.
(4.7)

The model parameters are set as
\left\{ 

 

 

\epsilon = 2e - 3,M = 2e - 4, \nu f = \nu w = 1, \mu = 0.1, \tau = 1e - 4,

\beta = 1, \chi 0 = 2, \lambda = 1, h =
1

128
, \delta t = 1e - 3.

(4.8)

To generate an uniform applied magnetic field, we place five dipoles with a far dis-
tance where the positions xs of dipoles are ( - 0.5, - 15), (0, - 15), (0.5, - 15), (1, - 15),
and (1.5, - 15). The directions d of the five dipoles are (0, 1), and the intensity \alpha s
is the same for the five dipoles but increases linearly in time with a slope of 1000,
starting from \alpha s = 0 at time t = 0.

In Figures 4.14–4.15, we plot the snapshots of the ferrodroplet at t = 0, 0.25, 0.5,
0.75, 1, 1.25, and 1.5. We observe the ferrodroplet is elongated with time and most of
the interface tends to be parallel to the direction of the applied magnetic field (0, 1).
We plot the quantitative comparison between the analytical solution (4.6) and the
computed results in Figure 4.16, where the numerical results agree with the analytical
results well.
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Fig. 4.14. Snapshots of the phase field variable Φ at t = 0.

Fig. 4.15. Drop deformation of a ferrofluid droplet under uniformly applied magnetic field.
Snapshots of the phase field variable Φ at t = 0.25, 0.5, 0.75, 1, 1.25, and 1.5.

Bo
m

10 -2 10 -1 10 0 10 1

b
/a

10 0

10 1

Fig. 4.16. Comparison between the numerical results and analytical results. Solid line repre-
sents the analytical solution (4.6); small red circles stand for numerical results.

5. Conclusions. We consider the full discretization of a highly coupled non-
linear phase field model for the two-phase ferrofluids system. By combining several
approaches which have proved to be effective for dealing with different difficulties of
the nonlinear system, we construct a linear, decoupled, fully discrete scheme to solve
the highly nonlinear and coupled multiphysics system efficiently. The scheme is prov-
ably unconditionally energy stable and leads to a series of decoupled linear equations
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to solve at each time step. To the best of our knowledge, the scheme is the first
decoupled, linear, unconditionally energy stable scheme for the phase-field model of
two-phase ferrofluid flows.
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